排列组合题型大全教学文案
高中数学 排列组合的常见题型及其解法解题思路大全

排列组合的常见题型及其解法排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。
复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。
一. 特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A 41种站法;第二步再让其余的5人站在其他5个位置上,有A 55种站法,故站法共有:A A 4155⋅=480(种)解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有A 52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A 44种,故站法共有:A A 5244480⋅=(种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。
例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?解:把3个女生视为一个元素,与5个男生进行排列,共有A 66种,然后女生内部再进行排列,有A 33种,所以排法共有:A A 66334320⋅=(种)。
三. 相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先将其余4人排成一排,有A 44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 53种,所以排法共有:A A 44531440⋅=(种)四. 定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。
课件解排列组合问题的十七种常用策略PPT学习教案

C31
C41
C A43 1 4
A43
C31
C C A 1 1
3
=288
344
第1页/共34页
练习题
1.
7 种 不 同 的花 种在排 成一列 的花盆 里,若 两种葵 花不种 在中间 ,也不 种在两 端的花 盆里, 问有多 少不同 的种法 ?
A A2 5 1440 45
第2页/共34页
到 各 自 的 一 层下电 梯,下 电梯的 方法
(
)
78
第10页/共34页
六 . 环 排 问题 线排策 略
例 6 . 5 人 围 桌而坐 ,共有多 少种坐 法?
解:围桌而坐与 坐 成 一 排 的 不同点 在于, 坐成 圆 形 没 有 首尾 之分, 所以固 定一人 A并从 此 位 置 把 圆形 展成直 线其余 4人共有 ____ 种排法即
课件解排列组合问题的十七种常用策略
会计学
1
一 . 特 殊 元素 和特殊 位置优 先策略
例 1.由 0,1,2,3,4,5可 以 组 成 多 少个 没有重 复数字 五位奇数.
解 :由 于 末 位 和首位 有特殊 要求,应 该优 先安 排 ,以 免 不 合 要求 的元素 占了这 两个位 置
位 置 分 析 法 和元素 分析法 是解决 排列组 合问题 最常用 也是最 基本的 方法,若 以元素 分析为 主,需 先安排 特殊元 素,再处 理其它 元素. 若以位 置分析 为主,需 先满足 特殊位 置的要 求,再 处理其 它位置 。若有 多个约 束条件 ,往往 是考虑 一个约 束条件 的同时 还要兼 顾其它 条件 先 排 末 位 共 有___ 然 后 排 首 位 共有___ 最 后 排 其 它 位置共 有___
排列组合综合问题.[五篇范例]
![排列组合综合问题.[五篇范例]](https://img.taocdn.com/s3/m/4feb9e31a66e58fafab069dc5022aaea998f4113.png)
排列组合综合问题.[五篇范例]第一篇:排列组合综合问题.[文件] sxgdja0017.doc [科目] 数学 [年级] 高中 [章节][关键词] 排列/组合/综合 [标题] 排列组合综合问题 [内容]北京市东直门中学吴卫教学目标通过教学,学生在进一步加深对排列、组合意义理解的基础上,掌握有关排列、组合综合题的基本解法,提高分析问题和解决问题的能力,学会分类讨论的思想.教学重点与难点重点:排列、组合综合题的解法.难点:正确的分类、分步.教学用具投影仪.教学过程设计(一)引入师:现在我们大家已经学习和掌握了一些排列问题和组合问题的求解方法.今天我们要在复习、巩固已掌握的方法的基础上,来学习和讨论排列、组合综合题的一般解法.先请一位同学帮我们把解排列问题和组合问题的一般方法及注意事项说一下吧!生:解排列问题和组合问题的一般方法直接法、间接法、捆绑法、插空法等.求解过程中要注意做到“不重”与“不漏”.师:回答的不错!解排列问题和组合问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.(教师边讲,边板书)互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法(二)举例师:我下面我们来分析和解决一些例题.(打出片子——例1)例1 有12个人,按照下列要求分配,求不同的分法种数.(1)分为两组,一组7人,一组5人;(2)分为甲、乙两组,甲组7人,乙组5人;(3)分为甲、乙两组,一组7人,一组5人;(4)分为甲、乙两组,每组6人;(5)分为两组,每组6人;52(6)分为三组,一组5人,一组4人,一组3人;(7)分为甲、乙、丙三组,甲组5人,乙组4人,丙组3人;(8)分为甲、乙、丙三组,一组5人,一组4人,一组3人;(9)分为甲、乙、丙三组,每组4人;(10)分为三组,每组4人.(教师慢速连续读一遍例1,同时要求学生审清题意,仔细分析,周密考虑,独立地求解.这是一个层次分明的排列、组合题,涉及非平均分配、平均分配和排列组合综合.各小题之间有区别、有联系,便于学生分析、比较、归纳,有利于学生加深理解,提高能力)师:请一位同学说一下各题的答案(只需要列式).7566生:(1),(2),(3)都是C12;(4),(5)都是C12;(6),(7),(8)C5C654344都是C12(9),(10)都是C12 C7C3;C84C4师:从这个同学的解答中,我们可以看出他对问题的考虑分先后次序,用位置法求解是掌握了的.但是还请大家审清题意,看(3)与(1),(2);(5)与(4);(8)与(6),(7);(10)与(9)是否分别相同,有没有出现“重复”和“遗漏”的问题.(找班里水平较高的一位学生回答)生:(3)和(1),(2);(5)和(4);(8)和(6),(7);(10)和(9)并不相同.(3),(5),(8),(10)的答案都错了,既出现了“重复”也出现了“遗漏”的问题.(3)的答案是CCP312552(5)是2;6644C12C6C12C84C45433;(8)是C12C7C3P 3(10)是P22P33(教师在学生回答时板书各题答案)师:回答的正确,请说出具体的分析.生:(3)把12人分成甲、乙两组,一组7人,一组5人,但并没有指明甲、乙谁是7人,谁是5人,所以要考虑甲、乙的顺序,再乘以P2;(8)也是同一道理.(5)把12人分成两组,66每组6人,如果是分成甲组、乙组,那么共有C12种不同分法,但是(5)只要求平均分C62成两组,这样甲、乙组两元素的所有不同排列顺序,甲乙、乙甲共P22个就是同一种分组了,66C12C6所以(5)的答案是;(10)的道理相同. 2P2师:分析的很好!我们大家必须认识到,题目中具体指明甲、乙与没有具体指明是有区别的.如果在解题过程中不加以区别,就会出现“重复”和“遗漏”的问题,这是解决排列、组合题时要特别注意的.例1中,(1),(2),(6),(7)都是非平均分配问题,虽然(1),(6)都没有指出组名,而(2),(7)给出了组名,但是在非平均分配中是一样的.这是因为(2),(7)不仅给出了组名,而且还指明了谁是几个人,这一点上又与(3),(8)有差异.(3),(8)给了组名却没有指明谁是几个人.题中(4),(5),(9),(10)都属于平均分配问题,在平均分配中,如果没有给出组名,一定要除以组数的阶乘!如果12个人分成三组,其中一组2人,另外两组都是5人,求所有不同的分法种数.这里有不平均(一组2人),又有平均(两组都是是5人).怎么办? 53 生:分两步完成.第一步:12个人中选2人的方法数C212;第二步:剩下的10个人平均分5555C10C5C10C52成两组,每组5人的方法数,根据乘法原理得到,共有C12•种不同的分法. 22P2P2师:很好!大家已经理解了不平均分配的、平均分配,以及部分平均分配的计算,部分平均分配问题先考虑不平均分配,剩下的仍是平均分配,平均分配要商除.这样分配问题已彻底解决了.请看例题2.(打出片子——例2)(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.(教师读题、巡视)师:请一位同学说出(1),(2)的答案.872生甲:N1=P77P22;N2=P8-P7P2师:完全正确!他是用捆绑法解决“相邻”问题的,把2女“捆绑”在一起看成一组,与6男共7组,组外排列为P77,女生组内排列为P2,得2女相邻排法数N1=P77•P22;(2)是用捆绑法结合排除法来解得,从总体排列P88中排除N1得2女不相邻的排法数N2=2P88-P77P22(教师的复述是为了使水平较差学生明白解题思路,了解分析方法,真正理解解法)师:(2)的不相邻的分离排列还有没有其它解法? 生乙:可以用插空法直接求解.6男先排实位,再在7个空位中排2女,共有N2=P66P72种不同排法.(板书(1),(2)算式)师:对于(2)的两种解法思路不同,但殊途同归,结果一样,都是正确的.