2016届高三物理二轮复习 第一部分 专题二 功和能 第三讲 功能关系在电磁学中的应用课件

合集下载

高考物理二轮复习专题突破秘籍 (考点汇聚专题专讲专练考点串讲)功能关系在电的用

高考物理二轮复习专题突破秘籍 (考点汇聚专题专讲专练考点串讲)功能关系在电的用

拾躲市安息阳光实验学校功能关系在电学中的应用1.静电力做功与路径无关.若电场为匀强电场,则W=Fl cos α=Eql cos α;若是非匀强电场,则一般利用W=qU来求.2.磁场力又可分为洛伦兹力和安培力.洛伦兹力在任何情况下对运动的电荷都不做功;安培力可以做正功、负功,还可以不做功.3.电流做功的实质是电场对移动电荷做功.即W=UIt=Uq.4.导体棒在磁场中切割磁感线时,棒中感应电流受到的安培力对导体棒做负功,使机械能转化为电能.5.静电力做的功等于电势能的变化,即W AB=-ΔE p.1.功能关系在电学中应用的题目,一般过程复杂且涉及多种性质不同的力,因此,通过审题,抓住受力分析和运动过程分析是关键,然后根据不同的运动过程中各力做功的特点来选择相应规律求解.2.动能定理和能量守恒定律在处理电学中能量问题时仍然是首选的方法.题型1 几个重要的功能关系在电学中的应用例1如图1所示,在竖直平面内有一匀强电场,其方向与水平方向成α=30°斜向上,在电场中有一质量为m、电量为q的带电小球,用长为L的不可伸长的绝缘细线挂于O点,当小球静止于M点时,细线恰好水平.现用外力将小球拉到最低点P,然后无初速度释放,则以下判断正确的是( )图1A.小球再次到达M点时,速度刚好为零B.小球从P到M过程中,合外力对它做了3mgL的功C.小球从P到M过程中,小球的机械能增加了3mgLD.如果小球运动到M点时,细线突然断裂,小球以后将做匀变速曲线运动审题突破小球静止在M时,受几个力的作用?重力和电场力的大小关系是什么?小球由P到M的过程中,各力做功是多少?解析小球从P到M的过程中,线的拉力不做功,只有电场力和小球重力做功,它们的合力也是恒力,大小为3mg,方向水平向右,所以小球再次到达M点时,速度最大,而不是零,选项A错.小球从P到M过程中,电场力与重力的合力大小为3mg,这个方向上位移为L,所以做功为3mgL,选项B正确.小球从P到M过程中,机械能的增加量等于电场力做的功,由于电场力为2mg,由P到M沿电场线方向的距离为d=L sin 30°+L cos 30°=L2 (1+3),故电场力做功为2mg·d=mgL(1+3),故选项C错误.如果小球运动到M点时,细线突然断裂,小球的速度方向竖直向上,所受合外力水平向右,小球将做匀变速曲线运动,选项D正确.答案BD以题说法在解决电学中功能关系问题时应注意以下几点:(1)洛伦兹力在任何情况下都不做功;(2)电场力做功与路径无关,电场力做的功等于电势能的变化;(3)力学中的几个功能关系在电学中仍然成立.如图2所示,竖直向上的匀强电场中,绝缘轻质弹簧竖直立于水平地面上,一质量为m的带正电小球在外力F的作用下静止于图示位置,小球与弹簧不连接,弹簧处于压缩状态.现撤去F,小球从静止开始运动到离开弹簧的过程中,重力、电场力、弹簧弹力对小球做的功分别为W1、W2和W3,不计空气阻力,则上述过程中( )图2A.小球与弹簧组成的系统机械能守恒B.小球重力势能的变化为W1C.小球动能的变化为W1+W2+W3D.小球机械能的变化为W1+W2+W3答案C解析由于电场力做功,小球与弹簧组成的系统机械能不守恒,选项A错误.重力对小球做的功为W1,小球重力势能的变化为-W1,选项B错误.由动能定理可知,小球动能的变化为W1+W2+W3,选项C正确.由功能关系可知,小球机械能的变化为W2,选项D错误.题型2 应用动能定理分析带电体在电场中的运动例2如图3所示,虚线PQ、MN间存在如图所示的水平匀强电场,一带电粒子质量为m=2.0×10-11 kg、电荷量为q=+1.0×10-5 C,从a点由静止开始经电压为U=100 V的电场加速后,垂直进入匀强电场中,从虚线MN的某点b(图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ、MN间距为20 cm,带电粒子的重力忽略不计.求:图3(1)带电粒子刚进入匀强电场时的速率v1;(2)水平匀强电场的场强大小;(3)ab两点间的电势差.审题突破带电粒子在水平匀强电场中做什么运动?速度与电场方向成30°角,隐含条件是什么?解析(1)由动能定理得:qU=12mv21代入数据得v1=104 m/s(2)粒子沿初速度方向做匀速运动:d=v1t粒子沿电场方向做匀加速运动:v y=at由题意得:tan 30°=v1v y由牛顿第二定律得:qE=ma联立以上各式并代入数据得:E =3×103 N/C =1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0联立以上各式并代入数据得:U ab =400 V.答案 (1)104m/s (2)1.732×103N/C (3)400 V以题说法 1.电场力做功与重力做功的特点类似,都与路径无关. 2.对于电场力做功或电势差的计算,选用动能定理往往最简便快捷,但运用动能定理时要特别注意运动过程的选取.如图4所示,在光滑绝缘水平面上,用长为2L 的绝缘轻杆连接两个质量均为m 的带电小球A 和B .A 球的带电量为+2q ,B 球的带电量为-3q ,两球组成一带电系统.虚线MN 与PQ 平行且相距3L ,开始时A 和B 分别静止于虚线MN 的两侧,虚线MN 恰为AB 两球连线的垂直平分线.若视小球为质点,不计轻杆的质量,在虚线MN 、PQ 间加上水平向右的电场强度为E 的匀强电场后,系统开始运动.试求: 图4(1)B 球刚进入电场时,带电系统的速度大小;(2)带电系统向右运动的最大距离和此过程中B 球电势能的变化量; (3)A 球从开始运动至刚离开电场所用的时间.答案 (1)2qEL m (2)73L 4qEL (3)(32-2) mLqE解析 (1)设B 球刚进入电场时带电系统的速度为v 1,由动能定理得 2qEL =12×2mv 21解得:v 1=2qELm(2)带电系统向右运动分为三段:B 球进入电场前、带电系统在电场中、A 球出电场后.设A 球出电场后移动的最大位移为x ,对于全过程,由动能定理得 2qEL -qEL -3qEx =0解得x =L3,则B 球移动的总位移为x B =73LB 球从刚进入电场到带电系统从开始运动到速度第一次为零时的位移为43L其电势能的变化量为ΔE p =-W =3qE ·43L =4qEL(3)取向右为正方向,B 球进入电场前,带电系统做匀加速运动:a 1=2qE 2m =qE m ,t 1=v 1a 1=2mLqE带电系统在电场中时,做匀减速运动:a 2=-qE 2m设A 球刚出电场时速度为v 2,由动能定理得: -qEL =12×2m (v 22-v 21)解得:v 2=qEL mt 2=v 2-v 1a 2=2(2-1)mL qE解得总时间t =t 1+t 2=(32-2)mL qE题型3 功能观点在电磁感应问题中的应用例3 如图5所示,固定的光滑金属导轨间距为L ,导轨电阻不计,上端a 、b 间接有阻值为R 的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中.质量为m 、电阻为r 的导体棒与固定弹簧相连后放在导轨上.初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v 0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.已知弹簧的劲度系数为k ,弹簧的中心轴线与导轨平行. 图5(1)求初始时刻通过电阻R 的电流I 的大小和方向;(2)当导体棒第一次回到初始位置时,速度变为v ,求此时导体棒的加速度大小a ;(3)导体棒最终静止时弹簧的弹性势能为E p ,求导体棒从开始运动直到停止的过程中,电阻R 上产生的焦耳热Q .审题突破 导体棒第一次回到初始位置时,受几个力的作用?最终导体棒静止时,在几个力作用下平衡?具体位置在哪里? 解析 (1)初始时刻,导体棒产生的感应电动势E 1=BLv 0通过R 的电流大小I 1=E 1R +r =BLv 0R +r电流方向为b →a(2)导体棒产生的感应电动势为E 2=BLv感应电流I 2=E 2R +r =BLvR +r导体棒受到的安培力大小F =BIL =B 2L 2vR +r,方向沿导轨向上根据牛顿第二定律有mg sin θ-F =ma解得a =g sin θ-B 2L 2vm R +r(3)导体棒最终静止,有mg sin θ=kx压缩量x =mg sin θk设整个过程回路产生的焦耳热为Q 0,根据能量守恒定律有12mv 20+mgx sin θ=E p +Q 0 Q 0=12mv 20+mg sin θ2k-E p电阻R 上产生的焦耳热Q =R R +r Q 0=RR +r [12mv 2+mg sin θ2k-E p ]答案 (1)BLv 0R +r ,电流方向为b →a(2)g sin θ-B 2L 2vm R +r(3)RR +r [12mv 20+mg sin θ2k-E p ]以题说法 导体棒在匀强磁场中运动时棒中的感应电流受到的安培力是变力,所以安培力做的功只能由动能定理或能量守恒定律来求解.在如图6所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小均为B 的匀强磁场,区域Ⅰ的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L ,一个质量为m 、电阻为R 、边长也为L 的正方形导线框,由静止开始沿斜面下滑,t 1时刻ab 边刚越过GH 进入磁场Ⅰ区,此时线框恰好以速度v 1做匀速直线运动;t 2时刻ab 边下滑到JP 与MN 的中间位置,此时线框又恰好以速度v 2做匀速直线运动.重力加速度为g ,下列说法中正确的是 ( )图6A .线框两次匀速直线运动的速度之比v 1∶v 2=2∶1B .从t 1到t 2过程中,线框中通过的电流方向先是a →d →c →b ,然后是a →b →c →dC .从t 1到t 2过程中,线框克服安培力做功的大小等于重力势能的减少量D .从t 1到t 2过程中,有3mgL sin θ2+mv 21-v 222的机械能转化为电能答案 BD解析 根据题意,第一次匀速运动时,B 2L 2v 1R=mg sin θ,第二次匀速运动时,4B 2L 2v 2R=mg sin θ,解得v 1∶v 2=4∶1,选项A 错误;根据楞次定律可以判断,选项B 中所判断的感应电流的方向是正确的,选项B 正确;线框克服安培力做的功等于线框产生的热量,根据能量守恒定律,线框克服安培力做的功等于重力势能的减少量和动能的减少量之和,重力势能的减少量为3mgL sin θ2,动能的减少量为mv 21-v 222,选项C 错误,选项D 正确.7.应用动力学和功能观点处理电学综合问题审题示例(14分)如图7所示,在水平方向的匀强电场中有一表面光滑、与水平面成45°角的绝缘直杆AC,其下端(C端)距地面高度h=0.8 m.有一质量为500 g的带电小环套在直杆上,正以某一速度沿杆匀速下滑.小球离杆后正好通过C端的正下方P点处.(g取10 m/s2)求:图7(1)小环离开直杆后运动的加速度大小和方向;(2)小环从C运动到P过程中的动能增量;(3)小环在直杆上匀速运动时速度的大小v0.审题模板答题模板(1)小环沿杆做匀速运动,受力如图所示故qE cos 45°=mg cos 45°即qE=mg (1分)小环离开直杆后,所受合外力为F合=2mg=maa =2g=10 2 m/s2 (2分)方向垂直于杆向下(1分)(2)小环从C运动到P的过程中动能的增量为ΔE k=W重+W电(2分)其中W重=mgh=4 J.W电=0,所以ΔE k=4 J(3分)(3)环离开杆做类平抛运动平行杆方向做匀速运动:22h=v0t (2分)垂直杆方向做匀加速运动:22h=12at2 (2分)解得v0=2 m/s(1分)答案(1)10 2 m/s2,方向垂直于杆向下(2)4 J (3)2 m/s如图8,竖直平面坐标系xOy的第一象限,有垂直xOy面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B和E;第四象限有垂直xOy 面向里的水平匀强电场,大小也为E;第三象限内有一绝缘光滑竖直放置的半径为R的半圆轨道,轨道最高点与坐标原点O相切,最低点与绝缘光滑水平面相切于N.一质量为m的带电小球从y轴上(y>0)的P点沿x轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O,且水平切入半圆轨道并沿轨道内侧运动,过N点水平进入第四象限,并在电场中运动(已知重力加速度为g ). 图8(1)判断小球的带电性质并求出其所带电荷量; (2)P 点距坐标原点O 至少多高;(3)若该小球以满足(2)中OP 最小值的位置和对应速度进入第一象限,通过N 点开始计时,经时间t =2R /g 小球距坐标原点O 的距离s 为多远? 