接地电容电流计算

合集下载

电容电流计算书

电容电流计算书

电容电流的计算书电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。

1.架空线路的电容电流可按下式估算:I C =(2.7~3.3)U e L×10-3 (F-1)式中:L——线路的长度(㎞);U e——线路系统电压(线电压KV)I C ——架空线路的电容电流(A);2.7 ——系数,适用于无架空地线的线路;3.3 ——系数,适用于有架空地线的线路;同杆双回线路的电容电流为单回路的1.3~1.6倍。

亦可按附表1所列经验数据查阅。

附表1 架空线路单相接地电容电流(A/km)2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算I C=0.1U e L (F-2)按电容计算电容电流具有金属保护层的三芯电缆的电容值见附表2。

附表2 具有金属保护层的三芯电缆每相对地电容值(µF/㎞)将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。

单相接地电容电流可由下式求出: I C =3 U e ωC ×10-3(F-3)其中 ω=2πf e式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz );C —— 厂用电系统每相对地电容(µF );2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。

6kV 电缆线路=I C 6S 22002.84S95++U e (A ) (F-4)10kV 电缆线路 =I C 0.23S22001.44S95++U e(A ) (F-5) 式中 S —— 电缆截面 (㎜²)U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。

附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞)2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。

煤矿高压电网单相接地电容电流计算方法

煤矿高压电网单相接地电容电流计算方法

##省晋煤寺河矿二号井高压电网单相接地电容电流计算近年来,随着矿井井型的增大,井下用电设备的增多,煤矿机械化程度的提高,供电线路逐渐增加,煤矿高压电网的单相接地电容电流也在增大,给供电系统的正常运行带来一系列安全性和可靠性问题。

随着接地电容电流的增大,降低了电缆的绝缘程度,易形成绝缘击穿从而发生两相或三相短路故障,当电网的接地电容电流增大到一定值后,接地故障点电弧便难以自熄,容易引起间隙电弧过电压。

为减少煤矿安全事故发生的可能,必须对煤矿高压电网的单相接地电容电流进展准确的治理和补偿,因此准确计算煤矿供电系统对地电容电流具有重要的现实意义。

单相接地故障是影响煤矿高压电网安全供电的主要因素之一,当单相接地电容电流超过一定值时,必须对煤矿高压电网的单相接地电容电流进展准确的治理和补偿,本文在分析煤矿高压电网电容电流理论准确计算根底上,应用了综合考虑电缆系数、天气系数与高压电器设备增值系数的改良的单相接地电容电流计算方法。

最后,通过实例计算验证了该改良计算方法的正确性。

1 、电网单相接地电容电流的理论计算煤矿10kV高压电网中性点不接地系统可以由图1模拟表。

图1 10kV 中性点不接地模拟电网图中,A E •、B E •、C E •为电网各相相电势,14~C C 为各线路每相对地分布电容,0C 为电力系统中其它线路与设备的一相对地总电容,01234d I i i i i i =++++为电力系统单相接地电容电流。

当配电网发生A 相单相接地故障时,故障点的接地电容电流由式3d A I CU ω=计算,其中01234C C C C C C =++++为配电网一相对地总电容值,为电网的相电压,大小为6000/3那么电网的对地电容就越大,接地电流也越大。

煤矿配电网中性点不接地系统单相接地故障时,有如下的故障特征:流过所有非故障线路零序电流的方向一样,故障线路零序电流方向与非故障线路相反,且故障线路电流突变的幅值大于所有非故障相的幅值,其值为所有非故障相的幅值之和。

线路对地电容电流计算

线路对地电容电流计算

一、电力线路电容电流估算方法。

一、中性点不接地系统对地电容电流近似计算公式:
无架空地线:Ic=××U×L×10-3(A)
有架空地线:Ic=××U×L×10-3(A)
其中U为额定线电压(KV)
L为线路长度(KM)
为系数,如果是水泥杆、铁塔线路增加10%
说明:1、双回线路的电容电流是单回线路的倍(6-10KV系统)
1、按现场实测经验:夏季比冬季电容电流增加10%左右。

2、由变电所中电力设备所引起的电容电流的增加估算如下:
额定电压(KV) 6 10 35 110
增值% 18 16 13 10
二、电力电缆线路的电容电流估算
6KV:Ic=Ue(95+)/(2200+6S)(安/公里)
10KV:Ic=Ue(95+)/(2200+)(安/公里)
其中S为电缆截面积(mm2)
Ue为额定线电压(KV)
上面的公式适用于油浸纸绝缘电力电缆,聚氯乙烯绞联电缆单位长度对地电容电流比油浸纸绝缘电力电缆大,参考厂家提供的参数和现场实测经验,大约增值20%左右。

