电流继电保护实例

合集下载

继电保护计算举例

继电保护计算举例

1、如图所示网络,AB 、BC 、BD 线路上均装设了三段式电流保护,变压器装设了差动保护;已知Ⅰ段可靠系数取,Ⅱ段可靠取,Ⅲ段可靠系数取,自起动系数取,返回系数取,AB 线路最大工作电流200A,时限级差取,系统等值阻抗最大值为18Ω,最小值为13Ω,其它参数如图示,各阻抗值均归算至115kV 的有名值,求AB 线路限时电流速断保护及定时限过电流的动作电流、灵敏度和动作时间;解:1相邻线路Ⅰ段保护动作电流确定由于D 母线短路电流比C 母线大,因此保护应与BD 线路配合,D 母线最大短路电流为:注:理论上说AB 线路的Ⅱ段既要与BC 线路Ⅰ段配合,又要与BD 线路Ⅰ段配合,由于BD 线路的阻抗小于BC 线路,所以瞬时电流速断保护的动作电流必定大于BC 线路,因此与BD 线路配合后,也会满足与BC 线路配合的要求;AI kD 1254)162413(3115000max .=++⨯=注:计算短路电流时,电压可采用平均电压;BD 线路Ⅰ段动作电流为:AI I op 1568125425.12=⨯= AB 线路Ⅱ段动作电流为:A I II op 1803156815.11=⨯= 被保护线路末端最小短路电流为:A I k 1369)2418(311500023min ,=+⨯⨯= 灵敏度为:118031369〈=sen K 不满足要求; 改与相邻线路Ⅱ段配合,则注:同理,由于BD 线路Ⅱ段限时电流速断保护动作电流大于BC 线路,因此应与BD 线路Ⅱ段配合;5.25431369==sen K 满足要求;动作时间t t t II op II op ∆+=212定时限过电流保护 近后备灵敏度:37.34061369==sen K 满足要求; 远后备灵敏度:A I kE 927)202418(2115000min .=++⨯=28.2406927==sen K 满足要求; 注:远后备BC 线路满足要求,必然BD 也满足要求,因BC 线路阻抗大于BD 线路; 动作时间:s t op 5.31=2、如图所示35kV 单侧电源放射状网络,确定线路AB 的保护方案;变电所B 、C 中变压器连接组别为Y,d11,且在变压器上装设差动保护,线路A 、B 的最大传输功率为Pmax =9MW, 功率因数9.0cos =ϕ,系统中的发电机都装设了自动励磁调节器;自起动系数取;解:暂选三段式电流保护作为AB 线路的保护方案;1瞬时电流速断保护B 母线短路最大三相短路电流 A I k 1310)103.6(337000)3(max .=+=注:发电机装设自动调节励磁器,计算短路电流时,可不考虑衰减;灵敏度检验:最小运行方式15%处两相短路灵敏度1697)1015.04.9(237000)2(min .=⨯+=k I >op I 注:按此计算能计算出保护区是否达到最小保护区,不能计算出保护区实际长度;因此灵敏度满足要求;当需要计算出保护区长度时,可由下面计算公式求出最小保护区长度:1638)4.9(237000min =+⨯Z ,Ω=-⨯=9.14.91638237000min Z2限时电流速断保护1) 1 按躲过接在B 母线上的变压器低压侧母线短路整定2) 2 与相邻线路瞬时电流速断保护配合选以上较大值作为动作电流, 则动作电流为1085A;3) 3 灵敏度检验1085954=sen K < 改用与变压器低压侧母线短路配合,选用动作电流600A;注:按基本配合原则,要计算出BC 线路Ⅱ段动作电流,由于从网络参数可以看出,与相邻变压器配合的动作电流大于与相邻线路配合的动作电流,所以可以直接选取与相邻变压器配合,但应注意的是,此配合方式已经是Ⅱ段与Ⅱ段配合了;59.1600954==sen K > 动时间取1s;3定时限过电流保护 AI w 1749.03595.031093max .=⨯⨯⨯⨯=注:计算式中的系数考虑电压降低5%时,输送最大功率;灵敏度校验1按本线路末端最小二相短路电流校验99.2319954==sen K >注:线路只能按两相短路条件校验灵敏度; 2按相邻线路末端最小两相短路电流校验85.1319589==sen K > 3按相邻元件变压器低压侧母线短路校验电流保护接线按两相三继电器方式A I k 432)30104.9(337000)3(min .=++=注:保护采用两相三继电器接线时,灵敏校验值应采用三相短路电流值;保护时限按阶梯原则,比相邻元件后备保护最大动作时间大一个时限级差△t;3、网络如所示,已知:线路ABA 侧和BC 均装有三段式电流保护, 它们的最大负荷电流分别为120A 和100A, 负荷的自起动系数均为;线路AB 第Ⅱ段保护的延时允许大于1s ;可靠系数25.1=I rel K ,15.1=II rel K ,2.1=III rel K ,15.1='relK 躲开最大振荡电流时采用,返回系数85.0=re K ;A 电源的Ω=15max .sA X ,Ω=20min .sA X ;B 电源的Ω=20max .sB X ,Ω=25min .sB X ;其它参数如图;试决定:线路ABA 侧各段保护动作电流及灵敏度;解:1、求瞬时速断电流保护动作电流及灵敏度AB 线路是双电源的线路,因此动作电流必须大于流过A 侧开关可能的最大电流;注:不考虑采用方向元件时;1) 1 A 电源在最大运行方式下, B 母线最大三相短路电流2) 2 B 电源在最大运行方式下,A 母线最大三相短路电流3) 3 AB 电源振荡时, 流过A 侧开关最大电流为A I k 1770)402015(31150002)3(max .=++⨯=注:计及两侧电源相位差为180时振荡电流为最大; 所以:A I op 2040177015.1=⨯= %48.20%1004019.8%100min .=⨯=⨯AB L X X >15%2求限时电流速断保护动作值和灵敏系数求最小分支系数min .b K :注:由于有电源助增,流过保护安装处的短路电流不等于短路点总短路电流,因此需要计及分支影响,求保护动作值时应采用最小分支系数;3求定时限过电流保护动作电流及灵敏度 动作电流为:A I op 30512085.08.12.1=⨯⨯=近后备灵敏度为:14.3305602101153=⨯⨯⨯=sen K >满足要求; 当作为远备保护时,应采用C 变电站母线两相短路的最小短路电流,并计及分支电流影响,分支系数应计最大值; 最大分支系数为:42040201max .=++=b K 注:计算灵敏系数时应采用最大分支系数;总阻抗为:Ω=+⨯=∑3940204020X最小两相短路电流为:A I k 1470392101153)2(min .=⨯⨯= 远后备灵敏度为:21.130541470=⨯=sen K >满足要求;4、如图所示网络中,已知: 电源等值电抗Ω==521X X ,Ω=80X ;线路AB 、BC 的电抗km X /4.01Ω=,km X /4.10Ω=;变压器T1额定参数为,110/,Uk =%,其它参数如图所示;试决定线路AB 的零序电流保护的第Ⅰ段、第Ⅱ段、第Ⅲ段的动作电流、灵敏度和动作时限;解:1、计算零序电流线路AB :Ω=⨯==8204.021X X ;Ω=⨯=28204.10X ;线路BC :Ω=⨯==20504.021X X ;Ω=⨯=70504.10X ;变压器T1:Ω=⨯==33.405.31/110105.0221X X ;求B 母线短路时的零序电流:Ω==∑∑1321X X ,Ω=∑360X 因为∑0X >∑1X ,所以)1(0k I >)1.1(0k I 故按单相接地短路作为整定条件,两相接地短路作为灵敏度校验条件;注:可通过比较正序总阻抗与零序总阻抗的大小,选择单相接地或两相接地短路作为保护动作电流的计算条件;∑∑∑+⨯=0221)1.1(0X X X I I k k 注:按变压器不接地运行计算;=∑∑∑∑∑∑∑∑+⨯++02202021.X X X X X X X X E s=A 780361313)3613361313(3115000=+⨯+⨯+注:用正序等效定则求出零序量;A I k 1070)361313(3115000)1(0=++=注:求单相接地短路时,零序电流;因零序电流等于正序电流; 在线路AB 中点短路时,Ω==∑∑921X X ,Ω=∑220XB 母线的三相短路电流求母线C 短路时的零序电流:Ω==∑∑3321X X ,Ω=∑1060X2、各段保护的整定计算及灵敏度校验(1) 1 零序Ⅰ段保护:=I op I ×3210=4010 A单相接地短路:)4.14.02852(311500034010L L +⨯++⨯⨯=注:按某点单相接地短路时,3倍零序电流等于保护定值,即可求出保护区;所以 km L 4.14=>km 205.0⨯注:此值即为最大保护区长度;两相接地短路:)4.12164.05(311500034010L L ⨯+++⨯=注:16为电源零序阻抗的2倍; 所以 L =9 km >×20km 注:此值即为最小保护区长度; 2零序Ⅱ段保护:A I II op 1670116025.115.1=⨯⨯= 4.116702340==sen K > 满足要求;动作时限:s t II p 5.00=3零序Ⅲ段保护因为是110kV 线路, 可不考虑非全相运行情况, 按躲开末端最大不平衡电流整定: 近后备:9.44802340==sen K 满足要求; 远后备:69.1480813==sen K 满足要求;动作时限:s t t t III B op III A op 15.05.0..=+=∆+=5、网络参数如图所示,已知: 系统等值阻抗Ω=10A X ,Ω=30min .B X 、最大阻抗为无穷大;线路的正序阻抗Z1=Ω/km,阻抗角︒=65k ϕ;线路上采用三段式距离保护,阻抗元件均采用方向阻继电器,继电器最灵敏角︒=65sen ϕ;保护B的Ⅲ段时限为2s ;线路AB 、BC 的最大负荷电流A I L 400max .=,负荷自起动系数为2,负荷的功率因数9.0cos =ϕ;变压器采用差动保护,变压器容量MVA 152⨯、电压比kV 6.6/110、电压阻抗百分数%5.10%=k U ; 试求保护A 各段动作阻抗,灵敏度及时限;解:1、保护A 第Ⅰ段动作阻抗Ω=⨯⨯=48.113045.085.0.A op Z 注:距离保护Ⅰ段的动作时间为瞬时动作,可靠系数的取值即为保护区长度,因此,不必计算保护区;2、保护A 第Ⅱ段动作阻抗(1) 1 与保护B 第Ⅰ段配合分之系数b K 最小值的情况是=max .B X ∝时,即B 电源断开,b K =1;注:应考虑分支的影响;=×30+= Ω2与变电所B 降压变压器的速动保护配合)(min .1.T b AB rel A op Z K L Z K Z +=注:变压器最小阻抗应计及并列运行情况,且电压应采用主抽头电压;由于Ω=⨯⨯⨯=7.841015/1105.101032T Z35.4227.84min .==T Z Ω 所以 Ω=+⨯=09.39)35.423045.0(7.0.A op Z取二者较小值为动作阻抗, 即Ω=83.23.A op Z 灵敏度:77.13045.083.23=⨯=sen K > 满足要求;保护动作时间为:t t II op ∆=;3、保护A 第Ⅲ段动作阻抗)cos(9.0max ..L sen L ss re rel N A op I K K K U Z ϕϕ-= 注:取电压为N U 9.0是考虑电压产生波动时,输送功率不变;=Ω其中:︒==-269.0cos 1L ϕ灵敏度:1近后备 73.45.1396.63==sen K2远后备78.1305.131030=++=b K 注:远后备保护可不考虑相邻变压器;=/+×=> 满足要求;动作时限:t=2+= s 6、网络参数如图所示,已知,线路正序阻抗km Z /45.01Ω=,平行线路km 70、MN 线路为km 40,距离Ⅰ段保护可靠系数取;M 侧电源最大、最小等值阻抗分别为Ω=25max .sM Z 、Ω=20min .sM Z ;N侧电源最大、最小等值阻抗分别为Ω=25max .sN Z 、Ω=15min .sN Z ,试求MN 线路M 侧距离保护的最大、最小分支系数;解:最大分支系数:1最大助增系数2最大汲出系数显然,当平行线路只有一回路在运行时,汲出系数为1;总的最大分支系数为93.3193.3=⨯==∑汲助b b b K K K ;注:汲出系数最大值为1; 最小分支系数为:1最小助增系数由助增系数公式可得2最小汲出系数由式最小汲出系数公式可知,平行线路的阻抗可化为长度进行计算,则得575.01407085.01402121min .