压力容器的设计_压力容器零部件(法兰)

合集下载

压力容器法兰标准

压力容器法兰标准

压力容器法兰标准压力容器是一种用于储存或输送气体、液体或蒸汽的设备,它承受着内部介质的压力,因此对于压力容器的设计和制造有着非常严格的标准和要求。

其中,法兰作为连接压力容器壁和管道的重要部件,其标准更是至关重要。

首先,压力容器法兰标准主要包括以下几个方面,法兰的材料、尺寸、连接方式、密封性能和检验标准。

在选择法兰材料时,需要考虑介质的性质、温度和压力等因素,以确保法兰能够承受住内部介质的压力并具有良好的耐腐蚀性能。

此外,法兰的尺寸和连接方式也需要符合相应的标准,以确保与其他设备或管道的连接紧密可靠。

同时,法兰的密封性能对于压力容器的安全运行至关重要,因此在制造和安装过程中需要严格按照标准要求进行检验,确保法兰的密封性能达到要求。

其次,压力容器法兰标准的制定和执行对于保障压力容器的安全运行具有重要意义。

在制定标准时,需要充分考虑压力容器的使用环境、介质特性、工作压力等因素,以确保法兰的选用和设计符合实际工程需求。

同时,对于法兰的制造和安装也需要严格执行标准要求,确保法兰的质量和性能达到标准规定,从而保障压力容器的安全运行。

此外,压力容器法兰标准的执行还需要相关部门和企业严格监督和管理。

相关部门需要加强对压力容器法兰标准的宣传和培训,提高从业人员对标准的认识和执行能力。

同时,企业需要建立健全的质量管理体系,严格执行压力容器法兰标准,确保生产和使用的法兰符合标准要求,从而保障压力容器的安全运行。

总之,压力容器法兰标准对于保障压力容器的安全运行具有重要意义,需要相关部门、企业和从业人员共同努力,严格执行标准要求,确保压力容器法兰的质量和性能达到标准规定,从而保障压力容器的安全运行。

希望通过不断的努力和改进,能够进一步完善压力容器法兰标准体系,提高压力容器的安全性和可靠性。

压力容器设计中法兰及紧固件的选用

压力容器设计中法兰及紧固件的选用

紧固件选配规定要点:管法兰:法兰,PL,非易燃易爆、非中度有毒,可钢板;SO,非易燃易爆、非高度有毒,WN,高温高压,易燃易爆,高度有毒。

注意设计温度配套。

螺栓紧固件:(注意使用温度,只有全螺纹螺柱或不锈钢螺栓可用于低温)六角螺栓/螺母,PN16以下,非有毒、易燃、循环,配非金属平垫片,GB/T5782-2000/ GB/T 6170-2000, 材料标注8.8/8级双头螺柱/螺母,PN40以下,非有毒、易燃、循环,垫片不限,GB/T901-1988/ GB/T 6170-2000(PN16以上GB/T 6175-2000),材料标注8.8/8级(PN16以上标材料牌号30CrMo)全螺纹螺柱/螺母,PN160以下,无限制,HG/T20613-2009/GB/T6175-2000, 材料标注35CrMo /30CrMo 低温冲击试验,螺栓、螺柱选用35CrMoA,且按GB150-1998第4.5.5,进行低温(设计温度)冲击试验,冲击功不小于27J垫片,PN16-25以下,可用非金属平垫片,缠绕垫最通用(PN16以下使用时,要选用WN等刚性较大的法兰)。

WN型法兰不配用非金属平垫片。

注意温度使用范围。

容器法兰,按JB/T4710-2000表2配套选取法兰:结构型式选用可参照管法兰,长颈对焊必须用锻件,低温冲击试验螺栓坚固件:螺柱按JB/T4707-2000,螺母,容器法兰未具体规定,本人认为,比较参考管法兰,专用材料采用2型螺母,故同样按GB/T6175-2000-材料标注具体材料低温工况,,螺柱/螺母都规定选用35CrMoA,冲击试验且按GB150-1998第4.5.5,进行低温(设计温度)冲击试验,冲击功不小于27J垫片:甲型选平垫片,其它可选多种。

压力容器设备法兰标准

压力容器设备法兰标准

压力容器设备法兰标准
压力容器设备是工业生产中常见的一种设备,它主要用于储存或加工各种气体、液体或固体物质。

在压力容器设备的设计和制造中,法兰是一个非常重要的部件,它不仅连接着各个部件,还承受着设备内外的压力。

因此,压力容器设备法兰的标准化对于设备的安全运行至关重要。

首先,压力容器设备法兰的标准化可以保证设备的互换性。

在工业生产中,不
同厂家生产的压力容器设备可能会在使用中需要进行更换或维修,如果每个厂家都有自己的法兰标准,那么设备之间的互换性就会受到限制。

而通过制定统一的法兰标准,可以确保不同厂家生产的设备之间的法兰是可以互换的,这样可以提高设备的灵活性和可维护性。

其次,压力容器设备法兰的标准化可以提高设备的安全性。

压力容器设备在工
作过程中承受着各种不同的压力,如果法兰设计不合理或者材质不符合要求,就会存在泄漏或者爆炸的风险。

通过制定严格的法兰标准,可以要求法兰具有足够的强度和密封性能,从而确保设备在工作中不会出现安全隐患。

此外,压力容器设备法兰的标准化还可以降低设备的制造成本。

在生产过程中,如果每个厂家都有自己的法兰标准,那么需要为每种标准制造特定的法兰,这样会增加生产成本。

而通过统一的法兰标准,可以减少生产成本,提高生产效率,从而降低设备的制造成本。

总的来说,压力容器设备法兰的标准化对于设备的安全运行、生产效率和成本
控制都具有重要意义。

因此,压力容器设备制造行业应该加强对法兰标准的研究和制定,不断提高法兰的设计和制造水平,为工业生产提供更加安全可靠的压力容器设备。

压力容器零部件设计2法兰设计

压力容器零部件设计2法兰设计

管法兰的密封面型式
平面型,凹凸型,榫槽型(同容器法兰) ,梯形槽和全平面型:
1
确定法兰类型和密封面型式、管子材料和尺寸;
2
再由工作温度,确定材料或由材料定公称压力;
5
参照各尺寸绘法兰图。
4
由型式和工作温度,确定匹配的垫片种类、材料和紧固件材料、尺寸;
3
再由公称压力,确定法兰各部分尺寸;
管法兰连接的设计步骤
3
由于操作压力不高,由表12-1(垫圈选用表)可采用平面型密封面,垫片材料选用石棉橡胶板,查JB4704-92定出尺寸。标注为:垫片1200-0.6 JB4704-92
选择标准法兰举例
法兰的各部分尺寸可从JB4701-92中查得,并可绘出法兰图。
联接螺栓为M20,共52个,材料由表12-5(法兰、螺栓、螺母、材料匹配表)查得为35 ,螺母材料为Q235-A。
包括:选择螺栓材料、确定螺栓尺寸和个数,螺栓载荷计算。
计算螺栓载荷:达到预紧密封比压和工作密封比压。
材料:根据螺栓载荷、工作温度等。一般螺栓材料比螺母材料的硬度高30HB以上。
直径和个数:连接螺栓DN≥ M12,先由标准定个数,一般为4的倍数,然后由螺栓载荷、材料的许用应力计算螺栓根径,再由此定DN。最后校核螺栓中心距。
垫圈的选择
垫圈的结构形式、材料和尺寸,标准化。 选择依据:介质的腐蚀性、操作温度和压力, 考虑价格低廉、制造容易和更换方便。 高温高压:金属垫圈 中温中压:金属与非金属组合式或非金属 中、低压:多用非金属 高真空或深冷:金属垫圈
压力容器法兰:连接筒体与封头、筒体与筒体、法兰与管板。
01
密封原理分为:

自紧密封(高压):依靠容器内介质的压力压紧密封元件,使密封面获得很大的压紧力,在密封口产生较大的密封比压,达到密封目的。

压力容器零部件

压力容器零部件

1. 整体法兰:法兰与设备或管道不可拆地 固定在一起。
常见的整体法兰型式有两种: (1)平焊法兰 如图4-5(a),(b)所示。 这种法
兰制造容易,应用广泛,但刚性差。
适用的压力范围较低(PN≤4 MPa).
(2)对焊法兰
又叫高颈法兰 或长颈法兰 ,如图4-5(c)所 示。由于长颈的存在提高了法兰刚性,同时 由于颈的根部厚度比器壁厚,所以也降低了 这里的弯曲应力。
第四章 压力容器零部件
常见的可拆卸结构 有 法兰连接, 螺纹连接 承插式连接。
第一节 法兰连接
一、法兰连接结构与 密封原理
法兰连接结构是 一个组合件,一般是 由连接件、被连接件、 密封件组成。
如图所示.法兰密封 由法兰1一被连接件, 垫片2一密封元件, 螺栓、螺母,3--连接 件组成。
在生产实际中,压力容器常见的法兰密 封失效很少是由于连接件或被连接件的强度 破坏所引起的,较多的却是因为密封不好而 泄漏。
采用减小螺栓直径,增加螺栓个数的办法对
密封是有利的。
2. 压紧面(密封面)
压紧面(密封面)直接与垫片接触,它既
传递螺栓力使垫片变形,同时也是垫片的表面
约束。因而,压紧面的形状和表面光洁度应与
垫片相配合。
压紧面的平直度和压紧面与法兰中心轴线
垂直、同心,是保证垫片均匀压紧的前提。
减小压紧面与垫片的接触面积,可以有效
地降低预紧力,但若减得过小,则易压坏垫片。
法兰压紧面的形式
1、平面型压紧面 2、凹凸型压紧面 3、榫槽型压紧面 4、锥形压紧面 5、梯形压紧面
(1)平面型压紧面
这种压紧面的表面是一个光滑的平面, 或在其上车有数条三角形断面的沟槽〔图45(a),(b)]。这种压紧面结构简单.加工方便, 且便于进行防腐衬里.平面压紧面法兰适用 的压力范围是PN<2. 5MPa,在PN>0. 6MPa 的情况下,应用最为广泛,但是、这种压紧 面垫片接触面积较大,预紧时垫片容易往两 边挤,不易压紧,密封性能较差,当介质有 毒或易燃易爆时,不能采用平面压紧面。

压力容器用管法兰垫片紧固件的设计要求

压力容器用管法兰垫片紧固件的设计要求

垫片的选用
• 10 HG/T 20606和HG/T 20610所列非金属平垫 片内径和缠绕垫内环内径可能大于相应法兰的 内径,如使用上要求垫片(或内环)内径与法 兰内径齐平时,用户应提出下列要求: • 1)采用整体法兰、对焊法兰或承插焊法兰; • 2)向垫片制造厂提供相应的法兰内径,作为垫 片内经。
垫片的选用
• (摘自HG/T 20614-2009 3.0.2 垫片) • 1 垫片的型式和适用范围按HG/T 20606~HG/T 20612的规定。 • 2 垫片的型式和材料应根据流体、使用工况 (压力、温度)以及法兰接头的密封要求选用。 法兰密封面型式和表面粗糙度应与垫片的型式 和材料相适应。 • 3 垫片的密封载荷应与法兰额定值、密封面型 式、使用温度以及接头的密封要求相适应。紧 固件材料、强度以及上紧要求应与垫片的型式、 材料以及法兰接头的密封要求相适应。
HG/T 20635-2009
表3.2.11 垫片型式选用
垫片 型式 公称压力 Class 公称尺寸 DN
最高使 用温度 (℃)
700
密封面 型式g
密封面的表 面粗糙度Ra (μm)
0.8~1.6(碳 钢、铬钢) 0.4~0.8(不 锈钢)
法兰型式 带颈对焊法兰 长高颈法兰 整体法兰 法兰盖
金属
金属环垫
强渗透性介质
• (摘自TSG R0004-2009问答 9-12) • 介质的渗透性指流体介质对于密封材料和密封结 构的穿透能力。 • 对于介质渗透性的“强、中、弱”只是相对的定 性描述,还没有一个定量的界限区分标准。 • 一般地讲,小分子气体、低黏度、低表面张力、 挥发性强的液体对于非金属垫片来说都是具有较强渗 透性的介质。 • 例如:氢气、氦气、氨气、卤素气体、低分子的 烷、烯烃等气体(或液化气体)以及汽油、甲醇、苯等 轻质石油化工产品。

压力容器零部件设计(一)

压力容器零部件设计(一)

压力容器零部件设计(一)压力容器零部件设计压力容器是一种存储、运输和加工液体、气体或固体的设备。

压力容器不仅需要能够耐受压力、温度等因素的影响,还需要具备高度的安全保障。

零部件是构成压力容器的基础,好的压力容器零部件设计可保障压力容器的安全、寿命和性能。

缺陷分析压力容器零部件设计需要避免以下缺陷:1. 结构强度不足:压力容器工作环境的压力、温度等因素对容器本身的材质和结构有很高的要求。

设计时若结构强度不足会导致容器的爆炸等严重后果。

2. 材料选择不当:材料的选择不当可能导致零件在高压、高温等复杂环境下出现失效,进而对容器的整体安全性造成影响。

3. 缺乏必要的松弛缝:由于容器的变形,需要把材料和结构上的缺陷转化为必要的松弛缝,以避免材料和结构的锁死和破裂,也避免了过多的应力集中。

关键设计指标压力容器零部件设计需要符合以下关键设计指标:1. 固定力:压力容器需要通过零部件的固定力将所有部件固定在一起。

2. 尺寸和形状:零部件的尺寸和形状要和容器本身的尺寸和形状相匹配,保证不会出现空隙或者松动的情况。

3. 材质选取:针对不同的工作环境,压力容器零部件的选择需要合理,确保零部件的耐久性能、超压时的性能以及高温环境下的性能等都能满足要求。

4. 强度和稳定性:设计时需要遵循国家标准,零部件的强度和稳定性能够贯穿整个容器的运作寿命。

设计原则对于压力容器零部件设计,有以下几个原则:1. 材料要优先选择纯度高、强度和韧性较好的材料。

2. 控制整体重量,减小材料成本。

3. 尽可能地减少零部件数量,从而减少加工成本和组装成本。

4. 优先考虑贴近整个容器的结构,避免孤立的点,整体性较强可以提高体积利用率。

5. 通过分阶段设计来避免未来的改进成本和时间成本。

压力容器是关系到人们生命和财产安全的装备,所以对于设计要求非常高,本文阐述压力容器零部件设计的缺陷分析、关键设计指标和原则,以期为日益重要的压力容器行业提供帮助。

压力容器零部件

压力容器零部件
智能化监测技术:通过传感器和智能化监测系统实时监测压力容器的运行状态预防事故 发生。
新型焊接工艺的发展:如激光焊接、电子束焊接等提高了焊接质量和效率降低了制造成 本。
模块化设计:将压力容器零部件设计成模块化结构方便维修和更换提高了设备的可靠性。
压力容器零部件的市场需求和发展趋势
市场需求:随着工 业生产和能源需求 的增长压力容器零 部件的市场需求不 断扩大。
压力容器零部件的铸造工艺要求严格需遵循相关标准和规范确保生产出的零件符合安全性能要求。
锻造工艺
定义:通过加热和加压使金属 材料变形并形成所需形状的工 艺
优点:高强度、耐磨性、耐腐 蚀性
制造过程:备料、加热、锻打、 冷却、热处理等
应用范围:压力容器、化工机 械、石油机械等领域
焊接工艺
焊接的定义和原理 焊接的分类和应用 压力容器零部件制造中常用的焊接方法 焊接工艺对压力容器零部件性能的影响
和性能。
智能化监测: 通过智能化监 测技术实现对 压力容器零部 件的实时监测 和预警提高设 备的安全性和
可靠性。
新型材料应用: 新型材料的不 断涌现和应用 将为压力容器 零部件的制造 提供更多选择
和可能性。
绿色环保:随 着环保意识的 提高压力容器 零部件的设计 和制造将更加 注重环保和节 能减少对环境
的影响。
THEME TEMPLATE
感谢观看
选用原则:选用压力容器零部件时应考虑介质特性、操作条件、载荷状况等因素以确保安全可靠 地运行。
压力容器零部件的标准和规范
压力容器零部件必须符合相关国 家和行业标准确保安全性能和使 用寿命。
定期进行检测和维护确保压力容 器零部件的正常运行和使用安全。
添加标题
添加标题

压力容器--设计基础(一)

压力容器--设计基础(一)

压力容器的强度与设计(江苏省压力容器检验员培训考核班专题讲座)董金善南京工业大学过程装备研究所第一节概述一、容器的结构在工厂中可以看到许多设备。

在这些设备中,有的用来储存物料,如各种储罐、计量罐;有的进行热量交换,如各种换热器、蒸发器、冷凝器、结晶器等;有的用来进行化学反应,如反应釜、聚合釜、发酵罐、合成塔等。

这些设备虽然尺寸大小不一,形状结构不同,内部构件的型式更是多种多样,但是它们都有一个外壳,这个外壳就叫作容器。

容器一般是由筒体(圆筒)、封头(端盖)、法兰、支座、接管、人孔(手孔)、视镜、安全附件等组成(图1)。

它们统称为压力容器通用零部件,常、低压压力容器通用零部件大都已有标准,设计时可直接选用。

图-1 容器的结构二、压力容器常用标准1.国务院《特种设备安全监察条例》(2003)2.国家质量技术监督局《压力容器安全技术监察规程》 (1999)3.国家质量监督检验检疫总局《特种设备行政许可工作程序》 (2003)4.国家质量监督检验检疫总局《特种设备行政许可实施办法》 (2003)5.国家质量监督检验检疫总局《特种设备行政许可分级实施范围》(2003)6.国家质量监督检验检疫总局《锅炉压力容器制造监督管理办法》(2003)7.国家质量监督检验检疫总局《锅炉压力容器制造许可工作程序》(2003)8.国家质量监督检验检疫总局《锅炉压力容器制造许可条件》 (2003)9.国家质量监督检验检疫总局《锅炉压力容器产品安全性能监督检验规则》 (2003)10.国家质量监督检验检疫总局《压力容器压力管道设计单位资格许可与管理规则》 (2002)11.G B150-1998《钢制压力容器》12.G B151-1999《管壳式换热器》13.J B/T4735-1997《钢制焊接常压容器》14.J B4710-1992《钢制塔式容器》15.J B4731-XXXX《钢制卧式容器》16.H G/T20569-1994《机械搅拌设备》17.G B12337-1998《钢制球形储罐》18.G B16749-1997《压力容器波形膨胀节》19.J B4732-1994《钢制压力容器-分析设计标准》20.H G20580-1998《钢制化工容器设计基础规定》21.H G20581-1998《钢制化工容器材料选用规定》22.H G20582-1998《钢制化工容器强度计算规定》23.H G20583-1998《钢制化工容器结构设计规定》24.H G20584-1998《钢制化工容器制造技术要求》25.H G20585-1998《钢制低温压力容器技术规定》26.H G20531-1993《铸钢、铸铁容器》27.J B/T4734-2002《铝制焊接容器》28.J B/T4745-2002《钛制焊接容器》29.G B/T15386-1994《空冷式换热器》30.G B16409-1996《板式换热器》31.H G/T2650-1995《钢制管式换热器》32.G B5842-1996《液化石油气钢瓶》33.J B/T4750-2003《制冷装置用压力容器》34.J B/T6539-1992《微型空气压缩机用钢制压力容器》35.J B8701-1998《制冷用板式换热器》36.J B/T4751-2003《螺旋板式换热器》37.G B18442-2001《低温绝热压力容器》38.G B12130-1995《医用高压氧舱》39.G B9019-1988《压力容器公称直径》40.J B/T4700~4707-2000《压力容器法兰》41.H G20592~20635-2009《钢制管法兰、垫片、紧固件》42.G B/T9112~9124-2000《钢制管法兰》43.J B/T74~90-1994《管路法兰及垫片》44.J B/T4746-2002《钢制压力容器用封头》45.J B/T4736-2002《补强圈》46.H GJ527-1990《补强管》47.J B/T4712-1992《鞍式支座》48.J B/T4713-2007《腿式支座》49.J B/T4724-1992《支承式支座》50.J B/T4725-1992《耳式支座》51.G B16749-1997《波形膨胀节》52.H G501~502-1986《压力容器视镜》53.H G21588~21591-1995《玻璃板液面计》54.H G21592-95《玻璃管液面计》55.H G/T21584-95《磁性液面计》56.H G21514~21527-1995《碳钢、低合金钢人孔》57.H G21528~21535-1995《碳钢、低合金钢人孔》58.H GJ504~509-1986《不锈钢人孔》59.H GJ510~513-1986《不锈钢手孔》60.H G21537-1992《填料箱》61.H G21571~21572-1995《机械密封》62.H G21563~21569-1995《搅拌传动装置》63.H G5-220~222-1965《搅拌器》64.H G/T21574-1994《设备吊耳》65.G B41-1986《I型六角螺母-C级》66.G B6170-1986《I型六角螺母-A和B级》67.G B5780-1986《六角头螺栓-C级》68.G B5782-1986《六角头螺栓-A和B级》69.J B/T4714-1992《浮头式换热器和冷凝器型式与基本参数》70.J B/T4715-1992《固定管板式换热器型式与基本参数》71.J B/T4716-1992《立式热虹吸式重沸器型式与基本参数》72.J B/T4717-1992《U型管式换热器型式与基本参数》73.H G21503-1992《钢制固定式薄管板列管换热器》74.G B567-1989《拱形金属爆破片形式与参数》75.G B/T14566-93《正形金属爆破片形式与参数》76.G B/T14567-93《反形金属爆破片形式与参数》77.G B/T14568-93《开缝形金属爆破片形式与参数》78.H G/T20668-2000《化工设备设计文件编制规定》79.T CED41002-2000《化工设备图样技术要求》80.G B6654-1996《压力容器用钢板》81.G B713-1986《锅炉用碳素钢和低合金钢板》82.G B3531-1996《低温压力容器用低合金钢钢板》83.G B4237-1992《不锈钢热轧钢板》84.G B8165-1987《不锈钢复合钢板》85.G B8163-1999《输送流体用无缝钢管》86.G B9948-1988《石油裂化用无缝钢管》87.G B6479-1986《化肥设备用高压无缝钢管》88.G B5310-1995《高压锅炉用无缝钢管》89.G B/T14976-94《流体输送不锈钢无缝钢管》90.G B13296-91《锅炉、热交换器用不锈钢无缝钢管》91.J B4726-2000《压力容器用碳素钢和低合金钢锻件》92.J B4727-2000《低温压力容器用碳素钢和低合金钢锻件》93.J B4728-2000《压力容器不锈钢锻件》94.G B/T983-1995《不锈钢焊条》95.G B/T5117-1995《碳钢焊条》96.G B/T5118-1995《低合金钢焊条》97.G B5293-1985《碳素钢埋弧焊用焊剂》98.G B12470-1990《低合金钢埋弧焊用焊剂》99.G B/T14957-1994《熔化焊用钢丝》100.GB/T14958-1994《气体保护焊用钢丝》101.GB/T8110-1995《气体保护电弧焊用碳钢、低合金钢焊丝》102.JB/T2835-1979《低温钢焊条》103.JB4708-2000《钢制压力容器焊接工艺评定》104.JB/T4709-2000《钢制压力容器焊接规程》105.JB4730-1994《压力容器无损检测》106.JB/T4711-2003《压力容器涂敷与运输包装》107.JB/T613-1993《锅炉受压元件焊接技术条件》108.HG20660-2000《压力容器中化学介质毒性危害和爆炸危险程度分类》109.GB/T18182-2000《金属压力容器声发射检测及结果评价方法》三、压力容器许可证1. 锅炉制造许可证3. 压力容器设计许可证注:①锅炉设计图纸由省级交由被核准的检验检测机构鉴定;②气瓶(B类)、氧舱设计图纸由总局核准的检验检测机构鉴定;③客运索道、大型友游乐设施设计图纸由总局核准的检验检测机构鉴定。

压力容器设备中法兰设计存在的问题及对策

压力容器设备中法兰设计存在的问题及对策

法兰密封性能不达标
总结词
密封性能不达标
详细描述
法兰是压力容器设备中重要的连接部件,其密封性能对 整个系统的安全性和可靠性具有重要影响。如果法兰的 密封性能不达标,可能会导致介质泄漏、环境污染等问 题。例如,垫片或填料选择不当、安装不正确等都可能 影响法兰的密封性能。因此,在法兰设计中需要充分考 虑垫片或填料的类型、尺寸、安装方式等因素,以确保 其密封性能达到要求。
法兰设计的原则和标准
法兰设计应遵循国家及行业相 关标准、规范和规定。
法兰设计应考虑其使用环境、 介质特性、压力、温度等因素 ,以确保其安全性和可靠性。
法兰设计还应考虑制造、检验 和维修的便利性,以提高其可 操作性。
法兰设计的流程和步骤
法兰设计应根据设备的使用要求进行初 步设计。
最后,进行法兰的制造和检验,确保其 符合设计要求和使用性能。
总结词
提升设计人员的专业素养和技能水平
详细描述
通过定期组织专业培训、学术交流、经验分 享等活动,提高设计人员对压力容器设备中 法兰设计的理论知识和实践技能,加强设计 人员的专业素养和技能水平,确保法兰设计 的质量和安全性。
制定规范化的设计标准和流程
总结词
制定统一、规范的设计标准和流程,明确设 计细节和要求
法兰结构设计不合理
要点一
总结词
结构设计不合理
要点二
详细描述
法兰结构设计不合理可能会导致应力集中、密封性能 差等问题。例如,法兰边缘的锐角或突变部位可能会 引起应力集中,影响法兰的强度和稳定性。此外,如 果法兰结构设计不合理,还可能影响其与管道或阀门 的连接和密封效果。因此,法兰结构设计需要充分考 虑应力分布、密封性能等因素,以确保其安全性和可 靠性。

法兰设计存在的问题及对策

法兰设计存在的问题及对策

法兰设计存在的问题及对策摘要:法兰在压力容器的设计中起着重要作用。

因此,本文简要介绍了压力容器法兰及其类型和设计特点。

设备法兰在压力容器设计中需要特别重视。

还有设计中,例如法兰材料选择偏差、估计寿命偏差和热处理不足,这些问题都会对法兰产生很大影响。

本文阐述了压力容器法兰设计中存在的问题和处理措施。

关键词:压力容器;设备法兰;解决对策近年来,我国社会经济的快速发展使化工行业取得了显着进步,这不仅增加了生产任务,而且还需要提高生产效率和质量要求。

在这方面,压力容器中法兰被认为是最重要的设备之一,法兰作为压力容器单元的主要部件,影响压力容器的功能和性能。

因此,在新形势下,我们必须考虑设计压力容器法兰的具体可行对策。

一、压力容器设计特点1.设计和制造过程需要高度的专业知识。

在设计压力容器时,需要测试各种组件,以便设计者具备掌握先进计算技术所需的专业知识和经验,压力容器的设计旨在确保高度的安全性并减少外部因素的影响。

2.制造工艺需要高度的安全性。

压力容器的操作环境特点是高温、高压、真空和腐蚀。

压力容器中的一些材料有毒、易燃、易爆等危险因素。

为此,我们必须严格保证设计、制造和使用过程的专业化和标准化。

遵守生产规则,生产高质量压力容器,提高生产水平和安全性。

生产压力容器时,必须在不同阶段应用不同的生产标准,以满足不同时间的使用要求,提高容器的效率,企业需引进提高制造标准的新技术和方法。

二、法兰的相关概述在石油化工行业,压力容器是影响工业生产的重要设备,法兰是压力容器不可或缺的组成部分。

在工业生产中,压力容器的边缘必须按照设备的技术要求和安装需要进行调整。

压力容器有不同的法兰,可分为整体法兰和任意法兰,不同的法兰具有不同的特性。

法兰设计的主要目的是确保法兰强度。

如果强度达不到预定值,则应在适当的范围内进行调整和研究工作,例如检查密封尺寸以减少法兰上的弯矩。

要连接法兰,必须将其焊接到外壳上。

对相关规范的研究可以发挥法兰有效作用。

压力容器的设计单元十三 压力容器零部件(支座及开孔)52p

压力容器的设计单元十三 压力容器零部件(支座及开孔)52p

B=2d d=接管内径+2C (C=C1+C2)
h 1
dSnt
或实际外伸高度的值较;小
h 2
dSnt
或实际内伸高度的值较;小
等面积补强,纵截面上的投影面积要满足下式:
A1+A2+A3≥A A1—壳体的贡献(有效壁厚减去计算壁厚部分); A2—接管的贡献(有效壁厚减去计算壁厚部分); A3—焊缝金属截面积; A—壳体上需要补强的截面积。(表6-20 P179)
椭圆形人孔(或称长圆形人孔)的最小 尺寸为400mm×300mm。
人孔:筒节、法兰、盖板和手柄。
使用中常打开,可用快开式结构人 孔。
水平吊盖人孔
手孔(HG21515~21527-95) 和人孔(HG21528~2153595)已有标准,
设计时根据设备的公称压力, 工作温度以及所用材料等按 标准直接选用。
(2)加强元件结构 (3)整体补强结构
若须补强的接管较多, 可采取增加壳体壁厚 的办法,也称为整体 补强。
(四).等面积补强的设计方法
1. 开孔有效补强范围及补强面积的计算 等面积补强——补强的金属量等于或大于开孔所
削弱的金属量。 图上看,应该考虑的截面是强度削弱较大的截面
——轴(纵)向截面的面积:
三、手孔与人孔
检查设备内部空间以及安装和拆 卸内部构件。
手孔直径150mm~250mm,标准
手孔公称直径有DN150和 DN250两种。
手孔结构:容器上接一短管,其 上盖一盲板。
人孔:
设备直径超过900mm,有手孔也设 人孔。
人孔的形状有圆形和椭圆形。
椭圆形人孔短轴与筒身轴线平行。
圆形人孔直径400mm~600mm,容 器压力不高或有特殊需要时,直径 可以大一些。

压力容器---零部件

压力容器---零部件

江2 特点: 1.考虑支座弯矩对容器圆筒所产生的局部应力,避免筒体由于 局部应力过大有可能引起失效。局部径向弯矩包括设备自重、水 平载荷(风载荷或地震载荷)及偏心载荷所产生的弯矩。 2.提出了支座的制造要求,以保证支座的制造质量。 若容器壳体有热处理要求时, 支座垫板应在热处理前焊接在器 壁上。 3.改进了垫板结构。为改善容器的受力情况,JB/T4725-92 将 垫板四角倒圆;并在垫板中心开一通气孔,以利于焊接或热处理 时气体的排放。 ●耳式支座设计计算: 支座处容器圆筒内存在以下几种应力: (1) 内压引起的一次总 体薄膜应力 Pm; ( 2) 支座弯矩引起的一次局部薄膜应力 Pl; (3) 支座弯矩引起的一次弯曲应力 Pb; 根据应力分析的方法按照下列 原则计算: Pm≤[σ ] Pm+Pl≤1.5[σ ] Pm+Pl+Pb≤1.5[σ ] 至于组合应力,按照第三强度理论进行计算。
容器外径, 有保温层时取保温层外径; f1-风压高度变化系数; q0-10 米高度处的基本风压值;H0-容器总高度;h-水平力作用点至底板 距离;Se-偏心距;D-螺栓分布圆直径。 (2) 按 Q Q,选取相应的支座。 (3) 校核 M M ,若不符合则应选取大一号的支座或增加支 座数量。 由于支反力 Q 对容器器壁作用一外力矩 M,M=Q(l2-s1)
2.
支承式支座(JB/T4724-92)
● 支承式支座适用于下列条件的钢制立式圆筒形容器: a.公称直径 DN800~4000mm; b.圆筒长度 L 与公称直径 DN 之比 L/DN≤5; c.容器总高度 HO≤10m。 ●支承式支座多用于安装在距地坪或基础面较近的具有椭圆 形或碟形封头立式容器。 ● 支承式支座数量一般应采用三个或四个均布。 ●支承式支座型式分类: 型 A B 式 支 座 号 适 用 公 称 直 径 结 构 特 征 (mm) 1~6 DN800~3000 钢板焊制,带垫板 1~8 DN800~4000 钢管制作,带垫板

第二节 压力容器零部件 1.2.1 筒体和封头

第二节 压力容器零部件 1.2.1 筒体和封头
当容器筒体直径较小时,可直接采用无缝钢管制 作时,这时容器的公称直径等于钢管的外径。
管子的公称直径(通径)既不是管子的内径也不 是管子的外径,而是一个略小于外径的数值。
零部件的二个基本参数
公称压力(PN)
国家标准GB1048将管路元件的公称压力分为以 下十个等级:0.25MPa、0.6MPa、1.0Ma、 1.6MPa、2.5MPa、4.0MPa、6.30MPa、10.0MPa、 16.0MPa、25.0MPa 。
(e) 梯形压紧面(Trapezium face):适用于高温,压力较高场合,O形圈、金 属垫圈— —八角垫、椭圆垫
(a)全平面
(b)突面
(c)凹凸面
(d)榫槽面
(e)环连接面(梯形槽)
突出平面型压紧面
凹凸面法兰连接
榫槽面法兰连接
榫槽型密封面
梯形槽密封面
金属与金属的接触(Metal to metal)
中华人民共和国机械电子工业部 中华人民共和国化学工业部 中华人民共和国劳动部 中国石油化工总公司
JB4700-92 压力容器法兰分类与技术条件
适用范围:公称压力0.25~6.4MPa,工作温度-20~450℃ 分类:甲型平焊法兰,乙型平焊法兰,长颈对焊法兰 法兰、垫片、螺柱、螺母材料的匹配
容器法兰公称直径:指与法兰相配的筒体或封头的公称直径。
压力容器的公 称直径DN:
无 钢缝 板钢 卷管 焊作 点筒 筒体 体: :外 内径 径D1i5390,201,590,302,850,40, 216000,1600,3000等
公称压力pN:一定温度和材料的法兰的最高工作压力。
容器法兰的公称压力是以16Mn在200℃时的最高操作压 力为依据制订的。
3)法兰的类型

压力容器的设计—压力容器零部件

压力容器的设计—压力容器零部件
同; • ◎压力容器法兰—
·板卷筒体,与相联接筒体的公称直径相 同; ·无缝钢管作筒体,与相联接无缝管的公 称直径相同。
50
公称压力
公称压力——是以16Mn在200℃时的最高工作压力为依据 制定的,因此当法兰材料和工作温度不同时,最大工作压
力将降低或升高。
法兰公称压力与法兰的最大操作压力和操作温度以及法 兰材料三个因素有关。
公称压力 PN 法兰材质
Q235-A
0.6
16MnR
15MnVR
最大允许工作压力 (MPa)
-20~200℃ 300℃ 350℃
0.4
0.33 0.30
0.6
0.51 0.49
0.65
0.63 0.651
3、压力容器法兰的标记
52
压力容器法兰设计步骤:
(1)确定DN; (2)根据法兰材质、工作温度和最高工作压力,确
有一个圈座是滑动支承的。
77
㈢ 腿式支

简称支腿
连接处造成严重的局部应力, 只适用于小型设备
难,榫易损坏。
注意:应使固定在设备上的 法兰为槽面,可拆下部分的法
兰为榫面。
榫槽型压紧面
29
锥形压紧面
通常用于高压密封,其缺 点是需要的尺寸精度和表 面粗糙度要求高。须与透 镜垫片配合,常用于高压管
道。
锥形压紧面
30
梯形槽压紧面
槽底不起密封作用,是槽的 内外锥面与垫片接触成梯形, 形成密封的,与椭圆或八角
凝土制的基础上。
66
㈡ 支承式支座
用钢管、角钢、 槽钢制作,或 用数块钢板焊 成,
型式、结构、 尺寸及材料 JB/T 4724-92 《支承式支 座》。

压力容器设计法兰设计选型计算

压力容器设计法兰设计选型计算

P c MPa t℃EMPa [σ]f MPa [σ]f tMPa D immC 2mmD bmm [σ]b MPa [σ]b tMPam y MPa N mm b 0mm d i mm d o mmb mm D Gmm N N N FN N mm 2mm 2A m mm2d BmmP mm nd B1mm A b mm 2W 0N W 1N螺栓计算预紧状态下螺栓设计载荷操作状态下螺栓设计载荷A a =W a /[σ]b 67.251.533E+044.240E+064.262E+061.964E+04A m 取A a 和A p 中的大值 1.964E+04螺栓公称直径螺栓数量3068螺栓螺距垫 片 简 图6.422E+06法 兰 型 式任意式法兰(按整体法兰计算)需要的螺栓面积计 算 压 力W 0=(A m +A b )[σ]b /2W 1=W p217垫片系数比压力垫片压紧力预压状态下最小压紧力 F a (内压)垫片特性参数垫片内径15CrMo228设 计 温 度法 兰 材 料垫片外径23242348螺 栓 材 料螺栓许用应力室温下许用应力设计温度许用应力6020Ⅱ185117.51计算基本数据计 算 简 图2010002424螺栓分布圆直径1法兰材料常温弹性模量法兰许用应力室温下许用应力设计温度许用应力法 兰 内 径2300腐 蚀 裕 量11.4图 6F a =πD G by F p =2πD G bmP c垫片计算11.7垫片接触宽度垫片基本密封宽度1.5垫片有效密封宽度垫片压紧力作用中心圆直径实际螺栓面积W a =F a内压引起的总轴向力W p =F+F p预紧状态下需的最小螺栓载荷 W a 操作状态下需的最小螺栓载荷 W p 预紧状态下需的最小螺栓面积 A a 操作状态下需的最小螺栓面积 A p 1.50按GB150规定2324.001.533E+042.190E+044.262E+06螺栓小径3.5026.21A b =n π(d B1/2)2A p =W p /[σ]b t3.669E+04操作状态下最小压紧力 F p 0053.2b b b b ==或cG P D F 2785.0=MPa ℃mmMPa MPa mmMPa MPa mmmmMPa mm mm mm mmmm mm mm N Nmmmm mm2垫片接触宽度 N 2.35E+02螺栓螺距 P 垫片计算垫片压紧力作用中心圆直径 D G操作状态下最小压紧力F p 实际螺栓面积 A b预紧状态下最小压紧力F a垫片特性参数垫片内径 d i (活套法兰按GB150.3-2011规定)其它型式法兰A b = n πd B12/4 =2.5螺栓小径 d B1螺栓17.29垫片计算图垫片有效密封宽度 b 垫片基本密封宽度 b 0垫片系数 m 比压力 y 垫片外径 d o图 1a法兰材料室温下许用应力[σ]f设计温度下许用应力法兰内径 D i 螺栓材料室温下许用应力[σ]b设计温度下许用应力螺栓螺栓公称直径 d B 螺栓数量 n 201螺栓分布圆直径 D b法兰计算图设计压力 P c (内压)任意式法兰(按活套法兰计算)设计温度 t 法兰腐蚀裕量 C 2设 计 条 件计 算 简 图法兰型式[]t fσ[]tbσ0053.2b b b b ==或==by D F G a π==c G p bmP D F π2MPa ℃mmMPa MPa mmMPa MPa mmmmmm MPa mmmm mmmm mm NN mmmm mm2mm mm mm螺栓材料室温下许用应力[σ]b设计温度 t 腐蚀裕量 C 2设 计 条 件计 算 简 图法兰法兰材料室温下许用应力[σ]f设计温度下许用应力法兰内径 D i 预紧状态下最小压紧力F a '螺栓数量 n 1D G '= D b - (d b +2b") =螺栓公称直径 d B 20操作状态下最小压紧力F p '0.00E+00垫片压紧力作用中心圆直径 D G '垫片计算垫片的基本密封宽度 b 0' b 0' = D - D b =操作状态垫片有效密封宽度2b"2b"=5垫片外径 D预紧状态垫片有效密封宽度 b'设计温度下许用应力螺栓分布圆直径 D b参数L p '、L R 、L T '计算 L p ' = (d b + 2b")/2 =2.5设计压力 P c 带颈法兰法兰型式螺栓螺栓孔直径 d b螺栓计算L T ' = [(D b + d b + 2b")- D i ]/4 = 1.25 L R = [D -(D b + d b )]/4 + d b /2 =垫片参数垫片系数 m 比压力 y 螺栓螺距 P 2.5螺栓小径 d B117.29实际螺栓面积 A bA b = n πd B12/4 = 2.35E+02-5[]t fσ[]tbσ==y b D F b a ''π==c G p mP b D F "''2π=='0'4b b。

压力容器零部件设计

压力容器零部件设计

压⼒容器零部件设计压⼒容器零部件设计⼀、压⼒容器的封头设计平板形封头带折边锥形封头⽆折边锥形封头锥形封头⽆折边球形封头头带折边球形(碟形)封半椭球(椭圆形)封头半球形封头凸形封头封头椭圆形封头的最⼩厚度标准椭圆形封头:δe≥0.15%Di ⾮标准椭圆形封头:δe≥0.30%Di内压碟形封头e i e t W C t i C MR P P R MP δφδσφσδ5.0][2][5.0][2+=-=最⼤允许⼯作压⼒:壁厚:碟形封头的最⼩厚度标准碟形封头:δe≥0.15%Di ⾮标准碟形封头:δe≥0.30%Di(1)受内压(凹⾯受压)球冠形端封头封头的计算厚度按式(7-6)计算:式中:Q ——系数,由GB150图7—5查取。

(2)受外压(凸⾯受压)球冠形端封头封头的计算厚度按下列两种⽅法确定,取其较⼤值:a) 按球形封头计算公式确定的外压球壳厚度;b) 按式(7-6)计算得到的厚度。

(3)两侧受压的球冠形中间封头(3.1)当不能保证在任何情况下封头两侧的压⼒都同时作⽤时,封头计算厚度应分别按下列两种情况计算,取较⼤值:(3.2)当能够保证在任何情况下封头两侧的压⼒同时作⽤时,可以按封头两侧的压⼒差进⾏计算:在任何情况下,与球冠形封头连接的圆筒厚度应不⼩于封头厚度。

否则,应在封头与圆筒间设置加强段过渡连接。

圆筒加强段的厚度应与封头等厚;端封头⼀侧或中间封头两侧的加强段长度L 均应不⼩于2c t i c p D P -=φσδ][2Q δ0.5DiGB/T25198-2010压⼒容器封头⼏点变化⼆、法兰设计螺栓法兰连接结构及密封设计垫⽚选择原则①要有全⾯的观念,综合考虑温度、压⼒、介质、压紧⾯形式等⽅⾯要求,其中温度和压⼒是影响密封的主要因素,也是选择垫⽚的主要依据。

②在保证密封的前提下,尽量选⽤结构简单、价格便宜、便于安装和更换的垫⽚。

螺栓是法兰密封连接中的重要元件,对其基本要求是强度要⾼、韧性要好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意问题
平焊与对焊
法兰都有带 衬环与不带 衬环两种。
带衬环的甲型平焊法兰
密封面都有
平面型、凹
凸型、榫槽
型三种。
2、如何选用压力容器法兰
公称压力(PN) 选择法兰的主要参数 公称直径(DN)
公称直径
公称直径的确定: • ◎管法兰—与相联接管子的公称直径相 同; • ◎压力容器法兰— · 板卷筒体,与相联接筒体的公称直径相 同; · 无缝钢管作筒体,与相联接无缝管的公 称直径相同。
压紧面表面不允许有刀痕和划痕;
应能均匀地压紧垫片,保证平面度和垂直度。 压紧面的型式 主要根据工艺条件、密封口径以及准备采用的 垫片等进行(常用5种)选择
平面型压紧面 优点:结构简单,加工方便。 缺点:是接触面积大,需要的预紧比压大,螺栓承载大,故 法兰等零件要求高、笨重,垫片易挤出,密封性能较差。使 用压力P≤2.5MPa,有毒、易燃、易爆介质中不能使用。
公称压力
公称压力——是以16Mn在200℃时的最高工作压 力为依据制定的,因此当法兰材料和工作温度不 同时,最大工作压力将降低或升高。 法兰公称压力与法兰的最大操作压力和操作温度 以及法兰材料三个因素有关。 公称压力 PN 法兰材质 0.6 Q235-A 16MnR 15MnVR 最大允许工作压力 (MPa)
松套法兰(活套法兰)
法兰不直接固定在壳体上或虽然固定而不能保证法兰 与壳体作为一个整体承受螺栓载荷的结构。
松套法兰
松套法兰
螺纹法兰
法兰和管壁通过螺纹进行连接,法兰对管壁产生的附 加应力较小。常用于高压管道。
螺纹法兰
3、按法兰形状分
圆形、方形和椭圆形
不同形状的法兰
三、影响法兰密封的因素
1、螺栓预紧力
2.管法兰 管法兰标准:
1)HG20592~20635——97 «钢制管法兰、垫片、紧固件» 2)GB9112~9123 «钢制管法兰»
注:«压力容器安全技术监察规程»推荐1)。
HG20592-97 管法兰类型:
a.板式平焊(PL)
c.带颈对焊法兰(WN)
b.带颈平焊(SO)
e.承插焊(SW)
(c)操作工况 密封机理图
二、法兰的结构与分类 1、按法兰接触面分
窄面法兰与宽面法兰
2、按法兰与设备或管道的联接方式划分
整体法兰 将法兰与壳体锻或铸成一体或全焊透,典型的整体法兰有一 个锥形的颈脖,故又称高(长)颈法兰。法兰受力后会使容 器产生附加弯曲应力。
图6-5 整体法兰
整体法兰
整体法兰
沿着垫片与压紧面之 间的泄漏,泄漏量大 小主要与界面间隙尺 寸有关。“压紧面泄 漏”是密封失效的主 要途径。
压紧面泄漏
垫片渗漏
泄漏形式
螺栓法兰连接的整个工作过程:
图6-3(a)尚未预紧工况、
(b)预紧工况、 (c)操作工况
(a)尚未预紧工况 将上、下法兰压紧面和垫片的 接触处的微观尺寸放大,表面 是凹凸不平的,这就是流体泄 漏的通道。
螺栓M20 ,36个
4.确定密封面形式及垫片。 查表6-1,确定采用平形密封面,垫片采用耐油橡胶 石棉垫。垫片尺寸由相应标准确定。表6-3 给出参考 宽度值:20mm。 5.确定螺栓螺帽材质。由相应标准查得。表6-6给出 参考值:螺栓螺母均为Q235-A。 6.绘草图。
螺栓M20 ,36个
刚度小——受力後变形大,垫片受力不均,易泄漏。 法兰受力:
思考:法兰将如何变形?
法兰变形1:
法兰变形2
密封失效的主 要原因之一
刚度不足:过大的翘曲变形
提高法兰刚度的措施: 增加法兰厚度;减小螺栓力作用的力臂(即缩小
中心圆直径);增大法兰盘外径;螺栓数量要足 够。
5、操作条件
操作条件 指压力、温度及介质的物理化学性质对密封性能 的影响。 在压力、介质和温度的联合作用下,尤其是波动 特 点
h.平焊环松套板式
f.翻边松套板式
f.螺纹法兰
i.法兰盖
椭圆形法兰 方法兰
例题为一台精流塔配一对连接塔身与封头的法兰。 塔的内径为1000mm,操作温度为280º ,设计压力 为0.2MPa。塔体材质为Q235-B。介质无腐蚀性 及其他危害。
解:1.确定DN DN=1000mm(板卷筒体)。 2.确定PN 法兰材质也采用Q235-BR,根据 操作温度( 280°C)及设计压力(0.2MPa),查 温度/压力表(JB4700-92),得PN=0.6(MPa)。 3.由DN和PN,查尺寸标准JB4701-92,确定 连接尺寸及螺栓的规格数量。
1
当压力介质通过密封口 的阻力降大于密封口两 侧的介质压力降时,介 质就被密封住
密封原理 垫片渗漏 泄漏途径 压紧面泄漏
2
3
螺栓法兰连接结构 1-螺栓 2-垫片 3-法兰
泄漏
垫片渗漏
压紧面泄漏
通过垫片材料本体毛细 管的渗透泄漏。可通过 对渗透性垫片材料添加 某些填充剂进行改良, 或与不透性材料组合成 型来避免“垫片渗漏”。
平面型压紧面
凹凸型压紧面
由一个凹面和一个凸
面配合组成。垫片放
凹面中。 优点:便于对中,能 防垫片挤出。 可用在P≤6.4MPa,
DN≤800mm
凹凸型压紧面
榫槽型压紧面
一榫一槽密封面组成,优点 是对中性好,密封预紧压力 小,垫片不易挤出,不受介 质冲刷,用于易燃易爆密封 要求高处。缺点是更换较困
(a)尚未预紧工况
密封机理图
(b)预紧工况(无内压)
拧紧螺栓,螺栓力通过法兰压 紧面作用到垫片上。垫片产生弹性 或屈服变形,填满凹凸不平处,堵 塞泄漏通道,形成初始密封条件。 引入概念1“预紧比压y” 形成初始密封条件时垫片单位面积 上所需的最小压紧力,称为“垫片 比压力” ,单位为MPa。在预紧工 况下,如垫片单位面积上所受的压 紧力小于比压力y,介质即发生泄漏。
-20~200℃ 0.4 0.6
0.65
300℃ 0.33 0.51
0.63
350℃ 0.30 0.49
0.6
3、压力容器法兰的标记
压力容器法兰设计步骤:
(1)确定DN; (2)根据法兰材质、工作温度和最高工作压力,确 定PN; (3)由PN,DN确定法兰形式及连接尺寸、螺栓尺寸 及数量。 (4)根据介质工作温度、工作压力确定密封面及垫 片类型; (5)确定螺栓、螺帽材质; (6)绘制草图。
第四章 压力容器零部件
教学重点: 各零部件标准的选用。 教学难点:
标准法兰的选用。
第一节 容器法兰与管法兰
一、法兰联接结构与密封原理 1、密封组成
被连接件
3 1 2法兰联接源自连接件密封元件螺栓法兰连接结构 1-螺栓 2-垫片 3-法兰
连接结构:
法兰连接结构(外观)
法兰连接结构(剖开看)
2、工作原理
平焊法兰
甲型
乙型 压力容器 法 兰
对焊法兰
平焊法兰
平焊法兰
乙型法兰带有一个短筒体,因此刚性较甲型法兰 好,可用于压力较高,直径较大的场合; 比较 焊缝形式:甲型为V型坡口,乙型为U型坡口, 因此乙型更易焊透,故其强度和刚度更高。
对焊法兰
特点
由于有长颈,并 采用对焊,故刚 性更好,用于压
力更高处.
梯形槽压紧面
3、垫片性能 • 垫片密封面的塑性变形能力 ——实现初始密封; • 垫片材料及结构的回弹能力 ——提高工作状态下的残余密封比压。 • 耐腐蚀能力。 • 力学性能,尤其抗高温蠕变能力。 • 工作温度下的变质硬化或软化性。
垫片类型:
4、法兰刚度 ——法兰在外力作用下抵抗变形的能力。
(b)预紧工况
密封机理图
y值仅与垫片材料、 结构与厚度有关。
(c)操作工况
通入介质 压力上升 导致
密封比压下降 垫片弹性压缩变形部分产生回弹,使压 紧面上的密封比压力仍能维持一定值以 保持密封性能。
引入概念2 “操作密封比压” 为保证在操作状态时法兰的密封性 能而必须施加在垫片上的压应力, 称为操作密封比压。 操作密封比压往往用介质计算压力 的m倍表示, m称为“垫片系数”。
的高温下,会严重影响密封性能,甚至使密封因
疲劳而完全失效。 高温下,介质粘度小,渗透性大,易泄漏;介质
原 因
对垫片和法兰的腐蚀作用加剧,增加了泄漏的可 能性;法兰、螺栓和垫片均会产生较大的高温蠕 变与应力松弛,使密封失效;某些非金属垫片还
会加速老化、变质,甚至烧毁。
四、法兰标准及选用
1、压力容器法兰标准
难,榫易损坏。
注意:应使固定在设备上的
法兰为槽面,可拆下部分的法
兰为榫面。
榫槽型压紧面
锥形压紧面
通常用于高压密封, 其缺点是需要的尺寸
精度和表面粗糙度要
求高。须与透镜垫片 配合,常用于高压管道。
锥形压紧面
梯形槽压紧面
槽底不起密封作用,是 槽的内外锥面与垫片接
触成梯形,形成密封的,
与椭圆或八角形截面的 金属垫圈配合。
预紧力使垫片压紧实现初始密封。 适当提高预紧力可增加垫片的密封能力,即在正常工况
下保留较大的接触面比压力。
预紧力不宜太大,否则使垫片整体屈服丧失回弹能力, 甚至将垫片挤出或压坏。 预紧力应均匀地作用到垫片上,可采取减小螺栓直径、 增加螺栓个数等措施来提高密封性能。
2、压紧面(密封面)
压紧面的质量要求 形状和粗糙度应与垫片相匹配; 使用金属垫片时其压紧面的质量要求比使用非金属垫片时高;
相关文档
最新文档