电容电流计算(线路,发电机回路)

电容电流计算(线路,发电机回路)

电容电流的计算书电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。

1.架空线路的电容电流可按下式估算:I C =(2.7~3.3)U e L×10-3 (F-1)式中:L——线路的长度(㎞);U e——线路系统电压(线电压KV)I C ——架空线路的电容电流(A);2.7 ——系数,适用于无架空地线的线路;3.3 ——系数,适用于有架空地线的线路;同杆双回线路的电容电流为单回路的1.3~1.6倍。

亦可按附表1所列经验数据查阅。

附表1 架空线路单相接地电容电流(A/km)2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算I C=0.1U e L (F-2)按电容计算电容电流具有金属保护层的三芯电缆的电容值见附表2。

附表2 具有金属保护层的三芯电缆每相对地电容值(µF/㎞)将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。

单相接地电容电流可由下式求出: I C =3 U e ωC ×10-3(F-3)其中 ω=2πf e式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz );C —— 厂用电系统每相对地电容(µF );2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。

6kV 电缆线路=I C 6S 22002.84S95++U e (A ) (F-4)10kV 电缆线路 =I C 0.23S22001.44S95++U e(A ) (F-5) 式中 S —— 电缆截面 (㎜²)U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。

附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞)2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。

单相接地电容电流

单相接地电容电流

自动化论坛:单相接地电容电流的计算方法单相接地电容电流的计算4.1 空载电缆电容电流的计算方法有以下两种:(1)根据单相对地电容,计算电容电流(见参考文献2)。

Ic=√3×UP×ω×C×103式中: UP━电网线电压(kV)C ━单相对地电容(F)一般电缆单位电容为200-400 pF/m左右(可查电缆厂家样本)。

(2)根据经验公式,计算电容电流Ic=0.1×UP ×L式中: UP━电网线电压(kV)L ━电缆长度(km)4.2 架空线电容电流的计算有以下两种:(1)根据单相对地电容,计算电容电流Ic=√3×UP×ω×C×103式中: UP━电网线电压(kV)C ━单相对地电容(F)一般架空线单位电容为5-6 pF/m。

(2)根据经验公式,计算电容电流Ic= (2.7~3.3)×UP×L×10-3式中: UP━电网线电压(kV)L ━架空线长度(km)2.7━系数,适用于无架空地线的线路3.3━系数,适用于有架空地线的线路关于单相接地电容电流计算单相接地电容电流我所知道估算公式:对架空线:Ic=UL / 350对电缆:Ic=UL / 10我想请问的是L是指的架空线长度还是架空线距离?比如是三相的L是不是为距离X 3 另请问有没有更详细的计算方法?工业与民用配电设计手册上对L的定义是线路的长度,单位km,这里的长度与楼主说的距离是同一个概念,也就是说L是指架空线或电缆的距离,三相不需要再用距离乘以3更详细的单相接地电容电流计算公式见附件,摘自工业与民用配电设计手册152页描述:没有文件说明附件:( 189 K)单相接地电容电流计算.pdf下载次数(27)首先应该明确为什么要算这个电容电流,一般计算单相接地电容电流首先要了解,中性点接地系统的分类,什么样的系统才要计算单相接地电容电流,相关国家规定是怎样规定的,算出这个电流怎样进行相关的补偿,选用什么装置进行补偿,补偿的分类是欠补偿,还是过补偿,还是完全补偿,为什么要选用过补偿,单单理解怎样计算是没有任何用处的,中性点接地系统是个综合问题,考虑的要全面。

变电站设计常用电气计算-电容电流计算

变电站设计常用电气计算-电容电流计算

2.5 m/回 平均每回架空长度
Ic= 120.52 A
准确计算法 U= C= 10.5 kV 0.37 uF 额定线电压 每相对地电容(uF) 角频率 每段线路回路数 线路单相接地电容电流
w 314.16 L= x= 总电容电流 12 回
2.5 m/回 平均每回线路长度
Ic= 63.418 A
第 1 页,共 3 页
〔1〕 6kV电缆线路
2.5 m/回 平均每回电缆长度
Ic= 44.746 A
2.5 m/回 平均每回电缆长度
Ic= 74.576 A 架空线路 L= x= Ic= 〔2〕 10kV架空线路 L= x= Ic= 总电容电流 二 〔1〕 6kV架空线路
2.5 m/回 平均每回架空长度 12 回 0.45 A 12 回 0.75 A 每段架空回路数 6kV架空线路单相接地电容电流 每段架空回路数 6kV架空线路单相接地电容电流 全站总电容电流第 3 页,共 3 页
电容电流计算 全所电容电流计算 一 1 常规算法 电缆线路 U= S= L= x= 〔2〕 10kV电缆线路 U= S= L= x= 2 6.3 kV 300 mm2 12 回 10.5 kV 300 mm2 12 回 额定线电压 电缆截面mm2 每段电缆回路数 6kV电缆线路单相接地电容电流 额定线电压 电缆截面mm2 每段电缆回路数 10kV电缆线路单相接地电容电流

