潘省初《计量经济学》课件 (5)[107页]
2024版计量经济学全册课件(完整)pptx

REPORTING
2024/1/28
23
EViews软件介绍及操作指南
EViews软件概述
EViews是一款功能强大的计量经济学 软件,提供数据处理、统计分析、模型
估计和预测等功能。
统计分析与检验
2024/1/28
详细讲解EViews中的统计分析工具, 包括描述性统计、假设检验、方差分
析等。
数据导入与预处理 介绍如何在EViews中导入数据,进行 数据清洗、转换和预处理等操作。
随着大数据时代的到来,机器学 习算法在数据挖掘、预测和分类 等方面展现出强大的能力,为计 量经济学提供了新的研究工具和 方法。
机器学习在计量经济 学中的应用领域
机器学习在计量经济学中的应用 领域广泛,如变量选择、模型选 择、非线性模型估计、高维数据 处理等。
机器学习在计量经济 学中的常用算法
机器学习在计量经济学中常用的 算法包括决策树、随机森林、支 持向量机(SVM)、神经网络等。 这些算法可以用于分类、回归、 聚类等任务,提高模型的预测精 度和解释力。
面板数据特点
同时具有时间序列和截面数据的特征,能够提供更多的信息、更多的变化、更少共 线性、更多的自由度和更高的估计效率。
2024/1/28
20
固定效应模型与随机效应模型
固定效应模型(Fixed Effects Model)
对于特定的个体而言,其截距项是固定的,不随时间变化而变化。
随机效应模型(Random Effects Mode…
经典线性回归模型
REPORTING
2024/1/28
7
一元线性回归模型
模型设定与参数估计
介绍一元线性回归模型的基本形式, 解释因变量、自变量和误差项的含义, 阐述最小二乘法(OLS)进行参数估 计的原理。
计量经济学课件PPT课件

非线性模型转换方法
多项式回归
通过引入自变量的高次项,将非线性关系转化为线性 关系进行处理。
变量变换
对自变量或因变量进行某种函数变换,以改善模型的 拟合效果。
非参数回归
不假定具体的函数形式,通过数据驱动的方式拟合非 线性关系。
实例分析:金融时间序列预测
数据准备
收集金融时间序列数据,如股票 价格、交易量等,并进行预处理。
模型选择依据
Hausman检验,LM检验等。
实例分析:经济增长收敛性问题研究
研究背景
探讨不同国家或地区间经济增长差异及其收 敛性。
模型构建
选择合适的面板数据模型,设定经济增长收 敛假设。
实证分析
收集相关数据,运用计量经济学软件进行回 归分析,检验收敛性假设是否成立。
结论与政策建议
根据实证结果得出结论,提出促进经济增长 收敛的政策建议。
机器学习算法与计量经济学模型结合
将机器学习算法与传统计量经济学模型相结合,形成更具解释性和预测能力的混合模型。
大数据背景下计量经济学挑战与机遇
01
大数据背景概述
数据量巨大、类型多样、处理速度快等 特点。
02
计量经济学面临的挑 战
数据质量、计算效率、模型可解释性等 问题。
03
计量经济学面临的机 遇
利用大数据技术挖掘更多信息,提高模 型预测精度和政策评估效果;同时推动 计量经济学理论和方法的发展创新。
Geary's C指数
与Moran's I指数类似,也是用于检验全局空间自相关。
LISA集聚图 用于检验局部空间自相关,可以直观展示空间集聚或异常 值区域。
空间滞后和空间误差模型选择
空间滞后模型(SLM)
《计量经济学简介》PPT课件