答案 (1)正电 mg E (2)2EBRg(3)27R 解析 (1)小球进入第一象限正交的电场和磁场后,在垂直磁场的平面内做圆周运动,说明重力与电场力平衡,设小球所带电荷量为q ,则有qE =mg ① 解得:q =mgE②又电场方向竖直向上,故小球带正电.(2)设小球做匀速圆周运动的速度为v 、轨道半径为r ,由洛伦兹力提供向心力得:qBv =mv 2/r ③小球恰能通过半圆轨道的最高点并沿轨道运动,则应满足:mg =mv 2/R ④由②③④得:r =EBRg⑤ 即PO 的最小距离为:y =2r =2EBR g⑥ (3)小球由O 运动到N 的过程中设到达N 点的速度为v N ,由机械能守恒定律得:mg ·2R =12mv 2N -12mv2⑦由④⑦解得:v N =5gR ⑧ 小球从N 点进入电场区域后,在绝缘光滑水平面上做类平抛运动,设加速度为a ,则有:沿x 轴方向有:x =v N t ⑨ 沿电场方向有:z =12at2⑩由牛顿第二定律得:a =qE /m ⑪t 时刻小球距O 点为:s =x 2+z 2+2R2=27R(限时:50分钟) 一、单项选择题1. (2013·新课标Ⅰ·16)一水平放置的平行板电容器的两极板间距为d ,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计).小孔正上方d 2处的P 点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移d3,则从P 点开始下落的相同粒子将 ( ) A .打到下极板上 B .在下极板处返回 C .在距上极板d2处返回 D .在距上极板25d 处返回答案 D解析 粒子两次落到小孔的速度相同,设为v ,下极板向上平移后由E =Ud知场强变大,故粒子第二次在电场中减速运动的加速度变大,由v 2=2ax 得第二次减速到零的位移变小,即粒子在下极板之上某位置返回,设粒子在距上极板h 处返回,对粒子两次运动过程应用动能定理得mg (d 2+d )-qU =0,mg (d2+h )-q U23d ·h =0.两方程联立得h =25d ,选项D 正确.2. 将带正电的甲球放在乙球的左侧,两球在空间形成了如图1所示的稳定的静电场,实线为电场线,虚线为等势线.A 、B 两点与两球球心的连线位于同一直线上,C 、D 两点关于直线AB 对称,则 ( )图1A .乙球一定带负电B .C 点和D 点的电场强度相同C .正电荷在A 点具有的电势能比其在B 点具有的电势能小D .把负电荷从C 点移至D 点,电场力做的总功为零 答案 D解析 电场线从正电荷出发指向负电荷,根据电场线知乙球左侧带负电,右侧带正电,整体带电情况不确定,A 错误;电场强度是矢量,C 、D 两点电场强度的方向不同,B 错误;电场线的方向是电势降落最快的方向,A 点的电势比B 点的电势高,由电势能的定义式E p =qφ知,正电荷在A 点的电势能比在B 点的电势能大,C 错误;C 、D 两点在同一等势面上,故将电荷从C 点移至D 点电势能不变,电场力做功是电势能变化的量度,故电场力不做功,D 正确.3. 如图2所示,在一个点电荷形成的电场中,M 、N 、L 是三个间距相等的等势面.一重力不计的带电粒子从p 点无初速度释放后,沿图中直线依次经过q 、k 两点,且p 、q 、k 三点是带电粒子的运动轨迹与等势面的交点.设带电粒子从p 点到q 点电场力做的功为W pq ,从q 点到k 点电场力做的功为W qk ,则 ( )图2A.W pq=W qkB.W pq<W qkC.粒子从p点到q点做匀加速直线运动D.粒子从p点到q点其电势能逐渐减小答案D解析离点电荷越近,等势面分布越密集,即离点电荷越近的地方间距相等的等势面间的电势差越大,则有U pq>U qk,由W=qU得W pq>W qk,选项A、B错误;粒子从静止开始运动,电场力做正功,电势能逐渐减小,选项D正确;从p 到q电场力逐渐减小,则加速度逐渐减小,选项C错误.4.如图3所示,质量为m的物块(可视为质点),带正电Q,开始时让它静止在倾角α=60°的固定光滑绝缘斜面顶端,整个装置放在水平方向向左、大小为E=3mg/Q的匀强电场中(设斜面顶端处电势为零),斜面高为H.释放后,物块落地时的电势能为ε,物块落地时的速度大小为v,则( )图3A.ε=33mgH B.ε=-33mgHC.v=2gH D.v=2gH 答案C解析由电场力做功等于电势能的变化可得物块落地时的电势能为ε=-QEH/tan 60°=-3mgH/3=-mgH,选项A、B错误;由动能定理,mgH +QEH/tan 60°=12mv2,解得v=2gH,选项C正确,D错误.二、多项选择题5.如图4所示,绝缘轻弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q(可视为质点)固定在光滑绝缘斜面上的M点,且在通过弹簧中心的直线ab上.现把与Q大小相同、电性相同的小球P,从N点由静止释放,在小球P与弹簧接触到压缩至最短的过程中(弹簧始终在弹性限度内),以下说法正确的是( )图4A.小球P和弹簧组成的系统机械能守恒B.小球P和弹簧刚接触时其速度最大C.小球P的动能与弹簧弹性势能的总和增大D.小球P的加速度先减小后增大答案CD解析小球P沿斜面向下运动的过程中,在接触弹簧前,库仑斥力变小,合力变小,加速度变小,小球向下加速,接触弹簧后,弹簧弹力增大,故受到的合力沿斜面先向下再向上,小球的加速度先向下减小,再向上增加,小球先向下加速再向下减速,B 错误,D 正确;对于小球P 和弹簧组成的系统,由于电场力对其做正功 ,故机械能要增大,A 错误;全过程只发生了小球P 的动能、重力势能、电势能与弹簧的弹性势能的相互转化,由于重力和电场力都做正功,重力势能和电势能的总和减小,故小球P 的动能与弹簧弹性势能的总和增大,C 正确.6. 如图5所示,在倾角为θ的斜面上固定两根足够长的光滑平行金属导轨PQ 、MN ,相距为L ,导轨处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下.有两根质量均为m 的金属棒a 、b ,先将a 棒垂直导轨放置,用跨过光滑定滑轮的细线与物块c 连接,连接a 棒的细线平行于导轨,由静止释放c ,此后某时刻,将b 也垂直导轨放置,a 、c 此刻起做匀速运动,b 棒刚好能静止在导轨上,a 棒在运动过程中始终与导轨垂直,两棒与导轨间接触良好,导轨电阻不计.则 ( ) 图5A .物块c 的质量是2m sin θB .b 棒放上导轨前,物块c 减少的重力势能等于a 、c 增加的动能C .b 棒放上导轨后,物块c 减少的重力势能等于回路消耗的电能D .b 棒放上导轨后,a 棒中电流大小是mg sin θBL答案 AD解析 b 棒恰好静止,受力平衡,有mg sin θ=F 安,对a 棒,安培力沿导轨平面向下,由平衡条件得mg sin θ+F 安=m c g ,由上面的两式可得m c =2m sinθ,选项A 正确;根据机械能守恒定律知,b 棒放上导轨之前,物块c 减少的重力势能应等于a 棒、物块c 增加的动能与a 棒增加的重力势能之和,选项B 错误;根据能量守恒定律可知,b 棒放上导轨后,物块c 减少的重力势能应等于回路消耗的电能与a 棒增加的重力势能之和,选项C 错误;对b 棒,设通过的电流为I ,由平衡条件mg sin θ=F 安=BIL ,得I =mg sin θBL ,a棒中的电流也为I =mg sin θBL,选项D 正确.7. 如图6所示,间距为L 、电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m 、电阻也为R 的金属棒,金属棒与导轨接触良好.整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q .下列说法正确的是 ( )图6A .金属棒在导轨上做匀减速运动B .整个过程中金属棒克服安培力做功为12mv 2C .整个过程中金属棒在导轨上发生的位移为2qRBLD .整个过程中电阻R 上产生的焦耳热为12mv 2答案 BC解析 由题意可知金属棒在安培力作用下做减速运动直至静止,由于速度一直减小,故安培力的大小一直减小,金属棒的加速度减小,故金属棒做加速度减小的减速运动,选项A 错误.在整个过程中,只有安培力做负功,由动能定理可知金属棒克服安培力做功为12mv 2,选项B 正确.由q =ΔΦR 总可知q=BLx 2R ,解得x =2qRBL,选项C 正确.由B 项可知整个回路中产生的焦耳热为12mv 2,电阻R 上产生的焦耳热为14mv 2,选项D 错误. 三、非选择题8. 如图7所示,一长为h 2内壁光滑的绝缘细管竖直放置.管的底部固定一电荷量为Q (Q >0)的点电荷M .现在管口A 处无初速释放一电荷量为q (q >0)、质量为m的点电荷N ,N 在距离底部点电荷为h 1的B 处速度恰好为零.再次从A 处无初速度地释放电荷量为q 、质量为3m 的点电荷P (已知静电常数为k ,重力加速度为g ).求: 图7 (1)电荷P 运动过程中速度最大处与底部点电荷间的距离; (2)电荷P 运动到B 处时的速度大小. 答案 (1)kQq3mg(2)2 g h 2-h 13解析 (1)电荷P 运动到重力等于电场力时,速度最大,距底部距离为r ,则有3mg =kQqr 2,解得r = kQq 3mg(2)设电荷P 运动到B 处时的速度为v B ,由动能定理, 有3mg (h 2-h 1)-qU AB =12×3mv 2B依题意有mg (h 2-h 1)=qU AB 联立两式可得:v B =2g h 2-h 139. 如图8所示,MN 和PQ 为固定在绝缘水平面上两平行光滑金属导轨,导轨左端MP 间接有阻值为R 1=2 Ω的导线;导轨右端接有与水平轨道相切、半径r =0.5 m 、内壁光滑的半圆金属轨道.导轨间距L =0.4 m ,电阻不计.导轨所在平面abcd 区域内有竖直向上、B =0.5 T 的匀强磁场.导轨上长度也为0.4 m 、质量m =0.6 kg 、电阻R 2=1 Ω的金属棒AB 以v 0=6 m/s 的速度进入磁场区域,离开磁场区域后恰好能到达半圆轨道的最高点,运动中金属棒始终与导轨保持良好接触.已知重力加速度g =10 m/s 2.求: 图8(1)金属棒AB 刚滑出磁场右边界cd 时的速度v 的大小; (2)金属棒滑过磁场区域的过程中,导线R 1中产生的热量Q . 答案 (1)5 m/s (2)2.2 J解析 (1)在轨道的最高点,根据牛顿第二定律有mg =m v 21r①从金属棒刚滑出磁场到最高点,根据机械能守恒定律有12mv 21+mg ·2r =12mv 2②联立①②两式并代入数据解得v =5 m/s ③(2)在金属棒滑过磁场的过程中,根据能量关系得 Q 总=12mv 20-12mv2④对闭合回路,根据热量关系有Q =Q 总R 1+R 2R1⑤联立④⑤两式并代入数据得Q =2.2 J10.如图9所示,A 、B 为半径R =1 m 的四分之一光滑绝缘竖直圆弧轨道,在四分之一圆弧区域内存在着E =1×106V/m 、竖直向上的匀强电场,有一质量m =1 kg 、带电量q =1.4×10-5C 正电荷的物体(可视为质点),从A 点的正上方距离A 点H 处由静止开始自由下落(不计空气阻力),BC 段为长L =2 m 、与物体间动摩擦因数为μ=0.2的粗糙绝缘水平面,CD 段为倾角θ=53°且离地面DE 高h =0.8 m 的斜面.(1)若H =1 m ,物体能沿轨道AB 到达最低点B ,求它到达B 点时对轨道的压力大小;(2)通过你的计算判断:是否存在某一H 值,能使物体沿轨道AB 经过最低点B 后最终停在距离B 点0.8 m 处;(3)若高度H 满足:0.85 m≤H ≤1 m,请通过计算表示出物体从C 处射出后打到的范围.(已知sin 53°=0.8,cos 53°=0.6.不需要计算过程,但要有具体的位置,不讨论物体反弹以后的情况) 图9答案 (1)8 N (2)不存在 (3)在斜面上距离D 点59 m 范围内 在水平面上距离D 点0.2 m 范围内解析 (1)物体由初始位置运动到B 点的过程中根据动能定理有mg (R +H )-qER =12mv 2B到达B 点时由支持力F N 、重力、电场力的合力提供向心力F N -mg +qE =m v 2BR,解得F N =8 N根据牛顿第三定律,支持力与压力大小相等、方向相反 所以物体对轨道的压力大小为8 N ,方向竖直向下(2)要使物体沿轨道AB 到达最低点B ,当支持力为0时,最低点有个最小速度v ,则qE -mg =m v 2R解得v =2 m/s在粗糙水平面滑行时的加速度a =μg =2 m/s 2物体最终停止的位置距离B 为x =v 22a=1 m>0.8 m故不存在某一H 值,使物体沿着轨道AB 经过最低点B 后,停在距离B 点0.8 m 处.(3)在斜面上距离D 点59 m 范围内(如图PD 之间区域)在水平面上距离D 点0.2 m 范围内(如图DQ 之间区域)。