单相接地电容电流及保护定值计算

单相接地电容电流及保护定值计算

摘自本人撰写的《余热(中册)》一一五、已知热电厂10KV 供电线路有8回,额定电压为10.5KV ,架空线路总长度为9.6Km ,电缆线路总长度为6Km ,计算单相接地时系统总的零序(电容)电流为多少安? 由于热电厂10KV 供电系统为中性点不接地的运行方式,所以应按照公式1、2进行计算:1.对于架空线路 I dC0(架空)=350UL (A ) 2.对于电缆线路 I dC0(电缆)=10UL (A ) 式中 U ——线路额定线电压(KV )L ——与电压U 具有电联系的线路长度(Km )解:根据公式1、2计算出10KV 供电线路单相接地时的零序(电容)电流为: I dC0(总)=3509.610.5⨯+10610.5⨯=0.288+6.3≈6.6(A ) 一一六、如何计算10KV 中性点不接地系统,线路单相接地的零序电流保护定值? 中性点不接地系统发生单相接地故障时,非故障线路流过的零序电流为本线路的对地电容电流,而故障线路流过的零序电流为所有非故障线路的对地电容电流之和。

为使保护装置具有高度的灵敏性,所以非故障线路的零序电流保护不应动作,故零序电流保护的动作电流必须大于外部接地故障时流过本线路的零序电流,因此零序电流保护的动作电流I dz 应为: I dz =K K 3U φωC 0=K K I dC0式中 K K ——可靠系数。

本次计算按8回线路中的4回在运行,故选取4。

I dC0——本线路的对地电容电流。

举例:已知上题10KV 线路单相接地时,系统总的零序电流I dC (总)=6.6安,计算其中1回线路零序电流保护的定值为多少安?解: I dz =K K I dC0 本计算的可靠系数按照K K =4选取则: I dz =4×86.6=3.3(A ) 选取3.3A 该电流系流过零序电流互感器一次侧的动作电流。

如果零序电流互感器标明了其变流比,则应根据变流比计算出零序电流保护装置的动作电流;若零序电流互感器未标明其变流比,则应通过现场实测的方法,测量零序电流互感器二次测的电流,该电流就是保护装置的动作电流。

小电流接地系统接地电流计算与保护整定

小电流接地系统接地电流计算与保护整定

小电流接地系统接地电流计算与保护整定1 中性点不接地系统接地电流计算发生单相金属性接地时,接地相对地电压降为零,非接地两相对地电压升高3倍,三相之间电压保持不变,仍然为线电压。

流过故障点的电流是线路对地电容引起的电容电流,与相电压、频率及相对地间的电容有关,一般数值不大。

单相接地电容电流的估算方法如下:1.1 空线路单相接地电容电流IcIc=1.1(2.7~3.3) UeL10ˉ式中:Ue 线路额定线电压(kV);L 线路长度(km);1.1 采用水泥杆或铁塔而导致电容电流的增值系数。

无避雷线线路,系数取2.7;有避雷线线路,系数取3.3对于6kV线路,约为0.0179A/km;对于10kV线路,约为0.0313A/km;对于35kV线路,约为0.1A/km。

需要指出:(1)双回线路的电容电流为单回线路的1.4倍(6~10kV线路)。

(2)实测表明,夏季电容电流比冬季增值约10 %。

(3)由变电所中电力设备所引起的电容电流值可按表1-27进行估算。

1.2 电缆线路单相接地电容电流Ic油浸纸电缆线路在同样的电压下,每千米的电容电流约为架空线路的25倍(三芯电缆)和50倍(单芯电缆)。

也可按以下公式估算:6 kV电缆线路Ic=〔(95+3.1S)(2200+6S)〕Ue A/km10 kV电缆线路Ic=〔(95+1.2S)(2200+0.23S)〕Ue A/km式中:Ic 电容电流(A/km);S 电缆芯线的标称截面面积(mm);Ue 线路额定线电压(kV)。