D
R
T=
(0.68) (5.32)
(1.58)
R2= 0.73 调整的精选RP2P=T 0.68
F=20.18
12
➢ 关于随机扰动项
1. 引进的必要性:
(1)经济行为具有随机性;
(2)设定模型时省略了很多因素;
(3)取样本时也会有测量误差。
2. 构成:
(1)省略误差:x的 次要的解释变量必须扔掉
1
2D 3 R
精选PPT
11
三、计量经济模型的建立(续)
(4)引进扰动项(下一页有解释)
C Y W 1 2D 3 R
理论上的经济计量模型
(二)收集数据:比如时序数据1973~1991年(t=19),
单位:亿元
(三)模型估计
(1)估计方法:比如 OLS
C ˆ Y W (2)估计式: 0 .0 0 3 0 .8 1 2 0 .1 3 8
不可观测的变量也得省掉
可观测不可定量化的省掉
未认识到的变量
f的:数学形式设定中导出的误差
(2)测量误差:观测误差、统计数据归并时的误差。
精选PPT
13
三、经济计量模型的建立(续)
(四)模型检验
(1)经济合理性检验:
比如YD和WR的系数是否在(0,1)之间 (2)古典统计检验:R2,T, F检验
(五)模型应用
人、企业等观测单位本身具有而我们又观测不 到的特性
精选PPT
18
例: 一个两年的面板数据格式如下
Obsno city year y x1 x2 x3
1
1 1986 . . .
.
2
1 1990 . . .
.
3
计量经济学课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案教学课件汇总完整版电子教案

假设样本回归直线已做出,设它为
yˆi ˆ ˆ xi
(2.2.3)
其中ˆ 是α的估计量, ˆ 是β的估计量,这样
就可以用样本回归直线(2.2.3)估计总体回归直线
(2.2.2)。
设给定的样本观测值(xi,yi),i =1,2,…,n, 在直角坐标系里,做出它们的对应点(xi,yi), i =1,2,…,n,构成散点图,如图2.2.1
COV(ui,xj) = 0 (i,j =1,2,3,…,n )
显然,如果x是非随机变量,则假定5将自动满足。 以上假定通常也叫高斯—马尔可夫 (Gauss Markov) 假定,也称古典假定。满足以上古典假定的线性回 归模型,也称为古典线性模型或经典线性模型。
根据假定2,对(2.1.1)式两边同时取期望值,则有
E(ui)= 0 (i =1,2,3,…,n)
假定3 每个ui( i = 1,2,3,…,n )的方差均为同一个
常数,即V(ui)
=
E( ui2)=
2 u
=常数
称之同方差假定或等方差性。
假定4 与自变量不同观察值xi相对应的随机项ui彼 此独立,即COV(ui,uj) = 0 (i≠j) 这个假定称为非自相关假定。 假定5 随机项ui与自变量的任一观察值xj不相关,即
2003年诺贝尔经济学奖再次垂青计量经济学家美 国的罗伯特F.恩格尔(Robert F.Engle)和英国的克 莱夫W.J. 格兰杰(Clive W.J.Granger)是因为他们 在时间序列数据研究方法方面的重要贡献,这再 一次向世人证明计量经济学是经济学中最重要的 学科之一。 另一方面,绝大多数诺贝尔经济学奖获得者即使 其主要贡献不在计量经济学领域,也都普遍应用 了计量经济学方法。
计量经济学课件(全)

计量经济学第一章绪论目前,在经济学、管理学以及一些相关学科的研究中,定量分析用得越来越多。
所谓定量分析,即揭示经济活动中客观存在的数量关系。
定量分析方法统计分析方法:一元多元经济计量分析方法:以模型为基础时间序列分析方法:动态时间序列§1.1 计量经济学及其模型概述一、计量经济学计量经济学的诞生计量经济学“Econometrics”一词最早是由挪威经济学家弗里希(R.Frish)于1926年仿照“Biometrics”(生物计量学)提出来的,这标志着计量经济学的诞生。
弗里希将计量经济学定义为经济学、统计学和数学三者的结合。
计量经济学的定义计量经济学是以经济理论为指导,以经济事实为依据,以数学、统计学为方法,以计算机为手段;主要从事经济活动的数量规律研究,并以建立、检验和运用计量经济学模型为核心的一门经济学学科。
二、计量经济学模型模型,是对现实的描述和模拟。
模型分类语义模型:语言文字。
物理模型:简化的实物。
几何模型:几何图形。
数学模型:数学公式。
计算机模拟模型:计算机模拟技术。
计量经济学模型属于经济数学模型,即用数学公式来描述经济活动。
例:生产函数经济数学模型是建立在经济理论的基础之上的。
生产理论:“在供给不足的条件下,产出由资本、劳动、技术等投入要素决定,随着各投入要素的增加,产出也随之增加,但要素的边际产出递减。
” 建立初始模型初始模型的特点模型描述了经济变量之间的理论关系;通过模型可以分析经济活动中各因素之间的相互影响,从而为控制经济活动提供理论指导;认为这种关系是准确实现的;模型并没有揭示各因素之间的定量关系,因为参数未知。
模型的改进以1964-1984年我国工业生产活动的数据作为样本,估计得到:改进模型的特点1.用随机性的数学方程描述现实的经济活动与经济关系。
2.揭示了经济活动中各因素之间的定量关系。
3.可用于对研究对象进行深入的研究,如结构分析、生产预测等。
初始模型——数理经济学模型数理经济学模型:由确定性的数学方程所构 成,用以揭示经济活动中各因素间的理论关系。
第九章面板数据模型(计量经济学,潘省初)

