空气动力学课件-第1章 翼型解析

合集下载

空气动力学与飞行原理课件:高速气动特性

空气动力学与飞行原理课件:高速气动特性
空气动力学与飞行原理
高速气动特性
LOGO 1
第六节
目录页
学 习 大 纲
一、 二、 三、
翼型的亚音速空气动力特性 翼型的跨音速空气动力特性 翼型的超音速升力特性
2
壹 目录页
一、
翼型的亚音速空气动力特性
二、
翼型3
壹 翼型的亚音速空气动力特性
亚音速的定义:飞行 M 数大于0.4, 流场内各点的 M 数都小于1。
考虑空气密度随速度的变化,则 翼型压力系数基本按同一系数放大, 体现出“吸处更吸,压处更压”的特 点。因此,升力系数增大,逆压梯度 增大,压力中心前移,临界迎角减小, 阻力系数基本不变。
飞行M 数增大,升力系数和升力系数斜率增大 飞行M 数增大,最大升力系数和临界迎角减小
4
贰 目录
一、
翼型的亚音速空气动力特性
MCRIT 是机翼空气动力即将发生显著变化的标志。
6

翼型的跨音速空气动力特性
升力系数随飞行 M 数的变化
1.考虑空气压缩性,上表面密度下降更多,产生附 加吸力,升力 CL 系数增加,且由于出现超音速区,压力更 小,附加吸力更大;
2.下翼面出现超音速区,且后移较上翼面快,下翼 面产生较大附加吸力,CL 减小;
二、
翼型的跨音速空气动力特性
三、
翼型的超音速升力特性
5
贰 翼型的跨音速空气动力特性
跨音速是指飞行速度没达到音速,但机翼表面局部已经出现超 音速气流并伴随有激波的产生。
机翼上表面流速大于飞行速度,因此当飞行 M 数小于1时,机 翼上表面最低压力点的速度就已达到了该点的局部音速(此点称为等 音速点)。此时的飞行 M 数称为临界马赫数 MCRIT 。

空气动力学PPT

空气动力学PPT

第二节 飞行器的运动参数与操纵机构
一、坐标系:
描述飞机的姿态、位置;飞机在大气中飞行,运动复杂,有多 个坐标系描述;美制与苏制,国标——美制 1.地面坐标系(地轴系) Sg og xg yg zg 原点og —地面某一点(起飞点) ogxg —地平面内,指向某方向(飞行航线) ogyg —地平面内,垂直于ogxg,指向右方 y ogzg —垂直地面,指向地心, x o 右手定则 z H 描述飞机的轨迹运动 “不动”的坐标系, ogxg x 惯性坐标系
二、飞机的运动参数(续)

速度向量与机体轴系的关系
1、迎角 速度向量V在飞机对称面上的投影与机体轴ox的夹 角,以V的投影在ox轴之下为正 2、侧滑角 速度向量V与飞机对称面的夹角。V处于对称面之 右时为正
产生空气动力的主要因素 对于飞控是重要的变量
三、飞行器运动的自由度
刚体飞机,空间运动,有6个自由度: 质心x、y、z线运动(速度增减,升降,左右移动) 绕质心的转动角运动 飞机有一个对称面:纵向剖面,几何对称、质量对称 1.纵向运动 速度V,高度H,俯仰角 2.横航向运动 质心的侧向移动,偏航角,滚转角 纵向、横航向内部各变量之间的气动交联较强 纵向与横航向之间的气动交联较弱,可以简化分析 飞机—面对称,导弹—轴对称
1 p V 2 p0 总压 2
V大,p小;V小,p大
四、马赫数M
马赫数:为气流速度(v)和当地音速(a)之比: 音速:微弱扰动在介质中的传播速度。


M
V a
音速:
a 20 T
T:空气的绝对温度
音速a与温度有关,表示空气受压缩的程度,是高度的函数 临界马赫数Mcr 迎面气流的M数超过某数值时,翼面上出现局部的超音速区, 将产生局部激波 ,此时远前方的迎面气流速度V与远前方 空气的音速a之比 Mcr-每种机翼的特征参数