对于交联聚乙烯电缆,每千米对地的电容电流约为油浸纸电缆的1.2倍。

油浸纸电缆和交联聚乙烯电缆的电容电流,见表1-28至表1-301.3 架空线和电缆混合线路单相接地电容电流Ic混合线单相接地电容电流可采用以下经验公式估算:Ic=Ue(Lk+35lc)350式中:Ic:电容器电流(A)Uc:线路额定线电压(kV)Lk:同一电压Ue的具有电的联系的架空线路总长度(km)Lc:同一电压Ue的具有电的联系的电缆线路总长度(km)表1-28 6-35KV油浸纸电缆接地电容电流计算值2 小接地电流系统单相接地保护及计算2.1 小电流接地系统的电容电流计算。

单相接地电容电流的计算

单相接地电容电流的计算

电网单相接地电容电流的计算和测量第一节有关电缆参数影响电网单相接地电容电流的因素很多,其中最大因素是电缆参数,即电缆芯对地的电容,不同的电缆有不同的参数表1和表2所示的是三芯油纸电缆和交流聚乙烯电缆参数。

地电容电流的3~5%。

第二节电网单相接地故障电容电流计算电网单相接地故障电容电流准确计算直接影响到选用补偿装置范围,特别是对新建变电站。

对6KV电网一般计算公式为:IC=1.14×ICC+2.8+IDC对于10KV电网一般计算公式为:IC=1.2×ICC+4.8+IDC式中:IC为电网单相接地电流,ICC为电缆计算电容电流,IDC为电网浪涌电容电流。

在计算电网单相接地故障电容电流时,要充分考虑到实际电网情况,特别是新建变电站,要充分考虑回路末端开关站以下高压部分电流。

第三节中性点小电阻接地电网特点1、单相接地电容电流测量方法,准备电压表、电流表各一块,6KV电力电容器若干,接地线及高压试电笔等。

2、测量步骤(1)测量电网自然不平衡电压U01。

在电网正常运行时,去掉电压互感器二次开口三角上的负载,接上电压表,这时电压表的读数即为U01,电压表不要拆除。

(2)选附加电容C:估算一下电网电容电流IC,估算出IC后,按以下条件选取附加电容C:U01≤1V,0.045IC≤C≤0.1IC;U01>1V,0.092IC≤C<0.13IC。

式中C单位为μF,确定C值后,按照电力电容器铭牌上的电容值即可选定附加电容器或电容器组。

(3)选择电流表量程。

电流表量程的安培数必须大于附加电容微法数,宜大出25%左右为佳。

(4)选定某一备用开关柜或带有下隔离开关的停送电柜。

将选定的电容器或电容器组同电流表串联后可靠接地,如图2所示。

必须做到:将电容器放在绝缘垫上,外壳可靠地接到电流表上;将电流表两端用一导线搭接,达到既接触良好,又可方便地挑开;准备好电容器放电接地线。

(5)检查接线及电表量程等,确保正确无误。

接地电容电流计算

接地电容电流计算

1前言众所周知10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。

2单相接地电容电流的危害当电网发展到一定规模,10kV出线总长度增加,对地电容较大时,单相接地电流就不容忽视。

当单相接地电流超出允许值,接地电弧不易熄灭,易产生较高弧光间歇接地过电压,波及整个电网。

单相接地电容电流过大的危害主要体现在五个方面:1)弧光接地过电压危害当电容电流过大,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它遍布于整个电网中,并且持续时间长,可达几小时,它不仅击穿电网中的绝缘薄弱环节,可使用电设备、电缆、变压器等绝缘老化,缩短使用寿命,而且对整个电网绝缘都有很大的危害。

2)造成接地点热破坏及接地网电压升高单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。

3)交流杂散电流危害电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。

4)接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。

5)配电网对地电容电流增大后,架空线路尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。

3 单相接地电容电流的补偿原则我国的相关电力设计技术规程中规定,3~10kV的电力网单相接地故障电流大于30A时应装设消弧线圈。

消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。

接地电容电流计算

接地电容电流计算

1前言众所周知10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。

2单相接地电容电流的危害当电网发展到一定规模,10kV出线总长度增加,对地电容较大时,单相接地电流就不容忽视。

当单相接地电流超出允许值,接地电弧不易熄灭,易产生较高弧光间歇接地过电压,波及整个电网。

单相接地电容电流过大的危害主要体现在五个方面:1)弧光接地过电压危害当电容电流过大,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它遍布于整个电网中,并且持续时间长,可达几小时,它不仅击穿电网中的绝缘薄弱环节,可使用电设备、电缆、变压器等绝缘老化,缩短使用寿命,而且对整个电网绝缘都有很大的危害。

