2019-2020年高三数学一轮复习第九篇平面解析几何第1节直线与方程课时训练理
2019版高考一轮复习数学(文理通用):第一部分 基础与考点过关 第九章 平面解析几何 (1)

, 第九章 平面解析几何)第1课时 直线的倾斜角与斜率(对应学生用书(文)121~122页、(理)126~127页)1. (原创)设m 为常数,则过点A (2,-1),B (2,m )的直线的倾斜角是 W. 答案:90°解析:因为过点A (2,-1),B (2,m )的直线x =2垂直于x 轴,故其倾斜角为90°. 2. (必修2P 80练习1改编)若过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为 W.答案:1解析:由1=4-mm +2,得m +2=4-m ,解得m =1.3. (原创)若直线l 的斜率k 的变化范围是[-1,3],则它的倾斜角的变化范围是 W.答案:⎣⎡⎦⎤0,π3∪⎣⎡⎭⎫3π4,π解析:由-1≤k ≤3,即-1≤tan α≤3,∴ α∈⎣⎡⎦⎤0,π3∪⎣⎡⎭⎫3π4,π.4. (必修2P 80练习6改编)已知两点A (4,0),B (0,3),点C (8,a )在直线AB 上,则a = W.答案:-3解析:由k AB =k BC 得3-4=a -38,解得a =-3.5. (必修2P 80练习4改编)若直线l 沿x 轴的负方向平移2个单位,再沿y 轴的正方向平移3个单位后,又回到原来的位置,则直线l 的斜率为 W.答案:-32解析:设直线上任一点为(x ,y ),平移后的点为(x -2,y +3),利用斜率公式得直线l 的斜率为-32.1. 直线倾斜角的定义 在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴所在的直线绕着交点按逆时针方向旋转至和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0°;直线的倾斜角α的取值范围是[0,π)W.2. 直线斜率的定义倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.直线的斜率常用k 表示,即k =tan α.由正切函数的单调性可知,倾斜角不同的直线其斜率也不同.3. 过两点的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线,当x 1≠x 2时,斜率公式为k =tan α=y 2-y 1x 2-x 1,该公式与两点的顺序无关;当x 1=x 2时,直线的斜率不存在,此时直线的倾斜角为90°W.[备课札记], 1 直线的倾斜角和斜率之间的关系), 1) 如果三条直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,其中l 1:x -y =0,l 2:x +2y =0,l 3:x +3y =0,则α1,α2,α3从小到大的排列顺序为 W.答案:α1<α2<α3解析:由tan α1=k 1=1>0,所以α1∈⎝⎛⎭⎫0,π2.tan α2=k 2=-12<0,所以α2∈⎝⎛⎭⎫π2,π,α2>α1.tan α3=k 3=-13<0,所以α3∈⎝⎛⎭⎫π2,π,α3>α1,而-12<-13,正切函数在⎝⎛⎭⎫π2,π上单调递增,所以α3>α2.综上,α1<α2<α3.变式训练已知经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 的值为 W.答案:-3解析:由2y +1-(-3)4-2=2y +42=y +2=tan 3π4,得y +2=-1,所以y =-3., 2 求直线的倾斜角和斜率) , 2) 已知两点A (-1,-5),B (3,-2),直线l 的倾斜角是直线AB 倾斜角的一半,求直线l 的斜率.解:设直线l 的倾斜角为α,则直线AB 的倾斜角为2α,由题意可知tan 2α=34,∴ 2tan α1-tan 2α=34.整理得3tan 2α+8tan α-3=0,解得tan α=13或tan α=-3.∵ tan 2α=34>0,∴ 0°<2α<90°,∴ 0°<α<45°,∴ tan α>0,故直线l 的斜率为13.变式训练如图,已知直线l 1的倾斜角α1=30°,直线l 1⊥l 2,求直线l 1,l 2的斜率.解:直线l 1的斜率k 1=tan α1=tan 30°=33. ∵ 直线l 2的倾斜角α2=90°+30°=120°, ∴ 直线l 2的斜率k 2=tan 120°=tan (180°-60°)=-tan 60°=- 3. , 3 求直线的倾斜角和斜率的取值范围) , 3) 已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点.(1) 求直线l 的斜率k 的取值范围; (2) 求直线l 的倾斜角α的取值范围. 解:如图,由题意可知,k PA =4-0-3-1=-1,k PB =2-03-1=1. (1) 要使直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是(-∞,-1]∪[1,+∞).(2) 由题意可知,直线l 的倾斜角介于直线PB 与PA 的倾斜角之间. 又PB 的倾斜角是45°,PA 的倾斜角是135°, 所以α的取值范围是[45°,135°]. 变式训练若直线mx +y +1=0与连结点A (-3,2),B (2,3)的线段相交,求实数m 的取值范围.解:直线的斜率为k =-m ,且直线经过定点P (0,-1),因为直线PA ,PB 的斜率分别为-1,2,所以斜率k 的取值范围是(-∞,-1]∪[2,+∞),即实数m 的取值范围是(-∞,-2]∪[1,+∞).1. 已知A (-1,23),B (0,3a ),C (a ,0)三点共线,则此三点所在直线的倾斜角α的大小是 W.答案:120°解析:若a =0,则点B ,C 重合,不合题意.由A ,B ,C 三点共线得k AB =k BC ,即3a -230+1=0-3a a -0,解得a =1,所以B (0,3).此三点所在直线的斜率k AB =3-230+1=-3,即tan α=- 3.又0°≤α<180°,所以α=120°.2. 直线xcos α+3y +2=0的倾斜角的取值范围是 .答案:⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π解析:由直线的方程可知其斜率k =-cos α3∈⎣⎡⎦⎤-33,33.设直线的倾斜角为θ,则tanθ∈⎣⎡⎦⎤-33,33,且θ∈[0,π),所以θ∈⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π.3. 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx的最大值和最小值.解:如图,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3可知,点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以y x 的最大值为2,最小值为23.4. 已知直线kx +y -k =0与射线3x -4y +5=0(x ≥-1)有交点,求实数k 的取值范围.解:kx +y -k =0⇒k (x -1)+y =0,直线过定点(1,0)⇒由题意作图可得:由题意可看出: k ∈⎝⎛⎭⎫-∞,-34∪⎣⎡⎭⎫14,+∞.(或者由两直线方程联立,消去y 得x =4k -53+4k ≥-1,即4k -14k +3≥0⇒k ≥14或k <-34)1. 已知x 轴上的点P 与点Q (-3,1)连线所成直线的倾斜角为30°,则点P 的坐标为 W.答案:(-23,0)解析:设P (x ,0),由题意得k PQ =tan 30°=33,即1-3-x =33,解得x =-23,故点P 的坐标为(-23,0).2. 如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则它们的大小关系为 W.答案:k 1<k 3<k 2解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.3. 已知函数f (x )=asin x -bcos x.若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为 W.答案:3π4解析:由f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x 知,函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝⎛⎭⎫π2,所以-b =a ,所以直线ax -by +c =0的斜率为ab =-1.设直线ax -by +c =0的倾斜角为α,则tan α=-1,因为α∈[0,π),所以α=3π4,即直线ax -by +c =0的倾斜角为3π4. 4. 