《空气动力学》课件

《空气动力学》课件

1
喷管内的空气动力学基础
2
探索喷管中的气流加速和压力变化,为喷
气发动机和火箭的设计提供基础。
3
燃烧室内的空气动力学基础
研究燃烧室内的空气流动特性和压力分布, 为燃烧过程的优化提供依据。
空气动力学基本方程
介绍流体力学和空气动力学的基本方程, 包括质量守恒、动量守恒和能量守恒等等。
空气动力学应用
飞机机翼的空气动力 学
《空气动力学》PPT课件
空气动力学是研究物体在气流中运动的科学。探索空气动力学的基本概念、 应用领域以及对飞机和汽车等工业的重要性。
概述
空气动力学概述
了解空气动力学的定义和基本原理,包括流体 力学和空气动力学的关系。
应用领域
探索空气动力学在航空、汽车、火箭和建筑设 计等领域中的应用。
空气动力学基础
2 空气动力学现象的研究方法
探索研究空气动力学现象的实验和数值模拟方法。
3 毒性风险的影响因素
讨论空气动力学现象对毒性风险的影响因素,包括气流速度、颗粒物浓度和颗粒物分布测量
介绍测量汽车表面压力分布的实验方法和仪器。
2
汽车空气阻力的计算
探索计算汽车空气阻力的数值模拟方法和常用公式。
分析机翼的气流分布和升力产 生,探索如何优化飞机的机翼 设计。
空气动力学在航空工 业中的应用
探索空气动力学在飞机设计和 性能提升中的重要性。
空气动力学在汽车工 业中的应用
研究汽车的空气阻力和流线型 设计对燃油效率和驾驶体验的 影响。
空气动力学现象
1 空气动力学现象的分类
介绍不同类型的空气动力学现象,如升力、阻力、卡门涡街等。
3
汽车空气动力学在车身设计中的应用
研究空气动力学在改善汽车操控性、燃油效率和安全性方面的应用。

(精品)空气动力学课件:超声速和跨声速翼型气动特性

(精品)空气动力学课件:超声速和跨声速翼型气动特性
因此,对于超声速翼型,前缘最好作成尖的,如菱形、 四边形、双弧形等。但是,对于超声速飞机,总是要经 历起飞和着陆的低速阶段,尖头翼型在低速绕流时,较 小迎角下气流就要发生分离,使翼型的气动性能变坏。 为此,为了兼顾超声速飞机的低速特性,目前低超声速 飞机的翼型,其形状都采用小圆头的对称薄翼。
Folie 9
y d sin 2 (x Bh)
l
Folie 21
9.1.2 薄翼型超声速的线化理论
在线化理论假设下,对于超声速气流绕过波纹壁面的 扰动速度和流线的幅值均不随离开壁面的距离而减小。
在壁面处的压强分布为
超声速绕流压强系数与波纹壁面相位差 /2,亚声速差

4 d 2x
C ps
B
cos l
l
超声速
超声速翼型将承受阻力,这种与马赫波传播有关的阻力 称为波阻。
Folie 7
9.1.1超声速薄翼型的绕流特点和流动图画
在超声速流动中,绕流物体产生的激波阻力大小与物 体头部钝度存在密切的关系。由于钝物体的绕流将产生 离体激波,激波阻力大;而尖头体的绕流将产生附体激 波,激波阻力小。
Folie 8
9.1.1超声速薄翼型的绕流特点和流动图画
空气动力学
Folie1
超声速和跨声速翼型 气动特性
超声速和跨声速翼型气动特性
本章主要应用超声速流的线化理论来研究薄翼型在无 粘性有位绕流和小扰动假设下的纵向空气动力特性。由 于作了无粘性绕流的假设,因此,不涉及与粘性有关的 摩擦阻力和型阻力的特性。
与亚声速翼型绕流不同,超声速翼型绕流,承受有波 阻力,这是超声速空气动力特性与亚声速空气动力特性 的主要区别之一。
Folie 12
9.1.2 薄翼型超声速的线化理论