=⨯-=++-=NP NP NP set NP b Z Z Z Z Z K 注:平行线路速断保护区可根据可靠系数决定; 总的最小分支系数为35.1575.052.2=⨯==∑汲助b b b K K K 注:在既有助增,也有汲出时,可分别求出各自的分支系数,它们的乘积为总分支系数;7、如图所示双电源系统中,ZL =50∠75°Ω,ZM =30∠75°Ω;ZN =20∠75°Ω,母线M 侧距离保护接线方式为线电压两相电流差的方向阻抗继电器,保护采用方向阻抗继电器,其第Ⅰ段的整定阻抗Ω=40set Z ,灵敏角︒=75sen ϕ,EM =EN ;问: 1当系统发生振荡时, 两电势相角差为δ=°时,阻抗继电器会不会误动 2系统振荡时,若两电势相角差为δ=°时,继电器会不会误动作3若系统振荡周期为,继电器误动作的时间是多少解:1δ=°时,振荡电流为: ︒︒-︒∑-=-=754.15775100)1(j j M j N M swi e e E e Z E E I 注:当两侧电势相等时,计算振荡电流的公式;角度为°时阻抗继电器动作值为:Zop =40cos75°-°=Ω>Ω注:由于测量阻抗角与灵敏角不同,因此要判断保护是否误动,应求出动作阻抗;方向阻抗继电器会误动作;2当δ=°时方向阻抗继电器处临界动作状态;3.继电器误动时间:Δδ=180°-°×2=°注:距离保护临界动作状态即为圆特性边界,误动区中点在 180处,乘2即为误动区间;8、网络如图所示,已知:网络的正序阻抗km Z /4.01Ω=,线路阻抗角︒=65L ϕ,A 、B 变电站装有反应相间短路的二段式距离保护,它的Ⅰ、Ⅱ段测量元件均系采用方向阻抗继电器;试求A变电站距离保护动作值I 、Ⅱ段可靠系数取;并分析:1当在线路AB 距A 侧km 55和km 65处发生相间金属性短路时, A 变电站各段保护的动作情况;2当在距A 变电站km 30处发生Ω=12R 的相间弧光短路时, A 变电站各段保护动作情况;3若A 变电站的电压为115kV,通过变电站的负荷功率因数为,问送多少负荷电流时,A 变电站距离保护Ⅱ段才会误动作解:1、保护A第Ⅰ段整定值保护A第Ⅱ段整定值1在km 55处短路测量阻抗为Ω=⨯=22554.0m Z ;2在km 65处短路测量阻抗为Ω=⨯=26654.0m Z ;保护A 的I 段不动作,Ⅱ段会动作;2、在km 30经过渡电阻Ω=12R 的弧光短路的测量阻抗为R L Z Z m 5.01+=相间短路,过渡电阻值每相取一半;= 125.04.03065⨯+⨯︒j e5.22)6.4465cos(24=-= I op Z >注:取整定阻抗角 65=set ϕ 5.34)6.4465cos(8.36=-= II op Z >故保护A 的Ⅰ、Ⅱ段均会动作;3、求使Ⅱ段误动的负荷电流负荷阻抗为5.28)8.2565cos(8.36=- 时,方向阻抗继电器就会误动;注:由整定阻抗求出动作阻抗;误动时的负荷电流为:kA I L 32.25.283/110== 9、如图所示的降压变压器采用DCD-2或BCH-2型构成纵联差动保护,已知变压器的参数为15MVA,kV 6.6/%)5.21(35±,%8=k U ,Y,d11接线,归算到的系统最大电抗Ω=289.0m ax ,s X ,最小电抗Ω=173.0min .s X ;低压侧最大负荷电流为1060A;试求动作电流op I 、差动线圈匝数d W 、平衡线圈匝数b W 和灵敏度sen K ;解:1、确定基本侧1变压器一次额定电流135k V侧:A I N 24835315=⨯=2V侧:A I N 13156.6315=⨯=注:求额定电流应用变压器实际额定电压;2电流互感器变比135k V侧计算变比及选用变比52483.⨯=cal TA n ;选用5600=TA n 注:3是由于变压器高压侧采用三角形接线;2 V侧:选用51500=TA n 3电流互感器二次电流135k V侧:A I N 57.312024832=⨯=注:3为接线系数;2V侧:A I N 38.430013152==选用变压器低压侧作为基本侧;注:二次电流大的一侧为基本侧;4求低压母线三相短路归算到基本侧的短路电流 Ω=⨯=211.0153.608.02T X 注:计算时应将所有参数都归算至基本侧; 2、基本侧动作电流计算值确定1按躲过外部短路条件Iop =1×++×9420=2450 A2按躲过励磁涌流Iop =×1315=1710 A3按CT 二次断线条件Iop =×1060=1378 A选一次计算动作电流 A I cal op 2450.=注:计算动作电流应取三条件的最大值;3、确定基本侧差动线圈匝数二次计算动作电流A I cal r op 16.83002450..== 工作线圈计算匝数:35.716.860.==cal w W 匝注:为防止保护误动,工作线圈整定值应小于或等于计算值; 选用差动线圈整定值为6.=set d W 匝、平衡线圈整定值为1.=set b W 匝继电器实际动作电流A I r op 56.8760.==注:由于计算值与整定值不同,所以实际动作电流不等于计算值; 一次动作电流为:A I op 246830056.8=⨯=4、确定35kV 侧平衡线圈及工作线圈匝数=7×/-6= 匝注:按四舍五入方法确定非基本侧平衡线圈匝数,这样产生的不平衡才是最小的;按四舍五入原则取非基本侧的平衡线圈匝数为se nb W .=3 匝非基本侧工作线圈为9.=set nw W 匝5、计算er f ∆er f ∆==+-66.236.2-<注:相对误差应取绝对值;所以不必重算动作电流;6、校验灵敏度在侧两相短路最小短路电流为归算至35kV 侧的短路电流为A I k 1075373.66300max .=⨯=注:因电源在高压侧,所以单电源变压器求灵敏系数时,应归算至电源侧;35kV 侧流入继电器的电流为35KV 侧继电器动作电流 保护的灵敏度为:3.267.6/5.15==sen K 满足要求;10、在一个降压变电所内装有三台变压器,已知:变压器参数:7500kVA,35/,Y,d11,%5.7=k U ;最大工作电流N w I I 1.1max .=;负荷自起动系数ss K =,返回系数re K =,可靠系数rel K =;35kV 母线三相短路容量为100MVA;试选择外部短路过电流保护类型,求出灵敏度;解:1、确定采用过电流保护1躲开切除一台变压器时可能的最大负荷电流N N op I I I 12.2285.032.1=⨯⨯⨯=注:当需要求出有名值时,可根据额定值求出额定电流,代入即可;2躲开最大负荷电流选取N op I I 64.2=3短路电流计算取 MVA S b 5.7=,b av U U =075.0100/5.7==s X 注:由母线短路容量,可求出系统等值阻抗;三台并列运行时,等值标么电抗值为三台并列运行时, 母线三相短路时流过每台变压器短路电流为由于两相短路,在变压器高压侧有一相电流相当于三相短路值;采用两相三继接线时的灵敏度26.164.2310==N n sen I I K <灵敏度不满足要求 2、确定采用低电压起动的过电流保护电流元件动作电流36.241.1310==N n sen I I K >电压元件动作值:采用三只低压继电器接在侧母线相间电压上;当母线短路时,保护安装处的残余电压等于零,由此可见,采用低压过电流保护可以满足要求;11、在某降压变电所内有一台变压器,已知:变压器参数为30 MVA,110/,Y, d11接线,%5.10=k U ;在最小运行方式下,变压器110KV 母线三相短路的容量为500MVA ; 最大负荷电流为N L I I 2.1max .=;负荷自起动系数为2, 返回系数为, 可靠系数;试问:变压器上能否装设两相两继接线的过电流保护作为外部相间短路的后备保护解:1、求电流元件动作电流Ω==45.265001152max .s X 注:由母线最大短路容量求出系统等值阻抗;变压器低压侧三相短路电流最小值:2、灵敏度计算保护采用两相两继接线时:82.07.5552913=⨯=sen K 不满足要求;注:采用两相两继电器时,灵敏系数只能采用1/2的三相短路电流值;保护采用两相三继接线时:64.17.555913==sen K 满足要求;由上述计算可知,过电流保护不能采用两相两继电器接线;12、水轮发电机上装设了DCD-2BCH-2继电器构成高灵敏接线的纵差保护,已知:发电机参数:PN =3200MW,UN =;N =,,8.0cos =ϕ2.0"=d X ;电流互感器变比TA n =400/5;试确定保护整定参数及灵敏度;解:1、求平衡线圈9.115.3661.18060.=⨯⨯=cal b W 匝取平衡线圈匝数10.=set b W 匝注:因差动继电器差动绕组最大值为20匝;2、求差动线圈因为平衡线圈整定值与计算值不等,因此:9.21105.3661.18060.=+⨯⨯=cal d W 匝取差动线圈匝数20.=set d W 匝3、继电器动作电流4.灵敏度6.68032.025.36613=⨯⨯⨯⨯⨯=sen K >2 满足要求;13、如图所示接线中,已知:发电机参数为:额定功率25MW 、8.0cos =ϕ、次暂态电抗129.0=''kX 、负序电抗 156.02=X ,且装有自动励磁调节器;负荷自起动系数5.2=ss K ,s t 5.0=∆;接相电流的过电流保护采用完全星形接线;电流互感器变比为3000/5,电压互感器变比6000/100;当 选用kVA S b 31250=,kV U b 3.6=时,变压器和电抗器的正、负序电抗为164.0;注:装有自动励磁调节器短路电流可以不计衰减的影响; 试求发电机后备保护,并完成下列任务:分析装设过电流保护,低压过电流保护,复合电压起动的过电流保护的负序电流及单元件式低压起动过电流保护的可能性;算出各保护的动作参数,灵敏度、动作时间;解:1、分析采用过电流保护的可能性 保护一次动作电流为:A I op 9687286485.05.215.1=⨯⨯=保护二次动作电流为:A I r op 15.166009687.==保护的灵敏度: 1近后备在发电机母线两相短路电流为8.1968717406==sen K >2远后备AI k 8092286432.0293.013)2(min .=⨯+⨯=注:正、负序阻抗不相等;835.096879092==sen K <由上可见,灵敏度不满足要求,不能采用;2、分析采用低压起动过流保护保护一次动作电流为:A I op 3866286485.015.1=⨯=保护动作电压位:kVU op 78.33.66.0=⨯=电流元件灵敏度: 近后备:5.4386617406==sen K > 远后备为:1.238668092==sen K >电压元件灵敏度:远后备灵敏度为:kV U k 37.333.6164.028*******)2(max .=⨯⨯⨯=注:将短路电流化为标幺值,求出电压乘以基准值;kVU k 52.3164.0129.0164.03.6)3(max .