若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是 W.答案:⎝⎛⎭⎫π6,π2解析:如图,直线l :y =kx -3过定点P (0,-3).又A (3,0),所以k PA =0-(-3)3-0=33,所以直线l 的斜率范围为⎝⎛⎭⎫33,+∞,由于直线的倾斜角的取值范围为[0,π),所以满足条件的直线l 的倾斜角的范围是⎝⎛⎭⎫π6,π2.1. 求斜率要熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 要正确理解倾斜角的定义,明确倾斜角的取值范围,倾斜角与斜率的关系是k =tan α(α≠90°),其中α为倾斜角,因此求倾斜角的取值范围通常需从斜率的范围入手,而求斜率的范围则常需考虑倾斜角的取值范围,但都需要利用正切函数的性质,借助图象或单位圆数形结合,注意直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).第2课时 直线的方程(对应学生用书(文)123~124页、(理)128~129页)1. (必修2P 82练习1(1)~(4)改编)过点P (-2,0),且斜率为3的直线的方程是 W.答案:y =3x +6解析:设所求直线方程为y =3x +b ,由题意可知3×(-2)+b =0,∴ b =6,故y =3x +6.2. (必修2P 87练习4改编)如果ax +by +c =0表示的直线是y 轴,则系数a ,b ,c 满足条件 W.答案:a ≠0且b =c =0解析:ax +by +c =0表示的直线是y 轴,即x =0,∴ b =c =0,a ≠0.3. (必修2P 87练习1改编)直线x 3-y4=1在两坐标轴上的截距之和为 W.答案:-1解析:令x =0,得y =-4;令y =0,得x =3. 故直线在两坐标轴上的截距之和为-4+3=-1.4. (必修2P 85练习4改编)下列说法中正确的是 W.(填序号) ① 经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示; ② 经过定点A (0,b )的直线都可以用方程y =kx +b 表示;③ 不经过原点的直线都可以用方程x a +yb=1表示;④ 经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.答案:④解析:对于①②,斜率有可能不存在,对于③,截距也有可能为0. 5. (必修2P 85练习2(2)(3)改编)若一直线经过点P (1,2),且在y 轴上的截距与直线2x +y +1=0在y 轴上的截距相等,则该直线的方程是 W.答案:3x -y -1=0解析:直线2x +y +1=0在y 轴上的截距为-1,由题意,所求直线过点(0,-1),又所求直线过点P (1,2),故由两点式得直线方程为y +12+1=x -01-0,即3x -y -1=0.1. 直线方程的五种形式111222(1) 当x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1W. (2) 当x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1W. (3) 当x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0W. (4) 当x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0W. (5) 直线的斜率k 与倾斜角α之间的关系如下表:若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式., 1 求直线方程), 1) 已知直线l 过点P (5,2),分别求满足下列条件的直线方程. (1) 直线l 在x 轴上的截距是在y 轴上的截距的2倍;(2) 直线l 与两坐标轴围成的三角形面积为52.解:(1) 当直线l 过原点时,直线l 的斜率为25,∴ 直线方程为y =25x ,即2x -5y =0;当直线l 不过原点时,设直线方程为x 2a +y a =1,将x =5,y =2代入得a =92,∴ 直线方程为x +2y -9=0.综上,直线l 的方程为2x -5y =0或x +2y -9=0. (2) 显然直线与坐标轴不垂直. ∵ 直线l 经过点P (5,2),且能与坐标轴围成三角形,∴ 可设直线l 的方程为y -2=k (x -5)(k ≠0),则直线在x 轴上的截距为5-2k,在y 轴上的截距为2-5k ,由题意,得12|5-2k |·|2-5k|=52,即(5k -2)2=5|k|.当k>0时,原方程可化为(5k -2)2=5k ,解得k =15或k =45;当k<0时,原方程可化为(5k -2)2=-5k ,此方程无实数解;故直线l 的方程为y -2=15(x -5)或y -2=45(x -5),即x -5y +5=0或4x -5y -10=0.变式训练求过点(-3,4),且在两坐标轴上的截距之和为12的直线方程.解:由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a+412-a=1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. , 2 含参直线方程问题), 2) 已知直线l :kx -y +1+2k =0 (k ∈R ). (1) 求证:直线l 过定点;(2) 若直线不经过第四象限,求k 的取值范围;(3) 若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程.(1) 证明:直线l 的方程是k (x +2)+(1-y )=0, 令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1, ∴ 无论k 取何值,直线l 总经过定点(-2,1).(2) 解:由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k>0;当k =0时,直线为y =1,符合题意,故k ≥0.(3) 解:由l 的方程,得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k>0,解得k>0.∵ S =12·OA ·OB =12·⎪⎪⎪⎪-1+2k k ·|1+2k|=12·(1+2k )2k =12·⎝⎛⎭⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k>0且4k =1k ,即k =12,∴ S min =4,此时l :x -2y +4=0. 变式训练已知直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y +6-2m =0. (1) 求实数m 的取值范围;(2) 若直线l 的斜率不存在,求实数m 的值;(3) 若直线l 在x 轴上的截距为-3,求实数m 的值; (4) 若直线l 的倾斜角是45°,求实数m 的值. 解:(1) 当x ,y 的系数不同时为零时,方程表示一条直线, 令m 2-2m -3=0,解得m =-1或m =3;令2m 2+m -1=0解得m =-1或m =12.所以实数m 的取值范围是(-∞,-1)∪(-1,+∞).(2) 由(1)易知,当m =12时,方程表示的直线的斜率不存在.(3) 依题意,有2m -6m 2-2m -3=-3,所以3m 2-4m -15=0,所以m =3或m =-53,由(1)知所求m =-53.(4) 因为直线l 的倾斜角是45°,所以斜率为1.由-m 2-2m -32m 2+m -1=1,解得m =43或m =-1(舍去).所以当直线l 的倾斜角为45°时,m =43., 3 直线方程的综合应用), 3) 为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪(如图),另外△EFA 内部有一文物保护区不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解:如图,建立平面直角坐标系,则E (30,0),F (0,20),∴ 线段EF 的方程为x 30+y20=1(0≤x ≤30).在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S , 则S =PQ·PR =(100-m )(80-n ).又m 30+n20=1(0≤m ≤30),∴ n =20⎝⎛⎭⎫1-m 30. ∴ S =(100-m )⎝⎛⎭⎫80-20+23m =-23(m -5)2+18 0503(0≤m ≤30).∴ 当m =5时,S 有最大值,∴ 当矩形草坪的两边在BC ,CD 上,一个顶点在线段EF 上,且这个顶点距AD 边5 m 时,草坪面积最大.备选变式(教师专享)如图,互相垂直的两条道路l 1,l 2相交于点O ,点P 与l 1,l 2的距离分别为2千米、3千米,过点P 建一条直线道路AB ,与l 1,l 2分别交于A ,B 两点.