《空气动力学》课件

《空气动力学》课件

未来挑战与机遇
环境保护需求
新能源利用
随着环境保护意识的提高,对空气污 染和气候变化的研究需求增加,这为 空气动力学带来了新的挑战和机遇。
新能源的利用涉及到流动、传热和燃 烧等多个方面,需要空气动力学与其 他学科合作,共同解决相关问题。
航空航天发展
航空航天领域的发展对空气动力学提 出了更高的要求,需要不断改进和完 善现有技术,以满足更高性能和安全 性的需求。
04
翼型与机翼空气动力学
翼型空气动力学
翼型概述
翼型分类
翼型是机翼的基本截面形状,具有特定的 弯度和厚度。
根据弯度和厚度的不同,翼型可分为超临 界、亚音速和超音速翼型等。
翼型设计
翼型与升力
翼型设计需考虑气动性能、结构强度和稳 定性等多个因素。
翼型通过产生升力使飞机得以升空。
机翼空气动力学
01
机翼结构
课程目标
掌握空气动力学的基本概 念和原理。
提高分析和解决实际问题 的能力。
了解空气动力学在各领域 的应用和发展趋势。
培养学生对空气动力学的 兴趣和热爱。
02
空气动力学基础
流体特性
01
02
03
04
连续性
流体被视为连续介质,由无数 微小粒子组成,彼此之间存在
相对运动。
可压缩性
流体的密度会随着压力和温度 的变化而变化。
《空气动力学》PPT课件
目 录
• 引言 • 空气动力学基础 • 流体动力学 • 翼型与机翼空气动力学 • 空气动力学应用 • 未来发展与挑战
01
引言
主题介绍
空气动力学:一门研 究空气运动规律和空 气与物体相互作用的 科学。
课件内容涵盖了基础 理论、应用实例和实 验演示等方面。

空气动力学课件-第1章 翼型资料

空气动力学课件-第1章 翼型资料
yf f 2 [( 1 2 p ) 2 px x ] 2 (1 p)
x p
x p
式中,p为弧线最高点的弦向位置。中弧线最高点的高度 f(即弯度)和该点的弦向位置都是人为规定的。给f和p 及厚度c以一系列的值便得翼型族。
§1.1 翼型的几何参数及其发展
其中第一位数代表f,是弦长的百分数;第二位数代表p,是弦长的十 分数;最后两位数代表厚度,是弦长的百分数。例如NACA 0012是一 个无弯度、厚12%的对称翼型。有现成实验数据的NACA四位数翼族 的翼型有6%、8%、9%、10%、12%、15%、18%、21%、24%
CL (C pl C pu ) cosdx
0
1
C pu
Pu P Pl P , C pl 1 1 2 V V 2 2 2
§ 1.3 低速翼型的低速气动特性概述
§ 1.3 低速翼型的低速气动特性概述
§ 1.3 低速翼型的低速气动特性概述
(1)在升力系数随迎角的变化曲线中,CL在一定迎角范围 内是直线,这条直线的斜率记为
随时间的发展翼面上边界层形成下翼面气流绕过后缘时将形成很大的速度压力很低从后缘点到后驻点存在大的逆压梯度造成边界层分离从而产生一个逆时针的环量称为起动1414儒可夫斯基后缘条件及环量的确定儒可夫斯基后缘条件及环量的确定3起动涡离开翼缘随气流流向下游封闭流体线也随气流运动但始终包围翼型和起动涡根据涡量保持定律必然绕翼型存在一个反时针的速度环量使得绕封闭流体线的总环量为零
在飞机的各种飞行状态下,机翼是飞机承受升力的主要 部件,而立尾和平尾是飞机保持安定性和操纵性的气动 部件。一般飞机都有对称面,如果平行于对称面在机翼 展向任意位置切一刀,切下来的机翼剖面称作为翼剖面 或翼型。翼型是机翼和尾翼成形重要组成部分,其直接 影响到飞机的气动性能和飞行品质。