=+⨯=注:三相短路用正序阻抗;07.152.378.3==sen K <故也不能采用;3、分析采用复合电压起动的过流保护 负序电压动作值: 灵敏度:1电流元件灵敏系数同低压过电流保护; 2低压元件灵敏系数23.152.378.315.1=⨯=sen K >注:考虑对称短路是由不对称转化成对称,所有在短路初瞬间存在负序分量,低压元件已被起动,只要加入低压元件的电压小于返回电压,低压元件就不会返回;3负序电压元件灵敏系数 近后备:1.9378.0448.3==sen K > 远后备:24.4378.06.1==sen K >由上面计算可知,复合电压起动的过电流保护可采用;保护动作时间s t op 5=;4、分析采用负序电流及单元件式低压起动过流保护的可能性1低压元件,过电流元件计算及灵敏度均同复合起动的电压过电流保护; 2负序电流元件动作于信号的电流继电器的动作电流 动作于跳闸的电流继电器的动作电流A I t A I N op 1432286412030.=⨯==注:A 为发电机的热容量常数,应根据发电2机的类型及容量确定; 灵敏度:1) 1 近后备7143210049==sen K >2) 2 远后备26.314324672==sen K >14、某一水电站升压变压器采用DCD-2BCH-2差动保护,系统等值网络图如图8-2所示;已知:变压器参数:SN =12500kVA,1±2×%/, %5.7=k U ,联接方式为Y,d11;阻抗均归算到平均电压为37kV 侧欧姆值分别为:系统Ω=6min .s X 、Ω=10max .s X ;变压器Ω=2.8T X ;发电机Ω=8.32min .G X 、Ω=5.68max .G X ;求变压器差动保护参数整定计算及灵敏度;解:1、短路电流计算1发电机母线三相短路系统送到短路点的最大、最小短路电流为AI k 4.1504)2.86(337000max .=+=注:在低压侧母线短路时的电路电流;2变压器高压母线三相短路发电机送到短路点的最大、最小短路电流为AI k 689)2.88.22(337000max .=+=注:在高压侧母线短路时的电流电流;2、确定基本侧变压器一次额定电流高压侧:AI h N 5.1875.38312500.=⨯=低压侧AI l N 11463.6312500.=⨯=选择电流互感器变比:变压器高压侧电流互感器计算变比为 575.32455.1873..=⨯=cal h TA n ;选用400/5;变压器低压侧电流互感器计算变比为51146..=cal L TA n ;选用1500/5;二次额定电流计算:高压侧:A I N 06.48075.3242==低压侧:A I N 82.330011462==由计算结果可知,应选35kV 侧为基本侧; 3、保护动作电流计算值1按躲过外部短路产生的最大不平衡电流条件 2按躲过励磁涌流条件3按躲电流互感器二次回路断线条件选用保护计算动作电流Iop =391 A 4、确定基本侧工作线圈匝数 加入继电器计算电流为A I cal r op 47.8803913..=⨯=工作线圈计算匝数为08.747.860.==cal w W 匝选用工作线圈匝数为7.=se w W 匝、其中差动线圈6.=set d W 匝、平衡线圈1.=set b W 匝;继电器实际动作电流A I r op 57.8760.==5、非基本侧平衡线圈匝数确定 =7×/-6= 匝 按四舍五入选用平衡线圈1.=set nb W 匝6、计算相对误差er f ∆er f ∆=059.0644.1144.1=+->,不满足要求,应重新确定保护动作电流;重新确定动作电流计算值为:AI op 4094.1504)059.005.01.01(3.1=⨯++⨯=;注:由此说明,基本侧工作线圈取7匝已经太大,取6匝作为计算条件;为保证选择性,应增大动作电流,即应减少工作线圈绕组匝数;选用Iop =462 A 时,继电器动作电流为A I r op 10.=、差动线圈5.=set d W 匝、平衡线圈1.=set b W 匝、工作线圈6.=set w W 匝;非基本侧377.1.=cal nb W 匝, 1.=set nb W 匝,6.=se nw W 匝7、灵敏度校验变压低压侧两相短路流入继电器电流A I r k 29.273003.637)9.31123(180)117323(3.=⨯⨯⨯+⨯⨯=注:此式按两侧电源同时运行时计算的灵敏系数;729.21029.27==sen K >2满足要求;15、如图所示某降压变电所内,已知变压器参数为:MVA 5.31/20/5.31,1101±2×%/1±2×%/,11.11,d d Y 接线;%75.10110.=k U ,05.38.=k U ,%25.66.6.=k U ;系统参数035.0min .=s X ,052.0max .=s X ,3.1=rel K ,基准容量MVA S b 5.31=;当变压器采用DCD-2BCH-2型差动继电器构成差动保护时,试确定保护动作电流,差动线圈匝数,平衡线圈匝数和灵敏度;解:1、参数计算 变压器电抗分别为Ω=⨯=1.455.311151075.021T X ;02=T X ;Ω=⨯=24.265.311150625.023T X系统电抗为Ω=⨯=8.215.31/115052.02max .s X 、Ω=⨯=7.145.31/115035.02min .s X ;注:由标幺值求出归算至高压侧的等值阻抗; 2、短路电流计算1两台变压器并列运行最大三相短路电流中压侧短路电流为AI k 891)1.455.07.14(32115000)3(35.max .=⨯+⨯=注:变压器并联运行发生短路故障时流过每台变压器短路电流;低压侧短路电流为AI k 659]7.14)1.4524.26(5.0[32115000)3(6.6.max .=++⨯⨯=2单台运行时最大三相短路电流中压侧短路电流为AI k 1110)1.457.14(3115000)3(35.max .=+=低压侧短路电流为AI k 772)24.261.457.14(3115000)3(6.6.max .=++=3在侧母线三相短路电流最小值 1两台并列运行时 2单台运行3、确定基本侧1变压器一次额定电流计算高压侧AI h N 165110331500.=⨯= 中压侧AI m N 4.4725.38331500.=⨯=低压侧AI l N 2.27556.6331500.=⨯=2电流互感器变比选择变压器高压侧:51653..⨯=cal h TA n 、选用300/5;变压器中压侧:54.472..=cal m TA n 、选用600/5; 变压器低压侧:52.2755..=cal l TA n 、选用3000/5;3二次额定电流计算 高压侧:AI h N 76.4601653.2=⨯=中压侧:A I m N 94.31204.472.2== 低压侧:A I L N 59.43002.2755.2==由计算可知,应选取110kV 侧为基本侧; 4、确定动作电流由计算可知,应取单台运行作为动作电流计算条件: 1按最大不平衡电流条件2按励磁涌流和电流互感器二次断线条件选用计算动作电流为A I cal op 361.=注:整定匝数未确定前,动作电流不为实际值; 从上面计算可知,对并列运行变压器整定计算按单台运行条件为计算方式;因单台运行时外部短路流过差动回路的不平衡电流最大;5、确定基本侧差动线圈二次动作电流计算值为A I cal r op 4.10601653..=⨯=工作线圈计算匝数77.54.1060.==cal w W 匝选用整定匝数5..==set d set w W W 匝 继电器实际动作电流A I r op 12560.==6、确定平衡线圈匝数 侧:04.1594.394.376.4.=⨯-=cal b W 匝、选用1.=set b W 匝 侧:185.0559.494.376.4.=⨯-=calb W 匝、选用0.=set b W 匝7、计算相对误差er f ∆ 对中侧相对误差0066.0504.1104.1=+-=∆er f 对低压侧相对误差0357.05185.00185.0=+-=∆er f满足要求,不必重新整定; 8、灵敏度计算AI r 45.1460357823=⨯⨯=注:其中2/3是两相短路电流与三相短路电流间的关系,3是保护接线系数;2.112/45.14==sen K <2,采用DCD-2不满足要求,应改用其它型式的保护; 16、如图所示网络,已知kV E E D A 3/110==,电源A 的电抗X1=X2=20Ω,Xo =Ω,电源D 的电抗X1=X2=Ω,Xo =25Ω,所有线路km X /4.01Ω=,km X /4.10Ω=;可靠系数25.1=Irel K ,15.1=IIrel K ;试确定线路AB 上A 侧零序电流保护第Ⅱ段动作值,并校验灵敏度;解:A 侧零序Ⅱ段应与BC 和BD 的零序保护的Ⅰ段配合,取大值作为整定值; 1、与BC 线路配合:因∑0X >∑1X ,应采用单相接地的零序电流;AI k 955)51.121392(311000033)1(0=+⨯⨯=注:短路点总零序电流;BC 线路保护Ⅰ段动作电流为 分支系数:74.16.2643.312.53252.532595595533)1(.0)1(.0=++++⨯==BAk BC k b I I K 注:为求流过保护安装处的零序电流,即保护能测量到的零序电流;AB 线路保护Ⅱ段整定值为AI IIop 78674.1/119015.1=⨯=注:保护安装处实际的零序电流比短路点的小;2、与线路BD 的零序电流配合时1不加方向元件时,动作电流必须躲过母线D 或B 接地短路时可能出现的最大零序电流;X1Σ=X2Σ=Ω=++++⨯73.96.7206.12)2.156.720(6.12流入接地短路点的零序电流为 流过BD 线路的零序电流为 当母线B 接地短路时:Ω==∑∑8.1321X X ,Ω=+++++=∑31.332.53256.2643.31)2.5325)(6.2643.31(0X流入短路点的零序电流为:电源ED 侧流过BD 线路B 侧的零序电流为在BD 线路B 端出口接地短路时,由电源EA 侧流过保护的零序电流为 AI I op 1660133025.1=⨯=注:不加方向元件时,既要考虑正方向短路,也要考虑反方向短路;采用这个定值后,在显然B 端出口处两相接地短路时,保护不可能动作;因此应加方向元件;2加方向元件后,BD 线路保护的Ⅰ段按躲开母线D 接地的最大零序电流整定A I I op 109087725.1=⨯=注:加方向元件后,只要考虑正方向短路;线路AB 的Ⅱ段动作电流AI IIop 1254109015.1=⨯=定值取1254 A;灵敏度:08.112541360==sen K <可采用与BD 线路的Ⅱ段配合,BD 线路的Ⅱ段可按末端有足够灵敏度整定,即 AB 线路Ⅱ段动作电流AI II op 61453415.1=⨯=灵敏度22.26141360==sen K动作时间st II op 1=17、如图所示双电源网络中,已知线路的阻抗km X /4.01Ω=,km X /4.10Ω=,两侧系统等值电源的参数为:相电势kV E E N M 3/115==,X1M =X2M =5Ω,X1N =X2N =10Ω,Ω=80M X ,Ω=150N X ;试决定线路MN 两侧零序电流速断保护Ⅰ段的整定值及保护范围;解:1、M 侧母线短路电流由于∑0X >∑1X 故按单相接地条件整定; 1流入接地点短路电流为 2流过保护2的零序电流为 2、N 母线短路时1流入接地点短路电流 2流过保护1短路电流A I k 10051071571703)1(0=⨯=注:用分流公式计算;3、保护1的Ⅰ段动作值4、保护2的Ⅰ段如不加方向元件,动作值与保护1相同;5、保护区长度∑∑∑'-+⨯'+'⨯⨯=00134.18415)2(31011531256X L X X x 注:求何处发生两相接地短路的零序电流等于保护定值;3916.06.1117010245)4.02410)(4.05(21xx x x L L L L X -+=++-++='∑注:求X 处接地短路正序总阻抗;10796.14.12979215848)4.18415)(4.18(20xx x x L L L L X -+=++-++='∑注:求X 处接地短路时零序总阻抗;联立求解即可求出保护1保护长度L x ,求保护2方法同上;。

