插床机构导杆机构(
插床导杆机构课程设计
插床导杆机构课程设计(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--齐齐哈尔大学普通高等教育机械原理课程设计题目题号:插床导杆机构位置3的设计学院:机电工程学院专业班级:学生姓名:指导教师成绩:2013 年 7月 2 日目录一、工作原理二、设计要求三、设计数据四、设计内容及工作量五. 设计计算过程(一). 方案比较与选择(二). 导杆机构分析与设计1.机构的尺寸综合2. 导杆机构的运动分析一、工作原理:插床机械系统的执行机构主要是由导杆机构和凸轮机构组成。
下图为其参考示意图,电动机经过减速传动装置(皮带和齿轮传动)带动曲柄2转动,再通过导杆机构使装有刀具的滑块6沿导路y —y 作往复运动,以实现刀具的切削运动。
刀具向下运动时切削,在切削行程H 中,前后各有一段的空刀距离,工作阻力F 为常数;刀具向上运动时为空回行程,无阻力。
为了缩短回程时间,提高生产率,要求刀具具有急回运动。
刀具与工作台之间的进给运动,是由固结于轴O 2上的凸轮驱动摆动从动件D O l 8和其它有关机构(图中未画出)来完成的。
二、设计要求:电动机轴与曲柄轴2平行,使用寿命10年,每日一班制工作,载荷有轻微冲击。
允许曲柄2转速偏差为±5%。
要求导杆机构的最小传动角不得小于60o ;凸轮机构的最大压力角应在许用值[α]之内,摆动从动件8的升、回程运动规律均为等速运动。
执行构件的传动效率按计算,系统有过载保护。
按小批量生产规模设计。
三、插床导杆机构设计数据四、设计内容及工作量:1、根据插床机械的工作原理,拟定2~3个其他形式的执行机构(连杆机构),并对这些机构进行分析对比。
2、根据给定的数据确定机构的运动尺寸, ()46.0~5.0BO BC l l =。
要求用图解法设计,并将设计结果和步骤写在设计说明书中。
3、导杆机构的运动分析。
分析导杆摆到两个极限位置及摆到与机架O 2O 4位于同一直线位置时,滑块6的速度和加速度。
插床机械原理.
设计目录1. 设计任务书 (3)1.1 设计题目 (3)1.2 插床简介 (3)1.3 设计要求及设计参数 (4)1.4 设计任务 (4)2. 插床工作原理及功能分解 (5)2.1 插床工作原理 (5)2.2 工作分解 (6)3. 机构的选择 (6)3.1 机构的选择参考 (6)3.2 主执行机构的选择 (7)4.原动机的选择 (7)5. 拟定传动系统方案 (7)6. 绘制工作循环图 (8)7. 凸轮机构的设计 (9)8.插床导杆机构的综合及运动分析 (13)8.1 插床导杆机构的综合 (13)8.2 运动分析 (15)9. 插床导杆机构的动态静力分析 (18)10. 插床创新设计方案 (22)11.心得与体会及参考文献 (26)设计任务书1.1设计题目插床机构设计1.2 插床简介金属切削机床,用来加工键槽。
加工时工作台上的工件做纵向、横向或旋转运动,插刀做上下往复运动,切削工件。
利用插刀的竖直往复运动插削键槽和型孔的直线运动机床。
插床与刨床一样,也是使用单刃刀具(插刀)来切削工件,但刨床是卧式布局,插床是立式布局。
插床的生产率和精度都较低,多用于单件或小批量生产中加工内孔键槽或花键孔,也可以加工平面、方孔或多边形孔等,在批量生产中常被铣床或拉床代替。
普通插床的滑枕带着刀架沿立柱的导轨作上下往复运动,装有工件的工作台可利用上下滑座作纵向、横向和回转进给运动。
键槽插床的工作台与床身联成一体,从床身穿过工件孔向上伸出的刀杆带着插刀边做上下往复运动,边做断续的进给运动,工件安装不像普通插床那样受到立柱的限制,故多用于加工大型零件(如螺旋桨等)孔中的键槽。
插床实际是一种立式刨床,在结构原理上与牛头刨床同属一类。
插刀随滑枕在垂直方向上的直线往复运动是主运动,工件沿纵向横向及圆周三个方向分别所作的间歇运动是进给运动。
插床的主参数是最大插削长度。
插床是用于加工中小尺寸垂直方向的平面或直槽的金属切削机床,多用于单件或小批量生产。
常见机械结构及其工作原理
常见机械结构及其工作原理机械结构是机械系统中的重要组成部分,它们由多个机械元件组成,能够将输入的能量转化为所需的工作。
常见的机械结构有齿轮机构、导杆机构、凸轮机构、铰链机构等等。
在这里,我将介绍一些常见的机械结构及其工作原理。
• 1. 插床:主要由齿轮机构、导杆机构和凸轮机构等组成,为了缩短工程时间,提高生产率,要求刀具有急回运动。
齿轮机构可以将动力源输入的扭矩和转速转换为所需的扭矩和转速,导杆机构可以使机床在加工过程中保持稳定的位置和方向,凸轮机构可以用来控制机床上的运动部件的运动轨迹和速度。
• 2. 铰链机构:主要特点是动作迅速、增力比大、易于改变力的作用方向、自锁性能差。
铰链机构通常由铰链、支承和连接杆组成,通过改变铰链的位置或角度来控制连接杆的运动。
铰链机构常用于门、窗、汽车排气管等。
•机械臂上下料机构:主要由机械臂、链轮、链条、导向轮、上下料机构等组成。
机械臂可以在空间中进行运动,链轮和链条可以将动力源输入的扭矩和转速转换为所需的扭矩和转速,导向轮可以保证链条的稳定运动,上下料机构可以控制物料的上下运动。
机械臂上下料机构常应用于自动化生产线上。
• 3. 双偏心驱动导杆机构:这种机构主要由双偏心轮、导杆和摆杆等组成。
当双偏心轮转动时,导杆会在水平方向上产生往复运动,摆杆可以将这种运动转化为垂直方向上的往复运动。
双偏心驱动导杆机构常用于打孔机、磨床等机械上。
• 4. 曲柄摇杆往复传动机构:这种机构主要由曲柄、连杆和摇杆等组成。
当曲柄转动时,连杆会在水平方向上产生往复运动,摇杆可以将这种运动转化为垂直方向上的往复运动。
曲柄摇杆往复传动机构常用于内燃机、压缩机等机械上。
• 5. 凸轮与转动导杆组合机构:这种机构主要由凸轮、转动导杆和摆杆等组成。
当凸轮转动时,转动导杆会在水平方向上产生往复运动,摆杆可以将这种运动转化为垂直方向上的往复运动。
凸轮与转动导杆组合机构常用于石油钻机、铣床等机械上。
插床设计
Ⅲ轴:
P P 2.03 0.99 0.97kW 1.95kW
2 3
联轴器轴: P联 P 1.95 0.99kW 1.93kW
4
(3)各轴的输入转矩:
电动机的输出转矩
T 9.55 10
d 6 d
T
d
为:
6 4
齿轮传动设计计算
计算齿宽与齿高之比b/h 模数 mt= d cos =1.52 mm z 齿高 h = 2.25mt=3.42 mm b/h=9.96
1t 1
计算纵向重合度
二、设计要求
电动机轴与曲柄轴2平行,使用寿命10年,每日一班制工作,载荷有轻微冲击。 允许曲柄2转速偏差为±5%。要求导杆机构的最小传动角不得小于60o;凸轮机 构的最大压力角应在许用值[α]之内,摆动从动件8的升、回程运动规律均为等加 速等减速运动,其它参数见设计数据。电动机同步转速为1500r/min,执行机构的 传动效率按0.95计算。按小批量生产规模设计。