t : (4.34) (39.87)
(4.33)
R2 0.95
e2 2, 675, 700, 466
这种方法的致命缺陷是,估量出来的系数只要在 我们前面关于截距和斜率关于一切产业和一切时期 都是异样的值的假定成立的状况下才有用,实践状 况当然不是如此,比如说,很难想象每个时期中每 个产业的失业人数与其出口额之间的关系都相反, 添加1000名工人对不同产业出口额的影响应当是不 同的。
横截面时间序列混合数据那么包括不同横截面集体 不同时期的数据,或许说,混合数据包括既跨越时间 又跨越空间的数据。
假设混合数据包括的观测值来自同一批地域、公 司、人员或其它横截面集体的不同时期数据,那么 此类混合数据称为面板数据〔panel data〕。
面板数据通常比非面板混合数据更有用,这是由 于面板数据中的地域、公司、人员等横截面集体在 各时期中不时坚持不变,这使得我们更易于对随着 时间的推移所发作的变化停止比拟。
本例中约束回归就是回归〔9.5〕式:
Yit 0 1EMPit 2OTM it uit
(9.5)
〔9.5〕式中只要一个截距项,这与本例原假定〔各 产业截距相等〕是一样的。
而无约束回归就是固定影响模型〔9.6〕式:
Yit 1EMPit 2OTMit 3D1 (9.6) 4D2 5D3 6D4 uit
我们可以经过火别运转4个回归来剖析这些数据, 每个产业一个回归:
Y1t 0 1EMP1t 2OTM1t u1t Y2t 3 4EMP2t 5OTM 2t u2t Y3t 6 7EMP3t 8OTM3t u3t Y4t 9 10EMP4t 11OTM 4t u4t
(9.1) (9.2) (9.3) (9.4)
t : (17.33) (24.43)
潘省初计量经济学第3版

β 0 X 2t β1 X 2t X 1t ...... β K X 2t X Kt X 2tYt
......
......
......
......
β 0 X kt β1
X kt X 1t ...... β K
X Kt 2
X ktYt
按矩阵形式,上述方程组可表示为:
X'
1 Y1
X 1n
Y2
... ...
X
Kn
Yn
Y
即 ( X ' X )β X 'Y
β ( X X )1 X Y
14
三. 最小二乘估计量 β的性质 我们的模型为 Y X u
估计式为
Yˆ
Xβ
1.β 的均值
β ( X X )1 X Y
( X X )1 X ( Xβ u)
( X X )1 X Xβ ( X X )1 X u
收入不变的情况下,价格指数每上升一个点, 食品消费支出减少7.39亿元(0.739个billion)
3
例2:
Ct
β 1
β 2 Dt
β 3 Lt
ut
其中,Ct=消费,Dt=居民可支配收入 Lt=居民拥有的流动资产水平
β2的含义是,在流动资产不变的情况下,可支配收入变动 一个单位对消费额的影响。这是收入对消费额的直接影响。
为求Var( β ),我们考虑
E
β
β
β
β
β0 β0
E
β1 β1
...
β
0
β
0
β1 β1
...
βK
βK
β
K
βK
17
Var(β 0 )
潘省初计量经济学——第五章