空气动力学与飞行原理课件:机翼空气动力学

空气动力学与飞行原理课件:机翼空气动力学

2mg v
S CL
它表明在相同翼型下,翼载荷越大,则定直平飞速度越快。从另一个方面来看
vmin
2mg
S CL max
即,最小平飞速度为机翼接近失速迎角飞行。在翼型失速迎角一定的情况下,翼载荷越 大,最小平飞速度也越大。
5
壹 翼面负载
下面是典型的无人机的翼面负载。
无人机机型 全球鹰 长空-1 捕食者 徘徊者
贰 目录
一、
翼面负载
二、
展弦比
三、
后掠角
四、
根梢比
7
贰 展弦比 展弦比λ定义为翼展L除以平均翼弦b(λ=L/b)。 展弦比对机翼升力的影响为:当机翼产生升力时,下表面压强向上,上表面压强向下,且下表面压强值 大于上表面。则在翼尖处,下表面的高压气流流向上表面,减小了翼尖附近的升力。同时,如上节所述,有 限展长机翼也是诱导阻力产生的重要来源。 因此,展弦比越大,则翼尖效应对机翼升力的影响越小。理想情况是和翼型升阻特性一样。对于低速和 亚声速无人机,机翼展弦比越大,则升力线斜率和升阻比都较大。 展弦比的另外一个特性是翼尖涡减小了翼尖处的有效迎角,增大了翼尖处的失速迎角。因此,在机翼展 向各翼型扭转角相同的情况下,翼根比翼尖较易失速,这也是要设计机翼扭转的作用。一般翼尖剖面翼型与 翼根剖面翼型的扭转角在±3度左右。另外,相同情况下,展弦比越大则机翼滚转方向转动惯量越大,滚转机 动性越差。
这对无人机结构设计产生一定影响。即后掠 翼无人机翼梢处气动力增大,需要适当加强梢部 结构强度。
后掠机翼升力分布
15
肆 目录
第一章
翼面负载
第二章
展弦比
第三章
后掠角
第四章
根梢比
16
肆 根梢比

飞机的飞行原理--空气动力学基本知识 ppt课件

飞机的飞行原理--空气动力学基本知识  ppt课件
PPT课件 21
4、电离层(暖层、热层)






电离层位于中间层之上,顶界离地面大约 800公里。 电离层的特点: 1)空气温度随着高度的增加而急剧增加, 气温可以增加到400 ℃以上(最高可达1000 ℃ 以上)。 2)空气具有很大的导电性,空气已经被 电离,主要是带负电的电离子。 3)空气可以吸收、反射或折射无线电波。 4)空气极为稀薄,占整个大气的1/亿. 这层空气主要有人造卫星、宇宙飞船飞行。
PPT课件 16



对流层的特点: 1)气流随高度升高而降低 在对流层中.由于空气受热的直接来源不是太阳,而 是地面,太阳放射出的能量,大部分被地面吸收,空气是 被太阳晒热的地面而烤热的,所以越靠近地面,空气温度 就越高。在中纬度地区,随着高度的增加,空气温度从15 ℃降低到11公里高时的-56.5 ℃。 2)风向、风速经常变化 由于太阳对地面的照射程度不一,加之地球表面地形、 地貌的不同,地面各地区空气气温和密度不相同,气压也 不相等,即使同一地区,气温、气压也常会发生变化,使 大气产生对流现象,形成风,且风向、风速也会经常变化。 3)空气上下对流激烈 地面各处的温度不同,受热多的空气膨胀而上升,受 热少的空气冷却而下降,就形成了空气的上下对流。
PPT课件 17



4)有云、雨、雾、雪等天气现象 地球表面的海洋、江河中的水由于太阳照射而不断蒸 发,使大气中常常聚集着各种形态的水蒸气,在空中形成 了“积雨云”,随着季节的变化,就会形成云、雨、雾、 雪、雹和打雷、闪电等天气现象。 5)空气的组成成分一定 对流层中几乎包含了全部大气质量的3/4,主要是由于 地球引力作用的结果。 由于对流层具有以上特点,会给飞机的飞行带来很大 影响。在高空飞行时,气温低,容易引起飞机结冰,温度 变化还会引起飞机各金属部件收缩,改变机件间隙,甚至 影响飞机正常工作。上下对流空气会使飞机颠簸,既不便 于操纵,又使飞机受力增大。

空气动力学

空气动力学

第四章风力发电的空气动力学原理风机叶片在空气中的受力特性与飞机的机翼在空气中的受力相类似,所以对风机叶片的空气动力学研究很多是借鉴了对飞机的翼型的空气动力学的研究技术以及飞机翼型的制造技术。

飞机在空气中运动所引起的作用于飞机上的空气动力取决于空气的物理属性,飞机的几何形状、飞行姿态以及飞机与空气之间的相对速度,因此在讨论空气动力的产生及其变化规律之前,首先来研究空气的基本属性。