继电保护计算举例

继电保护计算举例

2023年幼儿园绩效方案考评细则____年幼儿园绩效方案考评细则一、考评目的和原则考评目的:激励优秀、提高绩效、促进幼儿园的可持续发展。

考评原则:1. 公平、公正原则:考评程序公开透明,确保每位教职员工在平等的机会下获得公正的评价。

2. 量化、可衡量原则:通过明确的量化指标和评分标准,对教职员工绩效进行准确度量和评价。

3. 多元、全面原则:考评不仅仅关注教育教学工作的成绩,还需要涵盖素养、态度、能力等综合素质。

4. 激励、导向原则:通过考评机制,激发教职员工的积极性、主动性和创造性,推动其自我发展和进步。

二、考评对象范围和参评条件考评对象范围:全体幼儿园教职员工,包括教师、保育员、行政人员等。

参评条件:所有在幼儿园工作满一年的教职员工均有资格参与评选。

三、考核指标和权重1. 教育教学工作(40%):a) 教学成绩(20%):考核教师的教学质量和学生学业成绩。

b) 课堂教学(10%):评估教师的教学设计、教学方法和学生参与度。

c) 创新能力(5%):评估教师在教学中的创新能力和开展特色教育活动的能力。

d) 学生评价(5%):通过学生和家长的评价,了解教师在学生身心发展中的表现。

2. 业务能力(30%):a) 专业素养(15%):考评教师的教育教学理论知识和专业技能水平。

b) 师德师风(10%):评估教师的职业道德、师德师风和教育教学态度。

c) 团队合作(5%):评估教师在团队中的合作与协调能力。

3. 学科建设(10%):a) 教材使用(5%):评估教师在教育教学中对教材的合理使用和创新。

b) 教材开发(5%):评估教师对教材的编写、整理和开发能力。

4. 个人素质(10%):a) 个人能力(5%):评估教职员工的综合工作能力和自我学习能力。

b) 行为表现(5%):评估教职员工的工作态度、职业道德和工作纪律。

5. 管理能力(10%):a) 管理水平(5%):评估行政人员对幼儿园管理工作的组织和协调能力。

继电保护(三段电流保护实验)

