按键控制数码管显示

合集下载

按键显示电路实验报告(3篇)

按键显示电路实验报告(3篇)

第1篇一、实验目的1. 熟悉按键电路的基本原理和设计方法。

2. 掌握按键电路的搭建和调试方法。

3. 了解按键电路在实际应用中的重要性。

4. 提高动手实践能力和电路分析能力。

二、实验原理按键显示电路是一种将按键输入转换为数字信号,并通过显示设备进行显示的电路。

本实验主要涉及以下原理:1. 按键原理:按键通过机械触点实现电路的通断,当按键被按下时,电路接通,产生一个低电平信号;当按键释放时,电路断开,产生一个高电平信号。

2. 译码电路:将按键输入的信号转换为相应的数字信号,以便后续处理。

3. 显示电路:将数字信号转换为可视化的信息,如LED灯、数码管等。

三、实验器材1. 电路板2. 按键3. 电阻4. LED灯5. 数码管6. 电源7. 基本工具四、实验步骤1. 按键电路搭建(1)根据电路原理图,在电路板上焊接按键、电阻、LED灯等元器件。

(2)连接电源,确保电路板供电正常。

2. 译码电路搭建(1)根据电路原理图,在电路板上焊接译码电路所需的元器件。

(2)连接译码电路与按键电路,确保信号传输正常。

3. 显示电路搭建(1)根据电路原理图,在电路板上焊接显示电路所需的元器件。

(2)连接显示电路与译码电路,确保信号传输正常。

4. 电路调试(1)检查电路连接是否正确,确保无短路、断路等问题。

(2)按下按键,观察LED灯或数码管显示是否正常。

(3)根据需要调整电路参数,如电阻阻值、电源电压等,以达到最佳显示效果。

五、实验结果与分析1. 实验结果通过实验,成功搭建了一个按键显示电路,按下按键后,LED灯或数码管能够正确显示数字信号。

2. 结果分析(1)按键电路能够正常工作,实现电路通断。

(2)译码电路能够将按键输入转换为相应的数字信号。

(3)显示电路能够将数字信号转换为可视化的信息。

六、实验总结1. 通过本次实验,掌握了按键电路的基本原理和设计方法。

2. 提高了动手实践能力和电路分析能力。

3. 了解了按键电路在实际应用中的重要性。

vhdl按键控制数码管显示

vhdl按键控制数码管显示

vhdl按键控制数码管显示
 在传统的硬件电路设计中,主要的设计文件是电路原理图,而采用HDL 设计系统硬件电路时主要使用HDL编写源程序。

 VHDL的主要优点有:
 (1)VHDL支持自顶至下的和基于库的设计方法,而且支持同步电路、异步电路、现场可编程门阵列器件FPGA(field programmable gate array)以及其他随机电路的设计。

 (2)VHDL语句的行为描述能力和程序结构决定了它具有支持大规模设计的分解和已有设计再利用的功能,它支持系统的数学模型直到门级电路的描述,并且高层次的行为描述与低层次的门级电路描述、结构描述可以混合使用。

(3)VHDL的硬件描述与具体的工艺技术和硬件结构无关,当门级或门级以上的描述通过仿真检验后,再利用相应的工具将设计映射成不同的工艺,因此电路的设计与工艺的改变是相互独立的。

彼此的改变不会产生不良影响,并且VHDL硬件描述语言的实现目标器件的选择范围广泛,可使用各系列的CPLD、FPGA及各种门阵列器件。

按键控制数码管实训报告

按键控制数码管实训报告

一、实训目的本次实训旨在通过实际操作,掌握按键控制数码管的基本原理和实现方法,熟悉数字电路设计流程,提高动手能力和工程实践能力。

通过本次实训,学生应能够:1. 理解按键控制数码管的工作原理;2. 熟悉FPGA开发环境及工具的使用;3. 掌握数码管驱动电路的设计方法;4. 能够编写简单的FPGA程序,实现按键控制数码管的功能;5. 提高团队合作能力和问题解决能力。

二、实训原理数码管是一种常用的显示器件,由多个发光二极管组成,通常用于显示数字和字符。

按键作为输入设备,通过电路连接到微控制器(如FPGA、单片机等)的输入引脚,实现用户与数码管的交互。

按键控制数码管的基本原理如下:1. 按键输入处理:微控制器不断扫描按键的状态,当检测到按键被按下时,根据按键的编号或功能执行相应的操作。

2. 指令转换:将按键的输入转换为数码管能够理解的显示指令。

这通常涉及将按键编号或功能映射到特定的数字或字符编码。

3. 数码管显示控制:微控制器根据转换后的显示指令,通过控制数码管的驱动电路来点亮或熄灭数码管中的不同段,从而显示出所需的数字或字符。

4. 循环扫描与更新:为了保持数码管显示内容的实时性,微控制器需要不断重复上述步骤,形成一个循环扫描和更新的过程。

三、实训内容本次实训主要内容包括:1. 硬件电路设计:设计数码管驱动电路,包括LED数码管、按键、电阻、电容等元件的选择和连接。

2. FPGA程序设计:编写FPGA程序,实现按键控制数码管的功能,包括按键输入处理、指令转换、数码管显示控制等。

3. 系统调试与测试:将硬件电路与FPGA程序连接,进行系统调试和测试,验证系统功能是否正常。

四、实训步骤1. 硬件电路设计:- 选择合适的LED数码管、按键、电阻、电容等元件;- 根据元件规格和电路要求,绘制电路原理图;- 使用面包板搭建电路,并进行测试。