H
H 1 H 2
d1t 3
2K t T1
d a
ZH ZE u 1 u H
2
=
3
2 1.1 2.84104 1.01.62
5.45 2.443198.8 mm 32.93mm 4.45 531.25
2
计算圆周速度V V=(3.14d1tn1)/(60*1000)=1.22 m/s 计算齿宽b b=ødd1t=32.93 mm
V带轮传动设计计算
计算V带的根数z z=Pca/Pr=2.5,取3根 计算单根V带的初拉力的最小值(Fo)min 查表的C型带的单位长度质量q=0.1 kg/m,所以 (Fo)min = 500(25-Kα )Pca/(Kα zv)+qv^2 = 99.56 N 应使带的实际初拉力 Fo>(Fo)min 计算压轴力FP 压轴力的最小值为 (FP)min=2z(Fo)minsin(α /2)=578.8 N,取580 N
插床机构的分析与设计
由图 3, 根据 K = 2, 可查得 1= 0. 5。
l 1= 1l6= 0. 5×150= 75mm
由图 5, 可查出 K = 2, 2= 1 时, 最小传动角
min = 86°。
= K18+0° 1= 60°
l 3=
H 2co s
=
100mm
l 4= l3 = 100mm
3 代入式( 6) 并整理可得:
2=
2cos min
1-
s
in
180° K+ 1
( 7)
图 4 前置机构的角速度曲线
由式( 7) 可知, 杆长比 2 受最小传动角 min 及 行程速度变化系数 K 的影响。为了保证机构传动 良好, 设计时通常应使: min ≥40°。 图 5 表示的是行程速度变化系数 K 值不同 时, 杆长比 2 与最小传动角 min 之间的变化曲线。 根据任选的 K 值及 min 选择杆长比 2 , 可合理地 计算后置机构的杆件尺寸; 也可根据 K 值及 2 值 确定最小传动角 min , 验证其是否满足要求。
如图 1、2 所示, 从穿孔机送入轧管机的荒管 首先进入轧管机的前台, 由汽缸顶钢机 1 将钢管 4 顶至轧管机 5, 实现咬入及轧制。轧制后, 由回送 辊 6 送回前台 2。此过程为第一道轧制, 轧制钢管 C- D 两个对应周面。由于自动轧管机椭圆孔型
已知行程速度变化系数 K = 2, 滑块 5 的冲程 H = 100m m, 机架 O3 O1 的长度 l 6 = 150m m, 杆长 比 2= 1, 试设计此机构。
3)
( 4)
式中: 1、 3—— 曲柄 O1A 及导杆 O 3A 的角速度。
图 4 中所示为杆长比 1= 0. 8、0. 5、0. 4 时导
插床导杆机构设计课程设计
插床导杆机构设计课程设计一、课程目标知识目标:1. 让学生掌握插床导杆机构的基本概念、工作原理和设计方法;2. 了解插床导杆机构的结构特点及其在机械加工中的应用;3. 掌握插床导杆机构的运动学分析及动力学计算方法。
技能目标:1. 培养学生运用所学知识进行插床导杆机构设计的能力;2. 提高学生运用CAD软件进行插床导杆机构三维建模和运动仿真的技能;3. 培养学生运用数学知识解决实际工程问题的能力。
情感态度价值观目标:1. 培养学生对机械设计及其自动化专业的热爱,激发学习兴趣;2. 培养学生严谨的科学态度,注重实践与理论相结合;3. 增强学生的团队合作意识,培养沟通协调能力。
课程性质:本课程为机械设计专业课程,以理论教学与实践操作相结合的方式进行。
学生特点:学生已具备一定的机械基础知识和CAD软件应用能力,具有较强的学习能力和动手能力。
教学要求:结合学生特点,注重理论与实践相结合,强化实际操作训练,提高学生的设计能力和创新能力。
通过课程学习,使学生能够独立完成插床导杆机构的设计与计算任务,为将来的工作打下坚实基础。
二、教学内容1. 插床导杆机构的基本概念:包括插床导杆机构的定义、分类及其在机械加工中的应用。
教材章节:第二章第一节2. 插床导杆机构的工作原理及设计方法:分析插床导杆机构的运动规律,介绍设计方法及步骤。
教材章节:第二章第二节3. 插床导杆机构的结构特点:讲解插床导杆机构的结构设计,分析其优缺点。
教材章节:第二章第三节4. 插床导杆机构的运动学分析:介绍运动学分析方法,进行速度、加速度等计算。
教材章节:第二章第四节5. 插床导杆机构的动力学计算:讲解动力学计算方法,分析受力情况,计算动力和力矩。
教材章节:第二章第五节6. 插床导杆机构设计实例:结合实际案例,指导学生完成插床导杆机构的设计与计算。
教材章节:第二章第六节7. CAD软件在插床导杆机构设计中的应用:介绍CAD软件在插床导杆机构三维建模和运动仿真中的应用。
机械原理课程设计-插床导杆机构设计.docx
机械原理课程设计计算说明书§1引言图1是插床机构的机构示意图。
该机构主要由导杆机构,凸轮机构和齿轮机构所组成。
导杆机构是由曲柄1,滑块2、5,导杆3, 5连杆4和机架6所组成。
其中曲柄1为原动件。
当曲柄1以恒速〃1转动时,导杆3绕。
3轴来回摆动,通过连杆4,使装有刀具的滑块5沿导路y-y作上下移动。
当滑块5沿导路向下移动时,刀具切削工件。
图151.4286° =334.2857°| o 2 23= 2 血1 = 2.3.14159」3° =13.6136 (rad/s)160 60表中:K——行程速度变化系数;H——滑块5的冲程;,6 =o3 --------- 饺链中心。
2和。
3之间的距离;等I B C/lo3 B杆长比;---曲柄1的转速;F——切削力;G3——导杆3的重量;Gg ------ 滑块5的重量;O——机器运转的不均匀系数;Js3 ——导杆3对其质心轴的转动惯量;§ 2插床导杆机构综合及运动分析一、已知条件行程速度变化系数K,饺链中心。
2和。
3之间的距离,6,滑块5的冲程H,杆长比& 滑块5沿导路方向y—y垂直于导杆3摆角巾的分角线。
3。
2,并使导杆机构在整个行程中都能得到较小的压力角,曲柄转速〃1及指定的相对运动图解法的作业位置。
二、插床导杆机构的综合如图 1 所示,简记/[ = l o2 A ',3 =,o3 B '=,BC ',6 =o3 , h= l oo^根据给定的已知条件,可按下列步骤确定插床导杆机构的有关尺寸1)计算极位角e及导杆摆角WW=0=1XO°KT =1湘° L8T =51.4286°(1)K+1 1.8+1式中:K为行程速度变化系数2)求ZiI =/sin 妇7»布51.4286°=73 7602 (mm) (2)16 2 2式中:16为饺链中心。
插床机构设计论文
《机械原理》课程设计报告题目:插床机构设计专业:机械工程班级: 13机械4 学号:姓名:指导教师:天津理工大学中环信息学院机械工程系2015年 6 月26 日目录工作原理 (2)一.设计任务 (2)二.设计数据 (3)三.设计要求 (4)四.主体机构尺寸的综合设计 (4)五.机构的运动分析 (8)六.数据汇总并绘图 (14)七.总结 (15)八.参考文献 (15)课程设计一 插床机构设计工作原理插床是常用的机械加工设备,用于齿轮、花键和槽形零件等的加工。