两种解法解决分离问题是否都很方便呢?试想,如果“5男3女排成一排,3女都不能相邻“P88-P66P33与P55P63一样吗?大家动手计算一下.生:前者是36 000,后者是14 400,不一样,肯定有问题.师:P66P33是什么? 生:3女相邻.师:3女相邻的反面是什么? 生:P8-P6P3是3女不都相邻,其中有2女相邻,不是3女都不相邻.师:这一例题说明什么? 生:不相邻的分离排列还是用插空法要稳妥一些.师:请大家下课后想一想,用捆绑法结合排除法能否解决上述问题,如果能解决,应该怎么做?我们继续分析和解决(3),(4)两小题.863 54 N3=P33P44P44;N4=2P44P44.(板书(3),(4)的算式)834444师:非常正确!(4)吸取了(2)的教训,没有用P8-P3P4P4,并且没有简单的用P4P5插空,而是考虑到了男、女都要排实位,否则会出现.(板书)(女男男女男女男女)两男或两女相邻的问题.这时同性不相邻必须男女都排好,即男奇数位,女偶数位,或者对调.(通过对例2的讨论和分析,能够帮助学生对于分离排列、排除法以及插空法有更清楚的认识,只有这样学生才会找到合理的解法,提高分析和解决问题的能力.)师:我们再来看一个例题.(打出片子——例3)例3 某乒乓球队有8男7女共15名队员,现进行混合双打练习,两边都必须是1男1女,共有多少种不同的搭配方法?(教师朗读一遍例3后巡视)师:请同学说一下答案.224生:N=C8. C7P4(板书此式)师:怎么分析的呢?22生:每一种搭配都需要2男2女,先把4名队员选出来,有C8C7种选法,然后考虑4人的排法,故乘以P44师:选出的4名队员做全排列,那么(板书)男A男B、女A女B行吗? 生:不行,有“重复”了,应该乘以什么呢? 师:这就需要我们再把问题想想清楚了,当选出2男2女队员进行混合双打时,有几种搭配方法呢?(板书)男——男女①Aa Bb ②Ab Ba ③Ba Ab ④Bb Aa 以上四种吗? 生:不是!③与②,④与①属于同一种,只有2种搭配,应该乘以2.22师:这就对了.N=2C8C7,还可以用下面的思路:先在8男中选2男各据一侧,是排列问222题,有P82种方法;再在7女中选2女与之搭配,是组合问题,有C7种方法,一共有N=P8C7种搭配方法.(板书)22解法1:N=2C8C7 22解法2:N=P8C7师:最后看例4(打出片子——例4)例4 高二(1)班要从7名运动员中选出4名组成4×100米接力队,参加校运会,其中甲、乙二人都不跑中间两棒的安排方法有多少种?(教师读题,引导分析)师:从7人中选4人分别安排第一、二、三、四棒这四个不同任务,一定与组合和排列有关,对甲、乙有特殊要求,这就有了不同情况,要分类相加了.先不考虑谁跑哪棒,就说4人的选择有几类情况呢?53生:三类,第一类,没有甲乙,有C4种选法;第二类,有甲没乙或有乙没甲,有2C5种选2法;第三类,既有甲也有乙,有C5种选法.师:如果把上述三类选法数相加再乘以P44行不行? 生:不行,对于上面三类不同选法,并不能都有P44种安排方法.考虑甲、乙二人都不跑中44313222间两棒,应有不同的安排方法数是:N=C5P4+2C5P2P3+C5P2P2.师:第二项中的P21P33是什么意思呢? 生:第二类中甲、乙两人只有1人选中时,甲(乙)的排法数量是P21,其他三人的排法数是P33.师:很好,这个排列组合综合题在求解中的分类十分重要,大家要认真体会,了解其思路和方法.(三)小结我们通过对4个例题的分析和讨论,总结了分配问题,分离排列问题的解法,以及排列、组合综合题的解法.解排列、组合综合题,一般应遵循:先组后排的原则.解题时一定要注意不重复、不遗漏.(四)作业1.四名优秀生保送到三所学样去,每所学样至少得1名,则不同的保送方案总数是种.(23C4P3=36)2.有印着0,1,3,5,7,9的六张卡片,如果允许9当作6用,那么从中任意以组成多少个不同的三位数?(6P或2C4P2P2+2C4P3+C4P2P2+P4=152)5+P4C1C4P2=152课堂教学设计说明关于排列组合的应用题,由于其内容独特,自成体系;种类繁多,题目多变;解法别致,思维抽象;条件隐晦,难以捉摸;得数较大,不易检验.所以这一课历来是学生学习中的难点.为了降低解题的难度,在教会学生基本方法的同时,一定要使学生学会转化,分类的思想方法,将复杂的排列、组合综合题转化为若干个简单的排列、组合问题.基于这一点,在例题的选排上,特别安排了例1,在复习巩固前面所学基本解法的基础上,总结了分配问题的解法,并引出了简单的排列组合综合问题.通过例2来讨论排列中常见的相邻排列和分离排列问题,21112112332122 56 以及排除法、插空法等解法在应用中需注意的事项.例3、例4是典型的排列、组合综合题,分别侧重了分步和分类两个难点.教学方法上,以问答形式,通过讨论分析,引导学生正确思维,培养学生分析问题和解决问题的能力.操作过程中也要根据学生的具体情况,采取多变的方式.学生配合的好,就以学生为主,学生回答问题不尽如人意时,就需要教师在提高语言、方式等方面多做文章,或以教师的讲授为主.第二篇:08届高三数学排列组合综合问题g3.1092 排列与组合的综合问题一、知识梳理1.排列、组合都是研究事物在某种给定的模式下所有可能的配置的数目问题,它们之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题,排列是在组合的基础上对入选的元素进行排队,因此,分析解决排列组合问题的基本思维是“先组,后排”.2.解排列组合的应用题,要注意四点:(1)仔细审题,判断是组合问题还是排列问题;要按元素的性质分类,按事件发生的过程进行分步.(2)深入分析、严密周详,注意分清是乘还是加,既不少也不多,辩证思..维,多角度分析,全面考虑,这不仅有助于提高逻辑推理能力,也尽可能地避免出错.(3)对于附有条件的比较复杂的排列组合应用题,要周密分析,设计出合理的方案,把复杂问题分解成若干简单的基本问题后应用分类计数原理或分步计数原理来解决.(4)由于排列组合问题的答案一般数目较大,不易直接验证,因此在检查结果时,应着重检查所设计的解决问题的方案是否完备,有无重复或遗漏,也可采用多种不同的方法求解,看看是否相同.在对排列组合问题分类时,分类标准应统一,否则易出现遗漏或重复.二、基础训练1.(04福建)某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为2A.A6C24B.122A6C242C.A6A24D.2A62.从5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为A.24B.48C.120D.72 3.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为A.480B.240C.120D.96 4.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字组成没有重复数字的四位数,其中能被5整除的四位数共有_____________个.(用数字作答)5.市内某公共汽车站有10个候车位(成一排),现有4名乘客随便坐在某个座位上候车,则恰好有5个连续空座位的候车方式共有_____________种.(用数字作答)例1.从6名短跑运动员中选4人参加4×100 m接力,如果其中甲不能跑第一棒,乙不能跑第四棒,问共有多少种参赛方法? 例2.对某种产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止.若所有次品恰好在第5次测试时被全部发现,则这样的测试方法有多少种可能? 思考讨论用类似的方法,讨论如下问题.某种产品有5件不同的正品,4件不同的次品,现在一件件地进行检测,直到4件次品全部测出为止,则最后一件次品恰好在第6次检测时被测出,这样的检测方案有多少种?提示:问题相当于从10件产品中取出6件的一个排列,第6位为次品,前五位有其余3件次品,可分三步:先从4件产品中留出1件次品排第6位,有42种方法;再从5件正品中取2件,有C5种方法;再把3件次品和取出的2件正2品排在前五位有A5种方法.所以检测方案种数为4×C5·A5=4800.55例3.在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄.为有利于作物生长,要求A、B 两种作物的间隔不小于6垄,则不同的种植方法共有多少种?例4.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是A.234B.346C.350D.363 例5.(1)一条长椅上有9个座位,3个人坐,若相邻2人之间至少有2个空椅子,共有几种不同的坐法?(2)一条长椅上有7个座位,4个人坐,要求3个空位中,恰有2个空位相邻,共有多少种不同的坐法? 例6.已知1(1+n)m.四、同步练习g3.1092 排列与组合的综合问题1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植.不同的种植方法共有A.24种B.18种C.12种D.6种2.四个不同的小球全部随意放入三个不同的盒子中,使每个盒子都不空的放法种数为A.A13A343B.C24A32C.C34A22D.C14C34C23.(05湖北卷)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数 A.168 B.96 C.72 D.144 4.(05江苏卷)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(A)96(B)48(C)24(D)0 5.