2. FPGA程序设计:- 选择合适的FPGA开发环境(如Vivado、Quartus II等);- 创建FPGA工程,添加必要的IP核(如时钟源、按键输入、数码管驱动等);- 编写FPGA程序,实现按键控制数码管的功能;- 编译FPGA程序,生成比特流文件。

4位拨动开关控制数码管显示系统设计

4位拨动开关控制数码管显示系统设计

4位拨动开关控制数码管显⽰系统设计务书设计题⽬4位拨动开关控制数码管显⽰系统设计学⽣姓名设计要求:1.电源电路具有电源开关及指⽰灯,有复位按键;2.⾼4位开关屏蔽;3.⽤4位拨码开关为输⼊,控制数码管显⽰器的输出;4.实现功能:通电复位后数码管全显即显“8”,数码管对应4位DIP开关的⼆进制输⼊显⽰⼗六进制全部字符即从“0”到“F”。

学⽣应完成的⼯作:1.了解单⽚机系统的设计⽅法,设计步骤;2.查找并收集相关资料书籍;3.完成硬件原理图设计;4.完成软件和流程图的设计;5.对系统进⾏仿真;6.焊接电路板,调试系统;7.认真撰写课程设计报告。

8.孙晓界同学主要负责软件设计参考⽂献阅读:[1] 张毅刚,彭喜元,彭宇. 单⽚机原理及应⽤[M]. 北京:⾼等教育出版社,2009.[2] 杜树春. 单⽚机C语⾔和汇编语⾔混合编程实例详解[M]. 北京:北京航空航天⼤学出版社,2006.[3] 童诗⽩,华成英. 模拟电⼦技术基础(第四版)[M]. 北京:⾼等教育出版社,2006.[4] 林志琦. 基于Proteus的单⽚机可视化软硬件仿真[M]. 北京:北京航空航天⼤学出版社,2006. ⼯作计划:5⽉6⽇:查阅相关资料,拟定⽅案;5⽉7⽇:进⾏⽅案论证,完善设计⽅案;5⽉8⽇:完成硬件设计;5⽉9⽇:设计程序流程图;5⽉10⽇:完成软件设计,并进⾏仿真和调试;5⽉13⽇:进⾏焊接;5⽉14⽇:烧写程序;5⽉15⽇:调试电路;5⽉16⽇:与辅导⽼师交流,写课程设计报告;5⽉17⽇:上交课程设计报告及实物。

任务下达⽇期:2013 年5⽉ 6 ⽇任务完成⽇期:2013 年5⽉17 ⽇指导教师(签名):学⽣(签名):4位拨动开关控制数码管显⽰系统设计摘要:⽤AT89S52单⽚机作为核⼼,利⽤晶振,共阳极数码管,7805,桥堆2w10等器件进⾏设计,由电源电路、复位电路、时钟电路、输⼊输出电路等设计⼀个控制电路。

利⽤汇编编写控制程序,程序使⽤查表法进⾏编写。

(汇编)实现数码管显示年,月,日,时,分,秒,星期,温度,按键可调万年历

(汇编)实现数码管显示年,月,日,时,分,秒,星期,温度,按键可调万年历

;///////////////////////////////////////////;本程序源代码由湖南工程职业技术学院提供.;专业单片机培训,让你学习单片机更容易.;程序员:蒋庆桥;QQ:xxxxxxxxx;本程序用汇编实现数码管显示年,月,日,时,分,秒,星期,温度,按键可调万年历,H_ADJ BIT P3.0 ;时/年调整M_ADJ BIT P3.1 ;分/月调整S_ADJ BIT P1.4 ;秒/日调整DT_SET BIT P1.6 ;时间/日期选择STR BIT P1.5;启动走时T_RST BIT P1.0 ;实时时钟复位线引脚T_CLK BIT P1.1 ;实时时钟时钟线引脚T_IO BIT P1.2 ;实时时钟数据线引脚HH_BIT EQU 40H ;时高位HL_BIT EQU 41H ;时低位MH_BIT EQU 42H ;分高位ML_BIT EQU 43H ;分低位SH_BIT EQU 44H ;秒高位SL_BIT EQU 45H ;秒低位TEMPER_L EQU 46HTEMPER_H EQU 47HYH_BIT EQU 48H ;年高位YL_BIT EQU 49H ;年低位MOH_BIT EQU 4aH ;月高位MOL_BIT EQU 4bH ;月低位DH_BIT EQU 4cH ;日高位DL_BIT EQU 4dH ;日低位SEC EQU 30HMIN EQU 31HHOUR EQU 32HDAY EQU 33HMONTH EQU 34HWEEK EQU 35HYEAR EQU 36HTEMPER equ 37hFLAG1 BIT 20h.0 ;DS18B20存在标志位DQ BIT P1.3A_BIT EQU 55HB_BIT EQU 56HDS1302_ADDR EQU 5EHDS1302_DATA EQU 5FHORG 00HLJMP STARTSTART:MOV SP,#60HMOV TMOD,#11HMOV TH0,#3CHMOV TL0,#0B0HMOV R0,#10SETB EASETB ET0SETB TR0MOV R1,37HMOV YEAR,#13H ;上电预置日期、时间MOV WEEK,#03H ;周1 MONMOV MONTH,#07H ;2011 04 25 12:00:00MOV DAY,#05HMOV HOUR,#23HMOV MIN,#00HMOV SEC,#00HMOV 50H,#0/////////////////////////////////////////////////////////////////////// ////MAIN:LCALL KEY//MAIN2:CALL FENLILCALL INIT_18B20LCALL GET_TEMPERcall CHANGEcall dispcall displayAJMP MAINFENLI:MOV A,YEARMOV B,#10HDIV ABMOV YL_BIT,BMOV YH_BIT,AMOV A,MONTHMOV B,#10HDIV ABMOV MOL_BIT,BMOV MOH_BIT,AMOV A,DAYMOV B,#10HDIV ABMOV DL_BIT,BMOV DH_BIT,AMOV A,HOURMOV B,#10HDIV ABMOV HL_BIT,BMOV HH_BIT,AMOV A,MINMOV B,#10HDIV ABMOV ML_BIT,BMOV MH_BIT,AMOV A,SECMOV B,#10HDIV ABMOV SL_BIT,BMOV SH_BIT,ARETKEY: ;按键子程序JB F0,MAIN10 ;F0=1,开始走时。