空气动力学是关于气流特性的学说,相对于固体而言气体的特性。

空气动力学定律,尤其是旋涡、推力、正面阻力和升力使得飞机可以飞行。

相同的定律对于滑翔也很重要。

空气动力学是一门复杂的科学。

并非在每种具体情况下都可以通过假设计算对特定现象作数字上或理论上的精确说明,因而要利用风洞试验结果。

所以空气动力学也是一门以经验为依据的科学。

气体和液体统称为流体。

气体和液体同固体相比较,分子间引力较小,分子运动较强烈,分子没有一定的排列规律,这就决定了气体和液体具有共同的特性,不能保持一定形状,而具有流动性。

从力学性质来看,固体具有抵抗压力、拉力和切力的能力。

因而在外力作用下,通常发生较小的变形,而且到了一定程度后变形就停止。

流体由于不能保持一定形状,所以它不能抵抗切力。

当他受到切力作用时,就要发生连续不断变形(即流动)。

这就是流体同固体在力学性质上的显著区别。

气体和液体除了具有上述的共同特性外,还有如下的不同特性:液体的分子跟分子的有效直径差不多是相等的,当对液体加压时,由于分子距离稍有缩小,出现强大的分子斥力来抵抗外压力,这就是说:液体的分子距离很难缩小,可以认为液体具有一定体积,因此通常成液体为不可压缩流体。

一般来说,气体分子间距离很大,例如常温常压下空气的分子距离为3×10-7,其分子有效直径的数量级为10-8厘米。

可见分子距离比分子有效直径大得很多。

这样,当分子距离缩小很多时,才会出现分子斥力。

因此,通常称气体为可压缩流体。

空气动力学与飞行原理课件:无人机空气动力学概述 、翼型空气动力学

空气动力学与飞行原理课件:无人机空气动力学概述 、翼型空气动力学
5
空气动力学与飞行原理
翼型空气动力学
LOGO 6
壹 目录页 一、 二、 三、 四、
翼型几何特性 伯努利定理 升力 阻力
五、 六、 七、
升阻比
空气动力特性影响因素
翼型选择
7
壹 翼型几何特性
在固定翼无人机的各种飞行状态下,机翼是 无人机产生升力的主要部件。如果平行于机身对 称面在机翼展向任意位置切一刀,切下来的机翼 剖面称作为翼剖面或翼型。如图,翼型设计是无 人机设计中必不可少的一环,它直接影响到固定 翼无人机的空气动力学特性和飞行性能。
(四)S翼型 中弧线是一个平躺的S型,这类翼型
因迎改变时,压力中心变动较小,升力 较大,常用于飞翼布局无人机。
(五)内凹翼 下弧线在翼弦线上,中弧线高,升
力系数大,常见于早期飞机及牵引滑翔 机。
13
壹 翼型几何特性
(六)其它特种翼型 例如:直升机OA系列翼型等。 20世纪初设计了很多低速飞机的翼型,如德 国人奥托·利林塔尔设计并测试了RAF-6,还有 Gottingen 398,Clark Y,NACA翼型系列等, 如图2.5所示。目前这些翼型在低速无人机和航空 模型中得到了广泛的应用。尤其是Clark Y系列翼 型,因其良好的加工性能,在微型和轻型无人机 中得到了广泛应用。
空气动力学与飞行原理
无人机空气动力学概述
LOGO 1
壹 无人机空气动力学概述
无人机之所以能在大气中做持续的飞行,主要靠空气给它的反作用力(即升力)。空气动力学 最重要的是知道无人机上所受到的分布压力、升力、阻力和力矩,以及无人机参数对这些空气动力的 影响规律。
无人机主要在对流层和平流层飞行,此时无人机尺寸远大于气体分子的自由行程,因此,无人 机所处的介质是连续空气。对于无人机空气动力学,最重要的两个无量纲量是马赫数和雷诺数,它体 现了空气的压缩性和粘性特性。