(1) 当∠BAO =45°时,试求OA 的长;(2) 若使△AOB 的面积最小,试求OA ,OB 的长.解:以l 1为x 轴,l 2为y 轴,建立平面直角坐标系,则O (0,0),P (3,2). (1) 由∠BAO =45°知,OA =OB ,可设A (a ,0),B (0,a )(a >0),直线l 的方程为x a +ya=1.∵ 直线l 过点P (3,2),∴ 3a +2a=1⇒a =5,即OA =5千米.(2) 设A (a ,0),B (0,b )(a >0,b >0),则直线l 的方程为x a +yb=1.∵ 直线l 过点P (3,2),∴ 3a +2b =1,b =2aa -3(a >3).从而S △ABO =12a ·b =12a ·2a a -3=a 2a -3,令a -3=t ,t >0,则a 2=(t +3)2=t 2+6t +9,故有S △ABO =t 2+6t +9t =t +9t +6(t >0).设f (t )=t +9t+6,可证f (t )在(0,3)上单调递减,在(3,+∞)上单调递增,∴ 当t =3时,f (t )min =f (3)=12,此时a =6,b =4,直线l 的方程为x 6+y4=1,即OA =6千米,OB =4千米.1. 若直线(2m 2+m -3)x +(m 2-m )y =4m -1 在x 轴上的截距为1,则实数m 的值是 W.答案:2或-12解析:令y =0,则(2m 2+m -3)x =4m -1,∴ x =4m -12m 2+m -3=1,∴ m =2或-12.2. 若方程(a 2-a -2)x +(a 2+a -6)y +a +1=0表示垂直于y 轴的直线,则a 为 W.答案:-1解析:因为方程表示垂直于y 轴的直线,所以a 2-a -2=0且a 2+a -6≠0,解得a =-1.3. 已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.当OA +OB 取得最小值时,直线l 的方程是 W.答案:x +y -2=0解析:设A (a ,0),B (0,b )(a>0,b>0),直线l 的方程为x a +yb=1,已知直线l 过点M (1,1),则OA +OB =a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a=4,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.4. 已知直线l 过点(0,5),且在两坐标轴上的截距之和为2,则直线l 的方程为 W.答案:5x -3y +15=0解析:∵ 直线过点(0,5),∴ 直线在y 轴上的截距为5. ∵ 在两坐标轴上的截距之和为2, ∴ 直线在x 轴上的截距为-3.∴ 直线l 的方程为x -3+y5=1,即5x -3y +15=0.5. 已知在△ABC 中,A (1,-4),B (6,6),C (-2,0).求(1) △ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程; (2) BC 边的中线所在直线的一般式方程和截距式方程. 解:(1) 平行于BC 边的中位线就是AB ,AC 中点的连线.因为线段AB ,AC 中点坐标为⎝⎛⎭⎫72,1,⎝⎛⎭⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12,整理得6x -8y -13=0, 化为截距式方程为x 136-y138=1.(2) 因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117-y11=1.1. 若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则实数m 满足条件 W.答案:m ≠1解析:2m 2+m -3,m 2-m 不能同时为0.2. 若直线(2t -3)x +2y +t =0不经过第二象限,则t 的取值范围是 W.答案:⎣⎡⎦⎤0,32 解析:直线方程可化为y =⎝⎛⎭⎫32-t x -t 2,由题意得⎩⎨⎧32-t ≥0,-t2≤0,解得0≤t ≤32. 3. 不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点 . 答案:(-2,3)解析:把直线方程(m -1)x -y +2m +1=0, 整理得(x +2)m -(x +y -1)=0, 则⎩⎪⎨⎪⎧x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =3. 4. 已知直线x +2y =2与x 轴、y 轴分别相交于A ,B 两点.若动点P (a ,b )在线段AB 上,则ab 的最大值为 W.答案:12解析:由题意知A (2,0),B (0,1),所以线段AB 的方程可表示为x2+y =1,x ∈[0,2].又动点P (a ,b )在线段AB 上,所以a 2+b =1,a ∈[0,2].又a 2+b ≥2ab 2,所以1≥2ab2,解得0≤ab ≤12,当且仅当a 2=b =12,即P ⎝⎛⎭⎫1,12时,ab 取得最大值12. 5. 已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),求过两点Q 1(a 1,b 1),Q 2(a 2,b 2)(a 1≠a 2)的直线方程.解:由题意,知P (2,3)在已知直线上, ∴ ⎩⎪⎨⎪⎧2a 1+3b 1+1=0,2a 2+3b 2+1=0, ∴ 2(a 1-a 2)+3(b 1-b 2)=0,即b 1-b 2a 1-a 2=-23,∴ 所求直线方程为y -b 1=-23(x -a 1),∴ 2x +3y -(2a 1+3b 1)=0,即2x +3y +1=0.1. 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况;而选用两点式时不要忽视与坐标轴垂直的情况.2. 解决直线方程的综合问题时,除灵活选择方程的形式外,还要注意题目中的隐含条件,若与最值或范围相关的问题可考虑构建目标函数进行转化求最值.[备课札记]第3课时 直线与直线的位置关系(对应学生用书(文)125~126页、(理)130~131页)1. (原创)“a =3”是“直线ax +3y =1与直线x +y =1平行”的 条件. 答案:充要解析:若a =3,直线ax +3y =1与直线x +y =1显然平行;若直线ax +3y =1与直线x+y =1平行,由a 1= 31 ≠ 11,易得a =3.2. (必修2P 93练习6改编)过点P (-1,3)且垂直于直线x -2y +3=0的直线方程为 W.答案:2x +y -1=0解析:设直线方程为2x +y +c =0,又直线过点P (-1,3),则-2+3+c =0,c =-1,即所求直线方程为2x +y -1=0.3. (必修2P 95练习3改编)若三条直线2x +3y +8=0,x -y -1=0和x +ky =0相交于一点,则k = W.答案:-12解析:由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0,解得⎩⎪⎨⎪⎧x =-1,y =-2, ∴ 点(-1,-2)在x +ky =0上,即-1-2k =0,∴ k =-12.4. (必修2P 105练习1改编)已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a = W.答案:2-1解析:由题意知|a -2+3|2=1,∴ |a +1|= 2.又∵ a >0,∴ a =2-1.5. (必修2P 106习题10改编)与直线7x +24y =5平行,并且距离等于3的直线方程是 W.答案:7x +24y +70=0或7x +24y -80=0解析:设直线方程为7x +24y +c =0,则d =|c +5|242+72=3,∴ c =70或-80.1. 两条直线的位置关系设两条直线的方程是l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两条直线的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.若方程组有惟一解,则两条直线相交,此解就是交点坐标W.若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.若方程组有无数组解,则两条直线重合W.3. 几种距离(1) 两点间的距离: 平面上的两点A (x 1,y 1),B (x 2,y 2)间的距离公式: d (A ,B )=AB =(x 1-x 2)2+(y 1-y 2)2. (2) 点到直线的距离:点P (x 1,y 1)到直线l :Ax +By +C =0的距离d =|Ax 1+By 1+C|A 2+B 2.(3) 两条平行线间的距离:两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.4. 