高考物理二轮复习专题二 功和能(PPT版)共38张

高考物理二轮复习专题二 功和能(PPT版)共38张

1 2
mv12
4.机械能守恒定律的三种表达方式
(1)始末状态:
mgh1
1 2
mv12
mgh2
1 2
mv
2 2
(应选取零势能参考平面)
(2)能量转化:ΔEk(增)=ΔEp(减) (3)研究对象:ΔEA=-ΔEB
5.几种常见的功能关系
常见的几种力做功
能量变化
重力做功
重力势能变化ΔEp
弹簧的弹力做功
弹性势能变化ΔEp
μmgs时,弹簧的最大弹力要大于μmg,故A错误。
物块加速运动时的加速度为μg 答案 AC 对乙施加水平向右的瞬时速度v,对木板甲来说,因为乙对甲的摩 擦力μmg小于木板与地面之间的最大静摩擦力2μmg,可知木板甲是不动的,则
功 考 解与向读能 T时TT12..741重重间::4上弹:基过连图抛簧础程接像运参讲与体动与应方中2中 的0用 法的1的 功8。 。功动 能如 如能能 问将 涉问-题动 及题能 弹定 簧T功理 、8能:与 连弹问图 接簧20题像 体参19等 等与简的的单功综能TT-T应x411图合问用::5汽物:像机考题车块械查难匀在能对度速斜守基较运面恒础大动、定,知考时平2律识查0的面2在的学0功上“理生率运鼓解的动形能分时轮力析对”。综应中合的的能Ek 对在=乙(忽(④设m解确T(静长 (③解体的小解5为解忽④由②若(大下((静典成((K5为对落设滑T12122323144E××tg)))))))))k:乙摩的略在小析;止度在析,动球析2析略在公匀还小滑止例32乙;此块:a11能始若恒若研若研始根物物此物=甲000n00m由 擦 动 空 变 球 释 对匀 摩 静 空 变 式 加 有 为 至 释 6施 时 加°33量末要力小 究要究末mm据块块时块θ角0,kk物设对-动力能气加到放应 加(擦止气加Δ速其Δ底放加小速//由转状使所球 对使对状平(加在对在gg1ss,(vxμ一多的的,,)块 A物=能作E阻速达时的 速因在阻速运他端时水球度=受受于化态小做从 象小象态m设衡速斜甲斜xkBa轻选汽汽g加块带乙t定用力运圆的水 过数图力运动外时的平从为=到到m::球总高 :球::圆条运面施面可ΔΔΔ+h质)车车2未速从-=EEE理下,动轨高平 程均示,动达力重高向高零(的的。运功为 运环x件该该动、加、知2μAAkE物弹在在0(知运Akm==先过道度位 中为位过最和力度右的EH阻阻动的动对h增有过过的平水平,2乙k点--a处的=簧g水水ΔΔ0,动乙做程最移 的常置程大内的的位hh-力力过两过A所 ))程程时面平面t江EE1=开x''由A套球图应应平平BB-时;=Δ匀中低为 某数中速力功瞬置,大大程种程以=μ当处求中中间上向上苏E始E静 在的线m满满路路,k加的端点。的度做率时只xp小 小中计中不由甲由力小小为运右运苏乙0到g(止,直弹与足足面面减整,速某时某时功速有,x为为能算能能牛应、静有的球球动的动t、0,再=释杆力逐t的的上上)-个运点轨点满度一,轴11 通方通根顿用μ乙止:大这的的时瞬时锡回..放上为渐m条条匀匀过动道足处,,v所=过法过据第动共释有小有些动动对时对、,到g(( 乙,,N减件件速速由程下应应对的,x围圆圆m二能速放动:F:力能能应速应1常;A,恰小;当。。行行=,故动中端g选选小条面点轻弧弧定定后,能EE做的度的m、h求好;乙kk驶驶B能摩固=取取此球件积整a杆轨轨律与理 与一E功EvE镇项K小;未,在kkk,,定最擦定零零求过的为速速表个对道道得乙时,时--起之四错在球xx从==甲理终产在势势图出图程支度度示过A最最μ=间间做mm和市误斜到甲球μm上得甲生直能能像h像中持aa物程高高tt匀m等调;面达,''g的的上整的停。。因m、的杆参参甲=力g体=,点点减于由研上圆mx关 关m滑g个弹止此乙热底考考;受为速且且(速而系a动a)有 H轨系系如过力后v,,物量端平平地N可度-此不不求运甲统能2(道图图,图程为,mR体由为。面面面此得的时脱脱不动做机定)底像像g所中F=均牛Q))的时a变瞬离离1出直匀 械s理端=是是=i,,示n静顿对根摩给μ化μ时轨轨来至减m能可时gθm,止第A据直擦甲v,量功道道-,停速改故知可g'对μ、2。二Δ动杆力一m率,,止运变AW试试求x轨Bg项=定能与仍初和等动,f量求求 滑此道c=正律o定水为速轻-于,。2小小m块s动过的θμ得理平向度杆额v球球)m下能程压2·N得面 后v整定,g,由由故滑E中力-则s=k的=D甲至;乙底端时的动能Ek,故A项错误,C项正确;根据牛顿第二定律得mg cos θ-μmgsin θ= 力。 小物块的质量为m,从A点向左沿水平地面运动,压缩弹簧后被弹回,运动

高考物理二轮复习专题功和能讲含解析.doc

高考物理二轮复习专题功和能讲含解析.doc

功和能考试大纲纵观近几年高考试题,预测2019年物理高考试题还会考:1、从近几年高考来看,关于功和功率的考查,多以选择题的形式出现,有时与电流及电磁感应相结合命题.2、动能定理多数题目是与牛顿运动定律、平抛运动、圆周运动以及电磁学等知识相结合的综合性试题;动能定理仍将是高考考查的重点,高考题注重与生产、生活、科技相结合,将对相关知识的考查放在一些与实际问题相结合的情境中。

3、机械能守恒定律,多数是与牛顿运动定律、平抛运动、圆周运动以及电磁学等知识相结合的综合性试题;高考题注重与生产、生活、科技相结合,将对相关知识的考查放在一些与实际问题相结合的情境中。

考向01 功和功率 1.讲高考 (1)考纲要求掌握做功正负的判断和计算功的方法;理解tWP =和Fv P =的关系,并会运用;会分析机车的两种启动方式. (2)命题规律从近几年高考来看,关于功和功率的考查,多以选择题的形式出现,有时与电流及电磁感应相结合命题.案例1. 如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度,木箱获得的动能一定( )A. 小于拉力所做的功B. 等于拉力所做的功C. 等于克服摩擦力所做的功D. 大于克服摩擦力所做的功【来源】2018年普通高等学校招生全国统一考试物理(全国II 卷) 【答案】 A【解析】试题分析:受力分析,找到能影响动能变化的是那几个物理量,然后观测这几个物理量的变化即可。

木箱受力如图所示:木箱在移动的过程中有两个力做功,拉力做正功,摩擦力做负功,根据动能定理可知即:,所以动能小于拉力做的功,故A正确;无法比较动能与摩擦力做功的大小,CD错误。

故选A点睛:正确受力分析,知道木箱在运动过程中有那几个力做功且分别做什么功,然后利用动能定理求解末动能的大小。

案例2.滑雪运动深受人民群众的喜爱,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB,从滑道的A点滑行到最低点B的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中A. 所受合外力始终为零B. 所受摩擦力大小不变C. 合外力做功一定为零D. 机械能始终保持不变【来源】2018年全国普通高等学校招生同一考试理科综合物理试题(天津卷)【答案】C【点睛】考查了曲线运动、圆周运动、动能定理等;知道曲线运动过程中速度时刻变化,合力不为零;在分析物体做圆周运动时,首先要弄清楚合力充当向心力,然后根据牛顿第二定律列式,基础题,难以程度适中.案例3.【2017·新课标Ⅱ卷】如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环。

2016届新课标高考物理第二轮复习课件5(功和能)AqwlwK

2016届新课标高考物理第二轮复习课件5(功和能)AqwlwK
• 答案: ABD
一分耕耘一分收获
• 4.(多选)(2015·威海二模)如图所示,轻弹簧 上端通过一轻绳固定,下端拴一小球,小球 与光滑的三角形斜面接触,弹簧处于竖直状 态.现用力F竖直向上推斜面,使斜面缓慢向 上运动直至弹簧与斜面平行,则在此过程中, 以下说法正确的是( )
• A.小球对斜面的压力一直增大
一分耕耘一分收获
解析: 由牛顿第二定律得第 1 s 和第 2 s 内的加速度分别 为 2 m/s2 和 1 m/s2,第 1 s 末和第 2 s 末的速度分别为 v1=a1t1 =2 m/s,v2=v1+a2t2=3 m/s,则选项 A 错误;2 s 内的位移 x =v21t1+v1+2 v2t2=3.5 m,则选项 B 错误;第 1 s 末拉力的瞬时 功率 P1=Fv1=4 W,第 2 s 末拉力的瞬时功率 P2=Fv2=3 W, 则选项 C 正确,D 错误.
答案: ABD
一分耕耘一分收获
7.如图所示,可视为质点的总质量为 m=60 kg 的滑板运 动员(包括装备),从高为 H=15 m 的斜面 AB 的顶端 A 点由静 止开始沿斜面下滑,在 B 点进入光滑的四分之一圆弧 BC,圆 弧 BC 的半径为 R=5 m,运动员经 C 点沿竖直轨道冲出向上 运动,经时间 t=2 s 后又落回轨道.若运动员经 C 点后在空中 运动时只受重力,轨道 AB 段粗糙、BC 段光滑(g=10 m/s2).求:
一分耕耘一分收获
谢谢观看!
一分耕耘一分收获
答案: B
一分耕耘一分收获
6.(多选)2014 年春晚中开心麻花团队打造的创意形体秀 《魔幻三兄弟》给观众留下了很深的印象,该剧采用了“斜 躺”的表演方式,三位演员躺在倾角为 30°的斜面上完成一系 列动作,摄像机垂直于斜面拍摄,让观众产生演员在竖直墙面 前表演的错觉.演员甲被演员乙和演员丙“竖直向上”抛出, 到最高点后恰好悬停在“空中”.已知演员甲的质量 m=60 kg,该过程中观众看到演员甲上升的“高度”为 0.8 m.设演 员甲和斜面间最大静摩擦力等于滑动摩擦力,重力加速度 g= 10 m/s2,不计空气阻力,则该过程中,下列说法正确的是( )