《风力机空气动力学》课件

《风力机空气动力学》课件
随着材料科学和制造技术 的进步,风力机的尺寸和 功率逐渐增大,以提高能 源产出效率。
智能化趋势
通过引入传感器和智能化 控制算法,实现风力机的 自适应调节和远程监控, 提高运行效率和安全性。
海上风电发展
海上风能资源丰富,且具 有较高的开发价值,未来 海上风电将成为风能开发 的重要方向。
风力机市场前景展望
数值模拟
利用计算机软件模拟风力机的运行,预测其气动性能。
03
风力机气动性能分析
风能转换效率分析
风能转换效率定义
提高风能转换效率的方法
风能转换效率是指风能转换为机械能 的效率,是衡量风力机性能的重要指 标。
通过优化风力机设计、提高转速、选 择合适的翼型等方式可以提高风能转 换效率。
风能转换效率影响因素
风力机技术发展历程
从最早的简易风车到现代的大型风力发电机,风力机技术经历了漫长的
发展过程。
02
当前主流风力机类型
水平轴风力机和垂直轴风力机是当前主流的风力机类型,各有其优缺点
和应用场景。
03
风能利用效率
随着技术的不断进步,现代风力机的风能利用效率已经得到了显著提高

风力机技术发展趋势
01
02
03
大型化趋势
噪声。
风力机气动稳定性分析
风力机气动稳定性定义
风力机气动稳定性是指风力机在运行过程中抵抗外界干扰的能力 。
风力机气动稳定性影响因素
风力机气动稳定性受到多种因素的影响,包括气流速度、湍流强度 、叶片质量和设计等。
提高风力机气动稳定性方法
通过优化叶片设计、增加质量块等方式可以提高风力机气动稳定性 。
04
风力机的选址
为了获得最佳的风能利用效果,风 力机通常安装在风力资源丰富、地 势开阔的地方,如山顶、海边等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 章 低速翼型的气动特性
1.1 翼型的几何参数和翼型研究的发展简介 1.2 翼型的空气动力系数 1.3 低速翼型的低速气动特性概述 1.4 库塔-儒可夫斯基后缘条件及环量的确 定 1.5 任意翼型的位流解法 1.6 薄翼型理论 1.7 厚翼型理论 1.8 实用低速翼型的气动特性
§1.1 翼型的几何参数及其发展
yt
c 0.2
(0.29690
x 0.12600x 0.35160x2 0.284303 0.10150x4 )
§1.1 翼型的几何参数及其发展
前缘半径为
r 1.1019c2
中弧线取两段抛物线,在中弧线最高点二者相切。
yf
f p2
(2
px
x2
)
x p
yf
f (1 p)2
[(1
2
p)
2
px
§1.1 翼型的几何参数及其发展
一战期间,交战各国都在实践中摸索出一些性能很好的翼型。如儒可夫 斯基翼型、德国Gottingen翼型,英国的RAF翼型(Royal Air Force英 国空军;后改为RAE翼型---Royal Aircraft Estabilishment 皇家飞机 研究院),美国的Clark-Y。三十年代以后,美国的NACA翼型 (National Advisory Committee for Aeronautics,后来为NASA,National Aeronautics and Space Administration ),前苏联的ЦАΓИ翼型 (中央空气流体研究院)。
上下缘中点的连线称为翼型中弧线。如果中弧线是一条 直线(与弦线合一),这个翼型是对称翼型。如果中弧 线是曲线,就说此翼型有弯度。弯度的大小用中弧线上 最高点的y向坐标来表示。此值通常也是相对弦长表示的。
yf
1 2 ( yu
yd ),
f
max(y f )
最大弯度的位置表示为 x f 。
§1.1 翼型的几何参数及其发展
§1.1 翼型的几何参数及其发展
通常飞机设计要求,机翼和尾翼的升力尽可能大、阻力 小、并有小的零升俯仰力矩。因此,对于不同的飞行速 度,机翼的翼型形状是不同的。 对于低亚声速飞机,为了提高升力系数,翼型形状为圆 头尖尾形; 对于高亚声速飞机,为了提高阻力发散Ma数,采用超临 界翼型,其特点是前缘丰满、上翼面平坦、后缘向下凹; 对于超声速飞机,为了减小激波阻力,采用尖头、尖尾 形翼型。
