哈工大工程热力学试卷-20套教学文案
工程热力学B卷
![工程热力学B卷](https://img.taocdn.com/s3/m/969fa096910ef12d2af9e783.png)
一、判断题(20分,每小题2分)1.工质吸热温度必升高,工质对外做功温度必降低。
(X )2.沸腾的水总是烫手的。
(X )3.喷管为面积减小,速度增加的管道。
(X ) 4.循环有用功越大,则循环效率越高。
(X ) 5.空气进行任何变化过程比热均为正值。
(√) 6.不同种类气体的摩尔气体常数不同。
(X ) 7.绝热过程即为等熵过程。
(X )8.孤立系统的熵只能减少,不能增大。
(X )9.理想气体只有取定比热容时,才能满足迈耶公式Cp-Cv=Rg 。
(X ) 10.压缩因子可能大于1、小于1或等于1。
(√) 二、选择、填空题(27分)1.工质进行了一个吸热、升温、压力下降的多变过程,则多变指数n :(A ) A .01n << B .1n k << C .n k > D .0n =或1或k 2.v q c dT pdv δ=+适用于:(C ) A .闭口系统,可逆过程B .仅稳定流动系统,理想气体C .闭口系统,理想气体,可逆过程D .开口系统或稳定流动系统,理想气体,可逆过程3.理想气体绝热流过阀门,前后参数变化为:(B )A . 0,0T s ∆≠∆>B .0,0T s ∆=∆>C .0,0T s ∆=∆<D .0,0T s ∆=∆= 4.超音速气体通过扩压管道参数如何变化:(B ) A .压力升高,截面扩张 B .压力升高,截面收缩C .压力减小,截面扩张D .压力减小,截面收缩 5.可逆压缩时,压缩机的耗功为(C )A .pdv ⎰B .21()d pv ⎰ C .21vdp -⎰ D .21pdv ⎰6.工程热力学是研究(热能)能与(机械能)能相互转换规律的一门科学。
7.理想气体的热力学能、焓、比定压热容、比定容热容仅仅是(温度)的单值函数。
8.初、终态相同的可逆过程与不可逆过程的熵变必然(相等)(填“相等”或“不相等”)9.理想气体的熵是(热量)和(温度)的函数10.理想气体的Cp 及Cv 值与气体种类(有)关,与温度(有)关。
工程热力学(哈尔滨工程大学)知到章节答案智慧树2023年
![工程热力学(哈尔滨工程大学)知到章节答案智慧树2023年](https://img.taocdn.com/s3/m/e04ea7ecd05abe23482fb4daa58da0116d171f53.png)
工程热力学(哈尔滨工程大学)知到章节测试答案智慧树2023年最新绪论单元测试1.工程热力学课程主要研究热能与其它形式能量的相互转化。
()参考答案:对2.热质说无法解释摩擦生热问题。
()参考答案:对第一章测试1.闭口系统是指()的系统。
参考答案:与外界没有物质交换2.孤立系统指的是系统()。
参考答案:A+B+C3.在工质热力状态参数中,可以直接测量的参数是()。
参考答案:压力4.若真空度为0.2个大气压,则该处的的绝对压力为()个大气压。
参考答案:0.85.准静态过程中,系统经历的所有状态都接近于()。
参考答案:平衡态6.在工质热力状态参数中,属于基本状态参数的有()。
参考答案:压力;温度;比体积7.如果容器中气体压力保持不变,那么压力表的读数一定也保持不变。
()参考答案:错8.可逆过程一定是准静态过程,而准静态过程不一定是可逆过程。
()参考答案:对9.热力系统的边界可以是固定的,也可以是移动的;可以是实际存在的,也可以是假想的。
()参考答案:对10.用100℃的热源非常缓慢的给冰、水混合物加热,混合物经历的是准静态过程。
该加热过程是可逆过程。
()参考答案:错第二章测试1.热力学第一定律用于()。
参考答案:任意系统、任意工质、任意过程2.热力学能与推动功之和()。
参考答案:是状态参数3.热力学第一定律的实质是()。
参考答案:能量转换和守恒定律4.工质膨胀功与技术功的关系为。
()参考答案:5.工质膨胀时必须对工质进行加热。
()参考答案:错6.绝热节流过程是等焓过程。
()参考答案:错7.实际气体绝热自由膨胀后热力学能不变。
()参考答案:对8.闭口系与外界不交换流动功,所以不存在焓。
()参考答案:错9.稳定流动能量方程式也适用于有摩擦的热力过程。
()参考答案:对10.热力学能就是热量。
()参考答案:错第三章测试1.通用气体常数R与气体的种类无关,但与气体的性质有关。
()参考答案:错2.理想气体是一种假象的气体,存在2个基本的假设。
哈工大工程热力学教案
![哈工大工程热力学教案](https://img.taocdn.com/s3/m/773bb020580216fc700afdd0.png)
绪论(2学时)一、基本知识点基本要求理解和掌握工程热力学的研究对象、主要研究内容和研究方法·理解热能利用的两种主要方式及其特点·了解常用的热能动力转换装置的工作过程1.什么是工程热力学从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。
电能一一机械能锅炉一一烟气一一水一一水蒸气一一(直接利用) 供热锅炉一一烟气一一水一一水蒸气一一汽轮机一一 (间接利用)发电冰箱一一-(耗能) 制冷2.能源的地位与作用及我国能源面临的主要问题3. 热能及其利用(1).热能:能量的一种形式(2).来源:一次能源:以自然形式存在,可利用的能源。
如风能,水力能,太阳能、地热能、化学能和核能等。
二次能源:由一次能源转换而来的能源,如机械能、机械能等。
(3).利用形式:直接利用:将热能利用来直接加热物体。
如烘干、采暖、熔炼(能源消耗比例大)间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能,4..热能动力转换装置的工作过程5.热能利用的方向性及能量的两种属性过程的方向性:如:由高温传向低温能量属性:数量属性、,质量属性 (即做功能力)注意:数量守衡、质量不守衡提高热能利用率:能源消耗量与国民生产总值成正比。
6.本课程的研究对象及主要内容研究对象:与热现象有关的能量利用与转换规律的科学。
研究内容:(1).研究能量转换的客观规律,即热力学第一与第二定律。
(2).研究工质的基本热力性质。
(3).研究各种热工设备中的工作过程。
(4).研究与热工设备工作过程直接有关的一些化学和物理化学问题。
7..热力学的研究方法与主要特点(1)宏观方法:唯现象、总结规律,称经典热力学。
优点:简单、明确、可靠、普遍。
缺点:不能解决热现象的本质。
(2)微观方法:从物质的微观结构与微观运动出发,统计的方法总结规律,称统计热力学。
优点:可解决热现象的本质。
缺点:复杂,不直观。
(完整版)哈工大工程热力学习题答案——杨玉顺版
![(完整版)哈工大工程热力学习题答案——杨玉顺版](https://img.taocdn.com/s3/m/bcd0d245ac02de80d4d8d15abe23482fb4da02fe.png)
(完整版)哈⼯⼤⼯程热⼒学习题答案——杨⽟顺版第⼆章热⼒学第⼀定律思考题1. 热量和热⼒学能有什么区别?有什么联系?答:热量和热⼒学能是有明显区别的两个概念:热量指的是热⼒系通过界⾯与外界进⾏的热能交换量,是与热⼒过程有关的过程量。
热⼒系经历不同的过程与外界交换的热量是不同的;⽽热⼒学能指的是热⼒系内部⼤量微观粒⼦本⾝所具有的能量的总合,是与热⼒过程⽆关⽽与热⼒系所处的热⼒状态有关的状态量。
简⾔之,热量是热能的传输量,热⼒学能是能量?的储存量。
⼆者的联系可由热⼒学第⼀定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热⼒学能的变化。
2. 如果将能量⽅程写为d d q u p v δ=+或d d q h v p δ=-那么它们的适⽤范围如何?答:⼆式均适⽤于任意⼯质组成的闭⼝系所进⾏的⽆摩擦的内部平衡过程。
因为 u h pv =-,()du d h pv dh pdv vdp =-=-- 对闭⼝系将 du 代⼊第⼀式得q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。
3. 能量⽅程δq u p v =+d d (变⼤)与焓的微分式 ()d d d h u pv =+(变⼤)很相像,为什么热量 q 不是状态参数,⽽焓 h 是状态参数?答:尽管能量⽅程 q du pdv δ=+与焓的微分式 ()d d d h u pv =+(变⼤)似乎相象,但两者的数学本质不同,前者不是全微分的形式,⽽后者是全微分的形式。
是否状态参数的数学检验就是,看该参数的循环积分是否为零。
对焓的微分式来说,其循环积分:()dh du d pv =+蜒? 因为0du =??,()0d pv =??所以0dh =??,因此焓是状态参数。
⽽对于能量⽅程来说,其循环积分:q du pdv δ=+蜒?虽然: 0du =?? 但是: 0pdv ≠?? 所以: 0q δ≠?? 因此热量q 不是状态参数。
工程热力学期中考试试卷资料
![工程热力学期中考试试卷资料](https://img.taocdn.com/s3/m/6d53e78c2af90242a895e5fa.png)
工程热力学期中考试试卷精品资料仅供学习与交流,如有侵权请联系网站删除 谢谢2一、判断下列命题对错(每题4分,总分48分) 1. 闭口系统就是系统内质量保持不变的热力系统。
2. 单相均匀状态一定是平衡状态。
3. 孤立系就是绝热闭口系。
4. 不管是理想气体还是实际气体,当其对真空作绝热膨胀时,内能的变化∆U =0。
5. 不可逆过程无法在T -s 图上表示,也无法计算其熵的变化。
6. 工质经过一不可逆过程,不能够恢复到初状态。
7. mkg 理想气体从压力p 1(MPa),容积V 1(m 3),以可逆定温过程膨胀到V 2(m 3),过程的容积功为106mp 1V 1ln (V 2/V 1)(kJ)。
8. 空气进行一多变过程,当多变指数n=1.2时,空气的比热为负值。
9. 定比热理想气体 (绝热指数k =1.29)进行n =1.35的膨胀过程时,吸热,熵增加。
10. 若放置在恒温环境中的压力容器的压力表读数也不变,则说明容器中所装工质的绝对压力也不变。
11. 工质经过任何一种循环,其熵的变化量为0。
12. 摩尔气体常数R 是一个与气体状态无关,但与气体种类有关的常数。
二、图示题:(总分12分)某理想气体在T s -图过程如图中01、02、03所示,说明过程特点:(压缩或膨胀、升压或降压、升温或降温、吸热或放热)三、计算题(40分)1、一活塞气缸设备内装有5kg 的水蒸气,由初态的比热力学能u 1=2709.9kJ/kg ,膨胀到u 2=2659.6kJ/kg ,过程中加给水蒸气的热量为80kJ ,通过搅拌器的轴输入系统185kJ 的功,若系统无动能和位能的变化,试求通过活塞所作的功。
(5分)2、容器被分隔成A 、B 两室,如图2示。
已知当地大气压p b =0.1013MPa,B 室内压力表的读数p e2=0.04MPa ,压力表1的读数为p e1=0.294MPa ,求压力表3的读数。
(5分)3、气体在某一过程中吸收了50J 的热量,同时热力学能增加了84J ,问此过程是膨胀过程还是压缩过程?气体与外界进行的功量交换是多少?(8分) 4. 若一礼堂的容积是800m 3,室温为10℃,今欲使室温升高到20℃,需加热量多少?设礼堂墙壁保温良好,空气比热容取定值,当地大气压为0.1MPa, 定压比热容c p =1005J/kg.K ,气体常数R g =287J/kg.K 。
《工程热力学》试卷及标准答案评分标准
![《工程热力学》试卷及标准答案评分标准](https://img.taocdn.com/s3/m/a16cf1de4bfe04a1b0717fd5360cba1aa8118c03.png)
工程热力学》试卷及标准答案评分标准《工程热力学》试卷及标准答案第一部分选择题(共15分)一、单项选择题(本大题共15小题,每题只有一个正确答案,答对一题得1分,共15分)1、压力为10bar的气体通过渐缩喷管流入1bar的环境中,现将喷管尾部截去一段,其流速、流量变化为。
【】A.流速减小,流量不变B.流速不变,流量增加C.流速不变,流量不变D.流速减小,流量增大2、某制冷机在热源T1=300K,及冷源T2=250K之间工作,其制冷量为1000J,消耗功为250KJ,此制冷机是【】A.可逆的B.不可逆的C.不可能的D.可逆或不可逆的3、系统的总储存能为【】A.UB.U?pV2C.U?mc2f/2?mgzD.U?pV?mcf/2?mgz4、熵变计算式?s?cpIn(T2/T1)?RgIn(p2/p1)只适用于【】A.一切工质的可逆过程B.一切工质的不可逆过程C.理想气体的可逆过程D.理想气体的一切过程5、系统进行一个不可逆绝热膨胀过程后,欲使系统回复到初态,系统需要进行一个【】过程。
【】A.可逆绝热压缩B.不可逆绝热压缩C.边压缩边吸热D.边压缩边放热《工程热力学》试题第1页(共8页)6、混合气体的通用气体常数,【】。