高考物理大二轮复习 专题二 功和能 第三讲 功能关系在电学中的应用课件

高考物理大二轮复习 专题二 功和能 第三讲 功能关系在电学中的应用课件

通过导线框的电流 I=ER=BLRv1 导线框所受安培力 F 安=BIL 对于导线框匀速运动的过程,由力的平衡条件有 F=mgsinθ+μmgcosθ+B2LR2v1 解得 B=0.50 T.
(2)导线框进入磁场区域后做匀速直线运动,并以速度 v1 匀 速穿出磁场,说明导线框的宽度等于磁场的宽度 H.
力的分力可以做功.
[答案] (1)W 电=qU W 电=qEd W 电=-ΔEp (2)①焦耳定律:Q=I2Rt ②功能关系:Q=W 克服安培力 ③能量转化:Q=W 其他能的减少量
热点考向突破
热点考向一 动力学观点和能量观点在电磁场中的应用
【典例】 (2019·郴州二模) 如图所示,一足够长的固定斜 面,倾角 θ=30°.质量为 M=0.2 kg 的绝缘长板 A,以初速度 v0 =3 m/s,沿斜面匀速下滑.空间有一沿斜面向下的匀强电场,电 场强度 E=2.5×102 N/C.质量为 m=0.1 kg,电量为 q=+4×10- 4 C 的光滑小物块 B,轻放在 A 板表面最上端.此后经时间 t=0.1 s,撤去电场,当物块速度为 v=8 m/s 时,恰好离开板 A,求:

一 部
专题综合突破

专题二
功和能
第三讲
功能关系在电学中的应用
知识体系构建
[备考点睛]
[知识建构]
1.两种功能关系 (1)电场力做功与电势能的关系 W 电=-
ΔEp. (2)克服安培力做功与电势能的关系:W 克
安=ΔE 电.
(注 1)……(注 2):详 2.一个易错点
见答案部分
洛伦兹力对运动电荷不做功,但洛伦兹
水平方向向右运动(ab 棒始终在水平导轨上运动,且垂直于水平 导轨),cd 受到 F=0.6-0.25t(N)沿斜面向上的力的作用,始终处 于静止状态.不计导轨的电阻.(sin37°=0.6,g 取 10 m/s2)

2016届高考物理二轮复习专题四功能关系和能量守恒第二讲电磁学中的功能关系和能量守恒课件

2016届高考物理二轮复习专题四功能关系和能量守恒第二讲电磁学中的功能关系和能量守恒课件
3
1
得 mg-qE=ma, 解得 E=
2 ������������ 3 ������
, 故选项 A 错误;从 A 到 C 的过程中,除重
力和弹力以外, 只有电场力做功, 电场力做功为 W=-qE(H+h)=2 ������������ (������ +ℎ ) 2 ������������ (������ +ℎ ) 2 , 可知机械能减少量为 , 电势能增加量为 mg(H+h), 3 3 3 2 1 1
第二讲 电 磁学中的功 能关系和能 量守恒
真题模拟体验
名师诠释高考
1
2
3
1.(多选)(2015四川理综,6) 如图所示,半圆槽光滑、绝缘、固定,圆心是O,最低点是P,直径MN水平.a、b是两 个完全相同的带正电小球(视为点电荷),b固定在M点,a从N点静止释放,沿半圆槽
运动经过P点到达某点Q(图中未画出)时速度为零.则小球a(
考点一
考点二
考点三
2.(多选)(2015江苏泰州第3次模拟)如图所示,水平固定一截面为正方形绝缘方 管的长度为L,空间存在电场强度为E、方向水平向右的匀强电场和磁感应强度为 B、方向竖直向下的匀强磁场.将电荷量为+q的小球从左侧管口无初速释放,已知
小球与管道各接触面间动摩擦因数均为μ,小球运动到右侧管口处时速度为v,该过
A.若微粒带正电荷,则A板一定带正电荷
B.微粒从M点运动到N点电势能一定增加 C.微粒从M点运动到N点动能一定增加 D.微粒从M点运动到N点机械能一定增加 解析:由于不知道重力和电场力大小关系,所以不能确定电场力方向,不能确定 微粒电性,也不能确定电场力对微粒做功的正负,则选项A、B、D错误;根据微粒 偏转方向可知微粒所受合外力一定是竖直向下,则合外力对微粒做正功,由动能定 理知微粒的动能一定增加,选项C正确. 答案:C

「精品」高三物理二轮复习第1部分专题2功和能第2讲机械能守恒定律功能关系课件-精品资料

「精品」高三物理二轮复习第1部分专题2功和能第2讲机械能守恒定律功能关系课件-精品资料

(3)能否到达最高点 M
最高
解析: (1)设到达斜面最低点的速度为 v,由动能定理得 mgh=12mv2, 解得:v=6 m/s>2 m/s, 故物块在传送带上先做减速运动.设减速至与传送带共速 时的位移为 x,则 x=v22-μgv02,解得 x=4 m<6 m, 所以后 2 m 物块做匀速运动,以速度 v0=2 m/s 由传送带 右端做平抛运动.在 P 处由速度分解得 tan 60°=vv0y, 又 v2y=2gR,解得 R=0.6 m.
(1)竖直圆弧轨道的半径 R; (2)物块运动到 N 点时对轨道的压力; (3)试判断物块能否到达最高点 M,若不能,请说明理由; 若能,求出物块在 M 点时对轨道的压力.
[教你审题] 第一步:审题干
提取信息
①“光滑圆弧轨道” 无摩擦力作用
物块与斜面和圆弧轨道之间
②“水平抛出”
物块离开传送带后做平抛运动
第2讲 机械能守恒定律 功能关系
核心考点聚焦
热点考向例析
考向一 机械能守恒定律的应用
如图所示,水平传送带顺时针转动,转速v0=2 m/s,左右两端长L=6 m.传送带左端有一顶端高为h=1.8 m 的光滑斜面轨道,斜面底端有一小段圆弧与传送带平滑连 接.传送带右端有一竖直放置的光滑圆弧轨道MNP,半径为 R,M、O、N在同一竖直线上,P点到传送带顶端的竖直距离 也为R.一质量为m=0.6 kg的物块自斜面的顶端由静止释放, 之后从传送带右端水平抛出,并恰好由P点沿切线落入圆弧轨 道,已知物块与传送带之间的动摩擦因数μ=0.4,OP连线与竖 直方向夹角θ=60°.(g取10 m/s2)求:
12·3mv20+2mglsin θ=mgl+2μmglcos θ+Ep
解得 v0=