常见的三大直线系方程(1) 与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ). (2) 与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R ). (3) 过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.5. 中心对称(1) 点关于点对称:若点M (x 1,y 1)与N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2) 直线关于点对称问题的主要解法:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用l 1∥l 2,由点斜式得到所求的直线方程.6. 轴对称(1) 点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在对称轴l 上,且连结P 1P 2的直线垂直于对称轴l ,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,A (y 1-y 2)=B (x 1-x 2),可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中A ≠0,x 1≠x 2).特别地,若直线l :Ax +By +C =0满足|A|=|B|,则P 1(x 1,y 1)与P 2(x 2,y 2)坐标关系为⎩⎪⎨⎪⎧Ax 1+By 2+C =0,Ax 2+By 1+C =0.(2) 直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[备课札记], 1 两直线的平行与垂直), 1) 已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值:(1) l 1⊥l 2,且直线l 1过点(-3,-1);(2) l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1) ∵ l 1⊥l 2,∴ a (a -1)-b =0. ∵ 直线l 1过点(-3,-1), ∴ -3a +b +4=0.故a =2,b =2.(2) ∵ 直线l 2的斜率存在,l 1∥l 2,∴ 直线l 1的斜率存在.∴ k 1=k 2,即ab=1-a.∵ 坐标原点到这两条直线的距离相等,∴ l 1,l 2在y 轴上的截距互为相反数,即4b=b.故a =2,b =-2或a =23,b =2.变式训练已知直线l 1经过点A (3,a ),B (a -1,2),直线l 2经过点C (1,2),D (-2,a +2),分别在下列条件下求a 的值:(1) l 1∥l 2; (2) l 1⊥l 2.解:设直线l 2的斜率为k 2,则k 2=2-(a +2)1-(-2)=-a3.(1) 若l 1∥l 2,则直线l 1的斜率k 1=-a3.又k 1=2-a a -4,则2-a a -4=-a3,解得a =1或a =6.经检验,当a =1或a =6时,l 1∥l 2. (2) 若l 1⊥l 2.① 当k 2=0时,此时a =0,k 1=-12,不符合题意.② 当k 2≠0时,直线l 2的斜率存在,此时k 1=2-aa -4.由k 2k 1=-1,得-a 3·2-aa -4=-1,解得a =3或a =-4.经检验,当a =3或a =-4时,l 1⊥l 2. , 2 两直线的交点), 2) 已知△ABC 的顶点B (3,4),AB 边上的高CE 所在直线方程为2x +3y -16=0,BC 边上的中线AD 所在直线方程为2x -3y +1=0,求AC 的长.解:∵ k CE = -23,AB ⊥CE ,∴ k AB =32, ∴ 直线AB 的方程为3x -2y -1=0.由⎩⎪⎨⎪⎧3x -2y -1=0,2x -3y +1=0,解得A (1,1), 设C (a ,b ), 则D ⎝⎛⎭⎫3+a 2,4+b 2,∵ C 点在CE 上,BC 的中点D 在AD 上, ∴ ⎩⎪⎨⎪⎧2a +3b -16=0,2·3+a 2-3·4+b 2+1=0,得C (5,2), 由两点间距离公式得AC 的长为17. 变式训练已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),∴ l AC :2x +y -11=0.联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴ C (4,3).设B (x 0,y 0),则AB 的中点M 为⎝⎛⎭⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0, ∴ ⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴ B (-1,-3), ∴ k BC =65,∴ 直线BC 的方程为y -3=65(x -4),即6x -5y -9=0., 3 点到直线及两平行直线之间的距离) , 3) 已知点P (2,-1).(1) 求过P 点且与原点距离为2的直线l 的方程;(2) 求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3) 是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1) 过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1), 可见,过P (2,-1)且垂直于x 轴的直线满足条件. 此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,直线l 的方程为x =2或3x -4y -10=0.(2) 过P 点与原点O 距离最大的直线是过P 点且与OP 垂直的直线,由l ⊥OP ,得k l k OP =-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3) 不存在.理由:由(2)可知,过P 点不存在到原点距离大于5的直线,因此不存在过P 点且到原点距离为6的直线.备选变式(教师专享)已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点. (1) 若点A (5,0)到l 的距离为3,求直线l 的方程; (2) 求点A (5,0)到直线l 的距离的最大值. 解:(1) 由直线l 经过直线l 1与l 2交点知,其直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.∵ 点A (5,0)到直线l 的距离为3,∴ |10+5λ-5|(2+λ)2+(1-2λ)2=3,即2λ2-5λ+2=0,∴ λ=2或λ=12,∴ 直线l 的方程为x =2或4x -3y -5=0.(2) 设直线l 1与l 2的交为P ,由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得P (2,1),如图,过点P 作任一直线l ,设d 为点A 到l 的距离,则d ≤PA (当l ⊥PA 时等号成立).∴ d max =PA =(5-2)2+(0-1)2=10., 4 对称问题), 4) 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1) 点A 关于直线l 的对称点A′的坐标;(2) 直线m :3x -2y -6=0关于直线l 的对称直线m′的方程; (3) 直线l 关于点A (-1,-2)对称的直线l′的方程. 解:(1) 设A′(x ,y ),由已知得 ⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413.∴ A ′⎝⎛⎭⎫-3313,413. (2) 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m′上.设对称点为M′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,解得M′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,解得N (4,3).∵ m ′经过点N (4,3),∴ 由两点式得直线m′的方程为9x -46y +102=0.(3) 设P (x ,y )为l′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P′(-2-x ,-4-y ).∵ P ′在直线l 上,∴ 2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0. 备选变式(教师专享) 光线通过点A (2,3),在直线l :x +y +1=0上反射,反射光线经过点B (1,1),试求入射光线和反射光线所在直线的方程.解:设点A (2,3)关于直线l 的对称点为A′(x 0,y 0),则⎩⎪⎨⎪⎧2+x 02+3+y 02+1=0,y 0-3x 0-2=1,解得A′(-4,-3).