从6名短跑运动员中选出4人参加4 × 100米接力赛,如果甲、乙两人都不跑第一棒,那么不同的参赛方案有 A.180种B.240种C.300种D.360种6.书架上原有5本书,再放上2本,但要求原有书的相对顺序不变,则不同的放法有_____________种.7.(04浙江)设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,..则质点不同的运动方法共有__________种.(用数字作答)8.在一张节目表上原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,求共有多少种安排方法?9.18人的旅游团要选一男一女参加生活服务工作,有两位老年男人不在推选之列,共有64种不同选法,问这个团中男女各几人?10.如下图,矩形的对角线把矩形分成A、B、C、D四部分,现用五种不同色彩给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,共有多少种不同的涂色方法?ABCD11.6名运动员分到4所学校去做教练,每校至少1人,有多少种不同的分配方法?参与答案基本训练1.将4名学生均分成两组,方法数为C24,再分配给6个年级中的2个,222分配方法数为A6,∴合要求的安排方法数为C24·A6.112答案:B432.若不含A,则有A4若含有A,则有C3C12·A3C12·A34种;4·3种.∴A4+C4·3=72.答案:D23.先把5本书中的两本捆起来(C5),再分成四份(A4,∴分法种数为4)2C5·A44=240.答案:B 4.①四位数中包含5和0的情况:12C13·C14·(A33+A2·A2)=120.②四位数中包含5,不含0的情况:3C13·C24·A3=108.③四位数中包含0,不含5的情况:2C3C14A3=72.3综上,四位数总数为120+108+72=300.答案:300 5.把四位乘客当作4个元素作全排列有A4种排法,将一个空位和余下的4422个空位作为一个元素插空有A5种排法.∴A4·A5=480.4答案:480 例题分析例1.解法一:问题分成三类:(1)甲、乙两人均不参加,有A4种;(2)甲、4乙两人有且仅有一人参加,有2C3(A4-A3)种;(3)甲、乙两人均参加,有443C2(A4-2A3+A2)种.故共有252种.44324解法二:六人中取四人参加的种数为A6,除去甲、乙两人中至少有一人不排在恰当位置的有C12 A3种,因前后把甲、乙两人都不在恰当位置的种数A2减544去了两次.故共有A6-C12 A3+A2=252种.54评述:对于带有限制条件的排列、组合综合题,一般用分类讨论或间接法两种方法处理.4例2.解:C14(C16C33)A4=576,第5次必测出一次品,余下3件在前4次被测出,从4件中确定最后一件品有C14种方法,前4次中应有1正品、3次品,4有C16C33种,前4次测试中的顺序有A4种,由分步计数原理即得.评述:本题涉及一类重要问题,即问题中既有元素的限制,又有排列的问题,一般是先选元素(即组合)后排列.例3.解:依题意,A、B两种作物的间隔至少6垄,至多8垄.(1)间隔62垄时,有3×A2(2)间隔7垄时,有2×A22种;2种.(3)间隔8垄时,有A2种.22所以共有3A22+2A2+A2=12种种植方法.例4.解法一:分类讨论法.(1)前排一个,后排一个,2C18·C112=192.(2)后排坐两个(不相邻),2(10+9+8+…+1)=110.(3)前排坐两个,2·(6+5+…+1)+2=44个.∴总共有192+110+44=346个.解法二:考虑中间三个位置不坐,4号座位与8号座位不算相邻.2∴总共有A19+2+2=346个.答案:B 评述:本题考查分类讨论在解排列组合应用题中的运用.这是一道难度较大的小综合题.例5.解:(1)先将3人(用×表示)与4张空椅子(用□表示)排列如图(×□□×□□×),这时共占据了7张椅子,还有2张空椅子,一是分开插入,如图中箭头所示(↓×□↓□×□↓□×↓),从4个空当中选2个插入,有C2种4插法;二是2张同时插入,有C14种插法,再考虑3人可交换有A3种方法.3所以,共有A3(C2+C14)=60(种).34下面再看另一种构造方法:先将3人与2张空椅子排成一排,从5个位置中选出3个位置排人,另2个位置排空椅子,有A3C2种排法,再将4张空椅子中的每两张插入每两人之间,52只有1种插法,所以所求的坐法数为A3·C2=60.52(2)可先让4人坐在4个位置上,有A4种排法,再让2个“元素”(一个4是两个作为一个整体的空位,另一个是单独的空位)插入4个人形成的5个“空22当”之间,有A5种插法,所以所求的坐法数为A44·A5=480.01n1n例6.证法一:由二项式定理(1+m)n=C0nm+Cnm+…+Cnm,011mm(1+n)m=C0,mn+Cmn+…+Cmn又因为Cinmi=Anmi!ii,Cimni=Amni!ii,2322333mmm而Ainmi>Aimni,所以C2>Cm.nm>Cmn,Cnm>Cmn,…,Cnmmn0001111又因为C0nm=Cmn,Cnm=Cmn,所以(1+m)n>(1+n)m.证法二:(1+m)n>(1+n)m⇔nln(1+m)>mln(1+n)⇔ln(1+m)mx>ln(1+n)n.令f(x)=ln(1+x),x∈[2,+∞],只要证f(x)在[2,+∞]上单调递减,只要证 f ′(x)<0.f ′(x)=[ln(1+x)]'x-x'⋅ln(1+x)x2=x-ln(1+x)2(1+x)x(1+x).当x≥2时,x-lg(1+x)(1+x)<0,x2(1+x)>0,得f ′(x)<0,即x∈[2,+∞]时,f ′(x)<0.以上各步都可逆推,得(1+m)n>(1+n)m.作业:1—4 BBDBB6.427.5 8.解法一:添加的三个节目有三类办法排进去:①三个节目连排,有C17A33种方法;②三个节目互不相邻,有A3种方法;③有且仅有两个节目连排,有7C13C17C16A2种方法.根据分类计数原理共有C17A3+A3+C13C17C16A2=504种.2372解法二:从结果考虑,排好的节目表中有9个位置,先排入三个添加节目有A3种方法,余下的六个位置上按6个节目的原有顺序排入只有一种方法.故所求9排法为A3=504种.9解法三:A9A669=504.评述:插空法是处理排列、组合问题常用的方法.9.解:设这个团中有男人x人,则有女人18-x人,根据题意得C1x-2· C118-x=64.解得x=10.∴这个团中有男10人,女8人.10.解法一:依题意,给四部分涂色,至少要用两种颜色,故可分成三类涂色:4第一类,用4种颜色涂色,有A5种方法;第二类,用3种颜色涂色,选3种颜色的方法有C35种;在涂的过程中,选对顶的两部分(A、C或B、D)涂同色,另两部分涂异色有C12种选法;3种颜313色涂上去有A33种涂法.共C5·C2·A3种涂法;2第三类,用两种颜色涂色.选颜色有C5种选法;A、C与B、D 各涂一色有22A22种涂法.共C5·A2种涂法.41322所以共有涂色方法A5+C35·C2·A3+C5·A2=260种.解法二:区域A有5种涂色法;区域B有4种涂色法;区域C的涂色法有2类:若C与A涂同色,区域D 有4种涂色法;若C与A涂不同色,此时区域C有3种涂色法,区域D也有3种涂色法.所以共有5×4×4+5×4×3×3=260种涂色法.11.解法一:先取人,后取位子.1,1,1,3:6人中先取3人有C3种取法,与剩余3人分到4所学校去有6A4种不同分法,∴共C3A4种分法;46421,1,2,2:6人中取2人、2人、1人、1人的取法有C6·C2·C12种,4然后分到4所学校去,有A4A2⋅A2224种不同的分法,共C·C·C·262412A4A2⋅A2224种分法.所以符合条件的分配方法有CA+C·C·C·3644262412A4A22422⋅A=1560种.解法二:先取位子,后取人.1,1,1,3:取一个位子放3个人,有C14种取法,6人中分别取3人、1人、1人、1人的取法有C3·C13·C12·C1种,∴共有C14·C3·C13·C12·C1种.61611,1,2,2:先取2个位子放2(其余2个位子放1)有C24种取法,6人中22分别取2人,2人,1人,1人的取法有C6·C2C12·C1共有C2C6·C2C12·C14·1种,4·4·1种.112221所以符合条件的分配方法有C14·C36·C3·C2+C4·C6·C4·C2=1560种.第三篇:排列组合排列组合方法一:相邻元素捆绑法:所谓“捆绑法”就是在解决对于某几个元素要求相邻问题时,可整体考虑将相邻元素视为一个“大”元素例:6名同学排成一排,其中甲,乙两人必须在一起的不同徘法共有(C)A.720种 B.360种 C.240种 D.120种因甲,乙两人排在一起,故甲乙两人捆在一起视作一人,与其余四个全排列A5种排法,但甲乙两人之间有A2种52排法,由分布计数原理可知:共有A5•A2=240种不同排法,故选C 方法二:相离问题插空法:不相邻问题是指要求某些元素不能相邻,由其他元素将它隔开,此类问题可以先将其他元素排好,再将所指定的不相邻的元素插入到它们的空隙及两端位置,故称“插空法”例:要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少种不同的排法?先将6个歌唱节目排好,其不同的排法A6种,这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目有A746种排法,由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为A7.•A6方法三:定序问题缩倍法:在排列问题中限制某几个元素必须保持一定顺序成为定序问题,这类问题用缩小倍数的方法求解比较方便。
排列组合例题教案