图1-1为某插床机构运动方案示意图。
该插床主要由带转动、齿轮传动、连杆机构和凸轮机构等组成。
电动机经过带传动、齿轮传动减速后带动曲柄1回转,再通过导杆机构1-2-3-4-5-6,使装有刀具的滑块沿道路y -y 作往复运动,以实现刀具切削运动。
为了缩短空程时间,提高生产率,要求刀具具有急回运动。
刀具与工作台之间的进给运动,是由固结于轴O2上的凸轮驱动摆动从动件O4D 和其他有关机构(图中未画出)来实现的。
一.设计任务1、 针对图1-1所示的插床的执行机构(插削机构和送料机构)方案,依据设计要求和已知参数,确定各构件的运动尺寸,绘制机构运动简图;Q 图1-1 插床机构运动方案示意图2、 假设曲柄1等速转动,画出滑块C 的位移、速度和加速度的变化规律曲线; 3、 编写课程设计说明书; 4、 感想与建议。
二.设计数据依据插床工况条件的限制,预先确定了有关几何尺寸和力学参数,如表1-1所示。
要求所设计的插床结构紧凑,机械效率高。
图1-2 插刀所受阻力曲线三.设计要求1、导杆机构的运动分析已知:行程速比系数K ,滑块5的冲程H ,中心距23O O l ,比值3BC O B l ,各构件重心S 的位置,曲柄每分钟转1n 。
要求:设计导杆机构,作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图,作滑块的运动线图。
以上内容与后面动态静力分析一起画在1号图纸上(参考图例1)。
第一部分 插床导杆机构综合及运动的任务
第一部分插床导杆机构综合及运动的任务一、已知条件形成速度变化系数K,铰链中心和之间的距离,滑块5的冲程H,杆长比,滑块5的导路方向y-y垂直于导杆3摆角的分角线,并使导杆机构在整个行程中都能得到较小的压力角,曲柄转速及指定的相对运动图解法的作业位置。
二、基本要求1)确定图中给出的机构相关尺寸,即需确定下列尺寸:曲柄1的长度,导杆3的长度,连杆4的长度,固定铰链中心到滑块5的导路y-y的距离h(此处,y-y是和铰链中心C的轨迹相重合的直线);2)按指定的作业位置作出机构运动简图,并用相对运动图解法求滑块5的速度和加速度,质心的加速度;3)作出滑块5的位移曲线,并用图解微分法求出速度曲线,将结果与用相对运动图解法求得的滑块速度作比较。
三、完成内容在计算说明书上,应完成下列内容:1)列出基本方程式及主要运算过程和数据;2)列出主要的求解结果(包括机构的各主要尺寸,各构件的角速度和角加速度);3)列表比较相对运动图解法和图解微分法所得的值。
第二部分插床导杆机构动态静力分析的任务一、已知条件插床导杆机构综合与运动分析的结果,曲柄转速,切削力的变化规律及其作用线位置;滑块5的重量及其质心的位置;导杆3具有与其运动平面相平行的对称平面,导杆3的重量,质心的位置及对其质心轴的转动惯量;不计其余活动构件的质量;不计各运动副中的摩擦。
二、基本要求1、按指定的作业位置,求出机构各运动副中的作用力;2、按指定的作业位置,求出加于曲柄1的平衡力矩。
要求分别用力多变形法和速度多变形杠杆法求解平衡力矩,并比较所得结果,计算相对误差式中,—用力多变形法求得的平衡力矩;—用速度多变形法求得的平衡力矩。
三、完成任务在计算说明书上,应完成下列内容:1、列出各构件惯性力和惯性力矩的计算结果;2、列出各示力体的平衡方程式及未知力的求解结果;3、列出用速度多变形杠杆法求平衡力矩的力矩平衡方程和求解结果;4、列表比较和,按照上面公式求得相对误差。
插床导杆机构课程设计
插床导杆机构课程设计一、课程目标知识目标:1. 学生能够理解插床导杆机构的基本概念,掌握其结构组成及工作原理。
2. 学生能够掌握插床导杆机构的运动规律,并能够运用相关公式进行计算。
3. 学生能够了解插床导杆机构在实际工程中的应用,并能够分析其优缺点。
技能目标:1. 学生能够运用所学的插床导杆机构知识,进行简单机构的分析与设计。
2. 学生能够通过实际操作,掌握插床导杆机构的调试与优化方法。
3. 学生能够运用计算机辅助设计软件,绘制插床导杆机构的零件图和装配图。
情感态度价值观目标:1. 培养学生对机械工程的兴趣,激发他们探索机械原理的积极性。
2. 培养学生具备良好的团队协作精神,能够与他人共同完成插床导杆机构的分析与设计任务。
3. 培养学生具备创新意识,能够从实际应用中提出改进插床导杆机构方案,提高其性能。
课程性质:本课程为机械设计基础课程,以理论教学与实践操作相结合的方式进行。
学生特点:学生处于高年级阶段,已具备一定的机械基础知识,具有较强的逻辑思维能力和动手操作能力。
教学要求:结合学生特点和课程性质,注重理论知识与实际应用的结合,提高学生的分析问题、解决问题的能力。
通过本课程的学习,使学生能够将所学知识应用于实际工程中,为今后的工作打下坚实基础。
二、教学内容1. 插床导杆机构的基本概念:包括插床导杆机构的定义、分类及用途,使学生对其有一个全面的认识。
2. 插床导杆机构的结构组成:详细讲解插床导杆机构的各个部分,如导杆、滑块、导向件等,并分析各部分的功能。
3. 插床导杆机构的工作原理:阐述其运动规律,包括直线运动和旋转运动,以及运动副的摩擦、磨损和润滑问题。
4. 插床导杆机构的运动分析:教授运动学分析方法,如解析法、图解法等,使学生能够进行运动计算和分析。
5. 插床导杆机构的强度计算:介绍强度计算的基本原理,讲解如何根据实际需求进行强度校核。
6. 插床导杆机构的优化设计:分析影响机构性能的因素,教授优化设计方法,提高机构的性能。
插床机构导杆机构(
机械原理课程设计编程说明书设计题目:插床机构-导杆机构(1)目 录1. 设计任务及要求-----------------------------------------------------------------------12. 数学模型-------------------------------------------------------------------------------23. 程序框图--------------------------------------------------------------------------------34. 程序清单--------------------------------------------------------------------------------45. 运行结果--------------------------------------------------------------------------------116. 心得与体会-----------------------------------------------------------------------------127.参考文献--------------------------------------------------------------------------------13一.设计任务及要求已知:程速比系数K=2,滑块5的冲程H=100mm ,中心距23o o l=150mm,比值3O BBCl L=1,各构件重心S 的位置,曲柄每分钟转数1n =60r/min 。