由于反射光线经过点A′(-4,-3)和B (1,1),所以反射光线所在直线的方程为y -1-3-1=x -1-4-1,即4x -5y +1=0.解方程组⎩⎪⎨⎪⎧4x -5y +1=0,x +y +1=0,得反射点P ⎝⎛⎭⎫-23,-13. 所以入射光线所在直线的方程为y -3-13-3=x -2-23-2,即5x -4y +2=0.1. (2016·上海卷文)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距.解析:利用两平行线间距离公式得d =|-1-1|22+12=255.2. 将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(m ,n )重合,则m +n 的值是 W.答案:345解析:点(0,2)与点(4,0)关于y -1=2(x -2)对称,则点(7,3)与点(m ,n )也关于y -1=2(x -2)对称,则⎩⎪⎨⎪⎧n +32-1=2⎝⎛⎭⎫m +72-2,n -3m -7=-12,解得⎩⎨⎧m =35,n =315.∴ m +n =345.3. 已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是 .答案:x +2y -3=0解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.4. 在平面直角坐标系中,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是 W.答案:(2,4)解析:设P 为平面上一点,则由三角形两边之和大于第三边知PA +PC ≥AC ,PB +PD ≥BD ,所以四边形ABCD 对角线的交点到四点距离之和最小,直线AC 的方程为y -2=2(x -1),直线BD 的方程为y -5=-(x -1),由⎩⎪⎨⎪⎧y -2=2(x -1),y -5=-(x -1),得交点坐标为(2,4).5. △ABC 的两条高所在直线的方程分别为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),求BC 边所在直线的方程.解:可以判断A 不在所给的两条高所在的直线上,则可设AB ,AC 边上的高所在直线的方程分别为2x -3y +1=0,x +y =0,则可求得AB ,AC 边所在直线的方程分别为y -2=-32(x -1),y -2=x -1,即3x +2y -7=0,x -y +1=0. 由⎩⎪⎨⎪⎧3x +2y -7=0,x +y =0,得B (7,-7), 由⎩⎪⎨⎪⎧x -y +1=0,2x -3y +1=0,得C (-2,-1), 所以BC 边所在直线的方程为2x +3y +7=0.1. 在平面直角坐标系xOy 中,直线l :(2k -1)x +ky +1=0,则当实数k 变化时,原点O 到直线l 的距离的最大值为 W.答案:5 解析:直线l 过定点P (1,-2),原点O 到直线l 的距离的最大值即为OP =12+(-2)2= 5.2. 若过点P (1,2)作一直线l ,使点M (2,3)和点N (4,-1)到直线l 的距离相等,则直线l 的方程为 W.答案:2x +y -4=0或x +2y -5=0解析:当直线l 经过MN 的中点时,其方程为x +2y -5=0;当过M ,N 两点的直线平行于直线l 时,直线l 的方程为2x +y -4=0.3. 已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是 W.答案:⎝⎛⎭⎫-16,12 解析:由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1. (若2k +1=0,即k =-12,则两直线平行)∴ 交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.∵ 交点位于第一象限,∴ ⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.∴ 实数k 的取值范围是⎝⎛⎭⎫-16,12. 4. 已知直线l 1:2x -y -2=0和直线l 2:x +2y -1=0关于直线l 对称,则直线l 的斜率为 W.答案:-3或13解析:(解法1)在直线l 上任取一点P (x ,y ),点P 到直线l 1和直线l 2的距离相等.|2x -y -2|22+(-1)2=|x +2y -1|12+22,整理得,直线l 的方程为3x +y -3=0或x -3y -1=0,所以直线l 的斜率为-3或13.(解法2)设l 1的倾斜角为α.因为l 1⊥l 2,所以l 的倾斜角为α±π4,所以直线l 的斜率为tan ⎝⎛⎭⎫α±π4.因为tan α=2,所以tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=-3,tan ⎝⎛⎭⎫α-π4=tan α-tanπ41+tan αtanπ4=13, 所以直线l 的斜率为-3或13.1. 在两条直线的位置关系中,讨论最多的还是平行与垂直,它们是两条直线的特殊位置关系.解题时认真画出图形,有助于快速准确地解决问题.判断两直线平行与垂直时,不要忘记考虑斜率不存在的情形,利用一般式则可避免分类讨论.2. 运用公式d =|C 1-C 2|A 2+B 2求两平行直线间的距离时,一定要把x ,y 项系数化为相等的系数.3. 对称思想是高考热点,主要分为中心对称和轴对称两种,关键要把握对称问题的本质,必要情况下可与函数的对称轴建立联系.[备课札记]第4课时 圆 的 方 程(对应学生用书(文)127~128页、(理)132~133页)1. (必修2P 111练习4改编)圆x 2+y 2-4x +6y =0的圆心坐标是 W. 答案:(2,-3)解析:由(x -2)2+(y +3)2=13知,圆心坐标为(2,-3). 2. (必修2P 111习题7改编)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的标准方程为 W.答案:(x -2)2+y 2=10 解析:设圆心坐标为(a ,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2,解得a =2,∴ 圆心为(2,0),半径为10,∴ 圆C 的标准方程为(x -2)2+y 2=10.3. (必修2P 111练习6改编)经过三点A (1,-1),B (1,4),C (4,-2)的圆的一般方程为 W.答案:x 2+y 2-7x -3y +2=0解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0.将A ,B ,C 三点代入,整理得方程组⎩⎪⎨⎪⎧D -E +F =-2,D +4E +F =-17,4D -2E +F =-20,解得⎩⎪⎨⎪⎧D =-7,E =-3,F =2,∴ 所求圆的一般方程为x 2+y 2-7x -3y +2=0. 4. 已知点P (1,1)在圆x 2+y 2-ax +2ay -4=0的内部,则a 的取值范围是 W. 答案:(-∞,2)解析:由圆的一般方程知a ∈R ,因为点P 在圆内,所以1+1-a +2a -4<0,解得a<2. 5. (原创)已知实数x ,y 满足x 2+(y +3)2=4,则(x -3)2+(y -1)2的最大值为 W.答案:49 解析:(x -3)2+(y -1)2表示圆x 2+(y +3)2=4上一动点P (x ,y )到点(3,1)的距离d 的平方,因为圆心(0,-3)到点(3,1)的距离为5,所以d 的最大值为5+2=7,所以d 2的最大值为49.1. 圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径W.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r>0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2W.(2) 特殊的,x 2+y 2=r 2(r>0)的圆心为(0,0),半径为r W. 3. 圆的一般方程方程x 2+y 2+Dx +Ey +F =0变形为⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F 4.(1) 当D 2+E 2-4F>0时,该方程表示以⎝⎛⎭⎫-D 2,-E 22圆;(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝⎛⎭⎫-D 2,-E 2; (3) 当D 2+E 2-4F <0时,该方程不表示任何图形.4. 