16
令RSSj表示第j个模型(有kj个解释变量)的残差 平方和,并定义
ˆ
2 j
RSS j nkj
为第j个模型的的
2估计值。我们
ˆ
2 m
用表示包含全
部k个解释变量的模型的 2估计值。
17
表5-1 选择回归模型的准则
是Y的未来值,而 Yˆf是预测值。
20
上述三个准则都是基于预测的均方误差最小,但在 估计预测的均方误差时采用的假设有所不同,因而形 成各自的计算公式,孰优孰劣,并无定论,在实践中 可根据所用软件提供的输出结果选用其中一个作为模 型选择的准则。具体做法是比较备选的几个模型的
Cp、 Sp 或PC值,选其中最小的即可。
第五章 模型的建立与估计中的 问题及对策
1
本章内容
第一节 误设定 第二节 多重共线性 第三节 异方差性 第四节 自相关
2
OLS估计量令人满意的性质,是根据一组假设条件而 得到的。在实践中,如果某些假设条件不能满足,则 OLS就不再适用于模型的估计。下面列出实践中可能碰 到的一些常见问题:
l 误设定(Misspecification 或specification error) l 多重共线性(Multicollinearity) l 异方差性(Heteroscedasticity或Heteroskedasticity) l 自相关(Autocorrelation) l 随机解释变量(Stochastic explanatory variables)
(2) 由上一步得到的值 后用OLS法估计:
Yˆi(i=1,2,…,n),计算 Yˆi 2 , Yˆi3和 Yˆi 4 ,然
计量经济学.ppt课件

能和计量经济学混为一谈。计量经济学与经济统计学绝非一码事;它也不同 于我们所说的一般经济理论,尽管经济理论大部分具有一定的数量特征;计 量经济学也不应视为数学应用于经济学的同义语。经验表明,统计学、经济 理论和数学这三者对于真正了解现代经济生活的数量关系来说,都是必要的, 但本身并非是充分条件。三者结合起来,就是力量,这种结合便构成了计量 经济学。”
《计量经济学》
第一章 绪论
•计量经济学 •经典计量经济学模型的建模步骤 •计量经济学模型的应用 •一个简单的例子
一、计量经济学
△ 计量经济学简历 ○ 1926年挪威经济学家R.Frish提出Econometrics; ○ 1930年成立世界计量经济学会; ○ 1933年创刊《Econometrics》; ○ 20世纪四五十年代的大发展和60年代的扩张; ○ 20世纪70年代以来非经典(现代)计量经济学的发展。
随机抽取
能-OLS估计
[1] OLS:普通最小二乘法( ordinary least squares )的简称。 [2] 基本思想:寻找一个直线(或超平面)使得该直线和所有样本点的总距
离最小,用该直线(样本回归线)作为经济现象(总体回归模型)背后的 经济规律(总体回归线)的近似。
△ 问题3:所得近似结果可以信赖吗?
济
协整理论—现代宏观计量
学
Granger
时间序列: ARCH—现代金融计量
Engle
二、经典计量经济学模型的建模步骤
△ 理论模型的建立
[1] 确定模型变量 ○ 根据经济学理论和经济行为分析,初步确定变量。 ○ 根据数据类型选择适当计量模型或理论。 ○ 注意:数据的可得性、入选变量之间的关系。
经济学计量经济学第五章PPT课件