要求:1. 设计导杆机构;2. 作机构两个位置的动画显示;3. 作滑块的运动线图(编程设计);4. 编写说明书;二.数学模型1. 极位夹角 =60˚2. 杆长杆1的长 1l =32o o l )cos αββ-⋅ 杆2的长 2l =αsin 232123221⋅⋅++o o o o l l l l 杆3 4的长 γγγsin 2/)cos (sin 22243-==x l l 3.运动分析杆1的角速度 60/211n πω= 滑块2的速度 )sin(112βαω-⋅⋅-=l v滑块2的加速度 22221112)cos()sin(ωβαωβαε⋅+-⋅--⋅⋅-=l l l a 杆3与y 轴夹角 )cos sin arctan(1132ααγ⋅⋅+=l l l o o杆3的角速度 )cos(1213βαωω-⋅=l l 杆3的角加速度 ]2)sin()cos([135111123ωβαωβαεεv l l l ----=杆4与y 轴夹角 )sin arcsin(43l xl -=γψ 杆4的角速度 ψγωωcos /cos 4334l l =杆4的角加速度 ψψωγωγεεcos sin cos cos 4244233334l l l l +-=滑块5的速度 ψψγωcos )sin(335-=l v 滑块5的加速度 γωγεψωψεcos sin cos sin 23333244445l l l l a --+=三.程序框图四、程序清单#include<stdio.h>#include<math.h>#include<stdlib.h>#include<conio.h>#include<graphics.h>#define pi 3.1415926#define N 600void init_graph(void);void initview();void draw();void cur();double weit1[N],weit2[N],weit3[N];double sita1[N],sita2[N],sita3[N];double omigar1[N],omigar2[N],omigar3[N]; doublea=50.0,d=160.0,e=130.0,f=115.0,g=115.0,w1=6.2831 852;main(){int i;double alf=0, detat=0,theta1=0;double weit=0,w3=0,ekq3=0,b=0,va=0;double theta2=0,w4=0,ekq4=0;double s=0,vc=0,ac=0;double q=0,j=0,u=0;detat=2*pi/(N*w1);for(i=0;i<N;i++){alf=w1*detat*i;weit=atan((a*sin(alf)-d)/(a*cos(alf)));if(weit<0)weit=weit+2*pi;elseif(0<weit<pi)weit=weit+pi;theta1=weit-pi;b=sqrt(a*a+d*d-2*a*d*sin(alf));w3=a*w1*cos(alf-weit)/b;va=-a*w1*sin(alf-weit);ekq3=(-a*w1*w1*sin(alf-weit)-2*va*w3)/b; theta2=asin((f*sin(theta1)-e)/g);q=-2*f*cos(theta1);j=f*f+e*e-g*g-2*f*e*sin(theta1);u=q*q-4*j;s=(-q+sqrt(u))/2;w4=f*w3*cos(theta1)/(g*cos(theta2));vc=f*w3*sin(theta1-theta2)/cos(theta2);ekq4=f*(ekq3*cos(theta1)-w3*w3*sin(theta1)+w4*w4 *sin(theta2))/(g*cos(theta2));ac=g*ekq4*sin(theta2)+g*w4*w4*cos(theta2)-f*ekq3 *sin(theta1)-f*w3*w3*cos(theta1);weit1[i]=weit;weit2[i]=w3;weit3[i]=ekq3;sita1[i]=s;sita2[i]=vc;sita3[i]=ac;omigar1[i]=theta2;omigar2[i]=w4;omigar3[i]=ekq4;}for(i=0;i<N;i++){printf("i=%d \n weit1[i]=%lf \t weit2[i]=%lf \t weit3[i]=%lf \t",i,weit1[i],weit2[i],weit3[i]);printf("\n stia1[i]=%lf \t stia2[i]=%lf \t stia3[i]=%lf \t",sita1[i],sita2[i],sita3[i]);printf("\n omigar1[i]=%lf \t omigar2[i]=%lf \t omigar3[i]=%lf\n\n",omigar1[i],omigar2[i],omigar3[i]);}cur();}void cur(){int i;double alf=0, detat=0,theta1=0;double weit=0,w3=0,ekq3=0,b=0,va=0;double theta2=0,w4=0,ekq4=0;double s=0,vc=0,ac=0;double q=0,j=0,u=0;doublea=50.0,d=160.0,e=130.0,f=115.0,g=115.0,w1=6.2831 852;int