2)造成接地点热破坏及接地网电压升高单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。

3)交流杂散电流危害电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。

4)接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。

5)配电网对地电容电流增大后,架空线路尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。

3 单相接地电容电流的补偿原则我国的相关电力设计技术规程中规定,3~10kV的电力网单相接地故障电流大于30A时应装设消弧线圈。

消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。

单相接地电容电流的计算

单相接地电容电流的计算

电网单相接地电容电流的计算和测量第一节有关电缆参数影响电网单相接地电容电流的因素很多,其中最大因素是电缆参数,即电缆芯对地的电容,不同的电缆有不同的参数表1和表2所示的是三芯油纸电缆和交流聚乙烯电缆参数。

表16~10KV三芯油纸电缆每KM对地电容及单相接地电容电流表26~10KV交流聚乙烯电缆参数电缆的参数还包括电缆的直流对地电阻,一般对地电阻电流为对地电容电流的3~5%。

第二节电网单相接地故障电容电流计算电网单相接地故障电容电流准确计算直接影响到选用补偿装置范围,特别是对新建变电站。

对6KV电网一般计算公式为:IC=1.14×ICC+2.8+IDC对于10KV电网一般计算公式为:IC=1.2×ICC+4.8+IDC式中:IC为电网单相接地电流,ICC为电缆计算电容电流,IDC为电网浪涌电容电流。

在计算电网单相接地故障电容电流时,要充分考虑到实际电网情况,特别是新建变电站,要充分考虑回路末端开关站以下高压部分电流。

第三节中性点小电阻接地电网特点1、单相接地电容电流测量方法,准备电压表、电流表各一块,6KV电力电容器若干,接地线及高压试电笔等。

2、测量步骤(1)测量电网自然不平衡电压U01。

在电网正常运行时,去掉电压互感器二次开口三角上的负载,接上电压表,这时电压表的读数即为U01,电压表不要拆除。

(2)选附加电容C:估算一下电网电容电流IC,估算出IC后,按以下条件选取附加电容C:U01≤1V,0.045IC≤C≤0.1IC;U01>1V,0.092IC≤C<0.13IC。

式中C单位为μF,确定C值后,按照电力电容器铭牌上的电容值即可选定附加电容器或电容器组。

(3)选择电流表量程。

电流表量程的安培数必须大于附加电容微法数,宜大出25%左右为佳。

(4)选定某一备用开关柜或带有下隔离开关的停送电柜。

将选定的电容器或电容器组同电流表串联后可靠接地,如图2所示。

必须做到:将电容器放在绝缘垫上,外壳可靠地接到电流表上;将电流表两端用一导线搭接,达到既接触良好,又可方便地挑开;准备好电容器放电接地线。

10kV配电网单相接地电容电流的工程计算法探讨_陈立军

10kV配电网单相接地电容电流的工程计算法探讨_陈立军

10kV配电网单相接地电容电流的工程计算法探讨陈立军(广东电网公司惠州供电局,广东惠州516300)摘要:10kV配电网中性点采用经小电阻接地方式或经消弧线圈接地方式,关键问题是10k V母线接地电容电流值的计算是否正确。

简要介绍了配电网中的小电流接地系统中的单相接地电容电流的组成,论述了电容电流工程计算法是判断新建工程项目是否装设小电阻或消弧系统的有效手段,分析了不同情况下单相接地电容电流的算法,通过对110k V变电站10kV母线电容电流进行现场测量并和计算值对比的实例,分析和验证了该工程计算方法具有很高的精度,可以大力推广应用。

关键词:配电网;小电阻接地;消弧线圈接地;单相接地;电容电流中图分类号:TM744文献标识码:B文章编号:1003-4897(2006)15-0083-030引言配电网中小电流接地系统中的单相接地电容电流由电力线路(电缆和架空线路)及电力设备(同步发电机、大容量同步电动机和变压器等)两部分的电容电流组成。

此外,旋转电机的过电压保护用的吸收电容、高压真空断路器中用于限制操作过电压的RC吸收装置的电容,其值也要计算在内。

架空线路的电容电流比同样长度下的电缆电容电流小得多,而电力设备的电容电流比电力线路小得更多,故通常只计算电缆和架空线路的电容电流。

如果电网中有同步发电机或大容量同步电动机时,也应计算其电容电流;或是按经验统计数据,估算因电力设备引起的电容电流值。

现将10kV及以下配电网单相接地电容电流的工程计算法介绍如下。

16~10kV电力线路电容电流6~10kV电缆线路每公里长度的单相接地电容电流按下列公式计算:6kV电缆I c6=U n(95+2.84S)/(2200+6S)10kV电缆I c10=U n(95+2.84S)/(2200+ 6S)式中:S为电缆芯线截面,mm2;U n为额定电压,kV。