• 当a>0、0<b<1时,y 随着t 的增加而趋向于0
• 描述以几何极数递增或递减的现象
• 序列的观察值按指数规律变化
• 序列的逐期观察值按一定的增长率增长或衰减
• 参数估计方法 • 采用对数变换法将模型化为线性进行估计
29
第29页/共45页
修正指数型增长曲线模型
• 一般形式
y L ab •
•
~yi ˆ0 yi f xi , ˆ0 zi ˆ0 ˆ0
• 易平~y求方i 出和ˆ其式0参最数小zi 的ˆ0普 通ˆ最小二i 乘估计值
•
ˆ
,该估计值使得残差
2
ˆ1
n
S ˆ1
~yi ˆ0 zi ˆ0 ˆ1 2
i 1
17
第17页/共45页
Gauss-Newton迭代法(续2)
• 类别 • 多项式增长曲线模型 • 简单指数型增长曲线模型 • 修正指数型增长曲线模型 • Logistic增长曲线模型 • Gompertz增长曲线模型
27
第27页/共45页
多项式增长曲线模型
• 一般数学形式
•
y• t
yt:a第0t
期
的a1某t
个经a济2t指2
标
;t :时a间k t
k
• a0,a1,…,ak:模型参数
• 至此完成非线性模型的OLS估计
18
第18页/共45页
Gauss-Newton迭代法(续3)
• 步骤
• 给出参数估计值 近似值
的初值 ,将
ˆ
在 处展开泰勒级数,取一阶
ˆ0
f xi , ˆ
ˆ0
• 计算
和
的样本观z测i 值ˆ0
计量经济学ppt课件(完整版)

在进行模型选择与比较时,需要注意避免过拟合和欠拟合问题,以及确保模型的稳定性和可靠性。此外 ,还需要关注模型的异方差性、共线性等问题,以确保模型的准确性和有效性。
04
时间序列分析及应用
时间序列基本概念及性质
01
时间序列定义
按时间顺序排列的一组数据,反映 现象随时间变化的发展过程。
时间序列类型
03
广义线性模型与非线性模型
广义线性模型介绍
定义
广义线性模型是一类用于描述响 应变量与一组预测变量之间关系 的统计模型,其特点在于响应变 量的期望值通过一个连接函数与 预测变量的线性组合相关联。
连接函数
连接函数是广义线性模型中一个 关键组成部分,它将响应变量的 期望值与预测变量的线性组合连 接起来。常见的连接函数包括恒 等连接、对数连接、逆连接等。
模型的统计性质
深入探讨多元线性回归模型的统计性质,包括无偏性、有效性和一致性等,并解释这些 性质在多元回归分析中的重要性。
多重共线性问题
详细讲解多重共线性的概念、产生原因、后果以及诊断和处理方法,如逐步回归、岭回 归等。
回归模型检验与诊断
模型的拟合优度 介绍衡量模型拟合优度的指标, 如可决系数、调整可决系数等, 并解释这些指标在实际应用中的 意义。
微观计量经济学在因果推断和政策评 估方面发挥着重要作用。目前,研究 者们关注于如何运用实验设计、工具 变量、双重差分等方法识别和处理内 生性问题,以更准确地估计因果关系 和评估政策效果。
高维数据处理与机器 学习
随着大数据时代的到来,高维数据处 理成为微观计量经济学面临的新挑战 。目前,研究者们正在探索如何将机 器学习等先进的数据分析技术应用于 微观计量经济学中,以处理高维数据 和挖掘更多的有用信息。
《计量经济学》ppt课件(2024)

02
最小二乘估计量的 性质
包括线性、无偏性、有效性等, 这些性质保证了估计量的优良特 性。
03
最小二乘法的计算
通过求解正规方程组或使用专门 的软件,可以得到参数的估计值 。
2024/1/29
9
经典线性回归模型假设条件及检验
1 2
经典线性回归模型的假设条件
包括线性关系、误差项独立同分布、无多重共线 性等,这些假设是模型有效的基础。
发展历程
从20世纪初的萌芽阶段,到20世 纪中叶的快速发展,再到21世纪 的广泛应用和不断创新。
4
计量经济学研Βιβλιοθήκη 对象与任务研究对象主要研究经济现象的数量关系,包括 经济变量之间的关系、经济系统的运 行规律等。
任务
揭示经济现象背后的数量规律,为经 济政策制定和评估提供科学依据,推 动经济学的理论创新和实践应用。
应用
非参数估计方法广泛应用于各种实际问题中,如金融市场的波动率估计、生物医学中的生存分析、环境科学中的 气候变化预测等。其优点在于灵活性高,能够适应各种复杂的数据分布,但同时也存在计算量大、对样本量要求 较高等问题。
2024/1/29
20
半参数估计方法原理及应用
原理
半参数估计方法结合了参数和非参数估 计方法的优点,既对总体分布做出一定 的假设,又利用样本数据进行推断。其 核心思想是通过引入一些辅助信息或约 束条件,降低模型的复杂度,提高估计 的精度和稳定性。
25
面板数据模型参数估计与检验
2024/1/29
参数估计方法
最小二乘法(OLS)、广义最小二乘法(GLS) 、极大似然估计(MLE)等。
参数检验
t检验、F检验、LM检验等,用于检验参数的显著 性。
计量经济学课件全完整版