高考物理二轮复习教案专题二能量与动量功和功率功能关系

高考物理二轮复习教案专题二能量与动量功和功率功能关系

功和功率 功能关系复习备考建议(1)能量观点是高中物理三大观点之一,是历年高考必考内容;或与直线运动、平抛运动、圆周运动结合,或与电场、电磁感应结合,或与弹簧、传送带、板块连接体等结合;或借助选择题单独考查功、功率、动能定理、功能关系的理解,或在计算题中考查动力学与能量观点的综合应用,难度较大.(2)对于动量问题,17年只在选择题中出现,而且是动量守恒、动量定理的基本应用,18年在计算题中出现,Ⅰ卷、Ⅱ卷都是动量守恒的基本应用,运动过程简单,综合性较低,Ⅲ卷只是用到了动量的概念,19年在计算题中出现,Ⅰ卷、Ⅲ卷都涉及动量与能量观点的综合应用,Ⅱ卷中用到了动量定理,对于动量的考察,综合性、难度有所提升,备考时应多加注意.第4课时 功和功率 功能关系 考点 功、功率的分析与计算1.恒力功的计算(1)单个恒力的功W =Fl cos α. (2)合力为恒力的功①先求合力,再求W =F 合l cos α. ②W =W 1+W 2+…. 2.变力功的计算(1)若力大小恒定,且方向始终沿轨迹切线方向,可用力的大小跟路程的乘积计算. (2)力的方向不变,大小随位移线性变化可用W =F l cos α计算. (3)F -l 图象中,功的大小等于“面积”. (4)求解一般变力做的功常用动能定理. 3.功率的计算(1)P =Wt,适用于计算平均功率;(2)P =Fv ,若v 为瞬时速度,则P 为瞬时功率;若v 为平均速度,则P 为平均功率. 注意:力F 与速度v 方向不在同一直线上时功率为Fv cos θ.例1 (多选)(2019·山西晋中市适应性调研)如图1甲所示,足够长的固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,沿杆方向给环施加一个拉力F ,使环由静止开始运动,已知拉力F 及小环速度v 随时间t 变化的规律如图乙、丙所示,重力加速度g 取10m/s 2.则以下判断正确的是( )图1A .小环的质量是1kgB .细杆与地面间的倾角是30°C .前3s 内拉力F 的最大功率是2.25WD .前3s 内拉力对小环做功5.75J 答案 AD解析 由速度-时间图象得到环先匀加速上升,然后匀速运动,由题图可得:第1s 内,a =Δv t =0.51m/s 2=0.5 m/s 2,加速阶段:F 1-mg sin θ=ma ;匀速阶段:F 2-mg sin θ=0,联立以上三式解得:m =1kg ,sin θ=0.45,故A 正确,B 错误;第1s 内,速度不断变大,拉力的瞬时功率也不断变大,第1s 末,P =Fv 1=5×0.5W=2.5W ;第1s 末到第3s 末,P =Fv 1=4.5×0.5W=2.25W ,即拉力的最大功率为2.5W ,故C 错误;从速度-时间图象可以得到,第1 s 内的位移为0.25 m,1~3 s 内的位移为1 m ,前3 s 内拉力做的功为:W =5×0.25 J +4.5×1J =5.75J ,故D 正确. 变式训练1.(2019·河南名校联盟高三下学期2月联考)如图2所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点.每根杆上都套着一个质量相等的小滑环(图中未画出),三个滑环分别从a 、b 、c 处由静止释放,用P 1、P 2、P 3依次表示各滑环从静止滑到d 过程中重力的平均功率,则( )图2A .P 1<P 2<P 3B .P 1>P 2>P 3C .P 3>P 1>P 2D .P 1=P 2=P 3 答案 B解析 对小滑环b 受力分析,受重力和支持力,将重力沿杆的方向和垂直杆的方向正交分解,根据牛顿第二定律得,小滑环做初速度为零的匀加速直线运动的加速度为a =g sin θ(θ为杆与水平方向的夹角),由数学知识可知,小滑环的位移x =2R sin θ,所以t =2xa=2×2R sin θg sin θ=4Rg,t 与θ无关,即t 1=t 2=t 3,而三个环重力做功W 1>W 2>W 3,所以有:P 1>P 2>P 3,B 正确.2.(多选)(2019·福建龙岩市期末质量检查)如图3所示,在竖直平面内有一条不光滑的轨道ABC ,其中AB 段是半径为R 的14圆弧,BC 段是水平的.一质量为m 的滑块从A 点由静止滑下,最后停在水平轨道上C 点,此过程克服摩擦力做功为W 1.现用一沿着轨道方向的力推滑块,使它缓慢地由C 点推回到A 点,此过程克服摩擦力做功为W 2,推力对滑块做功为W ,重力加速度为g ,则下列关系中正确的是( )图3A .W 1=mgRB .W 2=mgRC .mgR <W <2mgRD .W >2mgR 答案 AC解析 滑块由A 到C 的过程,由动能定理可知mgR -W 1=0,故A 对;滑块由A 到B 做圆周运动,而在推力作用下从C 经过B 到达A 的过程是一个缓慢的匀速过程,所以从A 到B 的过程中平均支持力大于从B 到A 的平均支持力,那么摩擦力从A 到B 做的功大于从B 到A 做的功,而两次经过BC 段摩擦力做功相等,故W 2<W 1=mgR ,故B 错;滑块由C 到A 的过程中,由能量守恒可知,推力对滑块做的功等于滑块重力势能增加量与克服摩擦力所做的功两部分,即W -mgR -W 2=0,即W =W 1+W 2,由于W 2<W 1=mgR ,所以mgR <W <2mgR ,故C 对,D 错.考点 功能关系的理解和应用1.几个重要的功能关系(1)重力做的功等于重力势能的减少量,即W G =-ΔE p . (2)弹力做的功等于弹性势能的减少量,即W 弹=-ΔE p . (3)合力做的功等于动能的变化量,即W =ΔE k .(4)重力(或系统内弹力)之外的其他力做的功等于机械能的变化量,即W 其他=ΔE . (5)系统内一对滑动摩擦力做的功是系统内能改变的量度,即Q =F f ·x 相对. 2.理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化可以通过做功来实现.(2)功是能量转化的量度,功和能的关系,一是体现在不同性质的力做功对应不同形式的能转化,二是做功的多少与能量转化的多少在数值上相等. 3.应用(1)分析物体运动过程中受哪些力,有哪些力做功,有哪些形式的能发生变化. (2)列动能定理或能量守恒定律表达式.例2 (多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和.取地面为重力势能零点,该物体的E 总和E p 随它离开地面的高度h 的变化如图4所示.重力加速度取10m/s 2.由图中数据可得( )图4A .物体的质量为2kgB .h =0时,物体的速率为20m/sC .h =2m 时,物体的动能E k =40JD .从地面至h =4m ,物体的动能减少100J 答案 AD解析 根据题图图像可知,h =4m 时物体的重力势能mgh =80J ,解得物体质量m =2kg ,抛出时物体的动能为E k0=100J ,由公式E k0=12mv 2可知,h =0时物体的速率为v =10m/s ,选项A 正确,B 错误;由功能关系可知F f h =|ΔE 总|=20J ,解得物体上升过程中所受空气阻力F f =5 N ,从物体开始抛出至上升到h =2 m 的过程中,由动能定理有-mgh -F f h =E k -100J ,解得E k =50J ,选项C 错误;由题图图像可知,物体上升到h =4m 时,机械能为80J ,重力势能为80J ,动能为零,即从地面上升到h =4m ,物体动能减少100J ,选项D 正确. 变式训练3.(多选)(2018·安徽安庆市二模)如图5所示,一运动员穿着飞行装备从飞机上跳出后的一段运动过程可近似认为是匀变速直线运动,运动方向与水平方向成53°角,运动员的加速度大小为3g4.已知运动员(包含装备)的质量为m ,则在运动员下落高度为h 的过程中,下列说法正确的是(sin53°=45,cos53°=35)( )图5A .运动员重力势能的减少量为35mghB .运动员动能的增加量为34mghC .运动员动能的增加量为1516mghD .运动员的机械能减少了116mgh答案 CD解析 运动员下落的高度是h ,则重力做功:W =mgh ,所以运动员重力势能的减少量为mgh ,故A 错误;运动员下落的高度是h ,则飞行的距离:L =h sin53°=54h ,运动员受到的合外力:F 合=ma =34mg ,动能的增加量等于合外力做的功,即:ΔE k =W 合=F 合L =34mg ×54h =1516mgh ,故B 错误,C 正确;运动员重力势能的减少量为mgh ,动能的增加量为1516mgh ,所以运动员的机械能减少了116mgh ,故D 正确.4.(多选)(2019·福建厦门市第一次质量检查)如图6甲所示,一轻质弹簧的下端固定在水平面上,上端与A 物体相连接,将B 物体放置在A 物体上面,A 、B 的质量都为m ,初始时两物体处于静止状态.现用竖直向上的拉力F 作用在物体B 上,使物体B 开始向上做匀加速运动,拉力F 与物体B 的位移x 的关系如图乙所示(g =10m/s 2),下列说法正确的是( )图6A .0~4cm 过程中,物体A 、B 和弹簧组成的系统机械能增大B .0~4cm 过程中,弹簧的弹性势能减小,物体B 运动到4cm 处,弹簧弹性势能为零C .弹簧的劲度系数为7.5N/cmD.弹簧的劲度系数为5.0N/cm答案AC解析0~4 cm过程中,物体A、B和弹簧组成的系统,因力F对系统做正功,则系统的机械能增大,选项A正确.由题图可知,在x=4 cm处A、B分离,此时A、B之间的压力为零,A、B的加速度相等,但是弹簧仍处于压缩状态,弹簧的弹性势能不为零,选项B错误.开始物体处于静止状态,重力和弹力二力平衡,有:2mg=kΔl1;拉力F1为20 N时,弹簧弹力和重力平衡,合力等于拉力,根据牛顿第二定律,有:F1=2ma;物体B与A分离后,拉力F2为50 N,根据牛顿第二定律,有:F2-mg=ma;物体A与B分离时,物体A的加速度为a,则根据牛顿第二定律有:kΔl2-mg=k(Δl1-4 cm)-mg=ma;联立解得:m=4.0 kg,k=7.5 N/cm.选项C正确,D错误.考点动能定理的应用1.表达式:W总=E k2-E k1.2.五点说明(1)W总为物体在运动过程中所受各力做功的代数和.(2)动能变化量E k2-E k1一定是物体在末、初两状态的动能之差.(3)动能定理既适用于直线运动,也适用于曲线运动.(4)动能定理既适用于恒力做功,也适用于变力做功.(5)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.3.基本思路(1)确定研究对象和研究过程.(2)进行运动分析和受力分析,确定初、末速度和各力做功情况,利用动能定理全过程或者分过程列式.4.在功能关系中的应用(1)对于物体运动过程中不涉及加速度和时间,而涉及力和位移、速度的问题时,一般选择动能定理,尤其是曲线运动、多过程的直线运动等.(2)动能定理也是一种功能关系,即合外力做的功(总功)与动能变化量一一对应.例3如图7所示,在地面上竖直固定了刻度尺和轻质弹簧,弹簧原长时上端与刻度尺上的A点等高.质量m=0.5kg的篮球静止在弹簧正上方,其底端距A点的高度h1=1.10m,篮球由静止释放,测得第一次撞击弹簧时,弹簧的最大形变量x1=0.15m,第一次反弹至最高点,篮球底端距A点的高度h2=0.873m,篮球多次反弹后静止在弹簧的上端,此时弹簧的形变量x2=0.01m,弹性势能为E p=0.025J.若篮球运动时受到的空气阻力大小恒定,忽略篮球与弹簧碰撞时的能量损失和篮球形变,弹簧形变在弹性限度范围内,g取10m/s2.求:图7(1)弹簧的劲度系数;(2)篮球在运动过程中受到的空气阻力的大小; (3)篮球在整个运动过程中通过的路程. 答案 (1)500N/m (2)0.50N (3)11.05m 解析 (1)由最后静止的位置可知kx 2=mg , 所以k =500N/m(2)由动能定理可知,在篮球由静止下落到第一次反弹至最高点的过程中mg Δh -F f ·L =12mv 22-12mv 12整个过程动能变化为0,重力做功mg Δh =mg (h 1-h 2)=1.135J 空气阻力大小恒定,作用距离为L =h 1+h 2+2x 1=2.273m故可得F f ≈0.50N(3)整个运动过程中,空气阻力一直与运动方向相反 根据动能定理有mg Δh ′+W f +W 弹=12mv 2′2-12mv 12整个过程动能变化为0,重力做功mg Δh ′=mg (h 1+x 2)=5.55J 弹力做功W 弹=-E p =-0.025J则空气阻力做功W f =-mg Δh ′-W 弹=-5.525J 因W f =-F f s 故解得s =11.05m. 变式训练5.(2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h 在3m 以内时,物体上升、下落过程中动能E k 随h 的变化如图8所示.重力加速度取10m/s 2.该物体的质量为( )图8A.2kgB.1.5kgC.1kgD.0.5kg答案 C解析设物体的质量为m,则物体在上升过程中,受到竖直向下的重力mg和竖直向下的恒定外力F,当Δh=3m时,由动能定理结合题图可得-(mg+F)×Δh=(36-72) J;物体在下落过程中,受到竖直向下的重力mg和竖直向上的恒定外力F,当Δh=3m时,再由动能定理结合题图可得(mg-F)×Δh=(48-24) J,联立解得m=1kg、F=2N,选项C正确,A、B、D均错误.6.由相同材料的木板搭成的轨道如图9所示,其中木板AB、BC、CD、DE、EF…的长均为L =1.5m,木板OA和其他木板与水平地面的夹角都为β=37°,sin37°=0.6,cos37°=0.8,g取10m/s2.一个可看成质点的物体在木板OA上从离地高度h=1.8m处由静止释放,物体与木板间的动摩擦因数都为μ=0.2,在两木板交接处都用小曲面相连,使物体能顺利地经过,既不损失动能,也不会脱离轨道,在以后的运动过程中,求:(最大静摩擦力等于滑动摩擦力)图9(1)物体能否静止在木板上?请说明理由.(2)物体运动的总路程是多少?(3)物体最终停在何处?并作出解释.答案(1)不能理由见解析(2)11.25m (3)C点解释见解析解析(1)物体在木板上时,重力沿木板方向的分力为mg sinβ=0.6mg最大静摩擦力F fm=μmg cosβ=0.16mg因mg sinβ>μmg cosβ,故物体不会静止在木板上.