51单片机矩阵键盘控制数码管显示过程中出现的问题及解决方法

51单片机矩阵键盘控制数码管显示过程中出现的问题及解决方法

51单片机矩阵键盘控制数码管显示过程中出现的问题及解决方法在使用51单片机控制矩阵键盘同时驱动数码管显示的过程中,可能会遇到一些常见的问题。

以下是一些可能的问题及相应的解决方法:按键无法正常响应:* 问题可能原因:接线错误、按键损坏、软件扫描不到按键信号。

* 解决方法:检查按键连接是否正确,确保按键没有损坏。

在软件中进行适当的按键扫描,确保能够正确检测到按键的状态。

数码管显示异常或不亮:* 问题可能原因:数码管接线问题、数码管损坏、数码管驱动程序错误。

* 解决方法:仔细检查数码管的接线是否正确,确保数码管没有损坏。

检查数码管的驱动程序,确保它按照正确的顺序和时序进行驱动。

按键重复响应或漏按现象:* 问题可能原因:按键抖动、软件扫描速度过快。

* 解决方法:在软件中增加适当的按键抖动延时,确保在按键按下或抬起时只响应一次。

调整软件扫描速度,避免扫描间隔过短导致的重复响应。

矩阵键盘的多个按键同时按下导致混乱:* 问题可能原因:矩阵键盘硬件连接错误、软件扫描算法问题。

* 解决方法:检查矩阵键盘的硬件连接,确保矩阵行和列没有短路或断路。

调整软件扫描算法,确保同时按下多个按键时能够正确识别。

数码管显示不正常的数字或乱码:* 问题可能原因:程序错误、数码管接线错误。

* 解决方法:仔细检查程序,确保数码管段选和位选的控制逻辑正确。

检查数码管的接线,确保每个数码管的连接都正确。

在解决问题时,建议逐步排除可能的原因,通过调试工具、逻辑分析仪或输出调试信息的方式来定位问题。

另外,仔细查阅51单片机的数据手册和相关文档,以确保硬件连接和软件设计都符合标准。

按键控制数码管显示程序

按键控制数码管显示程序
;----------按键程序----------------------------K7 EQU 20H ;按键标志位,按键按下为 1,否则为 0 K6 EQU 21H K5 EQU 22H K4 EQU 23H K3 EQU 24H K2 EQU 25H F1 EQU 26H F2 EQU 27H ORG 0000H AJMP INIT ORG 0030H ;------------初始化----------------------------INIT: MOV SP,#60H MOV P3,#0FFH MOV DPTR,#TABLE MOV R0,#00H CLR K7 CLR K6 CLR K5 CLR K4 CLR K3 CLR K2 CLR F1 CLR F2 ;------------主程序-------------------------MAIN: LCALL KTEST ;调用检测按键程序 JB K7,KK7 JB K6,KK6 JB K5,KK5 JB K4,KK4 JB K3,KK3 JB K2,KK2 JB F1,LOOP AJMP DIS KK7: LCALL K7ISR AJMP DIS KK6: LCALL K6ISR AJMP DIS KK5: LCALL K5ISR AJMP LOOP KK4: LCALL K4ISR AJMP LOOP KK3: LCALL K3ISR
BACK2: TABLE:
CLR K4 CLR K3 CLR K2 RET DB 0C0h,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H ;共阳 EN位
MOV P1,#0FDH ACALL DELAY MOV P1,#0FFH RET ;------------延时子程序---------DELAY: MOV R6,#0FFH LOAD: MOV R5,#0FH DJNZ R5,$ DJNZ R6,LOAD RET ;------------按键检测子程序----------KTEST: JB P3.7,KEY6 JNB P3.7,$ SETB K7 CLR F1 AJMP BACK2 KEY6: JB P3.6,KEY5 JNB P3.6,$ SETB K6 CLR F1 AJMP BACK2 KEY5: JB P3.5,KEY4 JNB P3.5,$ SETB K5 SETB F1 AJMP BACK2 KEY4: JB P3.4,KEY3 JNB P3.4,$ SETB K4 SETB F1 AJMP BACK2 KEY3: JB P3.3,KEY2 JNB P3.3,$ SETB K3 SETB F1 AJMP BACK2 KEY2: JB P3.2,BACK1 JNB P3.2,$ SETB K2 SETB F1 AJMP BACK2 BACK1: CLR K7 CLR K6 CLR K5

STM32F103 16路智能汇流箱数码管显示与按键交互状态图

STM32F103 16路智能汇流箱数码管显示与按键交互状态图
上电/复位 按下任意键 KEY1/KEY2
按 键空 KE 闲 已循 Y2 按 5秒 下 环 显示 次数 遍 参数 2
上电/复位
循环显示 电压电流温度状态 ST1
数码管显示使能 显示计时器清零 重新计时
KE 下 按 Y2
系统参数显示、设 置状态 ST3
按下KEY2
循环显示 系统告警信息状态 ST2
按键空闲超过 设定时间后 按下任意键 KEY1/KEY2
切换到下一项显 示内容
切换到系统参数 显示、设置状态 ST3
ST3