1、翼型的定义与研究发展
在飞机的各种飞行状态下,机翼是飞机承受升力的主要 部件,而立尾和平尾是飞机保持安定性和操纵性的气动 部件。一般飞机都有对称面,如果平行于对称面在机翼 展向任意位置切一刀,切下来的机翼剖面称作为翼剖面 或翼型。翼型是机翼和尾翼成形重要组成部分,其直接 影响到飞机的气动性能和飞行品质。
§1.1 翼型的几何参数及其发展
翼型的前缘是圆的,要很精确地画出前缘附近的翼型曲线, 通常得给出前缘半径。这个与前缘相切的圆,其圆心在中 弧线前缘点的切线上。翼型上下表面在后缘处切线间的夹 角称为后缘角。 在对称翼型的情况下,中弧线的纵坐标为零,所对应的翼 型曲线分布用yt表示,也称为翼型的厚度分布。即
§1.1 翼型的几何参数及其发展
五位数翼族的厚度分布与四位数翼型相同。不同的是中弧线。具体的 数码意义如下:第一位数表示弯度,但不是一个直接的几何参数,而是 通过设计升力系数来表达的,这个数乘以3/2就等于设计升力系数的十 倍。第二、第三两位数是2p,以弦长的百分数来表示。最后两位数仍是 百分厚度。 例如NACA 23012这种翼型,它的设计升力系数是(2)×3/20=0.30; p=30/2,即中弧线最高点的弦向位置在15%弦长处,厚度仍为12%。
§1.1 翼型的几何参数及其发展
对于风力机叶片,主要有美国的NERL S系列、丹麦的RISO 系列、瑞典的FFA-W系列和荷兰的DU系列翼型。
一般风力机专用翼型要求有较大的升阻比,并且对粗糙度 不敏感。
§1.1 翼型的几何参数及其发展
第一次最早的机翼是模仿风筝的,在骨架上张蒙布,基 本上是平板。在实践中发现弯板比平板好,能用于较大 的迎角范围。 1903年莱特兄弟研制出薄而带正弯度的翼 型。儒可夫斯基的机翼理论出来之后,明确低速翼型应 是圆头,应该有上下缘翼面。圆头能适应于更大的迎角 范围。
§1.1 翼型的几何参数及其发展
2 翼型的几何参数
翼型的最前端点称为前缘点,最后端点称为后缘点。 前后缘点的连线称为翼型的几何弦。 但对某些下表面大部分为直线的翼型,也将此直线定义为 几何弦。翼型前、后缘点之间的距离,称为翼型的弦长, 用b表示,或者前、后缘在弦线上投影之间的距离。
§1.1 翼型的几何参数及其发展
翼型上、下表面(上、下缘)曲线用弦线长度的相对坐标的
函数表示。
yu
yu b
fu (x),yd
yd b
fd (x), x
x x
这里,y也是以弦长b为基准的相对值。上下翼面之间的距用
2 yt yu yd翼型的 Nhomakorabea度定义为
c max yu yd
例如,c =9%,说明翼型厚度为弦长的9%
§1.1 翼型的几何参数及其发展
x2
]
x p
式中,p为弧线最高点的弦向位置。中弧线最高点的高度 f(即弯度)和该点的弦向位置都是人为规定的。给f和p 及厚度c以一系列的值便得翼型族。
§1.1 翼型的几何参数及其发展
其中第一位数代表f,是弦长的百分数;第二位数代表p,是弦长的十 分数;最后两位数代表厚度,是弦长的百分数。例如NACA 0012是一 个无弯度、厚12%的对称翼型。有现成实验数据的NACA四位数翼族 的翼型有6%、8%、9%、10%、12%、15%、18%、21%、24%
yt
1 2
( yu
yd
), c
max(
yt ),
xc
xc b
§1.1 翼型的几何参数及其发展
§1.1 翼型的几何参数及其发展
3、NACA翼型编号
美国国家航空咨询委员会在二十世纪三十年代后期,对 翼型的性能作了系统的研究,提出了NACA四位数翼族 和五位数翼族。他们对翼型做了系统研究之后发现:(1) 如果翼型不太厚,翼型的厚度和弯度作用可以分开来考 虑;(2)各国从经验上获得的良好翼型,如将弯度改直, 即改成对称翼型,且折算成同一相对厚度的话,其厚度 分布几乎是不谋而合的。由此提出当时认为是最佳的翼 型厚度分布作为NACA翼型族的厚度分布。即
相关文档
最新文档