(2)从物体开始运动到停下,设总路程为s,由动能定理得mgh -μmgs cos β=0解得s =11.25m(3)假设物体依次能到达B 、D 点,由动能定理得mg (h -L sin β)-μmg cos β(L +hsin β)=12mv B 2 解得v B >0mg (h -L sin β)-μmg cos β(3L +hsin β)=12mv D 2 v D 无解说明物体能通过B 点但不能到达D 点,因物体不能静止在木板上,故物体最终停在C 点.考点 动力学与能量观点的综合应用1.两个分析(1)综合受力分析、运动过程分析,由牛顿运动定律做好动力学分析.(2)分析各力做功情况,做好能量的转化与守恒的分析,由此把握各运动阶段的运动性质,各连接点、临界点的力学特征、运动特征、能量特征. 2.四个选择(1)当物体受到恒力作用发生运动状态的改变而且又涉及时间时,一般选择用动力学方法解题;(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移时,应优先选择能量守恒定律;(3)当涉及细节并要求分析力时,一般选择牛顿运动定律,对某一时刻的问题选择牛顿第二定律求解;(4)复杂问题的分析一般需选择能量的观点、运动与力的观点综合分析求解.例4 (2019·河北邯郸市测试)如图10所示,一根轻弹簧左端固定于竖直墙上,右端被质量m =1kg 可视为质点的小物块压缩而处于静止状态,且弹簧与物块不拴接,弹簧原长小于光滑平台的长度.在平台的右端有一传送带,AB 长L =5m ,物块与传送带间的动摩擦因数μ1=0.2,与传送带相邻的粗糙水平面BC 长s =1.5 m ,它与物块间的动摩擦因数μ2=0.3,在C 点右侧有一半径为R 的光滑竖直圆弧轨道与BC 平滑连接,圆弧对应的圆心角为θ=120°,在圆弧的最高点F 处有一固定挡板,物块撞上挡板后会以原速率反弹回来.若传送带以v =5m/s 的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失.当弹簧储存的E p =18 J 能量全部释放时,小物块恰能滑到与圆心等高的E 点,取g =10 m/s 2.图10(1)求右侧圆弧的轨道半径R ;(2)求小物块最终停下时与C 点的距离;(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.答案 (1)0.8m (2)13m (3)37m/s≤v ≤43m/s解析 (1)物块被弹簧弹出,由E p =12mv 02,可知:v 0=6m/s因为v 0>v ,故物块滑上传送带后先减速,物块与传送带相对滑动过程中, 由:μ1mg =ma 1,v =v 0-a 1t 1,x 1=v 0t 1-12a 1t 12得到:a 1=2m/s 2,t 1=0.5s ,x 1=2.75m因为x 1<L ,故物块与传送带同速后相对静止,最后物块以5m/s 的速度滑上水平面BC ,物块滑离传送带后恰到E 点,由动能定理可知:12mv 2=μ2mgs +mgR代入数据得到:R =0.8m.(2)设物块从E 点返回至B 点的速度大小为v B , 由12mv 2-12mv B 2=μ2mg ·2s 得到v B =7m/s ,因为v B >0,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性可知,物块以相同的速率离开传送带,经分析可知最终在BC 间停下,设最终停在距C 点x 处,由12mv B 2=μ2mg (s -x ),代入数据解得:x =13m. (3)设传送带速度为v 1时物块恰能到F 点,在F 点满足mg sin30°=m v F 2R从B 到F 过程中由动能定理可知: -μ2mgs -mg (R +R sin30°)=12mv F 2-12mv 12解得:v 1=37m/s设传送带速度为v 2时,物块撞挡板后返回能再次上滑恰到E 点, 由12mv 22=μ2mg ·3s +mgR解得:v 2=43m/s若物块在传送带上一直加速运动,由12mv B m 2-12mv 02=μ1mgL知其到B 点的最大速度v B m =56m/s若物块在E 、F 间速度减为0,则物块将脱离轨道.综合上述分析可知,只要传送带速度37m/s≤v ≤43m/s 就满足条件. 变式训练7.(2019·山东青岛二中上学期期末)如图11所示,O 点距水平地面的高度为H =3m ,不可伸长的细线一端固定在O 点,另一端系一质量m =2kg 的小球(可视为质点),另一根水平细线一端固定在墙上A 点,另一端与小球相连,OB 线与竖直方向的夹角为37°,l <H ,g 取10m/s 2,空气阻力不计.(sin37°=0.6,cos37°=0.8)图11(1)若OB 的长度l =1m ,剪断细线AB 的同时,在竖直平面内垂直OB 的方向上,给小球一个斜向下的冲量,为使小球恰好能在竖直平面内做完整的圆周运动,求此冲量的大小; (2)若先剪断细线AB ,当小球由静止运动至最低点时再剪断OB ,小球最终落地,求OB 的长度l 为多长时,小球落地点与O 点的水平距离最远,最远水平距离是多少. 答案 (1)246kg·m/s (2)1.5m355m 解析 (1)要使小球恰好能在竖直平面内做完整的圆周运动,最高点需满足:mg =m v 2l从B 点到最高点,由动能定理有: -mg (l +l cos37°)=12mv 2-12mv 02联立得一开始的冲量大小为I =mv 0=246kg·m/s(2)从剪断AB 到小球至H -l 高度过程,设小球至H -l 高度处的速度为v 0′ 由机械能守恒可得12mv 0′2=mgl (1-cos37°)小球从H -l 高度做初速度为v 0′的平抛运动,12gt 2=H -l ,x =v 0′t 联立得,x =45(-l 2+3l ) 当l =1.5m 时x 取最大值,为355m .专题突破练1.(2019·山东烟台市上学期期末)如图1所示,把两个相同的小球从离地面相同高度处,以相同大小的初速度v 分别沿竖直向上和水平向右方向抛出,不计空气阻力.则下列说法中正确的是( )图1A .两小球落地时速度相同B .两小球落地时,重力的瞬时功率相同C .从小球抛出到落地,重力对两小球做的功相等D .从小球抛出到落地,重力对两小球做功的平均功率相等 答案 C解析 两小球运动过程中均只有重力做功,故机械能都守恒,由机械能守恒定律得,两小球落地时的速度大小相同,但方向不同,故A 错误;两小球落地时,由于竖直方向的分速度不同,故重力的瞬时功率不相同,故B 错误;由重力做功公式W =mgh 得,从开始运动至落地,重力对两小球做功相同,故C 正确;从抛出至落地,重力对两小球做的功相同,但是落地的时间不同,故重力对两小球做功的平均功率不相同,故D 错误.2.(2019·河北张家口市上学期期末)如图2所示,运动员跳伞将经历加速下降和减速下降两个过程,在这两个过程中,下列说法正确的是( )图2A .运动员先处于超重状态后处于失重状态B .空气浮力对系统始终做负功C .加速下降时,重力做功大于系统重力势能的减小量D .任意相等的时间内系统重力势能的减小量相等 答案 B解析 运动员先加速向下运动,处于失重状态,后减速向下运动,处于超重状态,选项A 错误;空气浮力与运动方向总相反,则对系统始终做负功,选项B 正确;无论以什么运动状态运动,重力做功都等于系统重力势能的减小量,选项C 错误;因为是变速运动,相等的时间内,因为系统下降的高度不相等,则系统重力势能的减小量不相等,选项D 错误. 3.(2019·河南驻马店市上学期期终)一物体在竖直向上的恒力作用下,由静止开始上升,到达某一高度时撤去外力.若不计空气阻力,则在整个上升过程中,物体的机械能E 随时间t 变化的关系图象是( )答案 A解析 设物体在恒力作用下的加速度为a ,机械能增量为:ΔE =F Δh =F ·12at 2,知此时E-t 图象是开口向上的抛物线;撤去外力后的上升过程中,机械能守恒,则机械能不随时间改变,故A 正确,B 、C 、D 错误.4.(多选)如图3所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )图3A .两滑块组成的系统机械能守恒B .轻绳对m 做的功等于m 机械能的增加量C .重力对M 做的功等于M 动能的增加量D .两滑块组成的系统机械能的损失等于M 克服摩擦力做的功 答案 BD5.(2019·福建三明市期末质量检测)如图4所示,一个质量m =1 kg 的小球(视为质点)从H =11m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的竖直圆环内侧,且与圆环的动摩擦因数处处相等,当到达圆环顶点C 时,刚好对轨道压力为零,然后沿CB 圆弧滑下,进入光滑弧形轨道BD ,到达高度为h 的D 点时速度为零,则h 的值可能为(重力加速度g =10m/s 2)( )图4A .10mB .9.5mC .9mD .8.5m 答案 B解析 到达圆环顶点C 时,刚好对轨道压力为零,则mg =m v C 2R,解得v C =210m/s ,则物体在BC 阶段克服摩擦力做功,由动能定理mg (H -2R )-W BC =12mv C 2,解得W BC =10J ;由于从C到B 过程小球对圆轨道的平均压力小于从B 到C 过程小球对圆轨道的平均压力,则小球从C 到B 过程克服摩擦力做的功小于从B 到C 过程克服摩擦力做的功,即0<W CB <10J ;从C 到D 由动能定理:mg (2R -h )-W CB =0-12mv C 2,联立解得9m<h <10m.6.一名外卖送餐员用电动自行车沿平直公路行驶给客户送餐,中途因电瓶“没电”,只能改用脚蹬车以5m/s 的速度匀速前行,骑行过程中所受阻力大小恒为车和人总重力的0.02倍(取g =10 m/s 2),该送餐员骑电动自行车以5m/s 的速度匀速前行过程做功的功率最接近( )A .10WB .100WC .1kWD .10kW 答案 B解析 设送餐员和车的总质量为100kg ,匀速行驶时的速率为5m/s ,匀速行驶时的牵引力与阻力大小相等,F =0.02mg =20 N ,则送餐员骑电动自行车匀速行驶时的功率为P =Fv =100W ,故B 正确.7.(多选)(2019·四川第二次诊断)如图5甲所示,质量m =1kg 的物块在平行斜面向上的拉力F 作用下从静止开始沿斜面向上运动,t =0.5s 时撤去拉力,其1.5s 内的速度随时间变化关系如图乙所示,g 取10m/s 2.则( )图5A .0.5s 时拉力功率为12WB .0.5s 内拉力做功9JC .1.5s 后物块可能返回D .1.5s 后物块一定静止 答案 AC解析 0~0.5 s 内物体的位移:x 1=12×0.5×2 m=0.5 m ;0.5~1.5 s 内物体的位移:x 2=12×1×2m =1m ;由题图乙知,各阶段加速度的大小:a 1=4m/s 2,a 2=2 m/s 2;设斜面倾角为θ,斜面对物块的动摩擦因数为μ,根据牛顿第二定律,0~0.5s 内F -μgm cos θ-mg sin θ=ma 1;0.5~1.5s 内-μmg cos θ-mg sin θ=-ma 2,联立解得:F =6N ,但无法求出μ和θ.0.5s 时,拉力的功率P =Fv =12W ,故A 正确.拉力做的功为W =Fx 1=3J ,故B 错误.无法求出μ和θ,不清楚tan θ与μ的大小关系,故无法判断物块能否静止在斜面上,故C 正确,D 错误.8.(多选)(2019·安徽安庆市期末调研监测)如图6所示,重力为10N 的滑块轻放在倾角为30°的光滑斜面上,从a 点由静止开始下滑,到b 点接触到一个轻质弹簧,滑块压缩弹簧到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点.已知ab =1m ,bc =0.2m ,则以下结论正确的是( )图6A .整个过程中弹簧弹性势能的最大值为6JB .整个过程中滑块动能的最大值为6JC .从c 到b 弹簧的弹力对滑块做功5JD .整个过程中弹簧、滑块与地球组成的系统机械能守恒 答案 AD解析 滑块从a 到c, mgh ac +W 弹′=0-0,解得:W 弹′=-6J .则E pm =-W 弹′=6J ,所以整个过程中弹簧弹性势能的最大值为6J ,故A 正确;当滑块受到的合外力为0时,滑块速度最大,设滑块在d 点合外力为0,由分析可知d 点在b 点和c 点之间.滑块从a 到d 有:mgh ad +W 弹=E k d -0,因mgh ad <6J ,W 弹<0,所以E k d <6J ,故B 错误;从c 点到b 点弹簧的弹力对滑块做的功与从b 点到c 点弹簧的弹力对滑块做的功大小相等,即为6J ,故C 错误;整个过程中弹簧、滑块与地球组成的系统机械能守恒,没有与系统外发生能量转化,故D 正确.9.(多选)(2019·河南九师联盟质检)如图7所示,半径为R =0.4m 的14圆形光滑轨道固定于竖直平面内,圆形轨道与光滑固定的水平轨道相切,可视为质点的质量均为m =0.5kg 的小球甲、乙用轻杆连接,置于圆轨道上,小球甲与O 点等高,小球乙位于圆心O 的正下方.某时刻将两小球由静止释放,最终它们在水平面上运动,g 取10m/s 2.则( )图7A .小球甲下滑过程中机械能增加B .小球甲下滑过程中重力对它做功的功率先增大后减小C .小球甲下滑到圆形轨道最低点对轨道压力的大小为12ND .整个过程中轻杆对小球乙做的功为1J 答案 BD解析 小球甲下滑过程中,轻杆对甲做负功,则甲的机械能减小,故A 错误.小球甲下滑过程中,最高点速度为零,故重力的功率为零;最低点速度和重力垂直,故重力的功率也是零;而中途重力的功率不为零,故重力的功率应该是先增大后减小,故B 正确.两个球与轻杆组成的系统机械能守恒,故:mgR =12mv 2+12mv 2,解得:v =gR =10×0.4m/s =2 m/s ;小球甲下滑到圆弧形轨道最低点,重力和支持力的合力提供向心力,故:F N -mg =m v 2R,解得:F N=mg +m v 2R =0.5×10N+0.5×220.4N =10N ,根据牛顿第三定律,小球甲对轨道的压力大小为10N ,故C 错误;整个过程中,对球乙,根据动能定理,有:W =12mv 2=12×0.5×22J =1J ,故D 正确.10.(2019·吉林“五地六校”合作体联考)一辆赛车在水平路面上由静止启动,在前5s 内做匀加速直线运动,5s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图8所示.已知赛车的质量为m =1×103kg ,赛车受到的阻力为车重力的0.1倍,重力加速度g 取10m/s 2,则以下说法正确的是( )图8A .赛车在前5s 内的牵引力为5×102N。

二轮专题三功能关系

二轮专题三功能关系
弹簧的弹性势能总和保持不变。 • (2)系统物体的位移和高度变化往往不同 • (3)系统内物体的速度大小不一定相同,往往存在一定的大小
关系。需要注意选择合适的参考系。
【典题精练】
典型二 机械能守恒定律在关联体问题中的应用
例题2 如图所示,长为L的轻质细杆一端拴在天花板上
的O点,另一端拴一质量为m的小球.刚开始细杆处于水平 位置,现将小球由静止释放,细杆从水平位置运动到竖直 位置,在此过程中小球沿圆弧从A点运动到B点,不计空气 和O点阻力,则( )
A. 小球下摆过程中,重力对小球做功的平均功率为0 B. 小球下落高度为0.5L时,细杆对小球拉力为1.5mg C. 小球经过B点时,细杆对小球的拉力为2mg D. 小球下摆过程中,重力对小球做功的瞬时功率先增大后减小
典例2解析
【总结提升】应用机械能守恒定律解题时的三点注意 (1)注意研究对象的选取:研究对象的选取是解题的首要环节, 有的问题选单个物体(实为一个物体与地球组成的系统)为研究 对象机械能不守恒,但选此物体与其他几个物体组成的系统为 研究对象,机械能却是守恒的。如该例题中,A或B机械能不守恒, 但A、B组成的系统机械能守恒。 (2)注意研究过程的选取:有些问题研究对象的运动过程分几个 阶段,有的阶段机械能守恒,而有的阶段机械能不守恒。因此, 在应用机械能守恒定律解题时要注意过程的选取。
考点一 单个物体的机械能守恒
【核心精讲】 机械能守恒定律 (1)守恒条件: ①只有__重__力__或__系__统__内__弹__簧__弹__力_做功。 ②虽受其他力,但其他力_不__做__功__或__做__的__总__功__为__零。 (2)表达式: ①守恒的观点:_E_k1_+_E_p_1=_E_k_2_+_E_p2_。 ②转化的观点:_Δ__E_p_=_-_Δ__E_k 。

高三物理第二轮复习功能关系在电学中的应用

高三物理第二轮复习功能关系在电学中的应用

高三物理第二轮复习功能关系在电学中的应用【学习目标】①几个重要的功能关系在电学中的应用②动能定理在电场中的应用③功能观点在电磁感应问题中的应用④应用动力学和功能观点处理电学综合问题1.(多选)(2016·全国卷Ⅰ,20)如图1,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直面(纸面)内,且相对于过轨迹最低点P的竖直线对称。

忽略空气阻力。

由此可知()图1A.Q点的电势比P点高B.油滴在Q点的动能比它在P点的大C.油滴在Q点的电势能比它在P点的大D.油滴在Q点的加速度大小比它在P点的小2.半圆形光滑金属导轨MN、PQ平行放置在竖直平面内,导轨左端通过单刀双掷开关S接在电路中,如图7甲所示,电源内阻不计,导轨所在空间有如图乙所示的磁场,金属棒电阻为R、质量为m,其他电阻不计。

整个操作过程经历两个阶段:①开始时开关接位置1,金属棒ab从导轨上M、P位置由静止释放,当金属棒从N、Q竖直向上飞出时,开关S改接位置2,金属棒恰能上升到离N、Q为h的高度处;②之后金属棒又从N、Q落回导轨内并恰好能回到M、P位置。

重力加速度为g。

下列关于金属棒运动过程的描述正确的是()图7A.阶段①消耗的电能等于阶段②产生的电能B.阶段①安培力做的功等于阶段②金属棒克服安培力做的功C.阶段②克服安培力做的功小于mghD.阶段②回路中产生的热量小于mgh1.静电力做功与路径无关.若电场为匀强电场,则W=Fl cos α=Eql cos α;若是非匀强电场,则一般利用W=qU来求.2.磁场力又可分为洛伦兹力和安培力.洛伦兹力在任何情况下对运动的电荷都不做功;安培力可以做正功、负功,还可以不做功.3.电流做功的实质是电场对移动电荷做功.即W=UIt=Uq.4.导体棒在磁场中切割磁感线时,棒中感应电流受到的安培力对导体棒做负功,使机械能转化为电能.5.静电力做的功等于电势能的变化,即W AB=-ΔE p.题型1 几个重要的功能关系在电学中的应用例1(多选)如图1所示地面上方存在水平向右的匀强电场.现将一带电小球从距离地面O点高h处的A 点以水平速度v0抛出,经过一段时间小球恰好垂直于地面击中地面上的B点,B到O的距离也为h.当地重力加速度为g,则下列说法正确的是()图1A.从A到B的过程中小球的动能先减小后增大B.下落过程中小球机械能一直增加C.小球的加速度始终保持2g不变D.从A点到B点小球的的电势能增加了mgh变式1如图2所示,直角三角形ABC由三段细直杆连接而成,AB杆竖直,AC杆粗糙且绝缘,其倾角为30°,长为2L,D为AC上一点,且BD垂直AC,在BC杆中点O处放置一正点电荷Q.一套在细杆上的带负电小球,以初速度v0由C点沿CA上滑,滑到D点速率恰好为零,之后沿AC杆滑回C点.小球质量为m、电荷量为q,重力加速度为g.则()图2A.小球上滑过程中先匀加速后匀减速B.小球下滑过程中电场力先做负功后做正功C.小球再次滑回C点时的速率为v C=3gL-v20D.小球下滑过程中动能、电势能、重力势能三者之和增大变式2(多选)如图3所示,某一空间内充满竖直向下的匀强电场E,在竖直平面内建立坐标系xOy,在y<0的空间里有与场强E垂直的匀强磁场B,在y>0的空间内,将一质量为m的带电液滴(可视为质点)自由释放,则此液滴沿y轴的负方向以加速度a=2g(g为重力加速度)做匀加速直线运动,当液滴运动到坐标原点时,瞬间被安置在原点的一个装置改变了带电性质(液滴所带电荷量和质量均不变),随后液滴进入y<0的空间运动.液滴在以后的运动过程中()图3A.重力势能一定先减小后增大B.机械能一定先增大后减小C.动能先不变后减小D.动能一直保持不变题型2 动能定理在电场中的应用解题方略1.电场力做功与重力做功的特点类似,都与路径无关.2.对于电场力做功或涉及电势差的计算,选用动能定理往往最简便快捷,但运用动能定理时要特别注意运动过程的选取.例2 如图4所示,两个带正电的点电荷M 和N ,带电量均为Q ,固定在光滑绝缘的水平面上,相距2L ,A 、O 、B 是MN 连线上的三点,且O 为中点,OA =OB =L 2,一质量为m 、电量为q 的点电荷以初速度v 0从A 点出发沿MN 连线向N 运动,在运动过程中电荷受到大小恒定的阻力作用,但速度为零时,阻力也为零,当它运动到O 点时,动能为初动能的n 倍,到B 点速度刚好为零,然后返回往复运动,直至最后静止.已知静电力恒量为k ,取O 处电势为零。

高三二轮复习《第2讲 功能关系、机械能守恒定律和能量守恒定律》教案

高三二轮复习《第2讲 功能关系、机械能守恒定律和能量守恒定律》教案

专题五功和能第2讲功能关系机械能守恒定律和能量守恒定律一、核心知识、方法回扣:1.机械能守恒定律:(1)内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.(2)机械能守恒的条件①对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.②对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.(3)三种表达式:①守恒的观点:____ ____ _____。

②转化的观点:_____ _____。

③转移的观点:_____ ___。

2.几个重要的功能关系(1)重力的功等于的变化,即W G=.(2)弹力的功等于的变化,即W弹=.(3)合力的功等于的变化,即W=.(4)重力之外(除弹簧弹力)的其他力的功等于的变化.W其他=ΔE.(5)一对滑动摩擦力做的功等于的变化.Q=F·s相对.3.静电力做功与无关.若电场为匀强电场,则W=Fs cos α=Eqs cos α;若是非匀强电场,则一般利用W=来求.4.磁场力又可分为洛伦兹力和安培力.洛伦兹力在任何情况下对运动的电荷都;安培力可以做正功、负功,还可以不做功.5.电流做功的实质是电场对做功.即W=UIt=.6.导体棒在磁场中切割磁感线时,棒中感应电流受到的安培力对导体棒做功,使机械能转化为能.7.静电力做功等于的变化,即W AB=-ΔE p.二、方法、规律:1.机械能守恒定律的应用(1)机械能是否守恒的判断①用做功来判断,看重力(或弹簧弹力)以外的其他力做功代数和是否.②用能量转化来判断,看是否有机械能转化为其他形式的能.③对一些“绳子突然绷紧”、“”等问题,机械能一般不守恒,除非题目中有特别说明及暗示.(2)应用机械能守恒定律解题的基本思路①选取研究对象——物体系.②根据研究对象所经历的物理过程,进行、分析,判断机械能是否守恒.③恰当地选取参考平面,确定研究对象在运动过程的始末状态时的机械能.④根据机械能守恒定律列方程,进行求解.2.功能关系在电学中应用的题目,一般过程复杂且涉及多种性质不同的力,因此,通过审题,抓住和运动过程分析是关键,然后根据不同的运动过程各力做功的特点来选择规律求解. 3.力学中的动能定理和能量守恒定律在处理电学中能量问题仍然是首选的方法.三、错题集:1、如图所示,桌面高地面高H,小球自离桌面高h处由静止落下,不计空气阻力,则小球触地的瞬间机械能为(设桌面为零势面)()A.mgh B.mgH C.mg(H+h) D.mg(H-h)2、以下过程中机械能守恒的是()A.以8m/s2的加速度在空中下落的石块B.沿固定的光滑斜面自由下滑的滑块C.正在升空的火箭D.吊在轻质弹簧下端正在自由振动的小球3、如图所示,质量分别为2m和m的A、B两物体用不可伸长的轻绳绕过轻质定滑轮相连,开始两物体处于同一高度,绳处于绷紧状态,轻绳足够长,不计一切摩擦。

高考物理二轮复习_专题功能关系在电磁学中的应用

高考物理二轮复习_专题功能关系在电磁学中的应用

安培力做的功,即Q=W克安
(2)电磁感应发生的过程遵从能量守恒.焦耳热的增加量 等于其他形式能量的减少量.
如图2-5-5所示,相距为L的两条足够长的光滑平行金属
导轨与水平面的夹角为θ,上端接有定值电阻R,匀强磁场
垂直于导轨平面,磁感应强度为B.将质量为m的导体棒由静 止释放,当速度达到v时开始匀速运动,此时对导体棒施加 一平行于导轨向下的拉力,并保持拉力的功率恒为P,导体 棒最终以2v的速度匀速运动.导体棒始终与 导轨垂直且接触良好,不计导轨和导体棒的 电阻,重力加速度为g.下列选项正确的是( ). A.P=mgvsin θ B.P=3mgvsin θ 图2-5-5 v g C.当导体棒速度达到 时加速度大小为 sin θ 2 2 D.在速度达到 2v 以后匀速运动的过程中,R 上产生的 焦耳热等于拉力所做的功
电场中的功能关系 (1)若只有电场力做功,电势能与动能之和保持不 变. (2)若只有电场力和重力做功,电势能、重力势能、 动能之和保持不变. (3)除重力、弹簧弹力之外,其他各力对物体做的功 等于物体机械能的变化. (4)所有外力对物体所做的功等于物体动能的变化.
电场中的功能关系 1.两个带等量正电的点电荷,固定在图中P、Q
答案
C
如图2-5-6所示,水平固定放置的足够长的U形 金属导轨处于竖直向上的匀强磁场中,在导轨上 放着金属棒ab,开始时ab棒以水平初速度v0向右 运动,最后静止在导轨上,就导轨光滑和导轨粗 糙的两种情况相比较,这个过程
( ). 答案 C 图2-5-6
A.安培力对ab棒所做的功相等 B.电流所做的功相等 C.产生的总内能相等
解析
(1)由闭合电路欧姆定律得感应电流的最大值为
Blv0 1×0.6×10 Em Im= = = A=1.5 A R+R0 R+R0 3+1