继电保护(三段电流保护实验)

13.2 继电保护实验内容13.2.1 三段电流保护实验1. 实验目的①熟悉三段电流保护的接线;②掌握三段电流保护的整定计算原则和保护的性能。

2. 实验电路实验电路如图13-1所示。

图13-1 实验电路图3. 实验注意问题①交流电流回路用允许大于5A的导线;②接好线后请老师检查。

4. 保护动作参数的整定①要求整定参数如下:保护I段动作电流为4.8A,动作时间为0秒;保护III段动作电流为1.4A;动作时间为2秒。

②按上述要求进行电流继电器和时间继电器的整定。

时间继电器的整定:将时间继电器整定把手调整到要求的刻度位置。

电流继电器的整定:按图接线。

先合交流电源开关(注意:直流电源先不投入),按下模拟断路器手合按钮,调节单相调压器改变电流,分别整定电流I、III段的动作电流,要求电流继电器的动作电流与整定值的误差不超过5%。

将实际整定结果填入表13-1。

5. 模拟故障观察保护的动作情况①电流I段通入5A电流(模拟I段区内故障):先合交流电源开关(注意:直流电源先不投入),按下模拟断路器手合按钮,调节调压器使电流为5A,再按下模拟断路器手分按钮,投入直流电源,按下模拟断路器手合按钮(模拟手合I段区内故障),观察各继电器的动作情况并记录:电流继电器()、()起动;时间继电器()起动;信号继电器()掉牌,保护()秒跳闸。

②电流III段通入1.5A电流(模拟III段区内故障):实验方法同上。

电流继电器()起动,时间继电器()起动;信号继电器()掉牌,保护()秒跳闸。

区外故障:通入1A电流,模拟III段范围以外故障:实验方法同上。

所有继电器()动作。

6. 思考题①在三段式电流保护中,如果在I段保护范围内发生了相间短路,当I段的起动元件拒绝动作,将如何切除故障?②中间继电器的作用是什么?–309–。

继电保护作业典型案例

继电保护作业典型案例

继电保护作业典型案例【案例1】××地区供电局保护人员试验返送电造成人员触电死亡专业:继电保护事故类型:人身触电1997年3月13日,XX公司110kVXX变电站进行10kV开关及电容器设备春检予试。

上午11时25分,办理了10kV电容器间设备清扫、刷漆工作票的许可手续之后,工作负责人宁X X 安排杨X X 在电容器棚内对电抗器、电容器、放电PT 支柱瓶等进行清扫及刷漆工作。

此后,工作票签发人贾X X 又安排进行电容器及其设备保护试验工作。

保护负责人李XX、成员王XX、王XX三人在电容器开关柜上做完过流、速断、差流保护试验后,王X X 重新接好做过电压保护试验的接线,把试验接在A611、C611端子上,未打开放电PT的二次电缆线。

约12时5分左右,当王X X给上试验电源时、刷漆工崔X X触电,瘫倒电抗器和放电PT中间。

后送医院经抢救无效死亡。

暴露问题:1、保护人员进行电容器电压继电器校验时违反了《国家电网公司电力安全工作规程》第10.15条关于“电压互感器的二次回路通电试验时,为防止由二次侧向一次侧反充电,除应将二次回路断开外,还应取下电压互感器高压熔断器或断开电压互感器一次刀闸”的规定,没有断开通往电容器放电PT的二次回路就通电试验,造成二次侧向一次侧反充电,致使人身触电死亡是这次事故的主要原因。

2、电容器设备清扫、刷漆工作在工作票上,对PT二次侧可能返送电的问题,未采取明显断开点的措施,致使设备停电的技术措施不完善,也是事故发生的重要原因之一。

3、保护工作负责人责任人责任心不强,监护不认真,致使保护工作人员在工作过程中错误的试验做法未得到及时纠正,也是原因之一。

防范措施:1、在PT二次回路加装联锁接点,母线刀闸拉开后,PT二次回路要断开。

2、多班组作业时,工作总负责人要协调好各专业人员的工作,密切配合。

3、现场作业中各类人员要各负责任,认真做好各自范围的工作,相互之间要互相监督和提醒,及时纠正违章行为。

继电保护25个事故案例分析

继电保护25个事故案例分析

继电保护25个事故案例分析电力安全生产 2018-07-10案例1:某110kV变电站,运行人员在修改主变保护定值时,主变零序过压保护误动作全切主变三侧开关。

分析:运行人员在监控系统后台上进行定值修改过程中未认真履行监护制度,误将零序过压定值修改为0V。

案例2:某35kV变电站,在保护年检预试完毕后恢复送电过程中,因监控系统故障改为在高压室开关柜上就地操作,主变后备保护动作全站失压。

分析:10kV线路上有地线未拆除,带地线合闸事故。

当开关柜上“运行/检修”切换开关切至检修位置时,保护在二次回路被断开,线路故障虽然保护正确动作,却无法出口跳闸,致使主变后备保护越级跳闸。

案例3:某35kV变电站,10kV馈线三相短路故障,馈线保护动作,断路器拒动,主变低后备动作出口,10kV一段母线失压。

分析:断路器低压分闸不合格。

规程要求,断路器最低分合闸电压应为 30%-65%直流电压。

案例4:某110kV变电站,10kV电容器故障跳闸后,运行人员在处理过程中造成10kV母线三相短路故障,10kV总路断路器拒动,主变低后备、高后备保护均动作出口,110kV二母、35kV二母、10kV 二母失压。

分析:违章操作,断路器低压分闸不合格。

案例5:某110kV变电站,先后几次发生10kV馈线故障,馈线保护拒动,主变低后备动作出口,10kV一段母线失压。

分析:CT饱和导致保护拒动。

同样的故障现象发生在另一35kV 变电站中,经查,系运行人员误将保护定值区号(组别)改变,导致保护当前运行定值混乱所致。

案例6:某110kV变电站,10kV馈线三相短路故障,CT爆炸并引起10kV母线短路,主变低后备动作出口,10kV一段母线失压。

分析:CT变比选用不当(30/5),CT饱和导致保护拒动并引起CT爆炸。

案例7:某110kV内桥变电站,在主变年检预试完毕恢复送电空载合闸过程中,110kV线路LFP941A保护动作跳闸,保护液晶显示故障报告“CF”。

继电保护典型案例定值计算

继电保护典型案例定值计算

继电保护典型案例定值计算一、一炼铁风机房高压室(西站516馈出)1、1#鼓风机(611柜)8400KW 10KV 553ACT 1000/5 综保PA150 原值:20A/0S 10A/40S现投一、三段 电流速断/反时限过流保护① 电流速断:I dj =9⨯5/1000553=24.885 取25 KA ,t=0s 校灵敏度:1#鼓风机电缆:3⨯(3⨯300) 850米X * = 0.08⨯0.85⨯25.10100⨯31=0.0206 西站至1#鼓风机房电缆:3⨯(3⨯300) 550米X * = 0.08⨯0.55⨯25.10100⨯31=0.013 ∑X * =0.413+0.0206+0.013=0.447二相短路电流: "2I =23⨯447.0499.5=10.65 KA 灵敏度:K m =5/1000251065.103⨯⨯=2.13 ② 三段 反时限过流启动延时时间: T y = 60s (躲启动时间)反时限过流启动值: I s = 1.2I e =5/10005531.2⨯=3.318 取3.3A 延时时间:选极端反时限(C )t=K ()⎥⎦⎤⎢⎣⎡-1/802s I I =1⨯13802-=10s 若用四方/CSC-280综保:Ⅰ 段: 25A t=0sⅢ段:I p =3.3A (启后投) t=10s2、一炼铁风机房高压室1#、2#、3#、4#进线(至西站516、524、533) CT2000/5 综保PA150 原值:10A/0s , 5A/41s现不设保护。

母联也不设保护。

3、西站一炼铁馈出线(516、524、533)516 CT800/5 DVP-9332 原值:30A/0.3S 23A/1.3S524 CT800/5 DVP-9332 原值:30A/0.3S 23A/1.3S533 CT1500/5 CSC-280 原值:16A/0.3S 12.3A/1.3S现只设定时限保护:可带两段风机房母线/正常运行状态下,可启动一台风机,并留1.2倍可靠系数。