自回归移动平均模型,适用于平 稳和非平稳时间序列的预测,通 过识别、估计和诊断模型参数来 实现预测。
05
面板数据分析方法及应用
面板数据基本概念及特点
面板数据定义
面板数据,也叫时间序列截面数据或混合数 据,是指在时间序列上取多个截面,在这些 截面上同时选取样本观测值所构成的样本数 据。
介绍空间滞后模型(SLM)、空间误差模型(SEM)等空间计量经济模型的建立与估 计方法,包括极大似然估计、广义矩估计等。
贝叶斯计量经济学原理及应用
01
02
贝叶斯统计推断基础
阐述贝叶斯统计推断的基本原理和方法, 包括先验分布、后验分布、贝叶斯因子 等概念。
贝叶斯计量经济模型 的建立与估计
介绍贝叶斯线性回归模型、贝叶斯时间 序列模型等贝叶斯计量经济模型的建立 与估计方法,包括马尔科夫链蒙特卡罗 (MCMC)模拟等。
模型假设
广义线性模型假设响应变量与解释变量之间存在一 种可通过链接函数转化的线性关系,而非线性模型 则不受此限制,可以拟合任意复杂的非线性关系。
模型诊断与检验
对于广义线性模型,常用的诊断方法包括残差分析、 拟合优度检验等;对于非线性模型,由于模型的复 杂性,诊断方法可能更加多样化,包括交叉验证、 可视化分析等。
与其他社会科学的关系 计量经济学也可以应用于其他社会科学领域,如 社会学、政治学等,对社会科学现象进行定量分 析。
计量经济学发展历史及现状
发展历史
计量经济学起源于20世纪初,随着计算机技术的发展和普及,计量经济学得到 了广泛的应用和发展。
现状
目前,计量经济学已经成为经济学领域的重要分支,广泛应用于宏观经济、微 观经济、金融、国际贸易等领域。同时,随着大数据和人工智能技术的发展, 计量经济学面临着新的机遇和挑战。
完整的计量经济学 计量经济学第五章 线性回归的PPT课件

X 若采用变量关系 E () ( 0 0 ) ( 1 1 )X 1 0 (2 2 )X 2 3 X 3
Y 0 1 X 1 2 X 2
Y Y
或
D 1i
0,当 i是男性时 1,当 i是女性时
38
对于截面数据计量分析的例子
对于截面数据计量分析中,观测对象特征差异导致的规律 性扰动,也可以利用虚拟变量加以处理。
如观测对象的性别是一个影响因素,解决的办法就是在模 型中引进虚拟变量,即
D1,D2,D3和D4,
这个虚拟变量就能解决由于观测对象的性别因素所导 致的误差项均值非0问题。
非线性变量关系的残差序列图
e
i
8
(三)问题的处理和非线性回归
1、模型修正和变换 恢复模型的合理非线性形式 然后再变换成线性模型
9
泰勒级数展开法
2、泰勒级数展开法 假设一个非线性的变量关系为:
Y f X 1 , ,X K ;1 P
在 处对 B 0b 1,0 ,b P 0 β1, ,P 作泰勒级数展开:
第五章 线性回归的定式偏差
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
线性回归的定式偏差
本章讨论变量关系非线性、存在异常值、 规律性扰动和解释变量缺落等导致的线性 回归模型前两条假设不成立的定式偏差, 包括它们对线性回归分析的影响、判断和 处理的方法等。
1 0 2 0
1 1 X 2 1 X
1 2
《计量经济学》课件