点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1) 若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2W. (2) 若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2W. (3) 若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2W. [备课札记]1 确定圆的方程) 1) 求经过点A (-2,-4),且与直线l :x +3y -26=0相切于点B (8,6)的圆的方程.解:(解法1)设圆心为C ,所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心C ⎝⎛⎭⎫-D 2,-E2,∴ k CB =6+E 28+D2. ∵ 圆C 与直线l 相切,∴ k CB ·k l =-1,即6+E 28+D 2·⎝⎛⎭⎫-13=-1 ①.又有(-2)2+(-4)2-2D -4E +F =0 ②, 又82+62+8D +6E +F =0 ③.联立①②③,可得D =-11,E =3,F =-30, ∴ 所求圆的方程为x 2+y 2-11x +3y -30=0. (解法2)设圆的圆心为C ,则CB ⊥l , 可得CB 所在直线的方程为y -6=3(x -8),即3x -y -18=0 ①. 由A (-2,-4),B (8,6),得AB 的中点坐标为(3,1).又k AB =6+48+2=1,∴ AB 的垂直平分线的方程为y -1=-(x -3), 即x +y -4=0 ②.由①②联立,解得⎩⎨⎧x =112,y =-32.即圆心坐标为⎝⎛⎭⎫112,-32. ∴ 所求圆的半径r =⎝⎛⎭⎫112-82+⎝⎛⎭⎫-32-62=1252,∴ 所求圆的方程为⎝⎛⎭⎫x -1122+⎝⎛⎭⎫y +322=1252.变式训练圆经过点A (2,-3)和B (-2,-5). (1) 若圆的面积最小,求圆的方程;(2) 若圆心在直线x -2y -3=0上,求圆的方程. 解:(1) 要使圆的面积最小,则AB 为圆的直径,圆心C (0,-4),半径r =12AB =5,所以所求圆的方程为x 2+(y +4)2=5. (2) 因为k AB =12,AB 中点为(0,-4),所以AB 中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式,得半径r =10,因此,所求的圆的方程为(x +1)2+(y +2)2=10.备选变式(教师专享)已知一圆的圆心在原点,且圆周被直线3x +4y +15=0分成1∶2两部分,求圆的方程. 解:如图,因为圆周被直线3x +4y +15=0分成1∶2两部分,所以∠AOB =120°,而圆心O (0,0)到直线3x +4y +15=0的距离d =1532+42=3, 在△AOB 中,可求得OA =6, 所以所求圆的方程为x 2+y 2=36., 2 与参数有关的圆方程问题), 2) 已知圆C 的方程x 2+y 2-2ax +2y +a +1=0.(1) 若圆C 上任意点A 关于l :x +2y -5=0的对称点也在圆上,求实数a 的值; (2) 求圆心C 到直线ax +y -a 2=0的距离的取值范围. 解:(1) 将圆C 的方程配方得(x -a )2+(y +1)2=a 2-a.由题意知圆心C (a ,-1)在直线l :x +2y -5=0上,即a -2-5=0,所以a =7. (2) 由圆方程可知, a 2-a >0,解得a >1或a <0. 由方程得圆心C (a ,-1)到直线ax +y -a 2=0的距离 d =|a 2-1-a 2|a 2+1=1a 2+1.因为a >1或a <0,所以a 2+1>1,所以0<d <1,所以所求距离的取值范围为(0,1). 变式训练已知圆C :(x -a )2+(y -b )2=1,设平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且。
(通用版)2019版高考数学一轮复习第9章平面解析几何1第1讲直线的倾斜角与斜率、直线的方程教案理

第1讲 直线的倾斜角与斜率、直线的方程在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. 能根据两条直线的斜率判定这两条直线平行或垂直.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的取值范围是[0,π). 2.直线的斜率判断正误(正确的打“√”,错误的打“×”) (1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.( )(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )答案:(1)× (2)× (3)× (4)× (5)√(教材习题改编)经过点P 0(2,-3),倾斜角为45°的直线方程为( ) A .x +y +1=0 B .x +y -1=0 C .x -y +5=0D .x -y -5=0解析:选D .由点斜式得直线方程为y -(-3)=tan 45°(x -2)=x -2,即x -y -5=0,故选D.如果AC <0,BC <0,那么直线Ax +By +C =0不通过( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C.由题意知直线的斜率k =-A B <0,直线在y 轴上的截距b =-C B>0,故选C. 经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =________. 解析:tan 3π4=2y +1-(-3)4-2=2y +42=y +2,因此y +2=-1,y =-3. 答案:-3(教材习题改编)经过点(-4,3)且在两坐标轴上的截距相等且不过原点的直线方程为________.解析:由题意可设方程为x +y =a , 所以a =-4+3=-1. 所以直线方程为x +y +1=0. 答案:x +y +1=0直线的倾斜角与斜率[典例引领](1)直线2xcos α-y -3=0⎝⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的变化范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3(2)已知直线l :x -my +3m =0上存在点M 满足与两点A (-1,0),B (1,0)连线的斜率k MA 与k MB 之积为3,则实数m 的取值范围是( ) A .[-6, 6] B.⎝ ⎛⎭⎪⎫-∞,-66∪⎝ ⎛⎭⎪⎫66,+∞。
全国通用近年高考数学大一轮复习第九章平面解析几何第9节第1课时直线与圆锥曲线学案理新人教B版(20

(全国通用版)2019版高考数学大一轮复习第九章平面解析几何第9节第1课时直线与圆锥曲线学案理新人教B版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学大一轮复习第九章平面解析几何第9节第1课时直线与圆锥曲线学案理新人教B版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学大一轮复习第九章平面解析几何第9节第1课时直线与圆锥曲线学案理新人教B版的全部内容。
第1课时直线与圆锥曲线最新考纲 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2。
了解圆锥曲线的简单应用;3。
理解数形结合的思想。
知识梳理1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程,即错误!消去y,得ax2+bx+c=0.(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则:Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离。
(2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=错误!|x1-x2|=1+k2·错误!=错误!·|y1-y2|=错误!·错误!。
2019届江苏专版高考数学一轮复习第九章解析几何第一节直线与方程实用讲义文

01 突破点(一) 直线的倾斜角与斜率、 两直线的位置关系
基础联通 抓主干知识的“源”与“流”
1.直线的斜率
P1(x1,y1),P2(x2,y2)在直线 l 上,且 x1≠x2,则 l 的斜率 k y2-y1 =__x_2_-__x_1_.
2.直线的倾斜角
(1)定义:在平面直角坐标系中,对于一条与 x 轴相交的直 线,把 x 轴所在的直线绕着交点按 逆时针 方向旋转到和直线重 合时所转过的 最小正角 称为这条直线的倾斜角.当直线 l 与 x 轴 平行或重合 时,规定它的倾斜角为 0.
b)·4a+1b
=
5
+
a b
+
4b a
≥5
+
2
ab·4ab=9, 当且仅当 a=6,b=3 时等号成立,
能力练通 抓应用体验的“得”与“失”
1.[考点一]直线2xcos α-y-3=0α∈π6,π3的倾斜角的取值范 围是________.