继电保护整定计算实列分析

继电保护整定计算实列分析

继电保护整定计算实列分析继电保护整定计算是电力系统中非常重要的一环,它的准确与否直接关系到电力系统的安全运行。

在电力系统中,继电保护的作用是在电力系统发生故障时,对故障进行检测、定位并切除故障,保障正常电力供应和设备的安全运行。

继电保护的整定计算主要包括对各个保护装置的参数进行计算,确保保护装置能够在故障发生时迅速、准确地动作。

整定计算的过程通常包括以下几个关键步骤:选择保护装置类型、确定保护继电器的定值、根据电力系统的参数进行计算、进行整定试验等。

接下来,我们以负荷电流保护为例,来分析继电保护整定计算的实例。

假设一些电力系统的额定电压为10kV,额定频率为50Hz,负荷电流保护的带动保护时间为0.2秒,负荷电流保护的整定系数为1.2,故障电流为1000A,额定电流为200A。

首先,我们需要计算负荷电流保护的动作电流。

负荷电流保护的动作电流通常为额定电流的整定系数乘以额定电流。

根据给定条件,负荷电流保护的动作电流为1.2乘以200A,即240A。

接下来,我们计算负荷电流保护的动作时间。

负荷电流保护的动作时间通常为带动保护时间加上故障电流通过继电器的时间。

根据给定条件,带动保护时间为0.2秒,故障电流为1000A。

假设负荷电流保护的系数为K,则通过继电器进行计算得动作时间为:0.2秒+K/1000秒。

根据保护动作表,当动作时间小于0.4秒时,应选择K为0.2秒。

接下来,我们进行整定试验。

首先,我们设置负荷电流为240A,然后通过继电保护进行试验。

如果继电器动作时间在0.2秒到0.4秒之间,我们可以确定整定计算是正确的。

如果继电保护的动作时间不符合要求,我们需要重新进行整定计算,或检查电力系统是否存在异常。

以上就是对继电保护整定计算的一个实例分析。

在实际应用中,继电保护的整定计算通常是一个复杂的过程,需要根据电力系统的具体参数和保护装置的特性进行计算和试验。

合理的继电保护整定可以提高电力系统的可靠性和安全性,保障电力供应的连续和稳定运行。

继电保护案例

继电保护案例

继电保护案例
继电保护是电力系统中非常重要的一环,它的作用是在电力系统发生故障时,
迅速地隔离故障部分,保护电力设备和人身安全。

在电力系统中,继电保护起着至关重要的作用,下面我们就来看一些继电保护的实际案例。

首先,我们来谈谈一起发生在变电站的继电保护案例。

在某变电站,由于设备
老化和操作失误,导致了一台变压器发生了内部故障,电流异常升高。

这时,继电保护装置迅速作出反应,及时切断了故障电路,避免了更大的事故发生,保护了周围设备和人员的安全。

其次,我们来看看一起发生在输电线路的继电保护案例。

在某高压输电线路上,由于恶劣的天气条件导致了输电线路出现了短路故障,电流迅速升高。

继电保护装置在故障发生后立即做出反应,切断了故障线路,避免了事故的进一步蔓延,保护了整个输电系统的安全稳定运行。

另外,我们还可以看一下发生在发电厂的继电保护案例。

在某火力发电厂,由
于燃烧系统故障导致了发电机转子温度异常升高,继电保护装置及时检测到异常信号,迅速切断了发电机与电网的连接,避免了发电机受损,同时也保护了电网的安全稳定运行。

通过以上案例,我们可以看到,继电保护在电力系统中的重要性不言而喻。


不仅可以保护设备,还能保障人员的安全,保证电力系统的正常运行。

因此,我们在电力系统设计和运行中,都需要高度重视继电保护的作用,确保其装置的可靠性和灵敏性,以应对各种突发情况,保障电力系统的安全稳定运行。

万力达继电保护整定实例定版

万力达继电保护整定实例定版

线路保护整定实例降压变电所引出10kV 电缆线路,线路接线如下图所示陈圧变电所已知条件:最大运行方式下,降压变电所母线三相短路电流I d3)max 为5500A ,配电所母线三相短路电 流Id2.max 为5130A 配电变压器低压侧三相短路时流过高压侧的电流I d 33)max 为820A 。

最小运行方式下,降压变电所母线两相短路电流l d2)min 为3966A ,配电所母线两相短路电 流Id2)mi n 为3741A 配电变压器低压侧两相短路时流过高压侧的电流I d2)min 为689A 。

电动机起动时的线路过负荷电流I gh 为350A, 10kV 电网单相接地时最小电容电流I c 为15A, 10kV 电缆线路最大非故障接地时线路的电容电流—为1.4A 。

系统中性点不接地。

A 、C 相电流互感器变比为300/5,零序电流互感器变比为50/5。

、整定计算(计算断路器 DL1的保护定值) 1、瞬时电流速断保护瞬时电流速断保护按躲过线路末端短路时的最大三相短路电流整定,保护装置的动作电流1.3 1 5130111A ,取 110A60保护装置一次动作电流G 鮎吉 110 60 6600A灵敏系数按最小运行方式下线路始端两相短路电流来校验:心誉器0'601 2由此可见瞬时电流速断保护不能满足灵敏系数要求,故装设 限时电流速断保护。

DL1-r dl IL1 3+185mn l =1000m.<F EZH -D12*eoom630m1龙 3800配电所I(3)丨 d 2.maxIdz. j K k Kjx2、限时电流速断保护限时电流速断保护按躲过 相邻元件末端短路时的最大三相短路时的电流整定,则保护装 置动作电流保护装置一次动作电流灵敏系数按最小运行方式下线路始端两相短路电流来校验:限时电流速断保护动作时间取 0.5秒。

(按DL2断路器速断限时0秒考虑,否则延时应为: t1=t2+ △ t ) 3、过电流保护过电流保护按躲过线路的过负荷电流来整定,则保护动作电流式中:K n 为返回系数,微机保护的过量元件返回系数可由软件设定,一般设定为 0.9过电流保护一次动作电流保护的灵敏系数按最小运行方式下线路末端两相短路电流来校验 在线路末端发生短路时,灵敏系数为在配电变压器低压侧发生短路时,灵敏系数为4、单相接地保护单相接地保护按躲过被保护线路最大非故障接地的线路电容电流整定并按最小灵敏系数1.25校验按躲过被保护线路电容电流的条件计算保护动作电流(一次侧):I dz K k I cx ( K k :可靠系数,瞬动取 4-5 ,延时取 1.5-2)此处按延时1秒考虑,K k 取2,则I dz 2 1.42.8AI dz.j K k K jxI (3)1d 3. maxni1.3 1820 17・8A,取20AdzKjx20601200A1i dLin I dz3966 12003.3 2dz. jK k K jxI ghKh n l1.2 1350 0.9 607.8A ,取 8AdznlQ jKjx480AI dLin I dz3741 480I dz689 1.44 4801.2保护动作延时应考虑与下级保护的时限配合,t1=t2+ △ t ,△ t 取 0.5 秒。

继电保护04三段电流保护2第2部分

继电保护04三段电流保护2第2部分

最大运行方式下三相短路电流(A) 最小运行方式下两相短路电流(A)
动作时限为
III t 1 t III t 1.5 0.5 2.0s 2
灵敏度校验: 作本线路的近后备保护
K sen
I k(2). min 2420 .1 III 12.3 1.5 I oper.1 190.6 I k(2). min 600 .2 III 3.15 1.2 I oper.1 190.6

K sen
(2) I k .1.min 600 II 1.34 1.3 I oper .1 445 符合要求
1.2 1.5 90 190.6A 0.85
继电器动作电流
3-11.如图3-21所示,35kV电网线路1的保护拟定为三段式电流保护,已知线路1最大负荷电 流为90A,nTA=200/5,在最大及最小运行方式下各点短路电流见下表。线路2的定时限过流 保护动作时限为1.5s。试对线路1三段式电流保护进行整定计算。 3、过电流保护 保护1的过电流保护动作电流:
3、过电流保护 保护1的过电流保护动作电流:
继电器动作电流 动作时限为 灵敏度校验
I
II g . oper .1
K rel K ss 445.625 K con II III I 1. max 11.14A I oper I oper .1 200/5 K res nTA
II t 1 t I t 0.5s 2
K sen
(2) I k .1. min 2420 II 2.27 1.3 I oper .1 1064
1.2 1.5 90 190.6A 0.85
继电器动作电流
K rel K ss I 1. max K res

电流继电保护实例

电流继电保护实例

3-5、如图所示网络,在位置1、2和3处装有电路保护系统参数为:E? = 115/V3kV , X G1 = 10Q , X G2 = 5 Q , X G3 = 5 Q , L1 = L2 = 20km , L3 =10km , L B_C— 50km , L C_D— 50km , L D_E— 80km ,线路阻抗0.4 Q/km , K r'el = 1.2 , < =吧=1.15 ; I BCo Lda昨=300A ,心Ld。

唤=200A ,【DE。

Ld° max = 150A , K ss = 1.5 , K re = 0.85发电机最多三台运行,最少一台运行,线路1到3最多三条运行,最少一条运行,请确定保护3在最大最小运行方式下的等值阻抗。