序计 量 经 济 研 究 的 工 作 程
(三)参数估计
矩法 常用的参数估计方法极大似然法
最小二乘法
• 矩法——以样本矩代替总体矩建立方程, 求解参数的方法。
• 极大似然法——根据极大似然原理建立方 程,求解参数的方法。
• 最小二乘法——根据最小二乘原理建立方 程,求解参数的方法。
(四)模型的检验
前定变量外 滞生 后变 变量 量
滞后内生变量 滞后外生变量
前期的内生变量 前期的外生变量
• (4)控制变量
• 控制变量——人为设置的反映政策要求、决策 者意愿、经济系统的运行条件和运行状态等方 面的变量。
模型设计工作
经济变量的确定 模型方程的设定
• 计量经济模型——为了研究分析经济系统中的经 济变量之间的数量关系而采用的随机性 的数学方程。 y f (x1, x2 ,, xn ) u
• 结构分析包括:(1)利用模型分析和测度系统 中某一变量的(绝对和相对)变化对其他变量 的影响;(2)比较分析变量及参数变化对经济 系统平衡的影响;(3)分析与研究变量相互关 系的变化对经济系统平衡点位移的内在联系。
• 政策评价——利用计量经济模型和计算机技术, 模拟在不同政策(或决策)条件下,经济系统 运行的态势和结果,对政策(或决策)进行评 价和优选。
济 学 概
• 数理经济学为计量经济学提供经济模型; • 经济统计学为计量经济学提供经济数据;
述 • 数理统计学为计量经济学提供分析工具和
研究方法;
计量经济学与相关学科的关系图
经济学
数理经 济学
计量经 济学
经济统 计学
数学
数理统 计学
统计学
(四) 计量经济学的分类
计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 选择错误的函数形式
这类错误中比较常见的是将非线性关系作为线性 关系处理。函数形式选择错误,所建立的模型当然 无法反映所研究现象的实际情况,后果是显而易见 的。因此,我们应当根据实际问题,选择正确的函 数形式。
5
我们在前面各章的介绍中采用的函数形式以线性 函数为主,上一章还介绍了因变量和解释变量都采用 对数的双对数模型,下面再介绍几种比较常见的函数 形式的模型,为读者的回归实践多提供几种选择方案。 这几种模型是:
ln( GDPt ) 0 1t ut
得到一国GDP的年增长率的估计值,这里t为时间趋 势变量。
8
线性-对数模型的形式如下:
Yt 0 1 ln Xt ut
与前面类似,我们可用微分得到
因此
1 X
dY dX
dY dX X
dY dX
1
1 X
这表明
1
Y的绝对变动 X的相对变动
Y X X
Y
1
双曲函数模型的特点是,当X趋向无穷时,Y趋 向 0 ,反映到图上,就是当X趋向无穷时,Y将无 限靠近其渐近线(Y = 0 )。
双曲函数模型通常用于描述著名的恩格尔曲线和 菲利普斯曲线。
10
3. 多项式回归模型 多项式回归模型通常用于描述生产成本函数,其 一般形式为:
Yt
0
1Xt
2
X
2 t
......
第五章 模型的建立与估计中的 问题及对策
1
本章内容
第一节 误设定 第二节 多重共线性 第三节 异方差性 第四节 自相关
2
OLS估计量令人满意的性质,是根据一组假设条件而 得到的。在实践中,如果某些假设条件不能满足,则 OLS就不再适用于模型的估计。下面列出实践中可能碰 到的一些常见问题:
l 误设定(Misspecification 或specification error) l 多重共线性(Multicollinearity) l 异方差性(Heteroscedasticity或Heteroskedasticity) l 自相关(Autocorrelation)
15
*五、模型的选择
上一段讨论了某个解释变量应否包括在模型中的 几条原则。实践中,要解决的一个问题是如何从大量 的潜在解释变量的集合中选择一个最合适的子集,以 得到一个正确设定的模型。
ln Yt 0 1Xt ut