按下KEY2
5秒内无按键
按下KEY1
各参数项都显 示2遍了吗 Yes
No
切换到下一个系统参数
放弃参数修改 切换到循环显示 电压电流温度状态 ST1
循环修改当前显示的参数的值 保存修改后的参数,然 后切换到循环显示 电压电流温度状态 ST1
数码管显示关闭
ST1
ST2
收到定时消息 KEY_TIMER
KEY1按下并 松开
按下KEY2
5秒内无按键
按下KEY1
按下KEY2
切换到下一项显示 内容
toggle当前显示的 实时参数(通过控制 KEY_TIMER消息 的使能实现)
切换到显示系统告 警信息状态ST2
切换到循环显示 电压电流温度状态 ST1

利用按键操作数码管显示

利用按键操作数码管显示

利用按键操作数码管显示数码管是一种常见的显示设备,它由许多小型LED灯组成,可以通过按键操作实现不同数字的显示。

下面是一个利用按键操作数码管显示数字的示例程序:```c#include <Wire.h>#include <Adafruit_GFX.h>#include <Adafruit_LEDBackpack.h>#define BUTTON_PIN 2Adafruit_7segment display = Adafruit_7segment(;void setupinMode(BUTTON_PIN, INPUT_PULLUP);display.begin(0x70);display.setBrightness(15);void loostatic int number = 0;static int prevButtonState = HIGH;int buttonState = digitalRead(BUTTON_PIN);if (buttonState != prevButtonState && buttonState == LOW)number++;if (number > 9)number = 0;}display.writeDigitNum(0, number, false);display.writeDisplay(;}prevButtonState = buttonState;```这个程序使用`Adafruit_7segment`库来控制数码管显示。

首先,需要在Arduino IDE中安装`Adafruit_GFX`和`Adafruit_LEDBackpack`库。

然后,将数码管的SDA引脚连接到Arduino的A4引脚,SCL引脚连接到A5引脚,还需要将按键连接到2号引脚。

在程序的`setup(`函数中,初始化数码管显示,并设置亮度为最大。

基于单片机4X4矩阵键盘控制数码管显示的Proteus仿真

基于单片机4X4矩阵键盘控制数码管显示的Proteus仿真

P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7
P2.0/A8 P2.1/A9 P2.2/A10 P2.3/A11 P2.4/A12 P2.5/A13 P2.6/A14 P2.7/A15
P3.0/RXD P3.1/TXD P3.2/INT0 P3.3/INT1
P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD
39 38 37 36 35 34 33 32
21 22 23 24 25 26 27 P2.6 28 P2.7
10 11 12 13 14 15 16 17
K0
K1
K4
K5
K8
K9
KC
KD
图 3-2:当按下 K4 键时,数码管显示数字‘4’
软件设计方面,我感觉到在编写循环嵌套程序时非常容易出错,需要反复的查错 和耐心的调试。我虽然能够编写出程序,其可读性却有待于提高。
经过这次仿真设计,我对 51 系统的单片机内部构造的了解认识有了一定程度的提 高。我体会到做设计是一项细致的工作,必须要投入时间及精力,要有耐心有韧性。
我相信这几次的仿真设计会为我以后的发展打下一定的基础,我会更加努力,争取 自己在单片机的开发上有更深层次的提高,与此同时经过此次仿真,锻炼了团队协作 能力。
P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD
39 38 37 36 35 34 33 32
21 22 23 24 25 26 27 P2.6 28 P2.7
10 11 12 13 14 15 16 17
K0
K1
K2
K3
K4

单片机-4x4个矩阵按键控制数码管显示数字程序

单片机-4x4个矩阵按键控制数码管显示数字程序

单⽚机-4x4个矩阵按键控制数码管显⽰数字程序1 #include "8051.h"2 typedef unsigned char u8;3 typedef unsigned int u16;4 u8 smgduan[]= {5/*0 1 2 3 4 5 6 7 */60x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07,7/*8 9 A B C D E F */80x7f, 0x6f, 0x77, 0x7c, 0x39, 0x5e, 0x79, 0x71};910// P0⼝为数码管的位选的8位输⼊引脚11// P0 = 0x00;121314void Delayms(u16 ms);15void shumaguan(u8 n);16void DigDisplay();17void KeyTest();18void smg(u8 n, u8 m);19void key_4x4();2021void main()22 {23while(1)24 {25 key_4x4();26 }27 }2829// 不精确的延时函数30void Delayms(u16 ms)31 {32 unsigned int i, j;33for(i = ms; i > 0; i--)34for(j = 110; j > 0; j--);35return;36 }3738// 数码管根据74HC138译码器选择对应的段(选择哪个数码管显⽰)39void shumaguan(u8 n)40 {41switch(n)42 {43case0:44 LSA = 0;LSB = 0;LSC = 0;break;45case1:46 LSA = 1;LSB = 0;LSC = 0;break;47case2:48 LSA = 0;LSB = 1;LSC = 0;break;49case3:50 LSA = 1;LSB = 1;LSC = 0;break;51case4:52 LSA = 0;LSB = 0;LSC = 1;break;53case5:54 LSA = 1;LSB = 0;LSC = 1;break;55case6:56 LSA = 0;LSB = 1;LSC = 1;break;57case7:58 LSA = 1;LSB = 1;LSC = 1;break;59 }60 }6162// 数码管显⽰数字,并以⼗进制递增63void DigDisplay()64 {65 u8 i1 = 0;66 u8 i2 = 0;67 u8 i3 = 0;68 u8 i4 = 0;69 u8 i5 = 0;70 u8 i6 = 0;71 u8 i7 = 0;72 u8 i8 = 0;7374757677for (i8 = 0; i8 < 10; i8++)78for (i7 = 0; i7 < 10; i7++)79for (i6 = 0; i6 < 10; i7++)80for (i5 = 0; i5 < 10; i5++)81for (i4 = 0; i4 < 10; i4++)82for (i3 = 0; i3 < 10; i3++)83for (i2 = 0; i2 < 10; i2++)84for (i1 = 0; i1 < 10; i1++)85 {86 u16 cnt = 10;87while (cnt--)88 {89 shumaguan(0); //选中第⼀个数码管90 P0 = smgduan[i1]; //给他送⼀个数字91 Delayms(1); //稍微延时⼀下下92 shumaguan(1); //然后切换到第⼆个数码管。