(1)整定保护1,2和3的电流速断定值,并计算各自的最小保护范围。

(2)整定保护2和3的限时电流速断定值,并计•算各自的最小保护范围。

(3)整定保护1, 2和3的过电流值,假定E母线过电流保护动作时限为0. 5s,检验保护1作近后备,保护2和3作远后备的灵敬度。

(4)采用下列另外一组系统电路参数对以上习题再进行一次计算。

E? = 115/V3kV , X G1 = 15 0 ,X G2=10Q , X G3 = 10Q , Lj = L2 = 60km , L3 =40km , L B_C = 50km , L C_D = 30km , L D_E = 20km ,线路阻抗0.4 Q/km ,爲=1.2 ,吧=吧=1.15 ;张L d.吨=300A ,心Ld.唤=200A , I DEo Ld° max = 15°A ,瓦$ = 1.5 , K re= 0.85答案:三台发电机,三条线路同时运行为最大运行方式1、X_ll :=xl-Ll =SQ发电机G1与L1,L2中一条线路运行时,为最小运行方式2、整定保护1,2和3的电流速断定值,并计算各自的最小保护范围。

继电保护计算实例

继电保护计算实例

继电保护计算实例目录前言1 继电保护整定计算1.1 继电保护整定计算的基本任务和要求1.1.1 继电保护整定计算的目的1.1.2 继电保护整定计算的基本任务1.1.3 继电保护整定计算的要求及特点1.2 整定计算的步骤和方法1.2.1 采用标么制计算时的参数换算1.2.2 必须使用实测值的参数1.2.3 三相短路电流计算实例1.3 整定系数的分析与应用1.3.1 可靠系数1.3.2 返回系数1.3.3 分支系数1.3.4 灵敏系数.1.3.5 自启动系数1.3.6 非周期分量系数1.4 整定配合的基本原则1.4.1 各种保护的通用整定方法1.4.2 阶段式保护的整定1.4.3 时间级差的计算与选择1.4.4 继电保护的二次定值计算1.5 整定计算运行方式的选择原则1.5.1 继电保护整定计算的运行方式依据1.5.2 发电机、变压器运行变化限度的选择原则1.5.3 中性点直接接地系统中变压器中性点1.5.4 线路运行变化限度的选择1.5.5 流过保护的最大、最小短路电流计算1.5.6 流过保护的最大负荷电流的选取2 变压器保护整定计算2.1 变压器保护的配置原则.2.2 变压器差动保护整定计算2.3 变压器后备保护的整定计算2.3.1 相间短路的后备保护2.3.2 过负荷保护( 信号)2.4 非电量保护的整定2.5 其他保护3 线路电流、电压保护装置的整定计算3.1 电流电压保护装置概述3.2 瞬时电流速断保护整定计算3.3 瞬时电流闭锁电压速断保护整定计算3.4 延时电流速断保护整定计算3.4.1 与相邻线瞬时电流速断保护配合整定3.4.2 与相邻线瞬时电流闭锁电压速断保护配合整定3.4.3 按保证本线路末端故障灵敏度整定3.5 过电流保护整定计算3.5.1 按躲开本线路最大负荷电流整定.3.5.2 对于单电源线咱或双电源有“T”接变压器的线路3.5.3 保护灵敏度计算3.5.4 定时限过电流保护动作时间整定值3.6 线路保护计算实例3.6.1 35kV 线路保护计算实例3.6.2 10kV 线路保护计算实例附录A 架空线路每千米的电抗、电阻值附录B 三芯电力电缆每千米的电抗、电阻值附录C 各电压等级基准值表附录D 常用电缆载流量本文中涉及的常用下脚标号名称符号名称符号.平均值av 可靠rel 最大值Max 动作op 最小值Min 保护p 基准值 b 返回r 标幺值pu 分支br 额定值N 自起动ast 灵敏sen 启动st 接线con继电保护整定计算1.1 继电保护整定计算的基本任务和要求.1.1.1 继电保护整定计算的基本任务和要求继电保护装置属于二次系统,它是电力系统中的一个重要组成部分,它对电力系统安全稳定运行起着极为重要的作用,没有继电保护的电力系统是不能运行的。

电流继电保护实例

电流继电保护实例

电流继电保护实例 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】3-5、如图所示网络,在位置1、2和3处装有电路保护系统参数为:E ?=115/√3kV ,X G1=10Ω , X G2=5Ω , X G3=5Ω , L 1=L 2=20km , L 3=10km , L B−C =50km , L C−D =50km , L D−E =80km ,线路阻抗0.4Ω/km , K rel Ⅰ=1.2 , K rel Ⅰ=K rel Ⅲ=1.15 ;I BC。

Ld。

max =300A ,I CD。

Ld。

max =200A , I DE。

Ld。

max =150A , K ss =1.5 , K re =0.85最多三台运行,最少一台运行,线路1到3最多三条运行,最少一条运行,请确定保护3在最大最小运行方式下的等值阻抗。

(1) 整定保护1,2和3的电流速断定值,并计算各自的最小保护范围。

(2) 整定保护2和3的限时电流速断定值,并计算各自的最小保护范围。

(3) 整定保护1,2和3的过电流值,假定E 母线过电流保护动作时限为,检验保护1作近后备,保护2和3作远后备的灵敏度。

(4) 采用下列另外一组系统电路参数对以上习题再进行一次计算。

E ?=115/√3kV ,X G1=15Ω , X G2=10Ω , X G3=10Ω , L 1=L 2=60km , L 3=40km , L B−C =50km , L C−D =30km , L D−E =20km ,线路阻抗0.4Ω/km , K rel Ⅰ=1.2 , K rel 。

=K rel Ⅲ=1.15 ;I BC。

Ld。

max =300A , I CD。

Ld。

max =200A , I DE。

Ld。

max =150A , K ss =1.5 , K re =0.85答案:三台发电机,三条线路同时运行为最大运行方式发电机G1与L1,L2中一条线路运行时,为最小运行方式2、整定保护1,2和3的电流速断定值,并计算各自的最小保护范围。

电力系统继电保护典型故障分析案例

电力系统继电保护典型故障分析案例

电力系统继电保护典型故障分析案例线路保护实例一:单相故障跳三相某220kV线路发生A相单相接地故障,第一套主保护(CKJ—2).发出A相跳闸令,第二套主保护(WXB—101)发出三跳相跳闸令由于两面保护屏的重合闸工作方式选择开关把手不一致造成.保护是否选相跳闸,与重合闸工作方式有关.当重合闸方式选择为单重和综重时,单相故障跳开单相,而当重合闸方式选择为三重和停用时,任何故障都跳开三相两套保护时一般只投入一套重合闸。

另一套保护屏的重合闸出口压板应在断开位置。

由于另一套保护的中重合闸方式选择放在停用位置,致使该保护发出三跳命令。

线路保护实例二:未接入外部故障停信开关量某变电所母线PT爆炸,CT与开关之间发生三相短路,电厂侧高频保护拒动。

由后备保护距离II段跳闸.(3)故障发生后,由于对高频保护来说,认为是外部故障,变电所侧高频保护一直处于发信状态。

将电厂侧高频保护闭锁。

变电所侧认为母线故障,母差保护动作。

事故后检查发现,高频保护没有接入母差停信和断路器位置停信.微机保护的停信接口:1、本侧正方向元件动作保护停信。

2、其它保护动作停信(一般接母差保护的出口).3、断路器跳闸位置停信。

线路保护实例三微机保护没有经过方向元件控制而误动出口。

问题:整定中,方向元件没有投入。

硬压板,软压板(由控制字整定)1、二者之间具有逻辑“与”的关系。

缺一不可.2、硬压板:保护屏上的实际压板。

3、软压板:在软件中通过定值单中的控制字的某位为1或0控制保护功能的投退。

线路保护实例四:1993年11月19日,葛双II回发生A相单相接地故障,线路两侧主保护60ms动作跳开A相。

葛厂侧过电压保护(1.4U N/0.3S)于420ms动作跳开三相,重合闸被闭锁。

联切葛厂两台机投水阻600MW,切鄂东负荷200MW.事故原因分析1、PT接线图2、接线的问题:(1)PT三点接地,违反《反措要点》,PT二次侧中性线只允许一点接地。

(2)开口三角的N与两星形中性线相连,违反《反措要点》,PT二次回路与三次回路独立。

继电保护原理算例pdf

继电保护原理算例pdf

继电保护原理算例pdf电流继电器返回电流值测试实验:实验目的:1)了解电流继电器返回电流值的测量方法。

2)熟悉电流继电器返回电流值的影响因素。

3)掌握电流继电器返回电流值的调整方法。

实验内容:1)电流继电器返回电流值测试实验原理图如图2-3所示:虚线框为台体内部接线动作信号灯220V KA R1 a A TY1305A2A o图2-3电流继电器返回电流值测试实验原理图实验步骤如下:(1)按图接线,将电流继电器的返回电流值整定为2A,使调压器输出指示为0V,滑线电阻的滑动触头放在中间位置。