排列组合例题教案一、教学目标1. 让学生理解排列组合的概念和意义。
2. 培养学生解决实际问题的能力,提高其逻辑思维和创新思维能力。
3. 让学生掌握排列组合的基本计算方法和技巧。
二、教学内容1. 排列组合的定义及分类2. 排列的计算方法3. 组合的计算方法4. 排列组合的综合应用5. 实际问题举例三、教学重点与难点1. 重点:排列组合的概念、计算方法和实际应用。
2. 难点:排列组合的计算技巧和解决实际问题的策略。
四、教学方法1. 采用案例教学法,通过具体例题引导学生理解排列组合的概念和计算方法。
2. 采用问题驱动法,培养学生解决实际问题的能力。
3. 利用多媒体辅助教学,提高学生的学习兴趣。
五、教学准备1. 教案、PPT、多媒体设备。
2. 相关例题及练习题。
3. 学生课本及学习资料。
教案目录:第一课时:排列组合的定义及分类教学内容:1. 排列组合的定义。
2. 排列和组合的分类。
教学过程:1. 导入:引导学生思考日常生活中遇到的排列组合问题。
2. 讲解:讲解排列组合的定义及分类。
3. 例题:分析并解决具体例题,让学生理解排列组合的概念。
4. 练习:布置练习题,巩固所学知识。
第二课时:排列的计算方法教学内容:1. 排列的计算方法。
教学过程:1. 复习:回顾上一课时所学内容。
2. 讲解:讲解排列的计算方法。
3. 例题:分析并解决具体例题,让学生掌握排列的计算方法。
4. 练习:布置练习题,巩固所学知识。
第三课时:组合的计算方法教学内容:1. 组合的计算方法。
教学过程:1. 复习:回顾前两课时所学内容。
2. 讲解:讲解组合的计算方法。
3. 例题:分析并解决具体例题,让学生掌握组合的计算方法。
4. 练习:布置练习题,巩固所学知识。
第四课时:排列组合的综合应用教学内容:1. 排列组合的综合应用。
教学过程:1. 复习:回顾前三课时所学内容。
2. 讲解:讲解排列组合的综合应用。
3. 例题:分析并解决具体例题,让学生学会运用排列组合解决实际问题。
[超全]排列组合二十种经典解法!
![[超全]排列组合二十种经典解法!](https://img.taocdn.com/s3/m/bd7da11fddccda38376bafdb.png)
超全的排列组合解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++L种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯L种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例 2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合问题教案_排列组合解题技巧_排列组合问题经典例题_排列组合a和c的区别