按键控制1位LED数码管显示0-9

按键控制1位LED数码管显示0-9

单片机课程设计姓名:陈素云班级:09电力方向2班学号:200920305340设计题目:按键控制1位LED数码管显示0-9设计要求:通过单片的I/O口与LED数码管所构成的单片机系统的软件编程,使学生掌握简单的单片机系统的设计,同时初步学全用汇编语言和C语言两种方式编程的基本方法。

学生必须采用单片机AT89C51为LED显示屏的控制为核心,分别置“1”或“0”,让某些段的LED 发光,其它的熄灭,然后达到显示不同的字符和图符号的目的. 学生根据前期设计的步骤按照设计报告内容的具体要求,选择前期设计的一个典型题目,写出详尽的课程设计报告,重点内容包括方案论证、完整的电路图、软件系统流程图及开发程序、组装调试内容和总结等。

目录第1节引言 (3)1.1 LED数码显示器概述 (3)1.2 设计任务 (5)1.3设计目的 (6)第2节 AT89C51单片机简介 (6)2.1 AT89C51单片机 (6)2.2 单片机管脚图 (7)2.3管脚说明 (7)2.4振荡器特性 (9)第3节设计主程序与硬件电路设计 (9)3.1设计的主程序 (10)3.2系统程序所需硬件 (10)3.2.1所需的硬件 (10)3.2.2所需硬件的结构图 (11)3.3 硬件电路总连接图 (12)第4节程序运行过程 (12)4.1分析步骤 (12)4.2 程序执行过程 (13)第5节程序运行结果 (13)总结参考文献第1节引言还记得我们小时候玩的“火柴棒游戏”吗,几根火柴棒组合起来,能拼成各种各样的图形,LED数码管显示器实际上也是这么一个东西。

在单片机系统中,常常用LED数码数码管显示器来显示各种数字或符号。

LED 数码显示器是单片机嵌入式系统中经常使用的显示器件。

一个“8”字型的显示模块用“a、b、c、d、e、f、g、h” 8 个发光二极管组合而成。

每个发光二极管称为一字段。

LED 数码显示器有共阳极和共阴极两种结构形式。

由于它具有显示清晰、亮度高、使用电压低、寿命长的特点,因此使用非常广泛。

VK16K33是LED数码管显示驱动芯片.带按键扫描接口的数显LED驱动IC

VK16K33是LED数码管显示驱动芯片.带按键扫描接口的数显LED驱动IC

VK16K33是一种带按键扫描接口的数码管或点阵LED驱动控制专用芯片概述:VK16K33是一种带按键扫描接口的数码管或点阵LED驱动控制专用芯片,内部集成有数据锁存器、键盘扫描、LED 驱动模块等电路。