为简化计算,6~10kV电缆线路每公里长度的电容电流值列于表1中。

35kV系统接地电容电流的计算

35kV系统接地电容电流的计算

35KV配电网络中性点接地华北水利水电大学周国安摘要电网中性点接地是关系到电网安全可靠运行的关键问题之一。

该文通过介绍中性点接地的基本概念、设计思想和理论联系实际的方法展开分析与研究。

阐明了35kV配电网络中性点采取消弧线圈接地方式的原因及解决其接线的具体措施。

通过理论分析,明确了消弧线圈的作用,并深入地讨论了消弧线圈的调整范围及方法。

清楚地表达了35KV配电网络中性点消弧线圈的整定值的合理性。

文中还明确了35KV配电网络进一步完善措施与该网络形成的接地设施之间的内在联系,从而提出了对35KV配电网络完善要求的具体措施。

关键词 35KV配电消弧线前言农村和城市配电网的负荷逐步在增大,就有110KV和35KV电网直接深入负荷区,这样给供电的安全、可靠性提出了更高的要求。

为此,必须分析和研究关系到整个供电系统安全、可靠的关键问题之一即35KV配电网络中性点接地方式问题。

对于大型变电站主变压器一般选择220/110/35KV或220/110/10KV,其接线组别为Y0/Y0/Δ,三角形接线侧为35KV或10KV,35KV或10KV是中性点不直接接地系统,只有选择接地变压器接在不同的母线段上,来完成接地补偿等问题。

另外,弄清这个问题,便于进一步完善该网络时,尽可能考虑采取技术合理、经济节省的相应措施。

1 规划设计的中性点接地方式1.1 中性点接地方式基本概念电力系统中电网中性点接地方式分直接接地和不接地(或称绝缘)的两种方式。

电网中性点直接接地,中性点就不可能积累电荷而发生电弧接地过电压,其各种形式的操作过电压均比中性点绝缘电网要低,但接地为短路故障,特别是瞬间接地短路,必须通过保护动作切除,再依靠重合闸恢复正常供电。

现今110KV及以上电网大都采用中性点直接接地方式。

但若较低电压等级的电网采用中性点接地的运行方式,则其接地事故频繁,甚至引起很多更严重的事故,操作次数多,且会因此增加许多设备,即可能引起供电可靠性降低,又不经济,故在我国3~35KV甚至60KV电网中性点采用非直接接地运行方式。