gd=DETECT, gmode,n;initgraph(&gd,&gmode,"c:\\turboc2");clrscr();for(i=0;i<N;i++){detat=2*pi/(N*w1);alf=w1*detat*i;weit=atan((a*sin(alf)-d)/(a*cos(alf)));if(weit<0)weit=weit+2*pi;elseif(0<weit<pi)weit=weit+pi;theta1=weit-pi;b=sqrt(a*a+d*d-2*a*d*sin(alf));w3=a*w1*cos(alf-weit)/b;va=-a*w1*sin(alf-weit);ekq3=(-a*w1*w1*sin(alf-weit)-2*va*w3)/b; theta2=asin((f*sin(theta1)-e)/g);q=-2*f*cos(theta1);j=f*f+e*e-g*g-2*f*e*sin(theta1);u=q*q-4*j;s=(-q+sqrt(u))/2;w4=f*w3*cos(theta1)/(g*cos(theta2));vc=f*w3*sin(theta1-theta2)/cos(theta2);ekq4=f*(ekq3*cos(theta1)-w3*w3*sin(theta1)+w4*w4 *sin(theta2))/(g*cos(theta2));ac=g*ekq4*sin(theta2)+g*w4*w4*cos(theta2)-f*ekq3 *sin(theta1)-f*w3*w3*cos(theta1);line(100,200,500,200);setcolor(5);line(492,201,500,200);line(492,199,500,200);line(100,10,100,350);setcolor(5);line(99,18,100,10);line(101,18,100,10);putpixel(100+alf*180/pi,200-s/5,1);putpixel(100+alf*180/pi,200-vc/100,2);putpixel(100+alf*180/pi,200-ac/100,4);}setcolor(10);settextjustify(CENTER_TEXT,0);outtextxy(300,300,"RED___JIASUDU");outtextxy(300,330,"GREEN___SUDU");outtextxy(300,360,"BLUE___WEIYI");/* outtextxy(300,50,"SUDU JIASUDU WEIYI GUAN XI QU XIAN TU");*/outtextxy(300,50,"SUDU JIASUDU WEIYI GUAN XI QU XIAN TU");getch();closegraph();}五.运行结果六.心得与体会不知不觉中大二结束了,课程设计也接近了尾声,暑假也要来到了。
!插床机构说明书
机械原理课程设计插床机构说明书负责人:廖昭洋学院:机电工程学院班级:机械1102班学号: ********** 日期: 2013年 7月11日1.设计任务及原始参数1.1插床简介工作原理插床实际是一种立式刨床,在结构原理上与牛头刨床同属一类。
插刀随滑枕在垂直方向上的直线往复运动是主运动,工件沿纵向横向及圆周三个方向分别所作的间歇运动是进给运动。
插床的生产效率较低,加工表面粗糙度Ra为6.3-1.6微米,加工面的垂直度为0.025/300毫米。
插床的主参数是最大插削长度。
特点插床用于插削平面、成型面及键槽等,并能插倾斜度在10°范围内的模具等工作物,适用于单个或小批量生产的企业。
插床的工作台具有三种不同方向的进给(纵向、横向和回转),故工作物经过一次装夹后,在本机床加工几个表面。
1.2设计任务1.针对图所示的插床的执行机构方案,依据设计要求和已知参数,确定各构件的运动尺寸,绘制机构运动简图;2.假设曲柄1等速转动,画出滑块C的位移和速度的变化规律曲线;3.在插床工作过程中,插刀所受的阻力变化曲线如图所示,在不考虑各处摩擦、其他构件重力和惯性力的条件下,分析曲柄所需的驱动力矩;4.取曲柄轴为等效构件,确定应加于曲柄轴上的飞轮转动惯量;5.用软件(VB、MATLAB、ADAMS或SOLIDWORKS等均可)对执行机构进行运动仿真,并画出输出机构的位移、速度、和加速度线图。
6.图纸上绘出最终方案的机构运动简图并编写说明书。
1.3原始参数参数项目数据曲柄转速n(r/min) 65行程速比系数K 1.8插程H(mm) 150连杆与导杆之比LO3B/LBC 0.8工作阻力Fr(N) 3500空程阻力Ff(N) 175Lo2o3(mm) 150滑块质量m2,m5(kg) 50杆件线密度(kg/m) 200不均匀系数 0.052.运动方案设计2.1主机构方案(1)运动是否具有确定的运动该机构中构件n=5。
机械原理课设插床
机械原理课程设计说明书题目:插床机构姓名:班级:学号:指导教师:成绩:完成时间:目录1.1机构简介 (2)1.2设计任务 (2)1.3原始数据 (3)2.1机构运动方案设计 (3)2.2电动机、齿轮传动机构方案 (4)2.3总体方案图 (6)3.1电动机的选择 (7)3.2传动比分配 (8)3.3齿轮机构设计 (8)3.4主机构的设计 (10)3.5主机构的运动分析 (12)3.6主机构的受力分析 (15)3.7主机构的速度波动 (21)4.1课程设计小结 (23)参文考献 (25)一、机构简介与设计数据1、机构简介插床是一种用于工件表面切削加工的机床。
插床主要由连杆机构、凸轮机构和齿轮机构等组成,如图所示。
电动机经过齿轮机构减速使曲柄1转动,再通过连杆机构1—2—3—4—5—6,使装有刀具的滑块5沿导路y —y 作往复运动,以实现刀具的切削运动。
刀具与工作台之间的进给运动,是由固结于轴O 2 上的凸轮驱动摆动从动件O 4D 和其他有关机构(图中未画出)来完成。
为了缩短空回行程时间,提高生产率,要求刀具有急回运动。
2、设计数据二、设计内容1.导杆机构的设计及运动分析设计导杆机构,作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图,作滑块的运动线图。
以上内容与后面动态静力分析共画在0号图纸(图纸格式与机械制图要求相同,包括边框、标题栏等)上。
整理说明书。
2.导杆机构的动态静力分析确定机构一个位置的各运动副反力及应加于曲柄上的平衡力矩。
作图部分画在运动分析的图样上。
整理说明书。
3.凸轮机构设计绘制从动杆的运动线图,画出凸轮实际轮廓曲线。
以上内容作在3号图纸上。
整理说明书。
4.齿轮机构设计做标准齿轮,计算该对齿轮传动的各部分尺寸,以3号图纸绘制齿轮传动的啮合图。
整理说明书。
插床主体机构尺寸综合设计......................................................................................................机构简图如下:• cos ∠ B 2 O 2 C ) / 2由上 面的讨 论容易 知道 ∠ B 2 O 2 C = 30 度 ,再 代入其 他数据 ,得:x = 93 . 3 mm ,即 O 2 到 YY 轴的 距离为 93.3mm 三、插床导杆机构的速度分析位置1速度加速度分析1)求导杆3上与铰链中心A 重合的点3A 的速度3A V滑块2——动参考系,3A ——动点3A V = 2A V+ 23A A V 方向: ⊥A O 3 ⊥A O 2 ∥A O 3 大小: ? 11ωl ?式中:2A V =12ωA l O =6.28×0.075(m/s )=0.471m/s取速度比例尺v u =0.01(mmsm /),作出速度图32a pa ,进而可得导杆3的角速度大小:3ω=33r V A =33r pa u v =0.374/0.20157=1.855(rad/s) 及其转向为顺时针。