数据通过I2C通讯接口与MCU通信。

SEG脚接LED阳极,GRID脚接LED阴极,可支持16SEGx8GRID的点阵LED显示面板。

最大支持13×3的按键。

内置上电复位电路,整体闪烁频率可设置,可通过命令进入待机模式,采用SOP20/SOP24/SOP28三种封装形式。

特点:•工作电压 3.0-5.5V•内置 RC振荡器•陈锐鸿:188.2466.2436• QQ:361.888.5898•最大16个SEG脚,8个GRID脚 (封装不同SEG脚数量不同)• SEG脚只能接LED阳极,GRID脚只能接LED阴极• I2C通讯接口,I2C从机地址可通过IO脚选择• 16级整体亮度可调•最大13×3的按键扫描按键显示复用需硬件电路配合支持组合键需要电路配合)•读/写地址自动加1•内置显示RAM为16x8位•内置上电复位电路•整体闪烁频率可设置•通过命令进入待机模式•驱动电流大,适合高亮显示场合•封装:SOP28(300mil)(18.00mm×7.50mm PP=1.27mm)SOP24(300mil)(15.40mm×7.50mm PP=1.27mm)SOP20(300mil)(12.80mm×7.50mm PP=1.27mm)——————————————————————————————————内存映射的LED控制器及驱动器VK1628---通讯接口:STb/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:70/52共阴驱动:10段7位/13段4位共阳驱动:7段10位按键:10x2 封装SOP28VK1629---通讯接口:STb/CLK/DIN/DOUT 电源电压:5V(4.5~5.5V) 驱动点阵:128共阴驱动:16段8位共阳驱动:8段16位按键:8x4 封装QFP44VK1629A---通讯接口:STb/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:128共阴驱动:16段8位共阳驱动:8段16位按键:--- 封装SOP32VK1629B---通讯接口:STb/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:112共阴驱动:14段8位共阳驱动:8段14位按键:8x2 封装SOP32VK1629C---通讯接口:STb/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:120共阴驱动:15段8位共阳驱动:8段15位按键:8x1 封装SOP32VK1629D---通讯接口:STb/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:96共阴驱动:12段8位共阳驱动:8段12位按键:8x4 封装SOP32VK1640---通讯接口: CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:128共阴驱动:8段16位共阳驱动:16段8位按键:--- 封装SOP28VK1640A---通讯接口: CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:128共阴驱动:8段16位共阳驱动:16段8位按键:--- 封装SSOP28VK1640B---通讯接口: CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:96 共阴驱动:8段12位共阳驱动:12段8位按键:--- 封装SSOP24VK1650---通讯接口: SCL/SDA 电源电压:5V(3.0~5.5V)共阴驱动:8段4位共阳驱动:4段8位按键:7x4 封装SOP16/DIP16VK1651---通讯接口: SCL/SDA 电源电压:5V(3.0~5.5V)共阴驱动:7段4位共阳驱动:4段7位按键:7x1 封装SOP16/DIP16VK1616---通讯接口: 三线串行电源电压:5V(3.0~5.5V)显示模式:7段4位按键:7x1 封装SOP16/DIP16VK1668---通讯接口:STb/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:70/52共阴驱动:10段7位/13段4位共阳驱动:7段10位按键:10x2 封装SOP24VK6932---通讯接口:STb/CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:128共阴驱动:8段16位17.5/140mA 共阳驱动:16段8位按键:--- 封装SOP32VK16K33A/B/C---通讯接口:SCL/SDA 电源电压:5V(4.5V~5.5V)驱动点阵:128/96/64共阴驱动:16段8位/12段8位/8段8位共阳驱动:8段16位/8段12位/8段8位按键:13x3 10x3 8x3封装SOP20/SOP24/SOP28VK1618---带键盘扫描接口的LED驱动控制专用电路,内部集成有MCU数字接口、数据锁存器、键盘扫描等电路共阴驱动:5段7位/6段6位/7段5位/8段4位共阳驱动:7段5位/6段6位/5段7位/4段8位按键:5x1 封装SOP18/DIP18VK1S68C---LED驅動IC 10x7/13x4段位10段7位/11段6位共阴10x2按键,封装SSOP24VK1Q68D---LED驅動IC 10x7/13x4段位10段7位/11段6位共阴10x2按键,封装QFP24VK1S38A---LED驱动IC 8段×8位封装SSOP24VK1638--- LED驱动IC 共阴10段8位共阳8段10位封装SOP32 ——————————————————————————————————LCD/LED液晶控制器及驱动器系列芯片简介如下:RAM映射LCD控制器和驱动器系列:VK1024B 2.4~5.2V SEG*COM:6*4、6*3、6*2 偏置电压1/2 1/3 S0P-16VK1056B 2.4~5.2V SEG*COM:14*4、14*3/14*2偏置电压1/2 1/3 SOP/SSOP24VK1072B 2.4~5.2V SEG*COM:18*4、18*3、18*2偏置电压1/2 1/3 SOP28VK1072C 2.4~5.2V SEG*COM:18*4、18*3、18*2偏置电压1/2 1/3 SOP28VK1072D 2.4~5.2V SEG*COM:18*4、18*3、18*2偏置电压1/2 1/3 SSOP28 VK1088B 2.4~5.2V SEG*COM:22*4、22*3、22*2 偏置电压1/2 1/3 QFN32(4*4) VK0192 2.4~5.2V 24seg*8com 偏置电压1/4 LQFP-44VK0256 2.4~5.2V 32seg*8com 偏置电压1/4 QFP-64VK0256B 2.4~5.2V 32seg*8com 偏置电压1/4 LQFP-64VK0256C 2.4~5.2V 32seg*8com 偏置电压1/4 LQFP-52VK1621 2.4~5.2V SEG*COM:32*4、32*3、32*2偏置电压1/2 1/3 LQFP44/48/SSOP48/SKY28/DICE裸片VK1622 2.4~5.5V 32seg*8com偏置电压1/4 LQFP44/48/52/64/QFP64/DICE裸片VK1623 2.4~5.2V 48seg*8com偏置电压1/4 LQFP-100/QFP-100/DICE裸片VK1625 2.4~5.2V 64seg*8com偏置电压1/4 LQFP-100/QFP-100/DICE 裸片VK1626 2.4~5.2V 48seg*16com偏置电压1/5 LQFP-100/QFP-100/DICE 裸片——————————————————————————————————高抗干扰LCD液晶控制器及驱动系列:VK2C21A 2.4~5.5V 20seg*4com 16*8 偏置电压1/3 1/4 I2C通讯接口 SOP-28VK2C21B 2.4~5.5V 16seg*4com 12*8 偏置电压1/3 1/4 I2C通讯接口 SOP-24VK2C21C 2.4~5.5V 12seg*4com 8*8 偏置电压1/3 1/4 I2C通讯接口 SOP-20VK2C21D 2.4~5.5V 8seg*4com 4*8 偏置电压1/3 1/4 I2C通讯接口 SOP-16VK2C22A 2.4~5.5V 44seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP-52VK2C22B 2.4~5.5V 40seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP-48VK2C23A 2.4~5.5V 56seg*4com 52*8 偏置电压1/3 1/4 I2C通讯接口 LQFP-64VK2C23B 2.4~5.5V 36seg*8com 偏置电压1/31/4 I2C通讯接口 LQFP-48VK2C24 2.4~5.5V 72seg*4com 68*8 60*16 偏置电压1/31/4 1/5 I2C通讯接口 LQFP-80超低功耗LCD液晶控制器及驱动系列:VKL060 2.5~5.5V 15seg*4com 偏置电压1/21/3 I2C通讯接口SSOP-24VKL128 2.5~5.5V 32seg*4com 偏置电压1/21/3 I2C通讯接口LQFP-44VKL144A 2.5~5.5V 36seg*4com 偏置电压1/21/3 I2C通讯接口TSSOP-48VKL144B 2.5~5.5V 36seg*4com 偏置电压1/21/3 I2C通讯接口QFN48L (6MM*6MM)静态显示LCD液晶控制器及驱动系列:VKS118 2.4~5.2V 118seg*2com 偏置电压 -- 4线通讯接口LQFP-128VKS232 2.4~5.2V 116seg*2com 偏置电压1/1 1/2 4线通讯接口LQFP-128 ——————————————————————————————————触摸触控IC系列简介如下:标准触控IC-电池供电系列:VKD223EB --- 工作电压/电流:2.0V-5.5V/5uA-3V 感应通道数:1 通讯接口最长响应时间快速模式60mS,低功耗模式220ms 封装:SOT23-6VKD223B --- 工作电压/电流:2.0V-5.5V/5uA-3V 