y电容接地计算

y电容接地计算

y电容接地计算在电气工程中,y电容接地计算是一项重要的任务,用于保障电力系统的安全和稳定性。

这种计算方法可以通过计算电容的值来确定接地电流的大小,从而提供相应的保护措施。

下面将分步骤介绍y电容接地计算的过程。

1. 确定电容的位置首先,需要确定电容的位置。

y电容接地通常在变压器中使用,因为它们通常是电力系统中电流最大的设备之一。

电容位置的选择应该考虑到接地电流的大小、安全距离和可靠性等多个因素。

在确定位置时,还需要确定电容器的接线位置。

2. 计算电容的值电容器的值可以通过计算公式来确定。

公式中涉及的参数包括电容器的尺寸、材料和形状等等。

同时,还需要考虑接地电流和电网电压等因素。

电容的值可以通过计算和实验来确定,也可以通过选择合适的商用电容器来获得。

3. 计算接地电流接地电流是y电容接地计算的重要参数之一。

在电力系统中,接地电流是指通过接地点流入大地的电流。

这种电流是由故障产生的,例如断线、短路和雷击等。

计算接地电流需要考虑到电力系统的电压、电流和阻抗等因素。

可以使用计算公式或计算软件来进行计算。

4. 设计保护措施根据计算结果,需要设计相应的保护措施。

保护措施的类型和规模可以根据电力系统的规模、负荷和使用环境等不同条件来确定。

包括接地刀闸、过电压保护器和绝缘监测装置等多种设备。

这些设备可以提供相应的保护措施,避免由于接地电流产生的危险和损失。

总之,y电容接地计算是电力系统设计和运行的重要环节。

通过合理、准确的计算方法和相应的保护措施,可以保障电力系统的安全和稳定性,同时也可以减少故障和事故对业务的影响。

电容电流的估算

电容电流的估算

电容电流的估算
10kV系统的接地电容电流与供电线路的结构、布置、长度有关, 主要取决电缆线路的截面和长度, 具体工程设计时应按工程条件计算,变电站10kV出线为电缆线路或架空线路, 根据《电力工程电气设计手册》第1册(电气一次部分) 电容电流的估算如下:
1、对于电缆线路电容电流估算为:
Ic1=0.1U e×L=1.05L [L为电缆线路总长度(km)]
10kV电缆实际各截面电容电流:
I c1=[(95+1.44S)/(2200+0.23S)]×Ue×L
表1:常用6~10kV电缆线路的电容电流(A/km)
注括号内为实测值
2、对于架空线路电容电流的估算值为:
I c2=(2.7~3.3)UeL×10-3
L——线路的长度(km)
I c2——架空线路的电容电流(A)
2.7——系数,适用于无架空地线的线路(10kV一般无地线)
3.3——系数,适用于有架空地线的线路
同杆双回线路电容电流为单回的1.3~1.6
I c2=2.7U e L·10-3=0.02835L [L为架空线路总长度(三相)]
3、对于变电站增加的接地电容电流如下表:
表2:变电站增加接地电容电流值
4、总电容电流
I C∑= I c1+ I c2
对于10kV系统, 附加的变电站电容电流为16%
故I c=1.16I C∑。

单相接地电容电流的计算、分析7

单相接地电容电流的计算、分析7
给你个估算公式
I=0.1UL=0.1*10*27.8=27.8A
27.8*1.16=32.2A
和2#的兄弟的公式计算的差不多,谢谢了,哥们现在还发愁电抗器的选择啊,有没有高手给指点迷津啊!!!
引用:
原帖由空格于2008-10-31 11:24发表
给你个估算公式
I=0.1UL=0.1*10*27.8=27.8A
Uο=60kv/1.732=34.641KV=34641V
故:
Ic=3×314×0.0000005F×34641V=16.315911(A)
中性点不接地的配网系统,如果发生单相接地,则接地点流过系统的电容电流。
接地电流就是电容电流,容流跟线路长度有关,估算表格如下
每公里架空线路及电缆线路单相金属性接地电容电流平均值(A)
单从计算角度,应该对低压也试用
但从实际考虑,低压系统中点直接接地,单相接地故障主要为单相短路电流,电缆的容性电流非常小可以忽略,所以低压系统中应该没有计算容性电流的必要
引用:
原帖由elc_xiaojia于2008-10-31 17:33发表
5#的兄弟,1.16是不是个系数啊?我也存在与7#的兄弟同样的困惑!!
请问Id是怎么计算的?最好有计算过程,谢谢了~!
中性点不接地系统的单相电系统的教科书均可;
Ic=3×ω×C×Uο(A)
式中:
ω是角频率,ω=2πf
C是相对地电容
Uο是相电压
则:
ω=2×3.14×50=314
C=100km×0.005μF/km=0.5μF=0.0000005F
计算电容电流的意义是什么呢?
学习了
变电站用地多一点,尤其现在城市电缆网络,电容电流大。必须经消弧线圈接地。过电压及绝缘配合有规定,具体选多大的消弧线圈,多少档调节,在论文里面有文章专门论述,仔细找找吧。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言
众所周知10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。

2单相接地电容电流的危害
当电网发展到一定规模,10kV出线总长度增加,对地电容较大时,单相接地电流就不容忽视。

当单相接地电流超出允许值,接地电弧不易熄灭,易产生较高弧光间歇接地过电压,波及整个电网。

单相接地电容电流过大的危害主要体现在五个方面:1)弧光接地过电压危害当电容电流过大,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它遍布于整个电网中,并且持续时间长,可达几小时,它不仅击穿电网中的绝缘薄弱环节,可使用电设备、电缆、变压器等绝缘老化,缩短使用寿命,而且对整个电网绝缘都有很大的危害。

2)造成接地点热破坏及接地网电压升高单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。

3)交流杂散电流危害电容电流流入大地后,在大地中形成杂散
电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。