排列组合的知识点(一)排列和排列数(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法。
(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列当m=n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n!(二)组合和组合数(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m 个元素的一个组合。
从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合。
(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个数这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的。
[反思] 排列与组合的共同点是从n个不同的元素中,任取m(m≤n)个元素,而不同点是排列是按照一定的顺序排成一列,组合是无论怎样的顺序并成一组,因此“有序”与“无序”是区别排列与组合的重要标志。
简单举例:1、2、3挑两个组成一个数字和1、2、3挑两个数字是完全不一样的!1、2、3挑两个组成一个数字那是排列;1、2、3挑两个数字那是组合。
例如我选1和2,排列里面12和21是两个数字!但是组合的话挑1和2就和挑2和1没有分别!!!《排列组合》教案教学目标:一.知识与技能目标:使学生通过观察,猜测,试验等活动,找出简单事物的排列规律,培养学生初步观察,分析,推理能力,以及有规律的全面思考问题。
二.过程与方法:引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的大致过程。
三.情感态度目标:感受数学与生活的联系,激发学习数学,探索数学的浓厚兴趣,使学生在数学活动中养成与人合作的良好习惯。
(完整版)排列组合题型总结排列组合题型总结,推荐文档

同的栽种方法有 种(以数字作答).(120)
12345
在如图的 5 块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物 ,
不同的种植方法共
种(以数字作答) (72)
2.(江苏、辽宁、天津卷(理))某城市中心广场建造一个花圃,花圃 6 分为个部分(如
图 3),现要栽种 4 种颜色的花,每部分栽种一种且相邻部分不能栽种 同一样颜色的话,不
C62
C
42C
2 2
=15
种
A33
练习:1.6 本书分三份,2 份 1 本,1 份 4 本,则有不同分法?
2.某年级 6 个班的数学课,分配给甲乙丙三名数学教师任教,每人教两个班,则分派方
法的种数。
七. 合并单元格解决染色问题
例 7 (全国卷(文、理))如图 1,一个地区分为 5 个行政区域,现给地图着色,要求相
排列组合题型总结
排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因 而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还 应注意积累排列组合问题得以快速准确求解。 一. 直接法
1.特殊元素法 例 1 用 1,2,3,4,5,6 这 6 个数字组成无重复的四位数,试求满足下列条件的四位 数各有多少个 (1)数字 1 不排在个位和千位 (2)数字 1 不在个位,数字 6 不在千位。 分析:(1)个位和千位有 5 个数字可供选择 A52 ,其余 2 位有四个可供选择 A42 ,由乘 法原理: A52 A42 =240 2.特殊位置法 (2)当 1 在千位时余下三位有 A53 =60,1 不在千位时,千位有 A41 种选法,个位有 A41 种, 余下的有 A42 ,共有 A41 A41 A42 =192 所以总共有 192+60=252 二. 间接法 当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法 A64 2 A53 A42 =252 例 2 有五张卡片,它的正反面分别写 0 与 1,2 与 3,4 与 5,6 与 7,8 与 9,将它们 任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑 0 与 1 卡片用与不用,且用此卡片又分使用 0 与使用 1,
(教师版)排列组合问题经典题型与通用方法

排列组合问题经典题型与通用方法(教师版)1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有()A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284C C C种 B、44412843C C C种 C、4431283C C A种 D、444128433C C CA种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种B、240种C、120种D、96种7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。
高中数学排列组合经典题型全面总结计划版

高中数学排列与组合(一)典型分类解说一. 特别元素和特别地点优先策略例 1. 由 0,1,2,3,4,5能够构成多少个没有重复数字五位奇数.解: 因为末位和首位有特别要求, 应当优先安排 , 免得不合要求的元素占了这两个地点.先排末位共有C31而后排首位共有C41最后排其余地点共有A43C41 A 43C31由分步计数原理得 C41C31 A43288练习题 :7 种不同的花种在排成一列的花盆里, 若两种葵花不种在中间,也不种在两头的花盆里,问有多少不同的种法?二. 相邻元素捆绑策略例 2. 7人站成一排, 此中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并当作一个复合元素,同时丙丁也当作一个复合元素,再与其余元素进行摆列,同时对相邻元素内部进行自排。
由分步计数原理可得共有A55 A22 A22480 种不同的排法甲乙丙丁要求某几个元素一定排在一同的问题, 能够用捆绑法来解决问题. 马上需要相邻的元素归并为一个元素, 再与其余元素一同作摆列 , 同时要注意归并元素内部也一定摆列.练习题 : 某人射击 8 枪,命中 4 枪, 4 枪命中恰巧有 3 枪连在一同的情况的不同种数为20三. 不相邻问题插空策略例 3. 一个晚会的节目有 4 个舞蹈 ,2 个相声 ,3 个独唱 , 舞蹈节目不可以连续出场 , 则节目的出场次序有多少种?解: 分两步进行第一步排 2 个相声和 3 个独唱共有A55种,第二步将 4 舞蹈插入第一步排好的 6 个元素中间包含首尾两个空位共有种A64不同的方法,由分步计数原理,节目的不同次序共有A55 A64种元素相离问题可先把没有地点要求的元素进行排队再把不相邻元素插入中间和两头练习题:某班新年联欢会原定的 5 个节目已排成节目单,开演前又增添了两个新节目. 假如将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为30四. 定序问题倍缩空位插入策略例 4. 7 人排队 , 此中甲乙丙 3 人次序必定共有多少不同的排法解:( 倍缩法 ) 对于某几个元素次序必定的摆列问题, 可先把这几个元素与其余元素一同进行摆列, 而后用总摆列数除以这几个元素之间的全摆列数 , 则共有不同排法种数是:A77/ A33(空位法 )假想有 7把椅子让除甲乙丙之外的四人就坐共有A74种方法,其余的三个地点甲乙丙共有 1 种坐法,则共有A74种方法。
排列组合知识总结+经典题型

排列组合知识总结+经典题型(1)知识梳理 1.分类计数原理〔加法原理〕:完成一件事,有几类方法,在第一类中有m1种有不同的方法,在第2类中有m2种不同的方法……在第n类型有m3种不同的方法,那么完成这件事共有2.分步计数原理〔乘法原理〕:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……,做第n步有mn种不同的方法;那么完成这件事共有特别提醒:分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性;分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进展正确地分类、分步,做到不重复、不遗漏。
3.排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.4.排列数:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列. 从n 个不同〔1〕规定0! = 1〔2〕含有可重元素的排列问题.对含有一样元素求排列个数的方法是:设重集S有k个不同元素a1,a2,…...an其中限重复数为n1、n2……nk,且n =特别提醒:排列与组合的联络与区别.联络:都是从n个不同元素中取出m个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.(2)典型例题考点一:排列问题例1.六人按以下要求站一横排,分别有多少种不同的站法?〔1〕甲不站两端;〔2〕甲、乙必须相邻;〔3〕甲、乙不相邻;〔4〕甲、乙之间间隔两人;〔5〕甲、乙站在两端;〔6〕甲不站左端,乙不站右端.考点二:组合问题例2. 男运发动6名,女运发动4名,其中男女队长各1人.选派5人外出比赛.在以下情形中各有多少种选派方法?〔1〕男运发动3名,女运发动2名;〔2〕至少有1名女运发动;〔3〕队长中至少有1人参加;〔4〕既要有队长,又要有女运发动.考点三:综合问题例3.4个不同的球,4个不同的盒子,把球全部放入盒内.〔1〕恰有1个盒不放球,共有几种放法?〔2〕恰有1个盒内有2个球,共有几种放法?〔3〕恰有2个盒不放球,共有几种放法?当堂测试1.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,那么不同的组队方案共有〔〕A.70 种B.80种C.100 种D.140 种2.亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,假设其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,那么不同的选派方案共有〔〕A.48 种B.12种C.18种D.36种3.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为〔〕A.48B.12C.180D.1624.甲组有5名男同学,3名女同学;乙组有6名男同学,2名女同学。
第4讲排列组合常见11种题型总结分析(原卷板)