解析:直线2xcos α-y-3=0的斜率k=2cos α,
因为α∈
π6,π3
,所以
1 2
≤cos
α≤
3 2
,因此k=2·cos
α∈[1,
3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ].
第九章 解析几何
第一节 直线与方程
本节主要包括 3 个知识点: 1.直线的倾斜角与斜率、两直线的位置关系; 2.直线的方程; 3.直线的交点、距离与对称问题.
01 突破点(一) 直线的倾斜角与斜率、两直线 的位置关系
02
突破点(二) 直线的方程
03 突破点(三) 直线的交点、距离与对称问题
04
课时达标检测
联立③④,解得ab==2-,2
【2019最新】高考数学一轮总复习第9章平面解析几何第一节直线与方程AB卷文1

=0与渐近线x-y=0平行,故两平行线的距离d==.由点P到直线x-y+1=0的距离大于c恒成立,得c≤,故c的最大值为.
答案
7.(20xx·四川,15)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.
——教学资料参考参考范本——
【2019最新】高考数学一轮总复习第9章平面解析几何第一节直线与方程AB卷文1
______年______月______日
____________________部门
1. (20xx·北京,7)已知A(2,5),B(4,1),若点P(x,y)在线段AB上,则2x-y的最大值为( )
则|2-1|≤CD≤2+1,即1≤≤30≤a≤.
所以点C的横坐标a的取值范围为.
5.(20xx·四川,9)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|+|PB|的取值范围是( )
A.-1B.3
C.7D.8
解析 线段AB的方程为y-1=(x-4),2≤x≤4.
即2x+y-9=0,2≤x≤4,因为P(x,y)在线段AB上,
所以2x-y=2x-(-2x+9)=4x-9.
又2≤x≤4,则-1≤4x-9≤7,故2x-y最大值为7.
答案 C
2.(20xx·安徽,8)直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是( )
A.x+y-2=0B.x-y+2=0
C.x+y-3=0D.x-y+3=0
解析 依题意,得直线l过点(0,3),斜率为1,所以直线l的方程为y-3=x-0,即x-y+3=0.故选D.
2020高三数学一轮复习第九章平面解析几何第一节直线的倾斜角与斜率直线的方程夯基提能

高三数学一轮复习第九章平面解析几何第一节直线的倾斜角与斜率直线的方程夯基提能A组基础题组1.直线l:xsin 30°+ycos 150°+1=0的斜率是( )A. B. C.- D.-2.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为( )A.4x-3y-3=0B.3x-4y-3=0C.3x-4y-4=0D.4x-3y-4=03.已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是( )A.1B.-1C.-2或-1D.-2或14.直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足( )A.ab>0,bc<0B.ab>0,bc>0C.ab<0,bc>0D.ab<0,bc<05.两直线-=a与-=a(其中a是不为零的常数)的图象可能是( )6.过点M(3,-4),且在两坐标轴上的截距相等的直线的方程为.7.已知△ABC的三个顶点分别为A(-3,0),B(2,1),C(-2,3),求:(1)BC边所在直线的方程;(2)BC边上中线AD所在直线的方程;(3)BC边的垂直平分线DE的方程.8.如图,射线OA、OB分别与x轴正半轴成45°角和30°角,过点P(1,0)作直线AB分别交OA、OB于A、B两点,当线段AB的中点C恰好落在直线y=x 上时,求直线AB的方程.B组提升题组9.(20xx江西南昌模拟)直线(2m+1)x+(m+1)y-7m-4=0过定点( )A.(1,-3)B.(4,3)C.(3,1)D.(2,3)10.(20xx上海青浦二模)a=是“直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0互相垂直”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件11.在等腰三角形AOB中,AO=AB,点O(0,0),A(1,3),点B在x轴的正半轴上,则直线AB的方程为( )A.y-1=3(x-3)B.y-1=-3(x-3)C.y-3=3(x-1)D.y-3=-3(x-1)12.直线l经过点P(3,2)且与x轴、y轴的正半轴分别交于A、B两点,△OAB的面积为12,则直线l的方程为.13.已知l1,l2是分别经过A(1,1),B(0,-1)两点的两条平行直线,当l1,l2间的距离最大时,则直线l1的方程是.14.已知经过点A(-2,0)和点B(1,3a)的直线l1与经过点P(0,-1)和点Q(a,-2a)的直线l2互相垂直,则实数a的值为.15.已知线段PQ两端点的坐标分别为P(-1,1)和Q(2,2),若直线l:x+my+m=0与线段PQ有交点,则实数m的取值范围是.16.直线l过点P(1,4),分别交x轴的正半轴和y轴的正半轴于A,B两点.(1)当|PA|·|PB|最小时,求l的方程;(2)当|OA|+|OB|最小时,求l的方程.答案全解全析A组基础题组1.A 设直线l的斜率为k,则k=-=.2.D 由题意可设直线l0,l的倾斜角分别为α,2α,因为直线l0:x-2y-2=0的斜率为,则tan α=,所以直线l的斜率k=tan 2α===,所以由点斜式可得直线l的方程为y-0=(x-1),即4x-3y-4=0.3.D 由题意可知a≠0.当x=0时,y=a+2.当y=0时,x=.∴=a+2,解得a=-2或a=1.4.A 由于直线ax+by+c=0经过第一、二、四象限,所以直线存在斜率,将方程变形为y=-x-.易知-<0且->0,故ab>0,bc<0.5.B 直线方程-=a可化为y=x-na,直线-=a可化为y=x-ma,由此可知两条直线的斜率同号.6.答案4x+3y=0或x+y+1=0解析①若直线过原点,则k=-,所以y=-x,即4x+3y=0.②若直线不过原点,设+=1,即x+y=a.则a=3+(-4)=-1,所以直线的方程为x+y+1=0.综上,直线的方程为4x+3y=0或x+y+1=0.7.解析(1)直线BC经过B(2,1)和C(-2,3)两点,由两点式得直线BC的方程为=,即x+2y-4=0.(2)设BC边的中点D的坐标为(m,n),则m==0,n==2.BC边的中线AD所在直线过A(-3,0),D(0,2)两点,由截距式得AD所在直线方程为+=1,即2x-3y+6=0.(3)由(1)知,直线BC的斜率k1=-,则BC边的垂直平分线DE的斜率k2=2.由(2)知,点D的坐标为(0,2).由点斜式得直线DE的方程为y-2=2(x-0),即2x-y+2=0.8.解析由题意可得kOA=tan 45°=1,kOB=tan(180°-30°)=-,所以射线OA:y=x(x≥0),射线OB:y=-x(x≥0).