4)接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。

5)配电网对地电容电流增大后,架空线路尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。

3 单相接地电容电流的补偿原则
我国的相关电力设计技术规程中规定,3~10kV的电力网单相接地故障电流大于30A时应装设消弧线圈。

消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。

当消弧线圈正确调谐时,不仅可以有效的减少产生弧光接地过电压的机率,还可以有效的抑制过电压的辐值,同时也最大限度的减小了故障点热破坏作用及接地网的电压等。

消弧线圈应接于系统中性点上。

变电站主变压器10 kV侧采用的是三角形接线,10 kV 系统是没有中性点的,解决的办法是将消弧线圈接在星形接线的10 kV站用接地变压器中性点上。

这样,系统零序网络等效于由对地电容和消弧线圈构成的LC串联电路。

脱谐度决定了一是弧道中的残余电流;二是恢复电压上升到最大值的时间;三是恢复电压的上升速度,它是影响灭弧的主要因素。

工程上用脱谐度V来描述调谐程度
V=(IC-IL)/IC
当V=0时,称为全补偿,当V>0时为欠补偿,V<0时为过补偿。

从发挥消弧线圈的作用上来看,脱谐度的绝对值越小越好,最好是处于全补偿状态,即调至谐振点上。

但是在电网正常运行时,小脱谐度的消弧线圈将产生各种谐振过电压。

如10KV电网,当消弧线圈处于全补偿时,电网正常稳态运行情况下其中性点位移电压是未补偿电网的10-25倍,这就是通常所说的串联谐振过电压。

除此之外,电网中各种操作(如大电机投入,断路器非同期合闸等)及电网发生其它故障时(如单相断线,断路器非全相合闸等)都可能产生危险的过电压,所以在电网正常运行时,或发生单相接地之外的其他故障时,小脱谐度的消弧线圈给电网带来的不是安全因素而是危害。

综上所述,当电网发生单相接地故障时,希望消弧线圈的脱谐度越小越好,最好是全补偿。

当电网正常运行时,希望消弧线圈的脱谐度越大越好,最好是退出运行。

4 智能型自动补偿装置的组成及特点
近年来人工调谐的老式消弧线圈已逐步被智能型自动调谐式接地补偿装置取代。

(1)智能型自动补偿装置一般包括Z型接地变压器、有载消弧线圈、阻尼电阻、中性点电压互感器、电流互感器以及微机自动调谐系统。

(2)智能型自动补偿装置的特点:
a)采用微机控制器,使装置实现了智能化,不仅保障了装置动作的快速性和准确性,而且实现了手动与自动控制独立,自动控制部分如出现异常不会影响手动控制,手动控制也包括了档位指示,手动
升降及档位到头、单相接地闭锁及升、降的互锁,保证了装置的可靠性和可控性。

b)采用了多档位抽头,电动有载调压消弧线圈,为装置实现自动调谐创造条件。

c)采用了特殊设计的高压非线性电阻与消弧线圈并联使用,对抑制铁磁谐振过电压,弧光过电压,欠补偿状态下的断线过电压和传递过电压等有明显效果。

d)运行方式灵活。

由于采取了降低中性点谐振过电压的措施,所以过补、欠补、全补方式都可以由用户自由选择。

e)设有记忆和报警及信号通过接口远送等功能,为实现变电所无人值班创造了条件。

5 单相接地电容、接地变压器及消弧线圈容量计算
电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑5-10年的发展。

(1)电缆线路电容电流的估算计算方法:
Ic=0.1×UP ×L (5-1)
式中:UP━电网线电压(kV) L ━电缆长度(km)
(2)架空线电容电流的估算计算方法:
Ic= (2.7~3.3)×UP×L×10-3 (5-2)
式中:UP━电网线电压(kV) L ━架空线长度(km) 2.7━系数,适用于无架空地线的线路 3.3━系数,适
用于有架空地线的线路
同杆双回架空线电容电流为单回路的1.3~1.6倍。

(3)变电所增加电容电流的计算见表1
表1<!--[if !vml]--><!--[endif]-->
(4)消弧线圈容量的计算
Q = K×Ic×UP/√3(5-3)
式中:K —系数,过补偿取1.35 Q —消弧线圈容量,kV A
(5)消弧线圈容量及额定电流的选择
根据最大电容电流Ic,确定相应的消弧线圈容量及额定电流,使最大补偿电感电流满足要求。

(6)接地变压器容量选择
接地变除可带消弧圈外,兼作所用变。

<!--[if !vml]--><!--[endif]--> <!--[if !vml]--><!--[endif]--> (5-4)式中:Q —消弧线圈容量,kV A S —所变容量,kV A Ф —功率因素角SJ —接地变容量,kV A
6 结束语
(1)工程实际中应根据系统具体情况,选取适合的智能型自动补偿装置。

首先,要根据系统电容电流大小来决定消弧线圈的补偿范围,即容量。

如果消弧线圈在最大补偿电流档位运行,脱谐度仍大于5%,说明消弧线圈的容量已不能满足要求。

其次,要确定消弧线圈的调节步长,即分接头数。

从理论上讲,最好是连续可调的消弧
线圈。

但由于技术方面的原因,使用带分接头的调匝式消弧线圈更为常见。

(2)两台接地变并列运行。

通常一个变电站的两台接地变接在两段母线上,装置应对其并列和分列两种情况予以考虑。

并列运行时应同时调节两台消弧线圈,取得适当补偿,并保证两个中性点的一致性。

相关文档
最新文档