第4讲 排列组合常见11种题型总结分析【题型目录】题型一:特殊元素与特殊位置优待法题型二:分类讨论思想题型三:插空法(不相邻问题)题型四:捆绑法(相邻问题)题型五:平均分组问题除法策略题型六:分配问题先分组再分配题型七:正难则反题型八:定序问题(消序法)题型九:相同元素隔板法题型十:涂色问题题型十一:与几何有关的组合应用题【典型例题】题型一:特殊元素与特殊位置优待法对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
【例1】从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )(A ) 280种 (B )240种 (C )180种 (D )96种【例2】某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( )个A .242610AB .242610A AC .()2142610CD .()2142610C A【例3】将甲、乙、丙等六位同学排成一排,且甲、乙在丙的两侧,则不同的排法有______种.【例4】用0、1、2、3、4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.【题型专练】1.某校从8名教师中选派4名教师到4个边远地区支教(每地1人),要求甲、乙不同去,甲、丙只能同去或同不去,则不同的选派方案有______种.2.某化工厂生产中需依次投放2种化工原料,现已知有5种原料可用,但甲、乙两种原料不能同时使用,且依次投料时,若使用甲原料,则甲必须先投放,则不同的投放方案有().A.10种B.12种C.15种D.16种3.4张卡片的正、反面分别写有数字1,2;1,3;4,5;6,7.将这4张卡片排成一排,可构成不同的四位数的个数为()A.288B.336C.368D.4124.用0,2,4,5,6,8组成无重复数字的四位数,则这样的四位数中偶数共有()A.120个B.192个C.252个D.300个题型二:分类讨论思想【例1】在8张奖券中有一、二、三等奖各1张,其余5张无奖,将这8张奖券分配给4个人,每人2张,不同的获奖情况数()A.60B.40C.30D.80【例2】中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1~9的一种方法.例如:3可以表示为“≡”,26可以表示为“=⊥”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1~9这9个数字表示两位数的个数为_________.⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写【例3】将1,2,3填入33方法共有()A.6种B.12种C.24种D.48种【题型专练】1.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种2.某公司安排甲乙丙等7人完成7天的值班任务,每人负责一天.已知甲不安排在第一天,乙不安排在第二天,甲和丙在相邻两天,则不同的安排方式有___种.题型三:插空法(不相邻问题)对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。
高考排列组合常见题型及解题策略

可重复的排列求幂法相邻问题捆绑法相离问题插空法元素分析法〔位置分析法〕多排问题单排法定序问题缩倍法〔等几率法〕标号排位问题〔不配对问题〕不同元素的分配问题〔先分堆再分配〕一样元素的分配问题隔板法:多面手问题〔分类法---选定标准〕走楼梯问题〔分类法与插空法相结合〕排数问题〔注意数字“0〞〕染色问题“至多〞“至少〞问题用间接法或分类: 十三.几何中的排列组合问题:排列组合常见题型及解题策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客〞,能重复的元素看作“店〞,那么通过“住店法〞可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】〔1〕有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?〔2〕有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?〔3〕将3封不同的信投入4个不同的邮筒,那么有多少种不同投法?【解析】:〔1〕43〔2〕34〔3〕34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有〔〕A、38B、83C、38A D、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店〞,3项冠军看作3个“客〞,他们都可能住进任意一家“店〞,每个“客〞有8种可能,因此共有38种不同的结果。
所以选A二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有【解析】:把,A B视为一人,且B固定在A的右边,那么此题相当于4人的全排列,4424A种【例2】〔2021卷理〕3位男生和3位女生共6位同学站成一排,假设男生甲不站两端,3 位女生中有且只有两位女生相邻,那么不同排法的种数是〔 〕 A.360 B.188 C.216 D.96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432 种其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法 :元素相离〔即不相邻〕问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A 种【例2】书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有种不同的插法〔具体数字作答〕 【解析】:111789A A A =504【例3】 高三〔一〕班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的 演出顺序,要求两个舞蹈节目不连排,那么不同排法的种数是 【解析】:不同排法的种数为5256A A =3600【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进展,工 程丙必须在工程乙完成后才能进展,有工程丁必须在工程丙完成后立即进展。
排列组合的常见题型及其解法(good)

排列、组合问题,在高考中所占比重不大,但试题都具有一定的灵活性、机敏性和综合性,在“倡导创新体系,提高素质教育”的今天,该类试题是最好的体现,由于有些问题比较抽象,且题型繁多,解法独特,再加上限制条件,容易产生错误。
本文就排列、组合问题的常见题型的求解方法加以归纳,供大家参考。
1、特殊元素——优先法:对于含有限定条件的排列、组合问题,一般应先考虑特殊元素,再考虑其它元素。
例1,用0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有多少个?[解析]因组成的三位数为偶数,末尾的数字必须是偶数,又0不能排在首位,故0是其中的特殊元素应优先安排。
①当0排在末尾时,有 24A 个;②当0不排在末尾时,有 141312A A A 个,根据分类记数原理,其中偶数共有3014131224=+A A A A 个。
例2,1名老师和4名获奖学生排成一排照相留念,若老师不排在两端,则共有不同的排法多少种。
[解析]优先考虑对特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上来排,有 13A 种。
剩下的位置由4名学生全排列,有 44A 种。
因此共有 724413=A A 种不同的排法。
2、相邻问题——捆绑法:对于某几个元素要求相邻的排列问题,可先将相邻的元素“捆绑”在一起看作一个元素与其它元素进行排列,然后再对这几个元素进行全排列。
例3,5名学生和3名老师站成一排照相,3名老师必须站在一起的不同排法共有 种。
[解析]将3名老师捆绑起来看成一个元素,与5名学生排列,有 66A 种排法;而3名老师之间又有 33A 种排法,故满足条件的排法共有 43203366=A A 种。
例4,计划展出10幅不同的画,其中一幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有多少种?[解析]把每种画捆绑在一起,看成一个整体,又水彩画较特殊,应优先安排。
排列组合常见题型及解题策略(详解).docx

排列组合常见题型及解题策略一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客” ,能重复的元素看作“店” ,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例 1】( 1)有 4 名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同报名方法(2)有 4 名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果(3)将 3 封不同的信投入 4 个不同的邮筒,则有多少种不同投法【解析】:(1)34( 2)43(3)43【例 2】把 6 名实习生分配到7 个车间实习共有多少种不同方法【解析】:完成此事共分 6 步,第一步;将第一名实习生分配到车间有7 种不同方案,第二步:将第二名实习生分配到车间也有7 种不同方案,依次类推,由分步计数原理知共有76种不同方案 .【例 3】 8 名同学争夺 3 项冠军,获得冠军的可能性有()A、83 B 、38 C 、A83 D 、C83【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8 名学生看作8 家“店”, 3 项冠军看作 3 个“客”,他们都可能住进任意一家“店”,每个“客”有 8 种可能,因此共有83种不同的结果。
所以选 A二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 .【例 1】A, B,C , D , E五人并排站成一排,如果A, B 必须相邻且B在A的右边,那么不同的排法种数有【解析】:把 A, B 视为一人,且 B 固定在 A 的右边,则本题相当于 4 人的全排列,A4424 种【例 2】(2009 四川卷理) 3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两端, 3 位女生中有且只有两位女生相邻,则不同排法的种数是() A. 360 B.188 C. 216 D.96【解析】:间接法 6 位同学站成一排, 3 位女生中有且只有两位女生相邻的排法有,C32 A 22A 42 A 22 =432 种,其中男生甲站两端的有 A 12C32A 22 A 32A 22 =144 ,符合条件的排法故共有288三.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例 1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A55种,再用甲乙去插 6 个空位有A62种,不同的排法种数【解析】:除甲乙外,其余 5 个排列数是 A55 A623600 种【例 2】架上某有 6 本,新 3 本插去,要保持原有 6 本的序,有种不同的插法(具体数字作答)【解析】: A 17A18 A 91 =504【例 3】高三(一)班学要安排晚会的 4 各音目, 2 个舞蹈目和 1 个曲目的演出序,要求两个舞蹈目不排,不同排法的种数是【解析】:不同排法的种数 A55 A62=3600【例 4】某工程有 6 工程需要独完成,其中工程乙必在工程甲完成后才能行,工程丙必在工程乙完成后才能行,有工程丁必在工程丙完成后立即行。
排列组合八种题型的技巧解法