高中物理大二轮物理复习专题目录

高中物理大二轮物理复习专题目录

第3讲 平抛运动和电场中的类平抛运动 考向一 平抛运动的规律及应用 考向二 电场中的考向二 天体的运动问题
考向三 匀强磁场中的圆周运动
二轮物理
专题二
能量与动量
第1讲 功能关系及动量观点在力学中的应用 考向一 力学中的几个重要功能关系的应用 考向二 动力学观点和功能关系的综合应用 考向三 动量观点与能量观点的综合应用 第2讲 动量观点和能量观点在电学中的应用 考向一 功能关系在电学中的应用 考向二 应用动量观点和能量观点处理力电综合问题
考向一 热学基础知识与气体实验定律的组合
考向二 热学基础知识、热力学定律与气体定律的组合
第2讲 (选修3-4) 机械振动和机械波 光
电磁波
考向一 振动(或波动)与光的折射、全反射的组合 考向二 光学基础知识与波动(或振动)的组合 考向三 电磁波、光学、波动(或振动)的组合
二轮物理
第二部分 考前冲刺增分练 选择题48分专练(一) 选择题48分专练(二) 实验题15分专练(一)
二轮物理
专题三
电场和磁场
第1讲 电场和磁场的基本性质 考向一 电场的性质 考向二 磁场的性质 第2讲 带电粒子在复合场中的运动 考向一 带电粒子在组合场中的运动 考向二 带电粒子在叠加复合场中的运动 考向三 现代科技中的电磁场问题
二轮物理
专题四
电路与电磁感应
第1讲 恒定电流和交变电流 考向一 直流电路的计算与动态分析 考向二 交流电的产生及“四值”的应用 考向三 理想变压器和远距离输电问题
实验题15分专练(二)
计算题32分专练(一) 计算题32分专练(二) 选考题15分专练(一) 选考题15分专练(二)
二轮物理
小卷冲刺抢分练(一)——(8+2实验) 小卷冲刺抢分练(二)——(8+2实验) 小卷冲刺抢分练(三)——(8+2计算) 小卷冲刺抢分练(四)——(8+2计算) 高考模拟标准练

2016届高考物理二轮复习专题透析课件:专题3+第2讲+功和能

2016届高考物理二轮复习专题透析课件:专题3+第2讲+功和能

热点重点难点专题透析· 物理
专题三
四、动能定理的理解与应用 1.应用动能定理的思维要点 “两状态、一过程”是应用动能定理的着眼点,即明确 研究对象的始、末状态的速度或动能情况,明确研究过程, 关注这一过程的位置变化或位移信息。注意“状态”与“过 程”的对应关系:力在空间上的积累过程实现状态的变化。 2.应用动能定理求解的思路和步骤
2 a= =0.5 ������ ������
m/s =4 m/s 。
1 l=2vt=0.5
2
2
(2)前 0.5 s,绳绷直,设绳的拉力大小为 F;后 0.25 s, 绳松弛,拉力为 0。前 0.5 s,A 沿斜面发生的位移 m 对 B,由牛顿第二定律有:Mg-F=Ma 代入数据解得 F=6 N 所以绳的拉力对 A 做的功 W=Fl=3 J。
热点重点难点专题透析· 物理
专题三
热点重点难点专题透析· 物理
专题三
【解题精要】 一、功的理解和计算 1.恒力做功的计算一般根据公式 W=Flcos α,注意 l 严 格地讲是力的作用点的位移。 2.求解变力做功的方法 (1)转换法:若某一变力的功和某一恒力的功相等,则可 以通过计算该恒力的功来求变力的功。 此法也可以说成是等 效替代。 (2)微元法:主要用于解决大小不变、 方向总与运动方向 相同或相反的变力做功问题,如曲线运动中,滑动摩擦力、 空 气阻力(大小不变)等做的功,等于力和路程(不是位移)的乘 积。
热点重点难点专题透析· 物理
专题三
(1)B 下落的加速度大小 a。 (2)A 沿斜面向上运动的过程中,绳的拉力对 A 做的功 W。 (3)A(包括传感器)的质量 m 及 A 与斜面间的动摩擦因数 μ。 (4)在 0~0.75 s 内摩擦力对 A 做的功。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)无电场时,小球到达 A 点时的动能与初动能的比值; (2)电场强度的大小和方向。
带电小球的重力应考虑,在运动过程中,带电小球的 动能、重力势能、电势能之和不变。
[保分提速练]
1.(多选)(2015·江西省重点中学联考)在粗糙绝缘的水平面上
固定一个带电量为 Q 的正点电荷,已知点电荷周围电场
对等量异种电荷形成电场的影响。求:
(1)小球经过 B 点时对杆的拉力大小; (2)在+Q、-Q 形成的电场中,A 点的电势 φA; (3)小球继续向左摆动,经过与 A 等高度的 C 点时的速度大小。 解析:(1)小球经 B 点时,在竖直方向有 F-mg=mvL2① F=mg+mvL2② 由牛顿第三定律知,小球对细杆的拉力大小 F′=mg+mvL2③
将滑块无初速地放在距离场源点电荷 x1 处,设滑块运 动到距离场源点电荷 x3 处的速度为 v,由动能定理 q(φ1 -φ3)-μmg(x3-x1)=m2v2;v= m2kxq1Qx3-μgx3-x1, 选项 D 正确。 答案:ABD
2. (2015·邯郸质检)如图 2-3-2,等量异种点
电荷,固定在水平线上的 M、N 两点
的电势可表示为 φ=kQr ,式中 k 为静电常量,Q 为场源
电荷的带电量,r 为距场源电荷的距离。现有一质量为 m,
电荷量为 q 带正电荷的滑块(可视作质点),其与水平面的
动摩擦因数为 μ,kQx1q2>μmg,则
()
图 2-3-1
A.滑块与带电量为 Q 的正点电荷距离为 x 时,滑块电势 能为kqxQ
上,有一质量为 m、电荷量为+q(可视
为点电荷)的小球,固定在长为 L 的绝
图 2-3-2
缘轻质细杆的一端,细杆另一端可绕过 O 点且与 MN 垂
直的水平轴无摩擦地转动,O 点位于 MN 的垂直平分线上
距 MN 为 L 处。现在把杆拉起到水平位置,由静止释放,
小球经过最低点 B 时速度为 v,取 O 点电势为零,忽略 q
vC= 2v2-4gL⑩ 答案:(1)F′=mg+mvL2
(2)φA=mv2-2q2mgL
(3)vC= 2v2-4gL
考点二 复合场中的功能关系
带电粒子在复合场中的运动问题是典型的力电综合问 题,一般要从受力、运动、功能的角度来分析,此类问题 涉及重力、电场力、磁场力、弹力、摩擦力等。涉及的运 动形式有匀速直线运动、匀变速直线运动、曲线运动等。 综合性较强,能力要求较高,解决此类问题应熟练掌握各 种功能关系、动能定理及能量守恒定律的应用。
一、复合场的“三类”组合模式 1.电场、重力场并存:若重力和电场力平衡,则带 电体做匀速直线运动,动能不变;若重力和电场力不平衡, 一般考查带电体的匀变速直线运动或类平抛运动,应用牛 顿运动定律或动能定理,结合运动的合成与分解答题。 2.电场、磁场并存:若电场力和洛伦兹力平衡,则 带电微粒做匀速直线运动;若电场力和洛伦兹力不平衡, 则带电微粒做复杂曲线运动,因 F 洛不做功,可用动能定 理求解问题。
(2)由于取 O 点电势为零,而 O 在 MN 的垂直平分线上, 所以 φB=0④ 电荷从 A 到 B 过程中,由动能定理得 mgL+q(φA-φB)=12mv2⑤ φA=mv2-2q2mgL⑥
(3)由电场对称性可知,φC=-φA⑦ 即 UAC=2φA⑧ 小球从 A 到 C 过程,根据动能定理
qUAC=12mvC2⑨
φ-x 图线均为倾斜直线,因此,沿 x 方向的电场强 度分段恒定不变,故 A 项错误;当只有电场力做功时, 电势能和动能之和保持不变,电势能最低的地方带电小 球的动能最大,如诊断卷第 2 题的 D 选项,速度最大的 位置一定在 x3 位置。
3.注意判断是否需要考虑重力,一般来说,带电小球或 带电油滴的重力都要考虑,带电粒子的重力是否考虑与题目
m2kxq1Qx3-2μgx3-x1
解析:滑块与带电量为 Q 的正电荷距离为 x 处的电势 φ= kQx ,滑块的电势能表达式 Ep=qφ=kQx q,选项 A 正确;设 滑块停止的位置为 x2,由动能定理 q(φ1-φ2)-μmg(x2-x1) =0,代入电势可解得 x2=μkmqgQx1,选项 B 正确;设滑块运 动到距离场源点电荷 x3 处的加速度为 a,由牛顿第二定律, F-μmg=ma,解得加速度:a=mkqxQ32-μg,选项 C 错误。
B.若将滑块无初速地放在距离场源点电荷 x1 处,滑块最 后将停在距离场源点电荷μkmqgQx1处
C.若将滑块无初速地放在距离场源点电荷 x1 处,当滑块 运动到距离场源点电荷 x3 处的加速度为mkxq1Qx3-μg
D.若将滑块无初速地放在距离场源点电荷 x1 处,当滑块 运 动 到 距 离 场 源 点 电 荷 x3 处 的 速 度 为 v =
3.电场、磁场、重力场并存:若三力平衡,带电体 做匀速直线运动,动能不变;若重力与电场力平衡,一般 考查带电体的匀速圆周运动,应用牛顿运动定律和圆周运 动知识答题,有时还会用到能量守恒或动能定理。
的相同粒子将d2处返回
D.在距上极板25d 处返回
带电粒子在上极板正上方由静止下落,必定考虑粒子重力;
如诊断卷第 3 题, 如图,O、A、B 为同一竖直平面内的三个点,OB 沿竖 直方向,∠BOA=60°,OB=32OA,将一质量为 m 的小球 以一定的初动能自 O 点水平向右抛出,小球在运动过程中恰 好通过 A 点。使此小球带电,电荷量为 q(q>0),同时加一 匀强电场,场强方向与△OAB 所在平面平行。现从 O 点以 同样的初动能沿某一方向抛出此带电小球,该小球通过了 A 点,到达 A 点时的动能是初动能的 3 倍;若该小球从 O 点以 同样的初动能沿另一方向抛出,恰好通过 B 点,且到达 B 点 时的动能为初动能的 6 倍,重力加速度大小为 g。求
条件及粒子的运动规律有关;如诊断卷第 1 题, 一水平放置的平行板电容器的两极板间距为 d,极板分
别与电池两极相连,上极板中心有一小孔(小孔对电场的影响
可忽略不计)。小孔正上方d2处的 P 点有一带电粒子,该粒子
从静止开始下落,经过小孔进入电容器,并在下极板处(未与
极板接触)返回。若将下极板向上平移d3,则从 P 点开始下落
相关文档
最新文档