插床机构
插床机构一、机构简介与设计数据 1、机构简介插床主要由齿轮机构、导杆机构和凸轮机构等组成,如图1所示。
电动机经过减速装置(图中只画出齿轮1z 、2z )使曲柄1转动。
再通过导杆机构1-2-3-4-5-6,使装有刀具的滑块沿导路y -y 作往复运动,以实现刀具切削运动。
为了缩短空程时间,提高生产率,要求刀具有急回运动。
刀具与工作台之间的进给运动,是由固结于轴2O 上的凸轮驱动摆动从动杆DO2和其它有关机构(图中未画出)来完成的。
2、设计数据 见表1二、设计内容1、导杆机构的运动分析已知:行程速比系数K ,滑块5的冲程H ,中心距32O O l ,比值BO BCl3,各构件重心S 的位置,曲柄每分钟转1n 。
要求:设计导杆机构,作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图,作滑块的运动线图。
以上内容与后面动态静力分析一起画在1号图纸上(参考图例1)。
曲柄位置图的作法为(图2)取滑块5在上极限时所对应的曲柄位置为起始位置1,按转向将曲柄圆周十二等分,得12个位置点,显然位置9对应于滑块5处于下极限得位置,再作出开始切削和终止切削所对应的1和8’两位置,共计有14个位置,可按表2进行分组。
2、导杆机构的动态静力分析图1 表1 设计数据图2已知:各构件的质量G 及其对重心轴的转动惯量SJ (数据表中未列出的构件的重量可以忽略不计),阻力线图(图1,b )及已在导杆机构设计和运动分析中得出的机构尺寸、速度和加速度。
要求:按表2所分配确定1~2个位置的各运动副中反作用力及曲柄上所需平衡力矩。
以上内容作在运动分析的同一张图纸上(见图例1)。
3、飞轮设计已知:机器运转的速度不均匀系数δ,由动态静力分析所得的平衡力矩My ,飞轮安装在曲柄轴上。
驱动力矩为常数。
要求:用惯性力法求飞轮转动惯量FJ 。
以上内容坐在2号图纸上(参考图例2)。
4、凸轮机构设计已知:从动件最大摆角maxϕ,许用压力角][α,从动件长度DO l4,从动件运动规律为等加速等减速运动规律,凸轮与曲柄共轴。
插床机构设计
一、设计题目简介插床是常用的机械加工设备,用于齿轮、花键和槽形零件等的加工。
图示为某插床机构运动方案示意图。
该插床主要由带转动、齿轮传动、连杆机构和凸轮机构等组成。
电动机经过带传动、齿轮传动减速后带动曲柄1回转,再通过导杆机构1-2-3-4-5-6,使装有刀具的滑块沿道路y -y 作往复运动,以实现刀具切削运动。
为了缩短空程时间,提高生产率,要求刀具具有急回运动。
刀具与工作台之间的进给运动,是由固结于轴上的凸轮驱动摆动从动件和其他有关机构(图中未画出)来实现的。
针对图所示的插床机构运动方案,进行执行机构的综合与分析。
二、设计数据与要求依据插床工况条件的限制,预先确定了有关几何尺寸和力学参数,如表6-4所示。
要求所设计的插床结构紧凑,机械效率高。
插床机构设计数据插刀往复次数(次/min ) 120 插刀往复行程(mm )60 插削机构行程速比系数2 中心距(mm )130 杆长之比1 质心坐标(mm ) 45 质心坐标(mm ) 45质心坐标(mm)115125凸轮摆杆长度(mm)凸轮摆杆行程角(0)15推程许用压力角(0)4590推程运动角(0)60回程运动角(0)15远程休止角(0)推程运动规律3-4-5次多项式回程运动规律等速速度不均匀系数0.03最大切削阻力(N)2000阻力力臂(mm)120320滑块5重力(N)120构件3重力(N)0.1构件3转动惯量(kgm2)三、设计任务1. 针对图所示的插床的执行机构(插削机构和送料机构)方案,依据设计要求和已知参数,确定各构件的运动尺寸,绘制机构运动简图;2. 假设曲柄1等速转动,画出滑块C的位移和速度的变化规律曲线;3. 在插床工作过程中,插刀所受的阻力变化曲线如图所示,在不考虑各处摩擦、其他构件重力和惯性力的条件下,分析曲柄所需的驱动力矩;4. 取曲柄轴为等效构件,确定应加于曲柄轴上的飞轮转动惯量;5. 用软件(VB、MATLAB、ADAMS或SOLIDWORKS等均可)对执行机构进行运动仿真,并画出输出机构的位移、速度、和加速度线图。
插床机构
插床机构该题目每班限两人选做。
一、机构简介与设计数据1.机构简介插床是一种用于工件内表面切削加工的机床。
插床主要由齿轮机构、导杆机构和凸轮机构等组成,如图9—1a 所示。
电动机经过减速装置(图中只画出齿轮1Z 、2Z )使曲柄1转动,再通过导杆机构1—2—3—4—5—6,使装有刀具的滑块沿导路y —y 作往复运动,以实现刀具的切削运动。
刀具与工作台之间的进给运动,是由固结于轴2O 上的凸轮驱动摆动从动件4O D 和其他有关机构(图中未画出)来完成的。
为了缩短空回行程时间,提高生产率,要求刀具有急回运动。
图9—1b 为阻力线图。
a )b )图9-12.设计数据设计数据见表9—1。
二、设计内容1.导杆机构的设计及运动分析设计导杆机构,作机构1个位置(起始位置为曲柄1的下垂直位置,每隔45度为一个设计位置)的速度多边形和加速度多边形,作滑块的运动线图, 以上内容与后面动态静力分析一起画在l 号图纸上。
整理说明书。
2.导杆机构的动态静力分析确定机构一个位置的各运动副反力及应加于曲柄上的平衡力矩。
作图部分画在运动分析的图样上。
整理说明书。
(起始位置为曲柄1的下垂直位置,每隔45度为一个设计位置)3.凸轮机构设计绘制从动杆的运动线图,画出凸轮实际廓线。
以上内容作在2号图纸上。
整理说明书。
表9-l设计数据4.齿轮机构设计选择变位系数,计算该对齿轮传动的各部分尺寸,以2号图纸绘制齿轮传动的啮合图。
整理说明书。
题目所用的资料:变位系数表参见第四章表4—3~表4—8。
齿轮啮合图的绘制齿轮啮合图是将齿轮各部分尺寸按一定的比例尺画出轮齿啮合关系的一种图形。
它可直 观地表达一对齿轮的啮合特性和啮合参数,并可借助图形作某些必要的分析。
一、渐开线的画法渐开线齿廓按渐开线的形成原理绘制,如图4-3所示。
以小齿轮廓线为例,其步骤如下: 1)按表4-1所列公式计算出各圆直径d b 、d 、d ´、d f 及d a ,画出各相应的圆。
插床机构
构和凸轮机构等的设计(综合)和运动分析。
举例说明如何设计一台插床(例加工键槽等)。 插床主要的运动是切削运动和工件的进给运动。
y 5 4