排列组合八种题型的技巧解法一、占位子问题例1:将编号为1、2、3、4、5的5个小球放进编号为1、2、3、4、5的5个盒子中,要求只有两个小球与其所在的盒子编号相同,问有多少种不同的方法。
一就是认真审题。
在切换题目之前先使学生认真审题,从特定字眼小球和盒子都已“编号”著手,确切这就是一个“排序问题”,然后对题目展开等价切换。
二是转换题目。
在审题的基础上,为了激发学生兴趣,使其进入角色,我将题目转换为:让学号为1、2、3、4、5的学生坐到编号为1、2、3、4、5的五张凳子上(凳子已准备好放在讲台前),要求只有两个学生与其所坐的凳子编号相同,问有多少种不同的坐法。
三就是解决问题。
这时我出马另一名学生去精心安排这5十一位学生挤位子(学生之争着上台,积极性已经获得了很大的提升),班上其他同学也都积极思考(充分发挥了学生的主体地位和主观能动性),不懈努力地“出谋划策”,没两分钟的时间,同学们存有了统一的观点:先选取合乎题目特定条件“两个学生与其正下方的凳子编号相同”的两位同学,存有c种方法,使他们坐在与自己编号相同的凳子上,然后剩的三位同学不挤编号相同的凳子存有2种排法,最后根据乘法原理获得结果为2×c=20(种)。
这样原题也就获得了化解。
四是学生小结。
接着我让学生之间互相讨论,根据自己的分析方法对这一类问题提出一个好的解决方案(课堂气氛又一次活跃起来)。
五就是老师总结。
对于这一类占到位子问题,关键就是把握住题目中的特定条件,先从特定对象或者特定位子抓起,再考虑通常对象,从而最终解决问题。
二、分组问题基准2:从1、3、5、7、9和2、4、6、8两组数中分别挑选出3个和2个数共同组成五位数,问这样的五位数存有几个?(本题我是先让学生计算,有很多同学得出的结论是p×p)一就是认真审题。
先由学生审题,明晰共同组成五位数就是一个排序问题,但是由于这五个数源自两个相同的组与,因此就是一个“分组排序问题”,然后对题目展开等价切换。
排列组合问题的题目类型及解答汇总

排列组合问题是数学和计算机科学中常见的一类问题,涉及对元素进行有序或无序的选择和排列。
这类问题在实际生活中也有广泛应用,如时间表的制定、密码的组合、电路的设计等。
下面,我们将对排列组合问题的常见题目类型及其解答进行汇总。
一、题目类型1. 基本排列问题描述:给定n个不同的元素,求取出m个元素的所有可能排列。
示例:从3个字母A, B, C中取出2个字母的所有排列。
2. 基本组合问题描述:给定n个不同的元素,求取出m个元素的所有可能组合。
示例:从3个字母A, B, C中取出2个字母的所有组合。
3. 排列组合混合问题描述:在一个问题中同时涉及到排列和组合的概念。
示例:从5个不同的数字中选出3个数字进行排列,并求所有可能的三位数之和。
4. 有限制条件的排列组合问题描述:在排列或组合时,元素之间有一定的限制条件。
示例:在5个不同的数字中选出3个数字进行排列,但要求其中必须包含数字1。
5. 重复元素的排列组合问题描述:元素集合中存在重复的元素,求取排列或组合。
示例:从3个A,2个B,1个C中选出3个字母的所有排列。
二、解答方法1. 基本排列问题解答:使用排列公式P(n, m) = n! / (n - m)!,其中n是总元素数量,m是选择的元素数量。
示例解答:P(3, 2) = 3! / (3 - 2)! = 6(AB, AC, BA, BC, CA, CB)2. 基本组合问题解答:使用组合公式C(n, m) = n! / [m!(n - m)!],其中n 是总元素数量,m是选择的元素数量。
示例解答:C(3, 2) = 3! / [2!(3 - 2)!] = 3(AB, AC, BC)3. 排列组合混合问题解答:首先使用排列或组合公式求出所有可能的选择,然后根据题目要求进行进一步处理。
示例解答:首先从5个数字中选出3个数字进行排列,得到P(5, 3) = 5! / (5 - 3)! = 60 种排列。
然后求所有可能的三位数之和。
排列组合题型方法总结

排列组合题型方法总结在数学中,排列组合是一种常见的题型,出现在各个学段的数学教材和考试中。
掌握好排列组合的解题方法对于学生而言至关重要。
在本文中,我将总结一些常见的排列组合题型以及解题方法,帮助读者更好地理解和应用。
一、排列问题1.基本排列问题基本的排列问题是指从给定的一组元素中,按照一定的顺序或规则选择若干个元素进行排列。
其中,元素的顺序会影响最终的排列结果。
例如,有5个球分别用字母A、B、C、D、E表示,要求从中任意选取3个球进行排列,则有5P3种排列方式。
公式为:P(n,r) = n! / (n-r)!其中,n表示元素的总个数,r表示选择的元素个数。
2.带重复元素的排列问题有些排列问题中,元素可能存在重复。
那么在计算排列的总数时,需要考虑重复元素带来的影响。
例如,有5个球分别用字母A、A、B、C、D表示,要求从中任意选取3个球进行排列,则有5!/2!种排列方式。
公式可以改写为:P(n,r) = n! / (n1! * n2! * ... * nr!)其中,n表示元素的总个数,n1、n2...nr表示重复元素的个数。
二、组合问题组合问题是指从给定的一组元素中,按照一定的顺序或规则选择若干个元素进行组合。
与排列不同的是,组合中元素的顺序不影响最终的组合结果。
1.基本组合问题基本的组合问题是指从给定的一组元素中,任意选择若干个元素进行组合,不考虑元素的顺序。
例如,有5个球分别用字母A、B、C、D、E表示,要求从中任意选取3个球进行组合,则有5C3种组合方式。
公式为:C(n,r) = n! / (r! * (n-r)!)其中,n表示元素的总个数,r表示选择的元素个数。
2.带重复元素的组合问题与带重复元素的排列问题类似,组合问题中也可能存在重复的元素。
同样需要考虑重复元素带来的影响。
例如,有5个球分别用字母A、A、B、C、D表示,要求从中任意选取3个球进行组合,则有5!/2! / 3!种组合方式。
公式可以改写为:C(n,r) = (n! / (r! * (n1! * n2! * ... * nr!)) / r!其中,n表示元素的总个数,n1、n2...nr表示重复元素的个数。
排列组合的21种经典题型及解法

排列组合的21种经典题型及解法1.单选题:单选题要求考生从给定的选项中选出一个最佳答案。
解法:根据题目的问题和给定的选项,仔细分析,排除干扰,找出最佳答案。
2.多选题:多选题要求考生从给定的选项中选出多个最佳答案。
解法:根据题目的问题和给定的选项,仔细分析,排除干扰,找出最佳答案,并判断是否有多个最佳答案。
3.判断题:判断题要求考生根据题目的问题和给定的信息,判断给出的答案是正确还是错误。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,判断出正确答案。
4.填空题:填空题要求考生根据题目的问题和给定的信息,填入正确的答案。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,填入正确的答案。
5.问答题:问答题要求考生根据题目的问题和给定的信息,给出详细的答案。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,给出详细的答案。
6.排序题:排序题要求考生根据题目的问题和给定的信息,按照要求的顺序进行排列。
解法:根据题目的问题和给定的佶息,仔细分析,排除干扰,按照要求的顺序进行排列。
7.计算题:计算题要求考生根据题目的问题和给定的信息,运用数学计算得出答案。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,运用数学计算得出答案。
8.简答题:简答题要求考生根据题目的问题和给定的信息,给出简短的答案。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,给出简短的答案。
9.完形填空:完形填空要求考生根据文章的内容,从文中空缺处填入正确的单词或词组。
解法:根据文章的内容,仔细分析,排除干扰,从文中空缺处填入正确的单词或词组。
10.阅读理解:阅读理解要求考生根据文章的内容,回答问题或做出判断。
解法:根据文章的内容,仔细分析,排除干扰,回答问题或做出判断。
11.词汇题:词汇题要求考生根据题目的问题和给定的单词,找出正确的答案。
解法:根据题目的问题和给定的单词,仔细分析,排除干扰,找出正确的答案。
12.语法题:语法题要求考生根据题目的问题和给定的句子,选择正确的语法形式。
排列组合二十种经典解法!(教学材料)

超全的排列组合解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:120
(4)定元、定位优先排.在有限制条件的排列、组合问 题中,有时限定某元素必须排在某位置,某元素不能排在 某位置;有时限定某位置只能排(或不能排)某元素.这种 特殊元素(位置)解题时要优先考虑.
排列组合题型大全
重点难点 重点:1.两个计数原理的理解和应用. 2.排列与组合的定义、计算公式,组合数的两个性质. 难点:1.如何区分实际问题中的“类”与“步”. 2.组合数的性质和有限制条件的排列组合问题.
知识归纳 1.分类计数原理 完成一件事,有两类不同方案,在第 1 类方案中有 m 种不同的方法,在第 2 类方案中有 n 种不同的方法, 那么完成这件事共有 N=m+n 种不同的方法.
分析:甲、乙相邻看作一个元素与其它 元素一块排,由于丙不排在第1天也不排在 第7天,因此按甲乙的排位进行分类.
解析:甲、乙相邻的所有方案有 A22A66=1440 种;其 中丙排在 10 月 1 日的和丁排在 10 月 7 日的一样多,各 有:A22A55=240 种,其中丙排在 10 月 1 日且丁排在 10 月 7 日的有 A22A44=48 种,故符合题设要求的不同安排方 案有:1440-2×240+48=1008 种,故选 C.
2.分步计数原理 完成一件事,需要分成两个步骤,做第一步有 m 种不同 的方法,做第二步有 n 种不同的方法,那么完成这件事共有 N =m×n 种不同的方法. 3.排列 从 n 个不同元素中,取出 m(m≤n)个元素,按照一定的 顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个 排列.所有排列的个数,叫做从 n 个不同元素中取出 m 个元 素的排列数,用符号 Amn 表示.
解析:将两件书法作品排在一块看作“一件”作品与 标志性建筑设计一块排好,有 A22·A22种排法,在上述“两 件”作品形成的三个空档中插入绘画作品,有 A23种插法.
∴共有不同展出方案 A22A22·A32=24 种.
答案:24
(3)定序问题属组合.排列时,如果限定某些元素或所 有元素保持一定顺序称为定序问题,定序的元素属组合问 题.
符号 Cmn 表示. (1)Cmn =AAmnmm=nn-1n-m2!·…·n-m+1
=m!nn!-m!.
规定:C0n=1. (2)Cmn =Cnn-m;
Cmn+1=Cmn +Cnm-1.
误区警示 1.正确区分“分类”与“分步”,恰当地进行分类, 使分类后不重、不漏. 2.正确区分是组合问题还是排列问题,要把“定序” 和“有序”区分开来. 3.正确区分分堆问题和分配问题
[例 1] (2010·重庆理,9)某单位安排 7 位员工在 10
月 1 日至 7 日值班,每天安排 1 人,每人值班 1 天.若 7
位员工中的甲、乙排在相邻两天,丙不排在 10 月 1 日,
丁不排在 10 月 7 日,则不同的安排方案共有( )
A.504 种
B.960 种
C.1008 种
D.1108 种
[例 4] (2010·山东理)某台小型晚会由 6 个节目组成, 演出顺序有如下要求:节目甲必须排在前两位,节目乙不 能排在第一位,节目丙必须排在最后一位,该台晚会节目 演出顺序的编排方案共有( )
A.36种
B.42种
C.48种
D.54种
分析:丙占最后一位不必考虑.“甲在 前两位,乙不在第一位”,故应以甲为标准 进行分类.
[例 3] 6 个人排一队参观某项目,其中甲、乙、丙三 人进入展厅的次序必须是先乙,再甲,最后丙,则不同的 列队方式有________种.
解析:解法 1:由于甲、乙、丙三人的次序已定,故 只须从 6 个位置中选取 3 个排上其余 3 人,有 A63种排法, 剩下的三个位置排甲、乙、丙三人,只有一种排法,∴共 有 A63=120 种.
一、“分类”与“分步”,应该如何理解与区分 (1)分类:“做一件事,完成它可以有两类办法”.每一类 办法中的每一种方法都能将这件事完成.分类时,首先据问题 特点确定一个合理的分类标准,在这个“标准”下分类能够做 到“不重不漏”. ①完成这件事的任何一种方法必须属于其中的某一 类.(不漏) ②分别在不同两类中的两种方法不能相同.(不重复)
(2)分步要做到“步骤完整”,完成了所有步骤,恰好 完成任务.步与步之间要相互独立.必须并且只需连续完 成这些步骤后,这件事才算最终完成.
所以区分一种分法பைடு நூலகம்分类还是分步就看这.种.分.法.中.的. 一.种.方.法.能.否.完.成.这.件.事.情...
二、排列、组合问题的类型及解答策略 排列、组合问题,通常都是以选择题或填空题的形式 出现在试卷上,它联系实际,生动有趣;但题型多样,解 法灵活.实践证明,备考有效的方法是将题型与解法归类, 识别模式、熟练运用.下面介绍常见排列组合问题的解答 策略. (1)相邻元素捆绑法.在解决某几个元素必须相邻问题 时,可整体考虑将相邻元素视为一个元素参与排列.
(1)当 m<n 时的排列称为选排列,排列数
Amn =n(n-1)×…×(n-m+1)=
n! n-m!.
(2)当 m=n 时的排列称为全排列,排列数
Ann=n(n-1)×…×3×2×1=n!.
规定 0!=1.
4.组合
从 n 个不同元素中取出 m(m≤n)个元素的所有组合的
个数,叫做从 n 个不同元素中取出 m 个元素的组合数.用
答案:C
(2)相离问题插空法.相离问题是指要求 某些元素不能相邻,由其它元素将它隔开, 此类问题可以先将其它元素排好,再将所指 定的不相邻的元素插入到它们的空隙及两端 位置,故称“插空法”.
[例 2] (2011·湘潭期末)2010 年上海世博会某国将展 出 5 件艺术作品,其中不同书法作品 2 件、不同绘画作品 2 件、标志性建筑设计 1 件,在展台上将这 5 件作品排成 一排,要求 2 件书法作品必须相邻,2 件绘画作品不能相 邻,则该国展出这 5 件作品不同的方案有________种.(用 数字作答)