(2)查线路无误后,先合上三相电源开关(对应指示灯亮),再合上单相电源开关和直流电源开关。

(3)慢慢调节调压器使电流表读数缓慢升高,记下继电器刚返回(动作信号灯熄灭)时的电流值,即为返回电流值。

(4)继电器返回后,再调节调压器使电流值平滑下降,观察电流表读数是否稳定在返回电流值附近。

电压继电器特性实验:实验目的:1)了解电压继电器的基本结构和原理。

2)熟悉电压继电器的动作特性。

3)掌握电压继电器动作电压的测量方法。

实验内容:1)电压继电器动作电压测试实验原理图如图2-4所示:虚线框为台体内部接线动作信号灯220V KV R2 a A TY230100V5%图2-4电压继电器动作电压测试实验原理图实验步骤如下:(1)按图接线,将电压继电器的动作电压整定为100V,使调压器输出指示为0V,滑线电阻的滑动触头放在中间位置。

(2)查线路无误后,先合上三相电源开关(对应指示灯亮),再合上单相电源开关和直流电源开关。

(3)慢慢调节调压器使电压表读数缓慢升高,记下继电器刚动作(动作信号灯XD1亮)时的电压值,即为动作电压。

(4)继电器动作后,再调节调压器使电压值平滑下降,观察电压表读数是否稳定在动作电压附近。

时间继电器特性实验:实验目的:1)了解时间继电器的基本结构和原理。

2)熟悉时间继电器的动作特性。

3)掌握时间继电器动作时间的测量方法。

电力系统继电保护典型故障分析案例

电力系统继电保护典型故障分析案例

电力系统继电保护典型故障分析案例一、引言电力系统继电保护是电力系统中非常重要的组成部分,其主要功能是在电力系统发生故障时,迅速切除故障区域,保护电力设备和人员的安全。

本文将通过分析几个典型的电力系统继电保护故障案例,来探讨故障原因、分析方法以及解决方案。

二、故障案例分析1. 案例一:变电站电流互感器故障故障描述:某变电站A相电流互感器发生故障,导致保护装置误动作,引起了系统的不必要停电。

故障原因:经过仔细分析,发现电流互感器内部绝缘失效,导致测量误差增大,进而引起保护装置误动作。

解决方案:更换故障的电流互感器,并进行绝缘测试,确保其正常工作。

2. 案例二:线路短路故障故障描述:某条输电线路发生短路故障,但保护装置未能及时切除故障区域,导致系统停电。

故障原因:经过分析,发现保护装置的动作时间设置过长,未能及时检测到短路故障并切除。

解决方案:调整保护装置的动作时间,使其能够及时检测到短路故障并切除。

3. 案例三:发电机过电流故障故障描述:某台发电机出现过电流故障,导致发电机停机维修。

故障原因:经过分析,发现发电机内部绝缘失效,导致过电流现象。

解决方案:更换发电机的绝缘材料,并进行绝缘测试,确保其正常运行。

三、故障分析方法1. 实地调查:对发生故障的设备和现场进行详细的调查,了解故障发生的具体情况,包括设备的工作状态、环境条件等。

2. 数据分析:收集故障发生时的各种数据,如电流、电压、功率等,通过对数据的分析,找出异常现象和规律。

3. 故障模拟:利用电力系统模拟软件对故障进行模拟,通过模拟结果来验证故障原因和解决方案的可行性。

4. 经验总结:将已解决的故障案例进行总结,形成故障分析经验,为今后类似故障的处理提供参考。

四、故障解决方案1. 及时维护:定期对继电保护设备进行检修和维护,确保其正常工作。

2. 技术改进:引入先进的继电保护装置和技术,提高系统的故障检测和切除能力。

3. 增加备用设备:在关键位置增加备用设备,以备发生故障时能够快速切换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3-5、如图所示网络,在位置1、2和3处装有电路保护系统参数为:
E ?=115/√3kV ,X G1=10Ω , X G2=5Ω , X G3=5Ω , L 1=L 2=20km , L 3=10km , L B −C =50km , L C −D =50km , L D −E =80km ,
线路阻抗0.4Ω/km , K rel Ⅰ=1.2 , K rel Ⅱ=K rel Ⅲ
=1.15 ;I BC。

Ld。

max =300A , I CD。

Ld。

max =200A , I DE。

Ld。

max =150A , K ss =1.5 , K re =0.85
发电机最
多三台运行,最少一台运行,线路1到3最多三条运行,最少一条运行,请确定保护3在最大最小运行方式下的等值阻抗。

(1)整定保护1,2和3的电流速断定值,并计算各自的最小保护范围。

(2)整定保护2和3的限时电流速断定值,并计算各自的最小保护范围。

(3)整定保护1,2和3的过电流值,假定E 母线过电流保护动作时限为0.5s ,检验保护1
作近后备,保护2和3作远后备的灵敏度。

(4)采用下列另外一组系统电路参数对以上习题再进行一次计算。

E ?=115/√3kV ,X G1=15Ω , X G2=10Ω , X G3=10Ω , L 1=L 2=60km , L 3=40km , L B −C =50km , L C −D =30km , L D −E =20km ,
线路阻抗0.4Ω/km , K rel Ⅰ=1.2 , K rel Ⅱ=K rel Ⅲ
=1.15 ;I BC。

Ld。

max =300A , I CD。

Ld。

max =200A , I DE。

Ld。

max =150A , K ss =1.5 , K re =0.85 答案:
三台发电机,三条线路同时运行为最大运行方式
发电机G1与L1,L2中一条线路运行时,为最小运
行方式
2、整定保护1,2和3的电流速断定值,并计算各自的最小保护范围。

第Ⅰ段动作电流应躲过本线路末端最大短路电流
所以,1处电流速断保护在最小运行方式下无保护区。

第Ⅱ段动作电流应躲过本线路末端最大短路电流
所以,2处电流速断保护在最小运行方式下无保护区。

第Ⅲ段动作电流应躲过本线路末端最大短路电流
所以,3处电流速断保护在最小运行方式下无保护区。

3、整定保护2和3的限时电流速断定值,并计算各自的最小保护范围。

对于保护2:
由于保护2的灵敏度小于1.2,所以不满足要求。

对于保护3:
1、X_l1x1L1⋅8Ω=:=
由于保护3的灵敏度小于1.2,所以不满足要求。

4、整定保护1,2和3的过电流值,假定E 母线过电流保护动作时限为0.5s ,检验保护1作近后备,保护2和3作远后备的灵敏度。

保护1:
保护2:
保护3:
5、另外一组数据再算一遍:
三台发电机,三条线路同时运行为最大运行方式
发电机G1与L1,L2中一条线路运行时,为最小运行
方式
(2)整定保护1,2和3的电流速断定值,并计算各自的最小保护范围。

第Ⅰ段动作电流应躲过本线路末端最大短路电流
所以,1处电流速断保护在最小运行方式下无保护区。

第Ⅱ段动作电流应躲过本线路末端最大短路电流
所以,2处电流速断保护在最小运行方式下无保护区。

第Ⅲ段动作电流应躲过本线路末端最大短路电流
所以,3处电流速断保护在最小运行方式下无保护区。

(1)X_l1x1L1⋅24Ω=:=
(3)整定保护2和3的限时电流速断定值,并计算各自的最小保护范围。

对于保护2:
由于保护2的灵敏度小于1.2,所以不满足要求。

对于保护3:
由于保护3的灵敏度小于1.2,所以不满足要求。

(4)整定保护1,2和3的过电流值,假定E母线过电流保护动作时限为0.5s,检验保护1作近后备,保护2和3作远后备的灵敏度。

保护1:
保护2:
保护3:
3.7如图所示,流过保护1、2、3的最大负荷电流分别为400A ,500A ,550A , K s=1.3,K re=0.85,K relⅢ=1.15,t1Ⅲ=t2Ⅲ=0.5s,t3Ⅲ=1.0s
(1)求保护4的过电流定值
(2)保护4的过电流定值不变,保护1所在元件故障被切除,当返回系数K KK低于何值时会造成4误动?
(3)K KK=K.KK时,保护4的灵敏系数K KKK=K.K,当K KK=K.K时,保护4的灵敏度系数降低到多少?
解:(1)流过保护4的最大负荷电流为
I LD .max .4=400+500+550=1450A
I set .4Ⅲ=K rel Ⅲ
K ss I LD。

max。

4
K re =2550.29A
时限为 t 4Ⅲ=max (t 3Ⅲ,t 3Ⅲ,t 3Ⅲ
)+△t =1.5s (2)保护1切除故障后,流过保护4的最大负荷电流 I LD .max .4′=500+550=1050A
考虑电动机的自启动出现的最大自启动电流则 I ss .max =K ss .I LD .max .4′=1.356kA ,
要使保护4不误动,则须有
I ss .max ﹤I re =K re I set .4Ⅲ ,即K re ﹥0.535 ,
所以当返回系数低于0.535时造成保护4误动。

(3)保护4的灵敏系数K KKK .4=K K。

K。

KKK
I set。

4Ⅲ
=K K。

K。

KKK K KK K rel ⅢK ss I LD。

max。

4
灵敏系数K KKK 与返回系数K KK 成正比
已知K KK =K .KK 时,K KKK =K .K ; 则有K KK =K .K 时,K KKK =K .K K .KK ∗K .K =K .KKK。

相关文档
最新文档