插床主要由齿轮机构 凸轮机构、 和导杆机构等组成
03
6
3
y
电动机经齿轮z1、z2减速,使曲柄1转动, 再通过导杆机构1-2-3-4-5-6,使滑块
开始切削位置
十、要求
设计图纸 要求作图准确,布置匀称,线条、尺寸标注和图纸大小等均应符 合制图标准。 说明书 要求步骤清楚,叙述简要明确,文句通顺,书写端正,及时整理。 图纸标题栏格式见图(指导书 P7)
纪律要求
一、导杆机构的设计
已知导杆机构的K、LO2O3、BC/BO3、H (BB′)
设计导杆机构
C
B
θ 03 B′
A′ 02
A
已知导杆机构的K、LO2O3、BC/BO3、H
设计导杆机构 K 1180
K 1
BB′=H C
C B
θ 03 B′
B
θ 03 B′
A′ 02
A
A′ 02
A
二、画导杆机构的机构运动简图
rb1 ra1
B1
N2
ω1
N1
B2 P
ra2 rb2
ω2
O2
2.渐开线齿廓的画法
基圆齿厚:Sb=(srb/r)+2rbinvα =cosα(s+mzinvα)
invα=tgα-α
=scosα+2rcosαinvα
R=0.2m Sb
rb
七、编写设计说明书
1.编写课程设计说明书,是对课程设计的总结,内容大 致包括:
机械原理课程设计插床机构
机械原理课程设计插床机构The pony was revised in January 2021插床机构综合与传动系统设计目录题目及设计要求......................................................一、设计题目....................................................二、设计数据与要求..............................................三、设计任务....................................................设计:..............................................................一、确定各构件的运动尺寸,绘制机构简图..........................1、插削机构的设计:.........................................2、送料机构(凸轮机构)的设计:.............................二、假设曲柄1等速转动,画出滑块C的位移和速度的变化规律曲线(插削机构的运动学分析)......................................................1)位置分析.................................................2)角速度分析...............................................3)角加速度分析.............................................三、在插床工作过程中,插刀所受的阻力变化曲线如图2所示,在不考虑各处摩擦、其他构件重力和惯性力的条件,分析曲柄所需的驱动力矩..............四、确定电动机的功率和转速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械原理课程设计编程说明书设计题目:插床机构-导杆机构(1)目录1.设计任务及要求-----------------------------------------------------------------------12.数学模型-------------------------------------------------------------------------------23.程序框图--------------------------------------------------------------------------------34.程序清单--------------------------------------------------------------------------------45.运行结果--------------------------------------------------------------------------------116.心得与体会-----------------------------------------------------------------------------127.参考文献--------------------------------------------------------------------------------13一.设计任务及要求已知:程速比系数K=2,滑块5的冲程H=100mm ,中心距23o o l=150mm,比值3O BBClL=1,各构件重心S 的位置,曲柄每分钟转数1n =60r/min 。
要求:1. 设计导杆机构;2. 作机构两个位置的动画显示;3. 作滑块的运动线图(编程设计);4. 编写说明书;二.数学模型1. 极位夹角 θ=60˚2. 杆长杆1的长 1l =32o o l )sin(cos αββ-⋅ 杆2的长 2l =αsin 232123221⋅⋅++o o o o l l l l 杆3 4的长 γγγsin 2/)cos (sin 22243-==x l l 3.运动分析杆1的角速度 60/211n πω= 滑块2的速度 )sin(112βαω-⋅⋅-=l v滑块2的加速度 22221112)cos()sin(ωβαωβαε⋅+-⋅--⋅⋅-=l l l a杆3与y 轴夹角 )cos sin arctan(1132ααγ⋅⋅+=l l lo o杆3的角速度 )cos(1213βαωω-⋅=l l 杆3的角加速度 ]2)sin()cos([135111123ωβαωβαεεv l l l ----=杆4与y 轴夹角 )sin arcsin(43l xl -=γψ 杆4的角速度 ψγωωcos /cos 4334l l =杆4的角加速度 ψψωγωγεεcos sin cos cos 4244233334l l l l +-=滑块5的速度 ψψγωcos )sin(335-=l v 滑块5的加速度 γωγεψωψεcos sin cos sin 23333244445l l l l a --+=三.