【】A.与混合气体的成份有关B.与混合气体的质量有关C.与混合气体所处状态有关D.与混合气体的成份、质量及状态均无关系7、贮有空气的绝热刚性密闭容器中装有电热丝,通电后如取空气为系统,则【】A.Q>0,AU>0,W>0B.Q=0,AU>0,W>0C.Q>0,AU>0,W=0D.Q=O,△U=0,W=08、未饱和空气具有下列关系【】A.t>tw>tdB.t>td>tw.C.t=td=twD.t=tw>td9、绝热节流过程是【】过程。
【】A.定压B.定温C.定熵D.节流前后焓相等10、抽汽式热电循环的结果是【】A.提高循环热效率,提高热能利用率B.提高循环热效率,降低热能利用率C.降低循环热效率,提高热能利用率D.降低循环热效率,降低热能利用率11、一个橡皮气球在太阳下被照晒,气球在吸热过程中膨胀,气球内的压力正比于气球的容积,则气球内的气球进行的是【】A.定压过程B.多变过程C.定温过程D.定容过程12、气体的容积比热是指【】A.容积保持不变的比热。
工程热力学期末试卷及答案
![工程热力学期末试卷及答案](https://img.taocdn.com/s3/m/f56d54572b160b4e767fcf48.png)
哈工大 年 秋 季学期工程热力学考试题题号 一 二 三 四 五 六 七 八 九 十 总分 分数一.是非题 (10分)1.两种湿空气的相对湿度相等,则吸收水蒸汽的能力也相等。
( ) 2.闭口系统进行一放热过程,其熵一定减少( )3.容器中气体的压力不变,则压力表的读数也绝对不会改变。
( ) 4.理想气体在绝热容器中作自由膨胀,则气体温度与压力的表达式为kk p p T T 11212-⎪⎪⎭⎫ ⎝⎛= ( ) 5.对所研究的各种热力现象都可以按闭口系统、开口系统或孤立系统进行分析,其结果与所取系统的形式无关。
( ) 6.工质在相同的初、终态之间进行可逆与不可逆过程,则工质熵的变化是一样的。
( ) 7.对于过热水蒸气,干度1>x ( ) 8.对于渐缩喷管,若气流的初参数一定,那么随着背压的降低,流量将增大,但最多增大到临界流量。
( )9.膨胀功、流动功和技术功都是与过程的路径有关的过程量 ( ) 10.已知露点温度d t 、含湿量d 即能确定湿空气的状态。
( ) 二.选择题 (10分)1.如果热机从热源吸热100kJ ,对外作功100kJ ,则( )。
(A ) 违反热力学第一定律; (B ) 违反热力学第二定律; (C ) 不违反第一、第二定律;(D ) A 和B 。
2.压力为10 bar 的气体通过渐缩喷管流入1 bar 的环境中,现将喷管尾部截去一小段,其流速、流量变化为( )。
(A ) 流速减小,流量不变 (B )流速不变,流量增加 (C ) 流速不变,流量不变 (D ) 流速减小,流量增大 3.系统在可逆过程中与外界传递的热量,其数值大小取决于( )。
(A ) 系统的初、终态; (B ) 系统所经历的过程; (C ) (A )和(B ); ( D ) 系统的熵变。
第 页 (共 页)班号 姓名试题:班号:姓名:4.不断对密闭刚性容器中的汽水混合物加热之后,其结果只能是()。
(A)全部水变成水蒸汽(B)部分水变成水蒸汽(C)部分或全部水变成水蒸汽(D)不能确定5.()过程是可逆过程。
哈工大工程热力学试卷-20套教学文案
![哈工大工程热力学试卷-20套教学文案](https://img.taocdn.com/s3/m/1e69a24050e2524de4187e14.png)
哈工大工程热力学试
卷-20套
收集于网络,如有侵权请联系管理员删除
《工程热力学》课程套题库
第1套题……………………………………1~5页 第11套题……………………………………48~52页
第2套题……………………………………6~10页 第12套题……………………………………53~57页
第3套题……………………………………11~15页 第13套题……………………………………58~62页
第4套题……………………………………16~21页 第14套题……………………………………63~68页
第5套题……………………………………22~26页 第15套题……………………………………69~73页
第6套题……………………………………22~26页 第16套题……………………………………
74~78页
第7套题……………………………………27~31页 第17套题……………………………………79~83页
第8套题……………………………………32~36页 第18套题……………………………………84~88页
第9套题……………………………………37~42页 第19套题……………………………………89~94页
第10套题……………………………………43~47页 第20套题……………………………………95~99页
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
bar时,饱和水焓:
bar时,饱和水焓:。
工程热力学试卷B
![工程热力学试卷B](https://img.taocdn.com/s3/m/65eca659de80d4d8d05a4f12.png)
哈尔滨工程大学本科生考试试卷课程编号: 0903301 课程名称: 工程热力学一、判断题:(总分30分,每题2分)1. 孤立系统的熵与能量都是守恒的。
( ) 2. 孤立系统达到平衡时总熵达极大值。
( )3.在管道内定熵流动过程中,各点的滞止参数都相同。
( ) 4.不可逆绝热稳态流动系统中,系统的熵的变化△S sys = 0。
( )5.气体在充分膨胀的渐缩渐扩喷管的渐扩段(d f >0)中,流速大于当地音速。
( )6.规定三相点水蒸汽的内能为零,熵也为零。
( )7.理想气体熵的计算式由可逆过程△S = δ12⎰q / T 得出,故只适用范围可逆过程。
( )8.两种湿空气的相对湿度相等,则吸收水蒸汽的能力也相等。
( ) 9.绝热节流前后其焓不变,所以温度也不变。
( )10.在蒸汽压缩式制冷循环中,所选用的致冷剂液体比热越小,那么节流过程引起的损失就越小。
( )11.任何不可逆过程工质的熵总是增加的,而任何可逆过程工质的熵总是不变的。
( )12.梅耶公式C P -C v = R 也能适用于变比热的理想气体。
( )13.蒸发是发生于液体表面的汽化现象;沸腾是发生于液体内部的汽化现象。
( )14.卡诺循环的热效率仅取决于其热和冷源的温度,而与工质的性质无关。
( )15.在相同热源和在相同冷源之间的一切热机,无论采用什么工质,他们的热效率均相等。
( )二、图示题:(总分17分)1.定质量理想气体经历由四个可逆过程组成的循环,1-2为可逆绝热过程;2-3为多变过程;3-4为可逆绝热过程;4-1为定容过程。
试求:(1)填充表内所缺数据。
(2)将该循环表示在p-v 图及T-s 图上。
(3)判断是热机还是制冷机,并求出ηt 或ε1。
2.在湿空气的焓湿图上表示出A 点所对应的露点温度(t dew )湿球温度(t w ), 含湿量(d ),并将A-B的绝热加湿过程示意性地表示出来。
三.简答题:(总分15分,每题5分)1.工作在恒温热源间的两个可逆热机串联运行,第一个热机排出的能量进入第二个热机,假定第一个热机的效率比第二个热机高20%,最高和最低的恒温热源温度分别为1000K 和300K ,求第一个热机的排气温度是多少?2.画图分析新蒸汽参数和汽轮机出口背压对基本朗肯循环的热效率有和影响? 3.柴油机的热效率一般比汽油机高,其主要原因是什么? 四、计算题:(总分38分)1.m=1.5kg 某种定比热理想气体(气体常数R=240J/(k g ﹒K),绝热指数k=1.4)初始温度T1=470K,经定容过程其焓变∆H=490kJ ;试求该过程的热量Q ,内能的变化∆U ,熵的变化∆S 。
工程热力学试题 哈工
![工程热力学试题 哈工](https://img.taocdn.com/s3/m/b5e5c5db50e2524de5187ef9.png)
九十总分()7.热力系经过不可逆循环后,其熵变必然大于零。
()8.湿空气的绝对湿度越小,其吸湿能力越大。
()9.采用渐缩喷管不能获得超音速气流。
()10.余隙容积是活塞式压气机在一个工作周期中不能排出的气体容积。
()11.热泵循环的供(热)暖系数总大于1。
()12.使热力系熵增加的过程必为不可逆过程。
()13.稳定状态不一定是平衡状态()14.熵产s g>0的过程必为不可逆过程。
()15. 不存在400℃的液态水。
()16. 湿蒸汽的温度随其干度增加而升高。
()17.绝热系是与外界没有能量交换的热力系。
()18.平衡状态一定是均匀状态。
()19.状态方程是状态参数之间的关系。
()20.不可逆过程可自发进行。
()二、简答(15分)1、试述卡诺定理的内容。
(3分)2、试述孤立系熵增原理。
(3分)3、实际气体绝热节流后,它的温度如何变化?(3分)4、“定熵过程就是可逆绝热过程”这种说法是否正确,为什么?(3分)5、下图为湿空气中水蒸气的T-s 图,A 、B 两点在同一条等压线上,试在图中标出两点的露点温度,比较两点相对湿度的大小。
(3分)三、有一容器,内装隔板,将容器分成A 、B两部分,容器两部分中装有不同压力的气体,并在A的不同部位安装了两个压力表。
已测得1、2两个压力表的表压依次为 P 1 和 P 2 。
当时大气压力为 P 0。
试求A 、B 二部分中气体的绝对压力P A 和 P B (写出P A 和 P B 表达式即可) (5分)sT四、如图所示,123’4’51为A循环,123451为B循环,A、B循环均为同种理想气体可逆循环,(A循环:1→2为定熵过程,2→3’定容过程,3’→4’定压过程,4’→5定熵过程,5→1定容过程;B循环:1→2为定熵过程,2→3定容过程,3→4定压过程,4→5定熵过程,5→1定容过程)(共10分)Array求:(1)A循环是动力循环还是制冷循环;(2分)(2)将A、B两循环画在同一T-s图上;(3分)(3)比较A、B两循环的热效率高低,并说明理由。
工程热力学试卷B
![工程热力学试卷B](https://img.taocdn.com/s3/m/1be7c17958fafab068dc0215.png)
哈尔滨工程大学本科生考试试卷课程编号: 0903301 课程名称: 工程热力学一、判断题:(总分30分,每题2分)1. 孤立系统的熵与能量都是守恒的。
( ) 2. 孤立系统达到平衡时总熵达极大值。
( )3.在管道内定熵流动过程中,各点的滞止参数都相同。
( ) 4.不可逆绝热稳态流动系统中,系统的熵的变化△S sys = 0。
( )5.气体在充分膨胀的渐缩渐扩喷管的渐扩段(d f >0)中,流速大于当地音速。
( )6.规定三相点水蒸汽的内能为零,熵也为零。
( )7.理想气体熵的计算式由可逆过程△S = δ12⎰q / T 得出,故只适用范围可逆过程。
( )8.两种湿空气的相对湿度相等,则吸收水蒸汽的能力也相等。
( ) 9.绝热节流前后其焓不变,所以温度也不变。
( )10.在蒸汽压缩式制冷循环中,所选用的致冷剂液体比热越小,那么节流过程引起的损失就越小。
( )11.任何不可逆过程工质的熵总是增加的,而任何可逆过程工质的熵总是不变的。
( )12.梅耶公式C P -C v = R 也能适用于变比热的理想气体。
( )13.蒸发是发生于液体表面的汽化现象;沸腾是发生于液体内部的汽化现象。
( )14.卡诺循环的热效率仅取决于其热和冷源的温度,而与工质的性质无关。
( )15.在相同热源和在相同冷源之间的一切热机,无论采用什么工质,他们的热效率均相等。
( )二、图示题:(总分17分)1.定质量理想气体经历由四个可逆过程组成的循环,1-2为可逆绝热过程;2-3为多变过程;3-4为可逆绝热过程;4-1为定容过程。
试求:(1)填充表内所缺数据。
(2)将该循环表示在p-v 图及T-s 图上。
(3)判断是热机还是制冷机,并求出ηt 或ε1。
2.在湿空气的焓湿图上表示出A 点所对应的露点温度(t dew )湿球温度(t w ), 含湿量(d ),并将A-B的绝热加湿过程示意性地表示出来。
三.简答题:(总分15分,每题5分)1.工作在恒温热源间的两个可逆热机串联运行,第一个热机排出的能量进入第二个热机,假定第一个热机的效率比第二个热机高20%,最高和最低的恒温热源温度分别为1000K 和300K ,求第一个热机的排气温度是多少?2.画图分析新蒸汽参数和汽轮机出口背压对基本朗肯循环的热效率有和影响? 3.柴油机的热效率一般比汽油机高,其主要原因是什么? 四、计算题:(总分38分)1.m=1.5kg 某种定比热理想气体(气体常数R=240J/(k g ﹒K),绝热指数k=1.4)初始温度T1=470K,经定容过程其焓变 H=490kJ ;试求该过程的热量Q ,内能的变化∆U ,熵的变化∆S 。
(完整版)工程热力学试卷
![(完整版)工程热力学试卷](https://img.taocdn.com/s3/m/14fb055c76eeaeaad1f33093.png)
因为孤立系统的熵只能增大或者不变,绝对不能减小,所以该热机是不可能制成的
8、如图所示,某循环在700 K的热源及400 K的冷源之间工作,试判别循环是热机循环还是制冷循环,可逆还是不可逆?(用两种不同的方法求解)
解:根据热力学第一定律,
所以
方法1:(a)设为热机循环
违反克劳修斯积分不等式,不可能
(b)改设为逆向的制冷循环
符合克劳修斯积分不等式,所以是不可逆的制冷循环
方法2:将高低温热源、循环装置以及外界看成是孤立系统。
(a)设为热机循环
违背了孤立系统熵增原理,不可能
(b)改设为逆向的制冷循环
满足孤立系统熵增原理,所以是不可逆的制冷循环
方法3:(a)设为热机循环
①可逆过程
I=0
②不可逆过程:
熵为状态参数,只取决于状态,因此,
等温过程: 因此, (系统放热)
(环境吸热为正)
3、已知A、B、C,3个热源的温度分别为500K、400K、300K,有一可逆热机在这3个热源之间工作。若可逆热机从热源A吸入3000的热量,输出净功400。试求:可逆热机与热源B、C所交换的热量,并指明方向。
答:不一定,比如理想气体遵循此方程,但是比热容不是常数,是温度的单值函数。这种物质的比热容不一定仅是温度的函数。
由比热容的定义,并考虑到工质的物பைடு நூலகம்方程可得到:
由此可以看出,如果工质的内能不仅仅是温度的函数时,则此工质的比热容也就不仅仅是温度的函数了。
16、两喷管工作的背压均为0.1MPa,进口截面的压力均为1MPa,进口流速忽略不计。
1)若两喷管最小截面相等,问两喷管的流量、出口截面的流速和压力是否相同?
工程热力学春季期中考试试题
![工程热力学春季期中考试试题](https://img.taocdn.com/s3/m/9cb3faf16bd97f192379e9a0.png)
工程热力学春季期中考试试题(共1页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、判断下列命题对错(每题2分,总分30分)1.用压力表可以直接读出被测工质的绝对压力。
2.系统的状态参数保持不变,则系统一定处于平衡状态。
3.气体膨胀时一定对外做功。
4.系统内质量保持不变,则一定是闭口系统。
5.绝热闭口系的熵增就是其与相关外界构成的孤立系统熵增。
6.机械能可以完全转变为热能,而热能不能完全转变为机械能。
7.理想气体可逆定温过程,工质的膨胀功等于技术功。
8.在相同温限间工作的一切可逆热机,其热效率均相等。
9.理想气体经过绝热自由膨胀,热力学能不变,温度不变。
10. 熵变计算公式Δs=c v ln(T2/T1)+R g ln(v2/v1)适用于理想气体任何过程。
11. 工质从初状态1变化到另一状态2,不论中间经历什么过程,其内能的变化量均相等。
12. 多变过程就是任意过程。
13. 热力系统经过一不可逆过程,则系统与外界皆无法回到原状。
14. 能量方程δq=Δu+pdv适用于任何工质闭口系统的可逆过程。
15. 理想气体的热力学能、焓和熵都仅仅是温度的单值函数。
二、图示题:(总分17分)1.在T-S图上用面积表示理想气体由状态1等熵膨胀到状态2时体积膨胀功的大小。
(5分)2.试在p-v图和T-S图上定性地画出理想气体的下述过程 (借助四个基本热力过程线):(12分)1)压缩、升温、放热的过程;2)膨胀、降温、吸热的过程;3)多变系数n=的压缩过程。
三、简答题(每题5分,共20分)1.平衡状态与稳定状态有何区别和联系?2.下列两组公式分别适用于理想气体的何种过程21212121(),((),()v v pu c t t h c t t q u c t t q h c t t∆=-∆=-=∆=-=∆=-3.有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。
《工程热力学》试卷及标准答案评分标准《工程热力学》课件
![《工程热力学》试卷及标准答案评分标准《工程热力学》课件](https://img.taocdn.com/s3/m/4d887bb102d276a200292eee.png)
第一部分 选择题(共15分)一、单项选择题(本大题共15小题,每题只有一个正确答案,答对一题得1分,共15分)1、压力为10 bar 的气体通过渐缩喷管流入1 bar 的环境中,现将喷管尾部截去一段,其流速、流量变化为。
【 】 A.流速减小,流量不变 B.流速不变,流量增加 C.流速不变,流量不变 D.流速减小,流量增大2、某制冷机在热源T 1= 300K ,及冷源T 2= 250K 之间工作,其制冷量为1000 KJ ,消耗功为250 KJ ,此制冷机是 【 】A.可逆的B.不可逆的C.不可能的D.可逆或不可逆的 3、系统的总储存能为 【 】 A. U B. U pV +C. 2/2f U mc mgz ++D. 2/2f U pV mc mgz +++4、熵变计算式2121(/)(/)p g s c In T T R In p p ∆=-只适用于 【 】 A.一切工质的可逆过程 B.一切工质的不可逆过程 C.理想气体的可逆过程 D.理想气体的一切过程5、系统进行一个不可逆绝热膨胀过程后,欲使系统回复到初态,系统需要进行一个【】过程。
【】A.可逆绝热压缩B.不可逆绝热压缩C.边压缩边吸热D.边压缩边放热6、混合气体的通用气体常数,【】。
【】A.与混合气体的成份有关B.与混合气体的质量有关C.与混合气体所处状态有关D.与混合气体的成份、质量及状态均无关系7、贮有空气的绝热刚性密闭容器中装有电热丝,通电后如取空气为系统,则【】A.Q>0,△U>0,W>0B.Q=0,△U>0,W>0C.Q>0,△U>0,W=0D.Q=0,△U=0,W=08、未饱和空气具有下列关系【】A.t>t w>t dB.t>t d>t w.C.t = t d = t wD.t = t w>t d9、绝热节流过程是【】过程。
【】A.定压B.定温C.定熵D.节流前后焓相等10、抽汽式热电循环的结果是【】A.提高循环热效率,提高热能利用率B.提高循环热效率,降低热能利用率C.降低循环热效率,提高热能利用率D.降低循环热效率,降低热能利用率11、一个橡皮气球在太阳下被照晒,气球在吸热过程中膨胀,气球内的压力正比于气球的容积,则气球内的气球进行的是【】A.定压过程B.多变过程C.定温过程D.定容过程12、气体的容积比热是指【】A.容积保持不变的比热。
《工程热力学》参考试题及答案试卷
![《工程热力学》参考试题及答案试卷](https://img.taocdn.com/s3/m/b281be590812a21614791711cc7931b764ce7b1d.png)
《工程热力学》参考试题及答案试卷一、填空题(每题2分,共20分)1. 热力学系统是指在一定范围内,与外界有能量和物质交换的物体或物体系。
根据系统与外界交换物质的可能性,可以将系统分为__________和__________。
答案:开放系统;封闭系统2. 在热力学中,状态参数是描述系统状态的物理量,其中独立状态参数的数目称为系统的__________。
答案:自由度3. 理想气体的状态方程为__________,其中p表示气体压强,V表示气体体积,T表示气体温度,R为通用气体常数,n为气体的物质的量。
答案:pV=nRT4. 等压过程是指系统在__________下进行的过程。
答案:压强不变5. 等熵过程是指系统在__________下进行的过程。
答案:熵不变二、选择题(每题2分,共20分)6. 下列哪个过程是绝热过程?A. 等压过程C. 等熵过程D. 绝热过程答案:D7. 下列哪个状态参数是强度量?A. 内能B. 熵C. 温度D. 压强答案:C8. 在下列哪个过程中,系统的热力学能不变?A. 等压过程B. 等温过程C. 等熵过程D. 绝热过程答案:B9. 下列哪个过程是可逆过程?A. 等压过程B. 等温过程D. 不可逆过程答案:C10. 下列哪个过程是等温过程?A. 等压过程B. 等温过程C. 等熵过程D. 绝热过程答案:B三、判断题(每题2分,共20分)11. 热力学第一定律表明,能量不能被创造或消灭,只能从一种形式转化为另一种形式。
()答案:正确12. 在等熵过程中,系统的熵保持不变。
()答案:正确13. 理想气体的内能只与温度有关,与体积和压强无关。
()答案:正确14. 等压过程和等温过程都是可逆过程。
()答案:错误15. 在等温过程中,系统的温度保持不变。
()答案:正确四、计算题(每题20分,共60分)16. 一台理想气体压缩机,将0.1kg的空气从状态1(p1=0.1MPa,T1=300K)压缩到状态2(p2=0.5MPa,T2未知),已知压缩过程为等熵过程。
《工程热力学》参考试题及答案
![《工程热力学》参考试题及答案](https://img.taocdn.com/s3/m/20e7e2954793daef5ef7ba0d4a7302768e996fe2.png)
《工程热力学》参考试题及答案一、选择题(每题5分,共30分)1. 热力学第一定律表明()A. 热量不能自发的从低温物体传到高温物体B. 热量不能完全转化为功C. 能量守恒D. 热量总是从高温物体传到低温物体答案:C2. 下列哪个过程是可逆过程?()A. 自由膨胀B. 等温膨胀C. 等压膨胀D. 绝热膨胀答案:B3. 在热力学中,以下哪个参数是状态函数?()A. 功B. 热量C. 温度答案:C4. 下列哪个参数表示热力学系统的内能?()A. 温度B. 压力C. 熵D. 内能答案:D5. 在下列哪个过程中,熵增最大?()A. 等温膨胀B. 等压膨胀C. 绝热膨胀D. 等温压缩答案:A6. 下列哪个过程是绝热过程?()A. 等温膨胀B. 等压膨胀C. 绝热膨胀D. 等温压缩二、填空题(每题10分,共30分)1. 热力学第一定律的表达式为:△U = Q - W,其中△U 表示____,Q表示____,W表示____。
答案:系统内能的变化、系统吸收的热量、系统对外做的功2. 在等温过程中,理想气体的熵变为:△S =nRln(V2/V1),其中n表示____,R表示____,V1表示____,V2表示____。
答案:气体的物质的量、气体常数、初始体积、终态体积3. 下列热力学过程中,熵增最小的是____过程。
答案:绝热过程三、计算题(每题20分,共40分)1. 已知某理想气体的初始状态为:T1 = 300K,P1 =1MPa,V1 = 0.1m³。
经过一个等温膨胀过程,气体的终态压力为P2 = 0.5MPa。
求气体的终态体积V2和膨胀过程中气体对外做的功W。
解:根据理想气体状态方程:PV = nRT,可得P1V1 = P2V2解得:V2 = 2V1 = 0.2m³膨胀过程中气体对外做的功为:W = P1V1ln(P1/P2) = 1 × 10⁶ × 0.1 × ln(1/0.5) = 1.69 × 10⁴ J2. 一台理想卡诺热机的热源温度为800K,冷源温度为300K。
工程热力学 04(哈工大)
![工程热力学 04(哈工大)](https://img.taocdn.com/s3/m/f854599951e79b8968022626.png)
CHAPTER4THE SIMPLE COMPRESSIBLE SUBSTANCE4.1IntroductionSince all matter can be compressed if a large enough pressure is applied,a study of the thermodynamic properties of the simple compressible substance is a good starting point for any description of the macroscopic properties of matter in equilibrium.Simple compressible substances are also by far the most important ones for engineering thermodynamics,since most(but not all)power plants and engines employ compression,heating,and expansion of afluid to produce power.A substance may be approximated as a simple compressible substance if effects due to other reversible work modes are negligible.For example,if the surface-to-volume ratio of a large body of water is small enough,then surface tension will not measurably affect the properties of the water except very near the surface.On the other hand,surface tension will have a dramatic influence on the properties of a very small water droplet,and will,for example,cause the pressure inside the droplet to be elevated above the value predicted if surface tension were neglected.Clearly,a very small water droplet can’t be treated accurately as a simple compressible substance,while a large body of water is approximated very well in this way.In this chapter,we examine the properties of simple compressible substances. We will restrict attention to pure substances,which contain only one type of molecule.Mixtures will be considered in a later chapter.4.2Phases of a Simple Compressible SubstanceA simple compressible substance may exist in different phases:solid,liquid,or gas.Some substances have multiple solid phases,some even have multiple liquid phases(helium),but all have only one gas phase.An experimental apparatus is shown in Fig.4.1which can be used to measure the properties and phases of a simple compressible substance as a function of temperature and pressure.A cylindrical solid sample is placed in a vertical cylinder of the same diameter,which isfitted with a piston.The ambient pressure is P0,and the piston weight provides a constant downward force F=68CHAPTER4.THE SIMPLE COMPRESSIBLE SUBSTANCE69PistonFigure4.1:Constant-pressure heating experiment.M p g.The pressure in the cylinder isP=F/A=M p g/A+P0.(4.1)The sample height is small enough that the pressure may be taken to be uniform within the sample.The cylinder and piston are well insulated,so there is no heat loss to the environment.A small amount of heat Q is added by briefly passing current through a resistor mounted in the cylinder wall,after which the system is allowed to re-establish equilibrium.Once the system has come back to equilibrium,both the temperature and the volume may have changed.The new temperature is measured with a thermometer,and the new volume by the piston height.If Q is sufficiently small,the expansion will occur slowly enough that friction between the piston and cylinder is negligible.In this case,even if the piston oscillates for a while due to the perturbation,once the oscillations have died out and the piston has settled down at a new height,the work done by the substance on the piston will be equal to the work done against atmospheric pressure,plus the change in the gravitational potential energy of the piston:1W=(M p g+P0A)∆y=(M p g+P0)(∆V/A)=(M p g/A+P0)∆V=P∆V.(4.2) An energy balance on the substance yields the change in its internal energy:∆U=Q−P∆V.(4.3)1If friction were not negligible,some kinetic energy of the piston would be converted to internal energy in the piston or cylinder due to friction,and therefore the work would be >P∆V.CHAPTER4.THE SIMPLE COMPRESSIBLE SUBSTANCE70The quantities Q,P,and∆V are all measured,so we can calculate∆U.Since P is a constant in this experiment,this equation may be rearranged in the form∆(U+P V)=Q.(4.4)The combination U+P V occurs often in analysis of problems at constant pressure.Since U,P,and V are material properties,so is U+P V.Rather than always write U+P V,we give this property its own name and symbol:the enthalpy!definition H is defined byH=U+P V.(4.5)Like U and V,H is an extensive property.In terms of the enthalpy,Eq.(4.4)becomes∆H=Q.(4.6)For heat addition at constant pressure,the heat added equals the change in enthalpy of the substance.In contrast,recall from the First Law that if heat is added at constant volume(W=0),then∆U=Q.Returning to our experiment,the process in now repeated many times,and the resulting property values are recorded at every step:heat Q is added,time is allowed to elapse to re-establish equilibium,the new T and V are measured, H is incremented by Q.After n heat addition steps,the volume and temperature have values V n and T n,and enthalpy H n of the substance relative to its starting value H0isH n−H0=nQ.(4.7)Since the extensive properties(V and H)depend on how much of the substance was placed in the container,it is preferable to convert them to specific quantities (v=V/M,h=H/M).In Fig.4.2,the measured temperature and change in specific enthalpy are shown plotted vs.the measured specific volume(connecting the individual measurements with solid lines).When heat isfirst added to the solid,its temperature increases and it ex-pands slightly(region a-b in Fig.4.2).At point b,the temperature stops in-creasing,although the volume still increases.A look inside the cylinder reveals the presence of some liquid–the solid is melting.At point c,all of the solid has melted,and precisely at this point the temper-ature begins to rise again.But when point d is reached,it stops again and the volume begins to increase significantly.Bubbles are observed to begin formingCHAPTER 4.THE SIMPLE COMPRESSIBLE SUBSTANCE 71T V abc de h - h v a b c d e0Figure 4.2:Measured temperature (a)and specific enthalpy change (b)vs.mea-sured specific volume for constant-pressure heating.in the liquid at point d –the liquid is boiling.Moving across from point d to e,the amount of vapor in the cylinder increases,and the amount of liquid decreases.At point e,no liquid remains,and both temperature and volume increase upon further heat addition.Figure 4.2shows that when two phases are present (solid/liquid or liq-uid/vapor),h −h 0continues to increase with v even though T is constant,since energy input is required to convert solid to liquid,or liquid to vapor.Note that the only way to measure h is by means of Eq.(4.7),which actually only allows the change in h from the initial state to be determined.There is no experiment we could do to measure the value in the initial state h 0.2Since h =u +P v ,if h 0can’t be determined,then u 0can’t be either.This isn’t a problem,however,since only differences of energy (or enthalpy)have any phys-ical significance.We can start the experiment in some convenient,reproducible state,and simply assign any value we like to h 0(for example,h 0=0).We call the initial state with arbitrarily-chosen h 0the reference state or datum state .The results shown in Fig.4.2are for a single pressure,P =M p g/A +P 0.By changing the mass of the piston,we can repeat the experiment for different pressures,determining T (v )and h (v )−h 0curves for a range of pressures.Typical T (v )curves are shown in Fig.4.3(a)with the points on different curves where the slope is discontinuous connected by dotted lines.The curve corresponding to Fig.4.2(a)is labeled P 1on this plot.In Fig.4.3(b),the dashes2Wecould measure it by starting in some other state,but it wouldn’t be the initial state;the measured value would be relative to the enthalpy in this new initial state,which would still be undetermined.CHAPTER4.THE SIMPLE COMPRESSIBLE SUBSTANCE72 TVPP1P2P3P4TVliquid +gassolid + gassolidliquidgasliquid+ solidFigure4.3:(a)T−v curves for constant-pressure heating;(b)phase diagram.lines are drawn solid,and each region is labeled by which phase or phases are present in the cylinder.Diagrams like this are called phase diagrams.The experimental observations are as follows.As the pressure is increased, the temperature at which liquid appears(the melting point)and the tempera-ture at which vapor appears(the boiling point)both increase.Also,the spe-cific volume of the liquid increases to a larger value before boiling begins,and the specific volume of the vapor once the last liquid has evaporated decreases. Therefore,the change in specific volume upon boiling decreases as the pressure increases.Beyond a particular pressure P3,the T(v)curve changes character.As P3is approached,the change in specific volume upon boiling goes to zero–the liquid and vapor approach the same density,and in fact become identical in all respects at P3.For P>P3,there is no longer a meaningful distinction between liquid and vapor,and there is no longer any conventional boiling behavior observed. In this pressure regime,as heat is added the high-densityfluid simply expands continuously and homogeneously to a low-densityfluid,without ever breaking up into separate liquid and vapor regions within the cylinder.Pressure P3is known as the critical pressure P c.Below P c,the transfor-mation from liquid to vapor upon heating occurs by means of thefluid in the cylinder splitting into two separate regions(high-density liquid and low-density vapor);as more heat is added,the liquid portion shrinks,and the vapor portion grows.Above P c,the transformation from liquid to vapor occurs continuously, with thefluid remaining uniform throughout the cylinder at all times.As P approaches P c from below,the limiting value approached by the boilingCHAPTER4.THE SIMPLE COMPRESSIBLE SUBSTANCE73Table4.1:Critical temperature,pressure,and density for a few substances.T c(K)P c(MPa)ρc(kg/m3)Helium-4 5.200.227569.64Hydrogen32.94 1.2831.36Nitrogen126.2 3.4314.03Oxygen154.6 5.04436.15Methane190.6 4.60160.43Carbon Dioxide304.27.38464.00Water647.322.1317.0temperature is known as the critical temperature T c.The T(v)curve for P=P c has an inflection point at T=T c:∂T ∂vP=0and∂2T∂v2P=0at T=T c,P=P c.(4.8)The specific volume of thefluid at the point where P=P c and T=T c is known as the critical specific volume v c;the reciprocal of v c is the critical densityρc.The quantities T c,P c,and v c(orρc)define the critical point.The critical point quantities for a few substances are listed in Table4.2.If the pressure is now lowered below P1,another change in the character of the T(v)curve is observed.On the P0curve,there is only one segment where T is constant,not two.On theflat segment,a solid/vapor mixture is found in the cylinder,rather than a solid/liquid or liquid/vapor mixture.Evidently,at sufficiently low pressure no liquid phase forms–instead,the solid transforms directly to vapor.This process is known as sublimation.4.3P−v−T SurfacesSince any two independent properties serve to define the thermodynamic state for a simple compressible substance,we may regard any other property as a function of these two.For example,at every(T,v)point in Fig.4.3we know the pressure,so we can construct P(T,v).The function P(T,v)defines a surface over the T−v plane.A typical P−v−T surface is shown in Fig.4.4.Every equilibrium state of the substance corresponds to some point on the P−v−T surface.In the pure solid region and in the pure liquid region below T c,the slope of the surface is very steep,since compressing a solid or liquid even a little requires a huge increase in pressure. In the gas or vapor region,the surface is gently sloped,since gases are easilyCHAPTER4.THE SIMPLE COMPRESSIBLE SUBSTANCE74Figure4.4:A P−v−T surface for a substance which expands upon melting.compressed.Of course,above the critical point the liquid and gas regions merge smoothly.In Fig.4.4the term“gas”is used above the critical point,and“vapor”below it.This convention dates back to the early19th century,when it was thought that“gases”like oxygen were different than“vapors”like steam.Va-pors could be condensed to liquid,but gases(it was believed)could not be. When it was demonstrated in1877that oxygen and nitrogen could be liquified at sufficiently low temperature,it became clear that there was no fundamental distinction between gases and vapors;the only difference is that substances such as oxygen have critical temperatures well below room temperature,while the critical temperature of water is above room temperature.Thus,liquid water is commonplace,but liquid oxygen,nitrogen,hydrogen,or helium are not.How-ever,processes to produce these as liquids are now straightforward,and liquid oxygen,nitrogen,and helium have very significant technological applications.3 The slope of the P−v−T surface is discontinuous on the boundary between the single-phase and the two-phase regions.Note that since T remains constant3For example,liquid hydrogen and oxygen as used as propellants in the Space Shuttle Main Engine;liquid nitrogen is widely used to cool electronic equipment and photodetectors;liquid helium is used to cool large superconducting magnets to temperatures a few degrees above absolute zero.CHAPTER4.THE SIMPLE COMPRESSIBLE SUBSTANCE75Table4.2:Triple-point temperatures and pressures.T t(K)P t(kPa)Helium-4 2.18 5.1Hydrogen13.87.0Nitrogen63.1512.5Oxygen54.340.14Methane90.6811.7Carbon Dioxide216.54517.3Water273.160.61in the two-phase regions during constant-pressure heating,any horizontal slice through the surface in a two-phase region must produce a line perpendicular to the T axis;in other words,the slope of the surface in the T direction is zero in the two-phase regions.The solid-vapor two-phase region intersects the solid-liquid and liquid-vapor regions in a single line parallel to the volume axis.This line is known as the triple line,since along this line all three phases may coexist in equilibrium.The pressure and temperature are the same everywhere along the triple line.There-fore,for a given substance,there is only one pressure P t and one temperature T t at which solid,liquid,and vapor may coexist in equilibrium.The combination (T t,P t)is known as the triple point.Of course it is only a point in the P−T plane;when the volume axis is considered,it is a line.This is in contrast to the critical point,which is really a point in(P,v,T)space.The triple points for several substances are listed in Table4.3.Note that of the ones listed,only carbon dioxide has P t>1atm(1atm=101.325kPa). Therefore,at1atm pressure,solid carbon dioxide(“dry ice”)sublimates,while solid water melts.Th P−v−T surface shown in Fig.4.4is appropriate for a substance which expands upon melting,which we assumed implicitly in our discussion above. However,a few substances–including water–contract when they melt.For these substances,the P−v−T surface looks like that shown in Fig.4.5.If a substance has multiple solid phases,the P−v−T surface can become very complex.A portion of the actual surface for water is shown in Fig.4.6, showing the different phases of ice.Two-dimensional phase diagrams may be obtained by projecting the P−v−T surface onto the P−T,T−v,or P−v planes.We have already looked at the T−v projection in constructing the P−v−T surface[Fig.4.3(b)].The P−TCHAPTER4.THE SIMPLE COMPRESSIBLE SUBSTANCE76Figure4.5:A P−v−T surface for a substance which contracts upon melting.Figure4.6:A portion of the P−v−T surface for water.CHAPTER 4.THE SIMPLE COMPRESSIBLE SUBSTANCE77PTPT Figure 4.7:P −T phase diagrams for (a)a substance which expands on melting;(b)a substance which contracts on melting.projection is shown in Fig.4.7for a substance which expands on melting (a)and for one which contracts on melting (b).The critical point (c)and the triple point (t)are both shown.The lines separating the single-phase regions on a P −T plot are known as coexistence lines ,since on these lines two phases may coexist.The liquid-vapor coexistence line terminates at the critical point.In contrast,the solid-liquid coexistence line never terminates,no matter how high the pressure.This is because solid and liquid are fundamentally different –in a solid,atoms are arranged in a highly regular,periodic way,while in a liquid they are arranged randomly.There is no way for these states with very different symmetry to transform into one another continuously,and so it is not possible for a critical point to exist on the solid-liquid coexistence line.Each of the coexistence lines in a P −T phase diagram can be described by some function P (T ),so clearly P and T are not independent when two phases are simultaneously present.On the liquid-vapor and solid-vapor coexistence lines,the term vapor pressure is used to denote P (T ),since this is the pressure of the vapor in equilibrium with the solid or liquid.An equivalent term is saturation pressure P sat (T ).If pressure is specified,the saturation temperature T sat (P )is defined to be the temperature on the coexistence curve where the pressure is P .The saturation temperature is just another name for the boiling temperature.For example,for water,T sat (1atm)is 373.15K (100◦C),and P sat (373.15K)=1atm.4.4Determining Properties in the Mixed-Phase RegionsUnder conditions where two phases coexist in equilibrium,some care must be taken to correctly determine the properties and amount of each phase from aCHAPTER4.THE SIMPLE COMPRESSIBLE SUBSTANCE78Tv Pf v gFigure4.8:In the liquid/vapor two-phase region,the liquid has specific volume v f and the vapor has specific volume v g.phase diagram.The two phases have very different properties.For example, the specific volume of a liquid is much less than that of a gas.How can we determine both values from a phase diagram?The key is to realize that in a two-phase region,the properties of each phase present are those at the“edges”of the region.For example,consider boiling a liquid at constant pressure.Just before the temperature where gas bubbles first appear,the cylinder is stillfilled with liquid.Call the specific volume at this point v f.4As more heat is added at constant pressure,the only thing that happens is that some liquid becomes vapor–the properties(per unit mass) of the remaining liquid don’t change.Although there is less liquid,the liquid remaining still has specific volume v f.What is the specific volume of the vapor which has been created?It too is constant during the constant-pressure boiling process,and thus must equal the value of v obtained once the cylinder contains only vapor.Call this value v g.Suppose now that the system is somewhere in the two-phase region on the isobar5labeled P in Fig.4.8and the measured total volume V results in a value for v=V/M as shown in thisfigure.This v does not actually correspond to the specific volume of either the liquid or the vapor in the container.These are v f and v g,respectively.Instead,v is an average of v f and v g,weighted by the mass of each in the container.We use the term“saturated”to denote the states on either side of the vapor dome(Fig.4.9).Thus,“saturated liquid”has specific volume v f,and“saturated4Although it is not entirely logical,it is conventional to use the subscript“f”to denote properties of the liquid and“g”to denote properties of the vapor in an equilibrium liquid/vapor mixture.5An isobar is a line of constant pressure.The P in a circle simply labels the pressure of this isobar.CHAPTER4.THE SIMPLE COMPRESSIBLE SUBSTANCE79 TFigure4.9:Definition of saturated,superheated,and subcooled states.vapor”has specific volume v g.When liquid and vapor are present together in equilibrium,the liquid is always saturated liquid,and the vapor is saturated vapor.Vapor at a temperature above T sat(P)is called superheated vapor,and liquid at a temperature below T sat(P)is called subcooled liquid.Subcooled liquid is also called compressed liquid,since it is at a higher pressure than P sat(T).Let the mass of the vapor in the container be Mx,where0≤x≤1.Then the mass of the liquid must be M(1−x),since the total mass is M.The total volume is thenV=M(1−x)v f+Mxv g,(4.9)orv=VM=(1−x)v f+xv g.(4.10)If we know v,we can then solve for x:x=v−v fv g−v f.(4.11)The vapor mass fraction x is an intensive thermodynamic property of a liquid/vapor mixture.The common name in engineering thermodynamics for x is the quality.This name was given to x by engineers developing steam engines and power plants:the presence of liquid droplets in the steam damages engine parts such as turbine blades,hence from the engineer’s perspective higher “quality”steam had less liquid content.Of course,for other applications the relative merits of liquid and vapor might be reversed.In this book,we will usually refrain from making a value judgement about liquid vs.vapor,and simply call x the vapor mass fraction.CHAPTER4.THE SIMPLE COMPRESSIBLE SUBSTANCE80Equation(4.11)is known as the lever rule.It may be interpreted in terms Fig.4.8as follows.To determine the mass fraction of a phase in a saturated vapor/liquid mixture,locate the system point in the two-phase region on a T−v or P−v plot.Now take the length of the horizontal line segment from v to the saturation line corresponding to the other phase,and divide this length by the total width of the2-phase region(v g−v f).Note that this rule works for any 2-phase region,for example for liquid/solid mixtures.Example4.1A bottle contains10kg of carbon dioxide at260K.If the volume of the bottle is100liters,does the bottle contain liquid,solid,gas,or a mixture? How much of each?What is the pressure?Solution:Since260K is greater than the triple-point temperature for CO2, no solid will be present.Calculate v=V/M=(100liters)/(10kg):v=0.01 m3/kg.From a phase diagram for CO2at260K,wefind that v f=0.001001 m3/kg,and v g=0.01552m3/kg.Since v is between these two values,the bottle contains a mixture of liquid and gaseous CO2.The vapor mass fraction isx=0.01−0.0010010.01552−0.001001=0.62.Since it is in the mixed phase region,the pressure is the saturation pressure at 260K,which is2.421MPa.4.5Software for Property EvaluationTo solve problems involving real substances(such as the last example),some source of property data is required.Traditionally in thermodynamics courses, properties were looked up in tables,or estimated from detailed phase diagrams.A typical diagram for oxygen is shown in Fig.4.10.Here the pressure is plotted against the enthalpy,and many curves representing particular values of other properties are shown.Since P and h are two valid,independent properties,the thermodynamic state is represented by a point on this plot.The point may befixed by interpolation if any two properties are known for which curves are plotted on the chart.Once the state point is found,any other properties can be read off(with some care and practice).Most thermodynamics textbooks now come with at least some rudimentary software to evaluate properties.In many cases,the programs are simply elec-tronic versions of tables,which print to the screen the property values.In other cases,more elaborate software is provided which allows you to do a complete thermodynamic analysis.But even these packages are specialized applications, which you use for thermodynamics but nothing else.CHAPTER4.THE SIMPLE COMPRESSIBLE SUBSTANCE81Figure4.10:A pressure-enthalpy plot for oxygen.CHAPTER4.THE SIMPLE COMPRESSIBLE SUBSTANCE82A new software package is provided as a supplement to this book which im-plements thermodynamic property functions in Microsoft Excel(a spreadsheet program).The thermodynamic property functions are provided by an“add-in”module called TPX(“T hermodynamic P roperties for E X cel”).Details of how to load it into Excel and use it are given in Appendix A.Calculating properties is easy with TPX.For example,if you want to know the specific enthalpy of oxygen at1MPa and500K,you simply type into a cell:=h("o2","PT",1,500)The parameters are:the substance name(case is unimportant);a string stating the properties which will be used tofix the state(here P and T);the value of thefirst parameter(P);the value of the second parameter(T).The value of the function returned in the cell is655.83kJ/kg.You can select any system of units you like;all inputs and outputs will then be in those units.(This example assumes the user selected units of Kelvin for temperature,MPa for pressure,kJ for energy,and kg for mass.)The real power of using a spreadsheet becomes apparent in more complex analyses.For example,the temperature and pressure may not be specified inputs,but are themselves the result of calculations in other cells.In this case, simply replace the numerical value in the function parameters by the appropriate cell address(e.g.B4).The same functions implemented by TPX are also available in a WWW property calculator.The calculator is convenient for simple calculations,if you have access to the Web but not to Excel.Example4.2One kg of water is placed in a closed container and heated at constant volume.The initial temperature is300K.If the desiredfinal state is the critical point,determine the necessary container volume,initial pressure, initial vapor mass fraction,and energy transfer as heat.Solution:Two properties are needed to specify the initial state.The tem-perature is given,so one more is required.Since the process occurs at constant volume,the initial volume V1must equal thefinal volume V2.Thefinal state is the critical point,soV2=(1kg)×v c.The critical specific volume of water may be calculated using TPX:v c=vcrit("h2o")=0.003155m3/kg.Therefore,state1isfixed by T1=300K and v1=v ing TPX,any otherCHAPTER4.THE SIMPLE COMPRESSIBLE SUBSTANCE83 desired property for state1may be computed:P1=3528.2Pa P("H2O","TV",300,vcrit("H2O"))X1=5.49×10−5x("H2O","TV",300,vcrit("H2O"))u1=112.727kJ/kg u("H2O","TV",300,vcrit("H2O"))h1=112.738kJ/kg h("H2O","TV",300,vcrit("H2O"))Note that the initial state is a mixed liquid/vapor state,and so P1=P sat(300 K).The vapor fraction is very small,since v c is only slightly greater than the specific volume of the saturated liquid.The required heat transfer Q is determined from the First Law:∆U=Q+W.Since the volume is constant,W=0,soQ=∆U=M(u2−u1).Using TPX,u2=u("h2o","tv",tcrit("h2o"),vcrit("h2o"))=2029.6kJ/kg.so Q=(1kg)(2029.6kJ/kg-112.7kJ/kg)=1916.9kJ.4.6More Properties:Partial Derivatives of Equations of StateConsider an equation of state like P(T,v).Clearly,a partial derivative of this function,for example(∂P/∂T)v,is some new function of(T,v)and may rightly be regarded as a thermodynamic property of the system.Some useful derivative properties are defined here.4.6.1Thermal Expansion CoefficientMost substances expand when heated.The property which tells us how much a substance expands when heated at constant pressure is the thermal expansion coefficientβ,defined byβ=1v∂v∂TP(4.12)To calculateβ,the equation of state v(T,P)would be differentiated with respect to T.CHAPTER4.THE SIMPLE COMPRESSIBLE SUBSTANCE84Note the1/v in the definition–βis defined as the fractional change in volume per degree of temperature increase.Also,note that this definition is only really meaningful if a single phase is present,since otherwise T can’t be increased holding P constant.Example4.3What is the thermal expansion coefficient of liquid water at300 K and1atm?Solution:βmay be calculated approximately using TPX,evaluating the partial derivative by afinite-difference approximation.Taking a small increment of,say,0.1K,use TPX(with units set to K and atm)to evaluate(∂v/∂T)P:∂v ∂TP≈(v("h2o","tp",300.1,1)-v("h2o","tp",300,1)/0.1)=2.75×10−7m3/kg-K.(4.13)Sincev=v("h2o","tp",300,1)=0.001003378m3/kg,β≈2.74×10−4K−1.4.6.2Isothermal CompressibilityAll matter decreases slightly in volume if the pressure is increased at constant temperature.The property how the volume varies with pressure at constant temperature is the isothermal compressibilityκ,defined byκ=−1v∂v∂PT(4.14)As withβ,if the equation of state v(T,P)is known,it can be differentiated to findκ(T,P).And as with the thermal expansion coefficient,κis only meaningful if the substance is in a single phase.4.6.3Specific HeatsSuppose a unit mass of a substance absorbs an amount of heat¯d Q;how much does the temperature increase?It depends in part on how the heating is done. From the First Law,du=¯d Q+¯d W=¯d Q−P dv.(4.15)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈工大工程热力学试
卷-20套
收集于网络,如有侵权请联系管理员删除
《工程热力学》课程套题库
第1套题……………………………………1~5页 第11套题……………………………………48~52页
第2套题……………………………………6~10页 第12套题……………………………………53~57页
第3套题……………………………………11~15页 第13套题……………………………………58~62页
第4套题……………………………………16~21页 第14套题……………………………………63~68页
第5套题……………………………………22~26页 第15套题……………………………………69~73页
第6套题……………………………………22~26页 第16套题……………………………………
74~78页
第7套题……………………………………27~31页 第17套题……………………………………79~83页
第8套题……………………………………32~36页 第18套题……………………………………84~88页
第9套题……………………………………37~42页 第19套题……………………………………89~94页
第10套题……………………………………43~47页 第20套题……………………………………95~99页
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
bar时,饱和水焓:
bar时,饱和水焓:。