感应通道数:1通讯接口最长响应时间快速模式60mS,低功耗模式220ms 封装:SOT23-6VKD233DB ---工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键封装:SOT23-6 通讯接口:直接输出,锁存(toggle)输出低功耗模式电流2.5uA-3VVKD233DH ---工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键封装:SOT23-6 通讯接口:直接输出,锁存(toggle)输出有效键最长时间检测16SVKD233DS ---工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键封装:DFN6通讯接口:直接输出,锁存(toggle)输出低功耗模式电流2.5uA-3VVKD233DR ---工作电压/电流:2.4V-5.5V/1.5uA-3V 1感应按键封装:DFN6 通讯接口:直接输出,锁存(toggle)输出低功耗模式电流1.5uA-3VVKD233DG --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键封装:DFN6 通讯接口:直接输出,锁存(toggle)输出低功耗模式电流2.5uA-3VVKD233DQ --- 工作电压/电流:2.4V-5.5V/5uA-3V 1感应按键封装:SOT23-6通讯接口:直接输出,锁存(toggle)输出低功耗模式电流5uA-3VVKD233DM --- 工作电压/电流:2.4V-5.5V/5uA-3V 1感应按键封装:SOT23-6 (开漏输出)通讯接口:开漏输出,锁存(toggle)输出低功耗模式电流5uA-3VVKD232C--- 工作电压/电流:2.4V-5.5V/2.5uA-3V 感应通道数:2 封装:SOT23-6通讯接口:直接输出,低电平有效固定为多键输出模式,內建稳压电路——————————————————————————————————MTP触摸IC——VK36N系列抗电源辐射及手机干扰:VK3601L --- 工作电压/电流:2.4V-5.5V/4UA-3V3 感应通道数:1 1对1直接输出待机电流小,抗电源及手机干扰,可通过CAP调节灵敏封装:SOT23-6VK36N1D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:1 1对1直接输出触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOT23-6VK36N2P --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:2 脉冲输出触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOT23-6VK3602XS ---工作电压/电流:2.4V-5.5V/60UA-3V 感应通道数:2 2对2锁存输出低功耗模式电流8uA-3V,抗电源辐射干扰,宽供电电压封装:SOP8VK3602K --- 工作电压/电流:2.4V-5.5V/60UA-3V 感应通道数:2 2对2直接输出低功耗模式电流8uA-3V,抗电源辐射干扰,宽供电电压封装:SOP8VK36N2D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:2 1对1直接输出触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOP8VK36N3BT ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 BCD码锁存输出触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOP8VK36N3BD ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 BCD码直接输出触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOP8VK36N3BO ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 BCD码开漏输出触摸积水仍可操作,抗电源及手机干扰封装:SOP8/DFN8(超小超薄体积)VK36N3D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 1对1直接输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)VK36N4B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:4 BCD输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)VK36N4I---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:4 I2C输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)VK36N5D ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:5 1对1直接输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)VK36N5B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:5 BCD输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)VK36N5I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:5 I2C输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)VK36N6D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:6 1对1直接输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)VK36N6B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:6 BCD输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)VK36N6I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:6 I2C输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)VK36N7B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:7 BCD输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)VK36N7I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:7 I2C输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)VK36N8B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:8 BCD输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)VK36N8I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:8 I2C输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)VK36N9I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:9 I2C输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)VK36N10I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:10 I2C输出触摸积水仍可操作,抗电源及手机干扰封装:SOP16/DFN16(超小超薄体积)——————————————————————————————————1-8点高灵敏度液体水位检测IC——VK36W系列VK36W1D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出水位检测通道:1可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOT23-6备注:1. 开漏输出低电平有效2、适合需要抗干扰性好的产品应用VK36W2D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出水位检测通道:2可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP8备注:1. 1对1直接输出 2、输出模式/输出电平可通过IO选择VK36W4D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出水位检测通道:4可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1. 1对1直接输出 2、输出模式/输出电平可通过IO选择VK36W6D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出水位检测通道:6可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1. 1对1直接输出2、输出模式/输出电平可通过IO选择VK36W8I ---工作电压/电流:2.2V-5.5V/10UA-3V3 I2C输出水位检测通道:8可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16。