程序框图四、程序清单#include<stdio.h>#include<math.h>#include<stdlib.h>#include<conio.h>#include<graphics.h>#define pi 3.1415926#define N 600void init_graph(void);void initview();void draw();void cur();double weit1[N],weit2[N],weit3[N];double sita1[N],sita2[N],sita3[N];double omigar1[N],omigar2[N],omigar3[N]; doublea=50.0,d=160.0,e=130.0,f=115.0,g=115.0,w1=6.2831 852;main(){int i;double alf=0, detat=0,theta1=0;double weit=0,w3=0,ekq3=0,b=0,va=0;double theta2=0,w4=0,ekq4=0;double s=0,vc=0,ac=0;double q=0,j=0,u=0;detat=2*pi/(N*w1);for(i=0;i<N;i++){alf=w1*detat*i;weit=atan((a*sin(alf)-d)/(a*cos(alf)));if(weit<0)weit=weit+2*pi;elseif(0<weit<pi)weit=weit+pi;theta1=weit-pi;b=sqrt(a*a+d*d-2*a*d*sin(alf));w3=a*w1*cos(alf-weit)/b;va=-a*w1*sin(alf-weit);ekq3=(-a*w1*w1*sin(alf-weit)-2*va*w3)/b;theta2=asin((f*sin(theta1)-e)/g);q=-2*f*cos(theta1);j=f*f+e*e-g*g-2*f*e*sin(theta1);u=q*q-4*j;s=(-q+sqrt(u))/2;w4=f*w3*cos(theta1)/(g*cos(theta2));vc=f*w3*sin(theta1-theta2)/cos(theta2);ekq4=f*(ekq3*cos(theta1)-w3*w3*sin(theta1)+w4*w4 *sin(theta2))/(g*cos(theta2));ac=g*ekq4*sin(theta2)+g*w4*w4*cos(theta2)-f*ekq3 *sin(theta1)-f*w3*w3*cos(theta1);weit1[i]=weit;weit2[i]=w3;weit3[i]=ekq3;sita1[i]=s;sita2[i]=vc;sita3[i]=ac;omigar1[i]=theta2;omigar2[i]=w4;omigar3[i]=ekq4;}for(i=0;i<N;i++){printf("i=%d \n weit1[i]=%lf \t weit2[i]=%lf \t weit3[i]=%lf \t",i,weit1[i],weit2[i],weit3[i]);printf("\n stia1[i]=%lf \t stia2[i]=%lf \t stia3[i]=%lf \t",sita1[i],sita2[i],sita3[i]);printf("\n omigar1[i]=%lf \t omigar2[i]=%lf \t omigar3[i]=%lf\n\n",omigar1[i],omigar2[i],omigar3[i]);}cur();}void cur(){int i;double alf=0, detat=0,theta1=0;double weit=0,w3=0,ekq3=0,b=0,va=0;double theta2=0,w4=0,ekq4=0;double s=0,vc=0,ac=0;double q=0,j=0,u=0;doublea=50.0,d=160.0,e=130.0,f=115.0,g=115.0,w1=6.2831 852;int gd=DETECT, gmode,n;initgraph(&gd,&gmode,"c:\\turboc2");clrscr();for(i=0;i<N;i++){detat=2*pi/(N*w1);alf=w1*detat*i;weit=atan((a*sin(alf)-d)/(a*cos(alf)));if(weit<0)weit=weit+2*pi;elseif(0<weit<pi)weit=weit+pi;theta1=weit-pi;b=sqrt(a*a+d*d-2*a*d*sin(alf));w3=a*w1*cos(alf-weit)/b;va=-a*w1*sin(alf-weit);ekq3=(-a*w1*w1*sin(alf-weit)-2*va*w3)/b;theta2=asin((f*sin(theta1)-e)/g);q=-2*f*cos(theta1);j=f*f+e*e-g*g-2*f*e*sin(theta1);u=q*q-4*j;s=(-q+sqrt(u))/2;w4=f*w3*cos(theta1)/(g*cos(theta2));vc=f*w3*sin(theta1-theta2)/cos(theta2);ekq4=f*(ekq3*cos(theta1)-w3*w3*sin(theta1)+w4*w4 *sin(theta2))/(g*cos(theta2));ac=g*ekq4*sin(theta2)+g*w4*w4*cos(theta2)-f*ekq3 *sin(theta1)-f*w3*w3*cos(theta1);line(100,200,500,200);setcolor(5);line(492,201,500,200);line(492,199,500,200);line(100,10,100,350);setcolor(5);line(99,18,100,10);line(101,18,100,10);putpixel(100+alf*180/pi,200-s/5,1);putpixel(100+alf*180/pi,200-vc/100,2);putpixel(100+alf*180/pi,200-ac/100,4);}setcolor(10);settextjustify(CENTER_TEXT,0);outtextxy(300,300,"RED___JIASUDU");outtextxy(300,330,"GREEN___SUDU");outtextxy(300,360,"BLUE___WEIYI");/* outtextxy(300,50,"SUDU JIASUDU WEIYI GUAN XI QU XIAN TU");*/outtextxy(300,50,"SUDU JIASUDU WEIYI GUAN XI QU XIAN TU");getch();closegraph();}五.运行结果六.心得与体会不知不觉中大二结束了,课程设计也接近了尾声,暑假也要来到了。