对数-线性模型中,斜率的含义是Y的百分比变动, 即解释变量X变动一个单位引起的因变量Y的百分比 变动。这是因为,利用微分可以得出:
1
d ln Y dX
1 Y
dY dX
dY Y
(dX 1)
7
这表明,斜率度量的是解释变量X的单位变动所 引起的因变量Y的相对变动。将此相对变动乘以100, 就得到Y的百分比变动,或者说得到Y的增长率。 由于对数-线性模型中斜率系数的这一含义,因而也 叫增长模型 (growth model)。增长模型通常用于测 度所关心的经济变量(如GDP)的增长率。例如, 我们可以通过估计下面的半对数模型
X X
上式表明,Y的绝对变动量等于 1乘以X的相对变动量。因
此, 线性-对数模型通常用于研究解释变量每变动1%引起的 因变量的绝对变动量是多少这类问题。
9
2. 双曲函数模型 双曲函数模型的形式为:
Yt
0
1
1 Xt
ut
不难看出,这是一个仅存在变量非线性的模型, 很容易用重新定义的方法将其线性化。
在回归实践中,有时要对某个变量是否应该作为解 释变量包括在方程中作出准确的判断确实不是一件容 易的事,因为目前还没有行之有效的方法可供使用。 尽管如此,还是有一些有助于我们进行判断的原则可 用,它们是:
13
选择解释变量的四条原则
Hale Waihona Puke 1. 理论: 从理论上看,该变量是否应该作为解释变
量包括 在方程中? 2. t检验:该变量的系数估计值是否显著?
三. 包括无关的解释变量 模型中包括无关的解释变量,参数估计量仍无偏,
但会增大估计量的方差,即增大误差。
[注] 有关上述两点结论的说明请参见教科书P112-113。
12
四. 选择解释变量的四条原则
在模型设定中的一般原则是尽量不漏掉有关的解释 变量。因为估计量有偏比增大误差更严重。但如果方 差很大,得到的无偏估计量也就没有多大意义了,因 此也不宜随意乱增加解释变量。
p
X
p t
ut
其中Y表示总成本,X表示产出,P为多项式的阶 数,一般不超过四阶。
多项式回归模型中,解释变量X以不同幂次出现在 方程的右端。这类模型也仅存在变量非线性,因而 很容易线性化,可用OLS法估计模型。
11
二. 遗漏有关的解释变量 模型中遗漏了对因变量有显著影响的解释变量的
后果是:将使模型参数估计量不再是无偏估计量。
但根据以上准则判断并不总是这么简单。在很多 情况下,这四项准则的判断结果会出现不一致。例如, 有可能某个变量加进方程后, 增R大2,但该变量不显 著。
在这种情况下,作出正确判断不是一件容易的事, 处理的原则是将理论准则放在第一位。
在选择变量的问题上,应当坚定不移地根据理论而 不是满意的拟合结果来作决定,对于是否将一个变量 包括在回归方程中的问题,理论是最重要的判断准则。 如果不这样做,产生不正确结果的风险很大。
3. R 2 : 该变量加进方程中后,R 2 是否增大?
4. 偏倚: 该变量加进方程中后,其它变量的系数 估计值是 否显著变化?
如果对四个问题的回答都是肯定的,则该变量应该包括在 方程中;如果对四个问题的回答都是“否”, 则该变量是 无关变量,可以安全地从方程中删掉它。这是两种容易决 策的情形。
14
果、检测方法和解决途径。
,主要介绍问题的后
3
第一节 误设定
采用OLS法估计模型时,实际上有一个隐含的 假设,即模型是正确设定的。这包括两方面的含 义:函数形式正确和解释变量选择正确。在实践 中,这样一个假设或许从来也不现实。我们可能 犯下列三个方面的错误:
选择错误的函数形式 遗漏有关的解释变量 包括无关的解释变量 从而造成所谓的“误设定”问题。
• 半对数模型 • 双曲函数模型 • 多项式回归模型
6
1. 半对数模型 半对数模型指的是因变量和解释变量中一个为对数 形式而另一个为线性的模型。因变量为对数形式的 称为对数-线性模型(log-lin model)。解释变量为对数 形式的称为线性-对数模型(lin-log model)。我们先介 绍前者,其形式如下: