(2013-07-01)双馈风力发电机组基本知识
双馈式风力发电机原理
双馈式风力发电机原理双馈式风力发电机介绍双馈式风力发电机是一种常见的风力发电装置。
它具有较高的效率和良好的适应性,被广泛应用于风力发电场。
下面将逐步解释双馈式风力发电机的原理。
风能转换风是一种自然资源,可以转化为电能。
风力发电机通过转换风能为机械能,再将机械能转化为电能,实现风能的利用。
双馈式风力发电机在风能转换过程中采用了特殊的设计,使得发电效率更高。
基本原理双馈式风力发电机的基本原理如下:1.风能转化为旋转动能:风力发电机的叶片接收到风的动能,产生旋转运动。
2.传递旋转动能:旋转的轴通过齿轮传动等方式,将旋转动能传递给转子。
3.转子的双馈结构:转子包含一对主磁极和一对辅助磁极,其中辅助磁极是可调节的。
4.感应发电原理:主磁极在转子上产生的磁场与定子上的线圈相互作用,产生感应电动势。
5.电能传输:感应电动势经过变频器和其他电气设备进行调节和转换后,传输到电网中。
双馈式结构优势双馈式风力发电机采用双馈结构,具有以下优势:•提高稳定性:通过调整辅助磁极的位置,可以实现对转速和功率的精确控制,提高系统的稳定性。
•减小成本:辅助磁极的可调节性降低了对控制系统的要求,减小了成本。
•适应性强:双馈式风力发电机适应性强,可以适应不同的风速和转速变化。
总结双馈式风力发电机通过利用风能转化为电能,实现了对风力资源的有效利用。
它采用双馈结构,通过调节辅助磁极的位置,实现对转速和功率的精确控制,提高了系统的稳定性和功率输出。
双馈式风力发电机具有较高的效率和适应性,是目前风力发电场常用的装置之一。
直驱式和双馈式风力发电机组介绍
双馈式与直驱式风力发电机组介绍1、双馈式发电机组双馈式风力发电机组的叶轮通过多级齿轮增速箱驱动发电机,主要结构包括风轮、传动装置、发电机、变流器系统、控制系统等。
双馈式风力发电机组系统将齿轮箱传输到发电机主轴的机械能转化为电能,通过发电机定子、转子传送给电网。
发电机定子绕组直接与电网连接,转子绕组与频率、幅值、相位都可以按照要求进行调节的变流器相连。
变流器控制电机在亚同步与超同步转速下都保持发电状态。
在超同步发电时,通过定转子两个通道同时向电网馈送能量,这时变流器将直流侧能量馈送回电网。
在亚同步发电时,通过定子向电网馈送能量、转子吸收能量产生制动力矩使电机工作在发电状态,变流系统双向馈电,故称双馈技术。
双馈风力发电变速恒频机组示意图变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机的定子侧输出电压的幅值、频率与相位与电网相同,并且可根据需要进行有功与无功的独立控制。
变流器控制双馈异步风力发电机实现并网,减小并网冲击电流对电机与电网造成的不利影响。
提供多种通信接口,用户可通过这些接口方便的实现变流器与系统控制器及风场远程监控系统的集成控制。
提供实时监控功能,用户可以实时监控风机变流器运行状态。
变流器采用三相电压型交-直-交双向变流器技术。
在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网与最大功率点跟踪控制功能。
功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形,改善双馈异步发电机的运行状态与输出电能质量。
这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功与无功的解耦控制,就是目前双馈异步风力发电机组的一个代表方向。
2、直驱式发电机组直驱式风力发电机组的风轮直接驱动发电机,主要由风轮、传动装置、发电机、变流器、控制系统等组成。
为了提高低速发电机效率,直驱式风力发电机组采用大幅度增加极对数(一般极数提高到100左右)来提高风能利用率,采用全功率变流器实现风力发电机的调速。
双馈异步风力发电机机组变流器基本运行原理
双馈异步风力发电机机组变流器基本运行原理一、引言近年来,随着环保意识的提高和可再生能源的重要性日益凸显,风力发电作为一种清洁、可再生的能源形式,受到了广泛的关注和推广。
而风力发电机组作为风力发电系统的核心部件,其稳定性和效率对整个系统的运行影响重大。
双馈异步风力发电机机组变流器作为风力发电机组的关键部件之一,其基本运行原理对整个系统的性能具有重要影响,因此有必要对其进行全面了解和分析。
二、双馈异步风力发电机机组概述双馈异步风力发电机机组是一种常见的风力发电机组类型,其主要由风轮、叶片、主轴、发电机、变流器等组成。
风轮转动驱动主轴旋转,主轴通过传动系统带动发电机工作,发电机将机械能转化为电能输出给电网。
其中变流器起着将发电机输出的交流电转换为直流电,通过逆变器将直流电再转换为交流电,并使得风力发电机组能够与电网实现同步运行的重要作用。
三、双馈异步风力发电机机组变流器基本结构双馈异步风力发电机机组变流器主要由变流器电路、控制系统和通信系统等组成。
其中变流器电路包括整流部分和逆变部分,控制系统负责对变流器进行控制和监测,通信系统用于与上层监控系统进行数据交互。
双馈异步风力发电机机组变流器通常采用IGBT(绝缘栅双极型晶体管)等功率器件,以实现对电流和电压的精确控制。
四、双馈异步风力发电机机组变流器工作原理1.变流器整流部分:发电机输出的交流电首先被变流器整流部分进行整流,将交流电转换为直流电。
这个过程包括整流桥、滤波电路等部分,其主要目的是将交流电转换为基本平稳的直流电,以便后续逆变器的工作。
2.变流器逆变部分:经过整流的直流电被逆变器逆变部分转换为交流电,通过逆变器的PWM控制,将直流电转化为符合电网要求的交流电,并具有同步电网的频率和相位。
逆变部分通过对功率器件的开关控制,将直流电转换为交流电输出到电网。
3.控制系统:变流器的控制系统通过对PWM控制信号的生成和对功率器件的开关控制,实现对变流器的电流和电压的精确控制,使得风力发电机组与电网实现有效的功率传递和稳定的运行。
双馈风力发电机书
双馈风力发电机书
摘要:
1.双馈风力发电机的概述
2.双馈风力发电机的工作原理
3.双馈风力发电机的优点
4.双馈风力发电机的应用现状和前景
正文:
一、双馈风力发电机的概述
双馈风力发电机是一种新型的风力发电设备,其结构和工作原理都与传统的风力发电机有很大的不同。
双馈风力发电机主要由两个部分组成,一个是风轮,另一个是发电机。
风轮通过风力驱动,将风能转化为机械能,然后通过传动系统传递给发电机,发电机再将机械能转化为电能,供给电网使用。
二、双馈风力发电机的工作原理
双馈风力发电机的工作原理主要可以分为两个部分,一是风轮驱动部分,二是发电部分。
风轮驱动部分主要包括风轮、轴承、齿轮箱等部件,风轮通过风力驱动,将风能转化为机械能,然后通过轴承和齿轮箱传递给发电机。
发电部分主要包括发电机和变频器,发电机将机械能转化为电能,变频器则将发电机输出的电能进行变频处理,以适应电网的需求。
三、双馈风力发电机的优点
双馈风力发电机具有许多优点,主要表现在以下几个方面:
1.高效:双馈风力发电机的发电效率高,可以充分利用风能,提高发电
量。
2.稳定:双馈风力发电机通过变频器控制,可以适应不同的风力条件,保证发电的稳定性。
3.环保:双馈风力发电机无噪音,无污染,是一种绿色环保的发电方式。
4.适应性强:双馈风力发电机可以根据不同的环境和需求,进行设计和调整,具有很强的适应性。
四、双馈风力发电机的应用现状和前景
双馈风力发电机在我国的应用已经相当成熟,广泛应用于风力发电、光伏发电等领域。
随着我国对可再生能源的需求和重视,双馈风力发电机的应用前景十分广阔。
双馈风力发电机
设双馈电机的定转子绕组均为对称绕组,电机的极对数为 ,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速 称为同步转速,它与电网频率 及电机的极对数 的关系如下:
(3-1)
同样在转子三相对称绕组上通入频率为 的三相对称电流,所产生旋转磁场相对于转子本身的旋转速度为:
双馈风力发电机
鲍立刚
电机0901班
130609107
关键词:双馈发电机、ABB变频器、
引言:电机是利用电磁感应原理工作的机械。随着生产的发展而发展的,反过来,电机的发展又促进了社会生产力的不断提高。从19世纪末期起,电动机就逐渐代替蒸汽机作为拖动生产机械的原动机,一个多世纪以来,虽然电机的基本结构变化不大,但是电机的类型增加了许多,在运行性能,经济指标等方面也都有了很大的改进和提高,而且随着自动控制系统和计算机技术的发展,在一般旋转电机的理论基础上又发展出许多种类的控制电机,控制电机具有高可靠性﹑好精确度﹑快速响应的特点,已成为电机学科的一个独立分支。
它应用广泛,种类繁多。性能各异,分类方法也很多。电机常用的分类方法主要有两种:一种是按功能用途分,可分为发电机﹑电动机,变压器和控制电机四大类。
在现代化工业生产过程中,为了实现各种生产工艺过程,需要各种各样的生产机械。拖动各种生产机械运转,可以采用气动,液压传动和电力拖动。由于电力拖动具有控制简单﹑调节性能好﹑耗损小﹑经济,能实现远距离控制和自动控制等一系列优点,因此大多数生产机械都采用电力拖动。
同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量。
双馈风力发电机的工作原理
双馈风力发电机的工作原理
双馈风力发电机是一种新型可控风力发电机,它具有更高的可靠性、性能和效率,是当前风力发电技术的重要发展方向。
双馈风力发电机是采用双馈式控制结构,具有较高的可控性和调节性,能够有效提高风力发电机的电能转换效率,以及对风力条件的适应性和可靠性。
双馈风力发电机的工作原理主要是通过调节风力发电机的叶片转动角度来实现电能转换的。
双馈风力发电机的控制结构是通过一个扰动电机和一个控制电机来实现的,扰动电机通过检测风速,按照设定的参数来调节叶片角度,从而使风力发电机有效捕获风力,从而产生电能;控制电机负责调节风力发电机的叶片角度,使叶片的转动角度达到最优,从而提高风力发电机的电能转换效率。
双馈风力发电机的工作原理可以概括为:通过检测风速,控制扰动电机调节叶片角度,控制电机调节叶片转动角度,从而使风力发电机有效捕获风力,有效转换电能。
双馈风力发电机的特点是具有较高的可控性和调节性,可以有效提高风力发电机的电能转换效率,有效提升风力发电机的可靠性和适应性。
双馈式风力发电机
双馈式风力发电机【摘要】随着地球能源的日益紧缺,环境污染的日益加重,风能作为可再生绿色能源越来越被人们重视,风力发电技术成为世界各国研究的重点。
变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。
通过调节发电机转子电流的大小、频率和相位,从而实现转速的调节。
而其中双馈发电机构成的风力发电系统已经成为目前国际上风力发电的必然趋势。
关键词:风能风力发电变速恒频双馈式发电机一、风力发电风能作为一种清洁的可再生能源,越来越受到世界各国的重视。
风力发电:把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。
风力发电在芬兰、丹麦等国家很流行;中国也在西部地区大力提倡。
我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。
在这些地区,发展风力发电是很有前途的。
风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。
风力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。
依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。
风力发电机因风量不稳定,故其输出的是13〜25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。
然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。
风力发电所需要的装置,称作风力发电机组。
这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。
风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。
当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。
桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。
(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。
双馈风力发电机书
双馈风力发电机书摘要:一、双馈风力发电机的原理与结构二、双馈风力发电机的优缺点三、双馈风力发电机在我国的应用与发展四、双馈风力发电机的运行维护与管理五、双馈风力发电机的未来发展趋势正文:一、双馈风力发电机的原理与结构双馈风力发电机是一种采用双馈传动技术的风力发电机组。
其主要由风轮、传动系统、发电机、变频器和控制系统等部分组成。
双馈风力发电机的原理是利用风力驱动风轮,风轮通过传动系统将动力传递给发电机,发电机发出电能经过变频器调节电压和频率后,输送到电网。
二、双馈风力发电机的优缺点双馈风力发电机具有以下优点:1.高效率:双馈风力发电机的转子与电网直接连接,降低了损耗,提高了发电效率。
2.适应性强:双馈风力发电机具有较强的适应性,可适应不同风速和风况条件。
3.结构紧凑:双馈风力发电机采用双馈传动技术,使得发电机尺寸较小,降低了整个机组的体积和重量。
4.可靠性较高:双馈风力发电机的传动系统相对简单,维护方便,运行可靠性较高。
然而,双馈风力发电机也存在一定的缺点:1.对风速要求较高:双馈风力发电机的最佳工作效率对应于一定风速范围,当风速低于或高于这个范围时,效率会降低。
2.噪音较大:由于传动系统的存在,双馈风力发电机的噪音较直驱风力发电机较大。
3.投资成本较高:与直驱风力发电机相比,双馈风力发电机的投资成本和维护成本较高。
三、双馈风力发电机在我国的应用与发展我国双馈风力发电机的技术水平世界领先,已成为全球最大的双馈风力发电机市场。
近年来,我国政府高度重视新能源产业的发展,双馈风力发电机在我国得到了广泛应用。
根据统计数据,我国双馈风力发电机的装机容量持续增长,占全部风力发电装机容量的绝大部分。
四、双馈风力发电机的运行维护与管理为确保双馈风力发电机的稳定运行和延长机组寿命,运行维护与管理至关重要。
主要包括以下几个方面:1.定期检查:定期对双馈风力发电机的各个部件进行检查,确保机组处于良好状态。
2.故障排查:发现故障及时进行排查,分析原因并进行修复。
双馈风力发电机及控制原理
双馈风力发电机及控制原理1. 引言随着环境保护和可再生能源的重要性越来越被人们所认识,风力发电作为一种清洁能源发电方式受到了广泛的关注。
双馈风力发电机作为一种较为常见的风力发电机类型,具有较高的效率和可靠性,被广泛应用于风力发电场。
本文将介绍双馈风力发电机及其控制原理,以帮助读者更好地理解和应用双馈风力发电机技术。
2. 双馈风力发电机原理双馈风力发电机是由风力发电机、功率变换装置和控制系统组成的。
其工作原理如下:1.风力发电机:风力发电机是将风能转化为机械能的装置。
其主要部件有叶片、轴承、传动装置等。
当风经过叶片时,叶片会受到空气的推力,使得转子旋转,进而驱动主轴转动。
2.功率变换装置:功率变换装置将发电机产生的机械能转化为电能,并连接到电网中。
双馈风力发电机使用的是双馈变流器,它包括一个转子侧变频器和一个电网侧变频器。
转子侧变频器将转子输出的电能转化为交流电,并传输到电网侧变频器。
电网侧变频器则将交流电转化为电网所需的电能,并与电网进行连接。
3.控制系统:控制系统是对双馈风力发电机进行监测和控制的装置。
它通过传感器将双馈风力发电机的状态信息传输给控制器,控制器根据预设的运行参数对发电机进行调控。
例如,控制器可以根据风速变化调整发电机的转速,以最大限度地提高发电机的效率。
3. 双馈风力发电机的优势相比于其他类型的风力发电机,双馈风力发电机具有以下几个优势:•高效率:双馈风力发电机在部分负载工况下能保持较高的效率,有效提高了发电机能量转换的效率。
•抗风干扰能力强:双馈风力发电机控制系统具有较强的抗风干扰能力,能够稳定运行并输出稳定的电能。
•可靠性高:双馈风力发电机采用的双馈变流器能够有效避免发电机因电网故障等原因引起的故障,提高了发电机的可靠性。
4. 双馈风力发电机控制原理双馈风力发电机控制系统主要通过控制器对发电机的调速、电压和功率进行控制。
其控制原理如下:1.风速检测和采集:通过风速传感器检测风速,并将风速数据传输给控制器。
双馈风力发电机的工作原理
双馈风力发电机的工作原理
1、双馈风力发电机的工作原理:
是通过叶轮将风能转变为机械转矩,通过主轴传动链,经过齿轮箱增速到异步发电机转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。
如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。
双馈发电机正是由叶片通过齿轮箱变速,带动以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,已达到最大利用风能效果。
2、双馈风力发电的特点:
(1)由于定子直接与电网连接,转子采用变频供电,因此,系统中的变频器容量仅仅取决于发电机运行时的最大转差功率,一般发电机最大转差功率为25%-35%,因而变频器的最大容量仅为发电机容量的1/4-1/3,这样系统的总体配置费用就比较低。
(2)具有变速恒频的特性。
(3)可以实现有功功率和无功功率的调节。
双馈发电机原理
双馈发电机原理双馈发电机是一种常用于大型风力发电机组的电机类型。
它具备高转速、高功率密度和低成本等优势,被广泛应用于风力发电领域。
本文将详细介绍双馈发电机的原理及其工作过程。
一、双馈发电机概述双馈发电机,又称为异步双馈发电机,是一种由转子和永磁体绕组组成的电机。
与传统的感应电机不同,双馈发电机在转子上额外增加了一个功率输出装置,该装置通常由电流互感器和功率变流器组成。
该装置的主要作用是将一部分电流经过功率变流器控制并重新注入到绕组中,从而实现对电机的控制和调节。
因此,双馈发电机在工作时可以通过改变转子上的电流来调整输出功率和电机的性能。
二、双馈发电机的原理基于转子上的功率输出装置。
当风力发电机叶片转动时,叶片产生的机械能被转化为转子上的电能。
转子上的电能被分为两部分,一部分经过转子的绕组直接注入电网;另一部分则经过功率输出装置控制后重新注入绕组。
功率输出装置主要由电流互感器和功率变流器组成。
电流互感器用于检测电流信号,并将信号传输给功率变流器。
功率变流器负责将电流信号转换为适当的电压和频率,然后将其注入到绕组中。
通过调节功率输出装置的参数,可以达到对电机功率输出的控制和调节。
三、双馈发电机工作过程双馈发电机在工作时,首先通过输入端子引入定子绕组的感应电流。
随后,该感应电流通过转子绕组和功率输出装置注入到转子上。
在此过程中,转子上的电流与输入电压之间存在一定的相位差。
转子上的电流与输入电压的相位差会导致一部分电能通过功率输出装置注入到绕组中,而不是直接输出到电网上。
这样一来,双馈发电机的输出电功率和频率就可以通过调节功率输出装置的参数进行控制和调节。
四、双馈发电机的优点1. 高转速:双馈发电机的转速通常比直联发电机要高,能够更好地适应风力发电机组的工作要求。
2. 高功率密度:双馈发电机采用双馈线圈结构,使得发电机的功率密度更高,可以实现更大的功率输出。
3. 低成本:由于双馈发电机采用了较简单的控制装置,相比其他类型的发电机,其成本相对较低。
双馈风力发电机原理
双馈风力发电机原理双馈风力发电机(DFIG)是一种常用于风力发电系统的发电机类型。
它采用双馈结构,具有高效、可靠和灵活的特点。
本文将介绍双馈风力发电机的原理和工作方式。
一、双馈风力发电机的结构组成双馈风力发电机主要由转子、定子和功率电子装置组成。
转子由主转子和辅助转子构成,主转子装有定子绕组,辅助转子则利用功率电子装置与电网相连。
二、双馈风力发电机的工作原理双馈风力发电机采用变频技术,可以自动调节发电机的转速和电网之间的电流和电压。
当风能转换为机械能并带动风力发电机转动时,风力发电机通过转子将机械能转换为电能。
双馈风力发电机的主要原理是利用定子绕组在电磁铁芯上产生磁场,通过主转子的转动,使得辅助转子携带的电流与主转子相互作用,从而产生电磁转矩。
这一转矩通过主轴传递给风力发电机的转子,进而带动风力发电机旋转。
这种旋转的力矩可以带动发电机的发电部分,将机械能转化为电能并输出到电网上。
三、双馈风力发电机的优点1. 高效:双馈风力发电机通过使用变频技术,能够根据风力的变化自动调节风力发电机的转速,保持最佳的效率。
2. 可靠:双馈风力发电机采用双馈结构,辅助转子通过功率电子装置与电网相连,能够在故障情况下保持风力发电机的正常运行。
3. 灵活:双馈风力发电机能够实现无级变速,适应不同风力条件下的工作要求。
四、双馈风力发电机的应用双馈风力发电机广泛应用于风力发电场。
风力发电场中的风力发电机通常需要适应风速和风向的变化,而双馈风力发电机正是这样的一种装置。
它不仅能够适应不同风力条件下的工作要求,还能够通过变频技术将电能高效地输送到电网上。
五、总结双馈风力发电机是一种高效、可靠和灵活的风力发电机。
它的工作原理基于双馈结构和变频技术,通过将风能转换为机械能,并最终转化为电能输出到电网上。
双馈风力发电机在风力发电场中有着广泛的应用前景,将成为风力发电系统的重要组成部分。
虽然本文没有严格按照合同或作文的格式写,但在核心内容的传递和组织结构方面仍满足题目要求。
双馈风力发电机课件
双馈风力发电机是一种可再生能源,使用 清洁能源发电,减少对化石燃料的依赖, 降低环境污染。
挑战
控制策略
双馈风力发电机的控制策略需要精确地控制发电机和电力电子转换器 的运行状态,以确保高效的能量转换和稳定的电力输出。
维护成本
双馈风力发电机的维护成本较高,需要定期检查和维护,以确保其正 常运行。
可靠性问题
双馈风力发电机课件
• 双馈风力发电机概述
01
双馈风力发电机概述
定义与特点
定义
双馈风力发电机是一种风力发电 系统中的重要设备,通过风能驱 动转子旋转,进而产生电能。
特点
具有较高的风能利用率和发电效 率,同时能够实现有功和无功功 率的解耦控制,稳定性较好。
工作原理
工作原理
双馈风力发电机在运行过程中,通过变流器对转子进行能量馈入或馈出,实现 电机侧变换器的有功和无功功率双向流动,进而控制发电机的输出电压和频率。
定期检查并更换磨损严重的部件,如轴承、密封圈等。
检查电气性能
定期检查双馈风力发电机的电气性能,如绝缘电阻、电压、电流等。
故障排除与维修
对维修过程进行记录,以 便日后查阅和参考。
根据故障诊断结果,制定 维修计划并实施。
根据故障现象,分析并确 定故障原因。
故障诊断
维修计划
维修记录
THANK YOU
感谢各位观看
分布式能源系 统
分布式能源系统的概念
分布式能源系统是一种集中开发、分散建设的能源供应方式。在这种系统中,双馈风力发电机作为其中的一部分, 与其他能源供应方式(如燃气、太阳能等)共同为本地用户提供能源服务。
分布式能源系统的特点
分布式能源系统具有节能、环保、高效等优点。通过多种能源的综合利用,可以降低对传统能源的依赖,提高能 源利用效率,同时减少环境污染。
双馈风力发电机
双馈风力发电技术基本概念双馈异步风力发电机是一种绕线式感应发电机,是变速恒频风力发电机组的核心部件,也是风力发电机组国产化的关键部件之一。
该发电机主要由电机本体和冷却系统两大部分组成。
电机本体由定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构。
双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变频器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。
由于采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。
双馈式风力发电机组具有以下特点:1.技术成熟、质量可靠。
自工业化革命以来,齿轮传动已经成为技术最成熟、最主流的传动方式,广泛应用于航空、航天、船舶、汽车、钟表等工业和生活领域。
风力发电机组工作环境恶劣,对机组可靠性要求很高。
双馈机组采用的大功率大速比齿轮箱技术从20世纪90年代起已经开始应用,其在风电中的故障率已低于电气系统和发电机系统。
叶轮+齿轮箱+发电机的传动链结构简单,各类载荷分配合理,整体质量可靠性高。
2.效率高、性价比优。
该技术有效分配了机械传动系统和发电系统的参数配置,通过高速比齿轮箱提高电机转速,大幅提高发电机效率。
同时该机型仅有占额定功率1/5~1/3的转差功率通过变流器,变流器的能量损失小。
整机效率高、性价比优。
3.可维护性好。
双馈式风力发电机组一般采用叶片+轮毂+齿轮箱+联轴器+发电机的传动结构,这种结构各主要部件相对独立,可以分别进行维护和维修。
现场维修容易,时间响应及时。
4.电能质量好,低电压穿越能力强。
双馈式风力发电机组采用双馈式感应电机和部分功率变流技术,发出的70%以上的电能通过定子输送到电网,产生的谐波小、电能质量好。
同时,该技术具有功率因数可调、有功功率和无功功率控制方便,低电压穿越性能好等特点,可实现电网友好型接入。
[浅谈双馈式风力发电机]双馈式风力发电机
[浅谈双馈式风力发电机]双馈式风力发电机1 双馈式发电机的组成和原理1.1 结构:双馈式发电机的定子结构和异步发电机的相同,转子上带有滑环和电刷。
双馈式风力发电系统结构如图1所示,从图中可以看出定子绕组与电网直接相连,而转子绕组则是通过可逆变流器与电网相连。
1.2 基本原理:双馈式电机的定子、转子电流产生的旋转磁场始终是相对静止的,当发电机转子变化而频率不变时,发电机的转速和定转子电流频率之间的关系为表示为:f1=(pn/60)±f2 式1式中:f1为定子电流频率,为Hz;f2为转子电流频率,单位为Hz;p为发电机的磁极对数;n为转子的转速,单位为r/min。
由上式可知,当发电机的转速发生变化时,可以通过调节f2来维持f1不变,来保证与电网频率相同,实现变速恒频控制。
根据转子的转速不同,双馈式发电机可以有三种运行状态,如图2-3所示,图中:P2为发电机轴上输入的机械功率;Pem为转子传递到定子上的电磁功率;sPem为转子输入/出的有功功率;(1±|s|)Pem 为定子绕组输出的有功功率。
①亚同步运行状态:此时n0,式子1取“+”,频率为f2的转子电流产生的旋转磁场的向速与转子转动方向相同,功率流动方如图2(a)所示,从图中可以看出,P2=Pem=(1-s) Pem+sPem,由于此时s0,所以sPem0,故需要电网给转子回路提供电能,定子绕组输出的电能为(1-s) Pem,小于转子传递到定子的电能Pem。
②超同步运行状态:发电机运行于该状态时,nn1,转差s0,式子1取“-”,频率为f2的转子电流产生的旋转磁场的向速与转子转动方向相反,功率流动方如图2(b)所示,从图中可以看出,P2=Pem,由于此时s0,所以sPem0,故转子回路会通过变流器向电网回馈电能,定子绕组输出的电能为(1+|s|) Pem,大于转子传递到定子的电能Pem,这也是双馈式发电机的重要特点。
③同步运行状态:在该状态下,发电机的转子转速与同步转速相同,故电机转子电流为一直流量,与同步发电机相同。
(2013-07-01)双馈变流器技术及故障分析 (2)
模拟量 扭矩控制(名义MD值) 输入 模拟量 输出
Signal信号 励磁 载荷要求 故障确认 就绪 DC 24V Mita DC 24V DC 0V 释放断路器 速度传感器 逆变器超速 逆变器准备运行 逆变器正在加热 逆变器准备关闭 逆变器处于工作范围内 并联运行 逆变器故障 逆变器出现主要故障 主同步开关安全链接 主同步开关欠压 紧急断开逆变器安全链接 紧急关闭 DC 24V逆变器 DC 0V逆变器 再次设定安全链接 CW 人工调节风向CW CCW 人工调节风向CCW UPS故障 CosPhi控制(名义功率因数值) Common shield普通屏蔽 转速 扭矩 普通屏蔽
常见故障分析
1.2 技术参数
序变流器技术指标 网侧变流器 额定功率:480kVA 额定输入电压:690V 输入电压范围:+10%, -20% 频率范围:48~63Hz 交流电流:400A/cosφ =0.8 过载能力:150%,10秒钟,循环间隔6分钟 过流保护点:1000A 开关频率:2kHz 损耗:5kW
oCC101RdlFanOn_ oCC101PlcReaClo oCC101PchByp oCroT1_Clo oCroT1_Ope oSorBreClo (*spare oSorBreUVoRst oSorBreYU_Rst oSorBreOpe oCC101HumHea
数字量 输入
编码器
数字量 输出
101RdlFanOn_; 101PlcReaClo; 101PchByp; CC.PhO.CroT1_Clo; CC.PhO.CroT1_Ope; CC.PhO.SorBreClo; CC.PhO.; CC.PhO.SorBreUVoRst; CC.PhO.SorBreYU_Rst; CC.PhO.SorBreOpe; 101HumHea;
双馈风力发电机组
双馈风力发电机组一前言风力发电作为清洁、丰富、可再生能源,日益受到全世界广泛重视,特别是在近年得到了迅猛发展。
当风流过风力机叶片,带动风力机转动时,风能转化为机械能,风力机又拖动发电机转子旋转,发电机向电网供电,机械能转化为电能。
采用双馈绕线型异步发电机的变速恒频风力发电系统与传统的恒速恒频风力发电系统相比具有显著优势:风能利用系数高,不但能吸收由风速突变所产生的能量波动且避免主轴及传动机构承受过大的扭矩和应力,还可以自由调整有功和无功功率,改善系统的功率因数,可实现对频率和电压的方便调节等。
目前,双馈风力发电技术是应用最为广泛的风力发电技术之一。
二双馈绕线型异步风力发电系统的组成变速恒频VSCF(Variable Speed Constant Frequency)双馈绕线型异步风力发电系统主要由风力机、增速齿轮箱、双馈绕线型异步发电机DFIG(Doubly-fed Induction Generator)、双向变频器和控制单元等组成。
双馈发电机定子绕组接工频电网,转子绕组接“交—交”、“交—直—交”或“矩阵式”双向变频器,该变频器可实现对转子绕组的频率、相位、幅值和相序等调节控制。
控制系统采用正弦波脉宽调制技术SPWM(Sinusoidal Pulse Width Modulation)和绝缘栅双极晶体管控制技术IGBT(Insulated Gate Bipolar Transistor),可四象限运行,变速运行范围一般在同步转速的±35 %左右。
三实现变速恒频的两种基本方式实现变速恒频的基本方式一般有两种:一种是采用传统直流电励磁或永磁同步发电机(以及笼型异步发电机等),另一种是采用交流励磁的同步化双馈绕线型异步发电机。
(2)省去了增速用齿轮箱或仅需一级低速齿轮箱;(3)永磁同步发电机无需集电环和刷架系统,维护更加方便。
其主要缺点如下:(1)需要对发电机输出的全部功率进行变频控制,故需配备全功率变频器,变频器成本较高,控制系统体积庞大;(2)永磁发电机使用高导磁率的钕铁硼和钐钴等,这些磁性材料价格很高;(3)永磁发电机功率因数特性差,必须由变频器来进行补偿;(4)要求永磁材料具有很高的稳定性,而高温以及电枢反应等原因可能导致频率就可以实现对转速的调节,发电机的运行转速既可高于同步转速,也可低于同步转速,有利于系统最大限度捕获风能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
華潤新能源
风电装
交流
1.风力发电技术基本原理、组成 1.1 风力发电基本原理
10
华润新能源控股有限公司
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
1. 风力发电技术基本原理、组成 1.2 风力发电基本组成
华润新能源控股有限公司
11
華潤新能源
风电发展趋势
16
华润新能源控股有限公司
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
4. 风轮系统方案 4.3 风轮系统
17
华润新能源控股有限公司
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
5. 传动链系统方案 5.1 双馈风力发电机组典型传动链概述
三点支撑
华润新能源控股有限公司
四点支撑 18
金风
Enercon Sulzon 东汽 Gamesa 西门子 联合动力 其它
4
5 6 7 8 9 10
3218
2439 2337 2269 2236 1999 1423 5928
9.5
7.2 6.9 6.7 6.6 5.9 4.2 17.5
0.75/1.5/ 2.5MW
0.60/2.0MW 1.25/1.5/2.1MW 1.5/ 2.0MW 0.85/2.0MW 2.3/3.6MW 1.5/2.0/3.0MW /
华润新能源控股有限公司
24
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
5. 双馈风力发电原理
5.3 传动链网络结构图---高速轴刹车
◆ 安全系统紧急制动 停机 ◆运行状态监控 刹车磨损程度
华润新能源控股有限公司
25
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
5. 双馈风力发电原理
20
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
5. 双馈风力发电原理
5.3 齿轮箱与其他部件网络结构—齿轮箱
华润新能源控股有限公司
21
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
5. 双馈风力发电原理
5.3 传动链网络结构图—齿轮箱
华润新能源控股有限公司
22
華潤新能源
风电发展趋势
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
2.风力发电技术发展现状及趋势 ● 发展现状及趋势
失速风力发电机组
直驱风力发电机组
一体化驱动风力发电机组
双馈风力发电机组
液力耦合 风力发电 机组
华润新能源控股有限公司
7
華潤新能源
风电发展趋势
机组组成及工作原理
机组风场施工
交流
2.风力发电技术发展现状及趋势 ● 市场份额
169.9
1800.0
150.0
11653.3
319.9
1800.0
200.0
13453.3
519.9
结论: (1)未来几年中国风电装机增长趋缓,但是中国新增风电装机总量和投资仍将保 持较高水平; (2)中国海上风电刚刚起步,未来几年,中国海上风电装机发展前景良好和投资 增长空间较大。
5
华润新能源控股有限公司
机组安装
交流
1.风力发电市场发展现 状及趋势
● 全球市场发展现状
◆全球风电总装机容量年均 复合增长率达到26.22%;
23846.8 19952 15850
15000 10000 5896.1 5000 1153.1 0 2005 2006 2007 9383.5 7405.2 1509.1 1978.3
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
5. 传动链系统方案 5.2 典型传动链主要 组成:主轴、轴承、齿轮箱、
联轴器、发电机、主机架。
轴承
主轴
19
华润新能源控股有限公司
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
5. 双馈风力发电原理
5.3 传动链网络结构图
华润新能源控股有限公司
风轮系统方案
传动链系统方案
电气控制方案 其他单元或系统
14
华润新能源控股有限公司
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
4. 风轮系统方案 4.1 气动方案
15
华润新能源控股有限公司
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
4.双馈风力发电机组风轮、气动方案 4.2 叶片技术
12029
2646.1
3820.9
3940.4
4121.2
2008
2009 年度新增
2010
2011
全球累计
万千瓦
7000 6273.3
◆中国国家对风电政策调
控2011年风电总装机容量 1800万千瓦,没有调控的 2010年装机容量为1892万 千瓦。
6000 5000 4000 3000 2000 1202.4 1000 127.2 50.7 0 2005 2006 2007 2008 2009 2010 2011 255.9 128.8 587.1
约8000 约5283 /
1.5MW /
说明:
1)双馈和直驱风电机组是两种风电机组不同技术路线(发电机、变流器、有无齿轮差异之分); 2)全球风电整机商排名第四、五名的金风、德国Enercon 采用直驱全功率路线; 3)全球十大风电整机制造商除第四、五外均采用直驱技术路线,双馈风电机组技术路线是当今风电的主流 技术路线。
華潤新能源
风电发展趋势
机组组成及工作原理
机组风场施工
交流
2.风力发电技术发展现状及趋势 ● 技术发展现状
水平轴风机(二叶片)
多叶片垂直轴风机
水平轴风机(三叶片)
华润新能源控股有限公司
说明: 1)850KW以下风电机组为失速风电机组; 2)1MW以上风电机组均为变速变桨风电机组; 3)三叶片变速变桨风电机组是国际风电市场主流 ,市场份额99.99%,其他类型风电机组处于初步试用、试 验阶段; 4)陆上风电从1 ~1.5MW逐步变为2.0~3.0MW功 率等级成为市场主流; 5)现阶段海上以3 ~4.5MW功率等级为主刚起步。 6
華潤新能源
内部资料,注意保密
双馈风力发电机组基本原理
袁
炜
2013年6月3日
1
华润新能源控股有限公司
華潤新能源
双馈风力发电机组基本知识介绍
1.风电发展趋势
2.风力发电机组组成及工作原理
3.风电机组机组安装 4.交流
2
华润新能源控股有限公司
華潤新能源
风电发展趋势
机组组成及工作原理
万千瓦 30000 25000 20000
8
华润新能源控股有限公司
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
■ 风力发电技术基本原理、组成 双 馈 风 力 发 电 原 理 及 组 成
华润新能源控股有限公司
■ 双馈风力发电工作原理 ■ 双馈风力发电机组总体技术参数 ■ 双馈风力发电机组机械总体方案 ■ 双馈风力发电机机组电气控制方案 ■ 双馈风力发电机机组其他单元或系统 ■ 双馈风力发电机机组制造
◆联轴器安装注意事项
27
华润新能源控股有限公司
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
5. 双馈风力发电原理
5.3 传动链网络结构图—发电机
华润新能源控股有限公司
28
華潤新能源
风电发展趋势
机组组成及工作原理
机组安装
交流
5. 双馈风力发电原理
5.3 传动链网络结构图—发电机
◆发电机运行状态监控
331.1 615.4
4473.3
2582.8
1892.8 1380.3 1800
累计
年度新增
3
华润新能源控股有限公司
華潤新能源
风电发展趋势
机组组成及工作原理
机组风场施工
交流
1.风力发电市场发展现状及趋势
● 全球市场前景
根据各国风能协会和能源管理部门已经公布2012-2015年发展规划。
2012年 序号 统计分区 新增 全球 0 陆上 海上 亚洲合计 1 陆上 海上 北美洲合计 2 陆上 海上 欧洲合计 3 陆上 海上 5094.6 4599.6 495.0 2255.0 2185.0 70.0 1100.0 1100.0 0.0 1337.0 912.0 425.0 累计 28941.4 28015.5 925.8 10486.2 10396.2 89.9 6429.4 6429.4 0.0 10987.3 10151.4 835.9 新增 5669.0 5034.0 635.0 2365.0 2245.0 120.0 1340.0 1340.0 0.0 1517.0 1002.0 515.0 累计 34610.4 33049.5 1560.8 12851.2 12641.2 209.9 7769.4 7769.4 0.0 12504.3 11153.4 1350.9 新增 6312.0 5372.0 940.0 2485.0 2315.0 170.0 1580.0 1530.0 50.0 1797.0 1077.0 720.0 累计 40922.4 38421.5 2500.8 15336.2 14956.2 379.9 9349.4 9299.4 50.0 14301.3 12230.4 2070.9 新增 7014.0 5864.0 1150.0 2605.0 2385.0 220.0 1820.0 1770.0 50.0 2137.0 1257.0 880.0 累计 47936.4 44285.5 3650.8 17941.2 17341.2 599.9 11169.4 11069.4 100.0 16438.3 13487.4 2950.9 2013年 2014年 2015年