矩阵按键控制数码管显示

矩阵按键控制数码管显示

定时消抖 Case 0xee; P0口送0 段码 Case 0xed; P0口送1 段码 Case 0x77; …… P0口送F 段码
有键按下?


存储当前P2的状态1 Break P2=0X0F 结束 存储当前P2的状态2
返回(状态1|状态2)
返回0XFF
程序编写
//========================================== //函数名称: keyscan() //函数功能: 检测按键 //入口参数:无 //出口参数:cord_h|cord_1 //备注: //========================================== UINT8 keyscan(void) { INT8 cord_h=0; INT8 cord_1=0; P2=0xf0; if(P2!=0xf0) { delay_ms(10); if(P2!=0xf0) { cord_h=P2; P2=0x0f; cord_1=P2; return(cord_h|cord_1); } } return(0xff); }
在没有按键按下时,即DS2450 的输入量时0,当有丌 同的按键按下时,DS2450 的输入量丌同,微处理器就会 得到丌同的数字量,微处理器根据采集到的数字量可判断 按键情况。
单片机控制的“机电一体化产品”中按键的接口设计 科技咨询,李迚波
键盘扫描子程序一般包括以下内容:
1.判别有无键按下;
2.消除键盘机械抖动;
出线输出为全低电平,则列线中电平由高变低所在列为按
键所在列。
两步即可确定按键所在的行和列,从而识别出所按的键。
采用线反转法的矩阵式键盘
假设键3被按下。
第一步,P1.0~P1.3输出全为“0”,然后,读入 P1.4~P1.7线的状态,结果P1.4=0,而P1.5~P1.7均为 1,因此,第1行出现电平的变化,说明第1行有键按下; 第二步,让P1.4~P1.7输出全为“0”,然后,读入 P1.0~P1.3位,结果P1.0=0,而P1.1~P1.3均为1,因 此第4列出现电平的变化,说明第4列有键按下。

按键控制数码管增减

按键控制数码管增减

单片机两位数码显示器,并根据端口的接线情况编写相应的程序,使其具有以下功能:
1.单片机系统具有双向循环显示功能,两位数码管采用十进制,最大显示
值是99,最小显示值是00,
2.按下S1后,数码管的数值自动增1;(00—99)
3.按下S2后,数码管的数值自动减1;(99—00)
4.按下S3时,数码管停止递增或递减,并显示当时的数值;
5.数码管数值自动增、减时间间隔T 0.5S<T<1S。

评定内容:
1.组装好单片机部分
2.组装好数码管部分
3.组装好电源部分
4.单片机及数码管能够工作
5.按键S1工作正常
6.按键S2工作正常
7.按键S3工作正常
8.数码管数字在改变时没有闪烁。

矩阵式键盘控制数码管显示

矩阵式键盘控制数码管显示
矩阵式键盘控制数码 管显示
目录
CONTENTS
• 矩阵式键盘工作原理 • 数码管显示原理 • 矩阵式键盘控制数码管显示方案 • 矩阵式键盘控制数码管显示应用 • 矩阵式键盘控制数码管显示常见问题及
解决方案
01 矩阵式键盘工作原理
按键检测方式
直接检测法
通过直接检测按键是否按下,判断按键状态。
间接检测法
按键与数码管显示不匹配
01
总结词
按键与数码管显示不匹配是矩阵式键盘控制数码管显示中 常见的问题之一,表现为按下某个按键后数码管显示的内 容与预期不符。
02
详细描述
这可能是由于键盘编码与数码管显示编码不匹配导致的问题。 例如,按下数字键“1”,数码管却显示字母“A”。
03
解决方案
可以通过调整键盘编码与数码管显示编码的对应关系来解 决这个问题。具体来说,需要检查键盘编码与数码管显示 编码的映射关系,确保它们一一对应。同时,也需要检查 键盘扫描程序和数码管显示驱动程序的实现是否正确。
静态驱动
每个数码管的每个段都由一个独立的 I/O口控制,适用于数码管数量较少 的情况。
动态驱动
通过扫描方式逐个点亮数码管的各个 段,可以节省I/O口资源,适用于数码 管数量较多的情况。
03 矩阵式键盘控制数码管显 示方案
硬件连接方案
矩阵式键盘与微控制器连接
将矩阵式键盘的行和列连接到微控制器的输入/输出端口,以便读取按键状态。
优化显示逻辑
优化数码管显示的逻辑,例如使用动态扫描技术,减少数码管的亮灭时间,提高显示效果。
04 矩阵式键盘控制数码管显 示应用
电子密码锁
总结词
矩阵式键盘控制数码管显示在电子密码锁中应用广泛,能够实现密码输入、显示和安全 验证等功能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

按键控制数码管显示试验1:首先打开keil 4软件,如下图新建一个工程
2:输入工程名称后点保存
3:选择你用的单片机型号后点OK
4:我的是89C52所以如下选择后点OK
5:然后新建一个组
6:输入组名称,注意一定和工程名一致,且后缀名为asm
7:然后在将组加进来
8:如下选择刚保存的组然后点加入
9:然后设置频率12M
10:照图上挨个点上勾
11:debug为最后项,照图点上勾,然后OK
12然后编写程序,写好检查后点击运行
机等待烧录软件提示给单片机上电。

14:效果图:
总结:这次试验是按键控制数码管显示数字0~9的增减、以及流水灯的闪烁。

通过大家的努力实现。

感谢本组每位组员的努力。

本组成员【王思琪、熊飞、孔恩、李云彬、王鹏碧】。

相关文档
最新文档