设A(m,m),B(-n,n),则线段AB的中点C的坐标为,由点C在直线y=x上,且A、P、B三点共线得解得m=,所以A(,).又P(1,0),所以kAB=kAP==,所以lAB:y=(x-1),即直线AB的方程为(3+)x-2y-3-=0.B组提升题组9.C 2mx+x+my+y-7m-4=0,即(2x+y-7)m+(x+y-4)=0,由解得则直线过定点(3,1),故选C.10.A 由直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0互相垂直得(a+1)(a-1)+3a×(a+1)=0,解得a=或a=-1.∴“a=”是“直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0互相垂直”的充分而不必要条件.故选A.11.D 因为AO=AB,所以直线AB的斜率与直线AO的斜率互为相反数,所以kAB=-kOA=-3,所以直线AB的点斜式方程为y-3=-3(x-1).12.答案2x+3y-12=0解析解法一:设直线l的方程为+=1(a>0,b>0),则有+=1,且ab=12.解得a=6,b=4.所以所求直线l的方程为+=1,即2x+3y-12=0.解法二:设直线l的方程为y-2=k(x-3)(k<0),令x=0,得y=2-3k,则2-3k>0;令y=0,得x=3-,则3->0.所以S△OAB=(2-3k)=12,解得k=-.故所求直线l的方程为y-2=-(x-3),即2x+3y-12=0.13.答案x+2y-3=0解析当直线AB与l1,l2垂直时,l1,l2间的距离最大.因为A(1,1),B(0,-1),所以kAB==2,所以两平行直线的斜率为k=-,所以直线l1的方程是y-1=-(x-1),即x+2y-3=0.14.答案1或0解析l1的斜率k1==a.当a≠0时,l2的斜率k2==.因为l1⊥l2,所以k1k2=-1,即a·=-1,解得a=1;当a=0时,P(0,-1),Q(0,0),这时直线l2为y轴,A(-2,0),B(1,0),直线l1为x轴,显然l1⊥l2.综上可知,实数a的值为1或0.15.答案解析如图所示,直线l:x+my+m=0过定点A(0,-1),当m≠0时,kQA=,kPA=-2,kl=-,∴-≤-2或-≥,解得0<m≤或-≤m<0;当m=0时,直线l的方程为x=0,与线段PQ有交点,∴实数m的取值范围为-≤m≤.16.解析依题意知l的斜率存在,且斜率为负.设l的方程为y-4=k(x-1)(k<0).令y=0,可得x=1-,则A,令x=0,可得y=4-k,则B(0,4-k).(1)|PA|·|PB|=·=-(1+k2)=-4≥8(k<0),当且仅当=k,即k=-1时,|PA|·|PB|取最小值,这时l的方程为x+y-5=0.(2)|OA|+|OB|=+(4-k)=5-≥9(k<0),当且仅当k=,即k=-2时,|OA|+|OB|取最小值,这时l的方程为2x+y-6=0.。
近年高考数学一轮复习第9章平面解析几何第1讲直线的倾斜角、斜率与直线方程演练文(2021年整理)

2019高考数学一轮复习第9章平面解析几何第1讲直线的倾斜角、斜率与直线方程分层演练文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第9章平面解析几何第1讲直线的倾斜角、斜率与直线方程分层演练文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第9章平面解析几何第1讲直线的倾斜角、斜率与直线方程分层演练文的全部内容。
第1讲直线的倾斜角、斜率与直线方程一、选择题1.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为( )A.4x-3y-3=0 B.3x-4y-3=0C.3x-4y-4=0 D.4x-3y-4=0解析:选D.由题意可设直线l0,l的倾斜角分别为α,2α,因为直线l:x-2y-2=0的斜率为错误!,则tan α=错误!,所以直线l的斜率k=tan 02α=错误!=错误!=错误!.所以由点斜式可得直线l的方程为y-0=错误!(x-1),即4x-3y-4=0.2.直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足()A.ab>0,bc<0 B.ab>0,bc>0C.ab<0,bc〉0 D.ab〈0,bc<0解析:选A.由于直线ax+by+c=0经过第一、二、四象限,所以直线存在斜率,将方程变形为y=-错误!x-错误!.易知-错误!〈0且-错误!〉0,故ab>0,bc〈0.3.两直线错误!-错误!=a与错误!-错误!=a(其中a为不为零的常数)的图象可能是( )解析:选B.直线方程错误!-错误!=a可化为y=错误!x-na,直线错误!-错误!=a可化为y=错误!x-ma,由此可知两条直线的斜率同号.4.已知直线x+a2y-a=0(a〉0,a是常数),当此直线在x,y轴上的截距之和最小时,a的值是( )A.1 B.2 C.错误!D.0解析:选A.直线方程可化为xa+错误!=1,因为a>0,所以截距之和t=a+错误!≥2,当且仅当a=错误!,即a=1时取等号.5.直线x-2y+b=0与两坐标轴所围成的三角形的面积不大于1,那么b的取值范围是()A.[-2,2]B.(-∞,-2]∪[2,+∞)C.[-2,0)∪(0,2]D.(-∞,+∞)解析:选C.令x=0,得y=错误!,令y=0,得x=-b,所以所求三角形的面积为错误!错误!|-b|=错误!b2,且b≠0,错误!b2≤1,所以b2≤4,所以b的取值范围是[-2,0)∪(0,2].6.若直线错误!+错误!=1(a>0,b>0)过点(1,1),则a+b的最小值等于( )A.2 B.3C.4 D.5解析:选C.将(1,1)代入直线错误!+错误!=1,得错误!+错误!=1,a >0,b>0,故a+b=(a+b)(错误!+错误!)=2+错误!+错误!≥2+2=4,等号当且仅当a=b时取到,故选C.二、填空题7.直线l过原点且平分▱ABCD的面积,若平行四边形的两个顶点为B (1,4),D(5,0),则直线l的方程为________.解析:直线l平分平行四边形ABCD的面积,则直线l过BD的中点(3,2),则直线l:y=23 x.答案:y=错误!x8.过点M(-3,5)且在两坐标轴上的截距互为相反数的直线方程为________.解析:(1)当直线过原点时,直线方程为y=-错误!x;(2)当直线不过原点时,设直线方程为错误!+错误!=1,即x-y=a.代入点(-3,5),得a=-8.即直线方程为x-y+8=0.答案:y=-53x或x-y+8=09.直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点________.解析:直线l的方程变形为a(x+y)-2x+y+6=0,由{x+y=0,,-2x+y+6=0解得x=2,y=-2,所以直线l恒过定点(2,-2).答案:(2,-2)10.已知直线l:x-my+错误!m=0上存在点M满足与两点A(-1,0),B(1,0)连线的斜率k MA与k MB之积为3,则实数m的取值范围是____________.解析:设M(x,y),由k MA·k MB=3,得错误!·错误!=3,即y2=3x2-3.联立错误!得错误!x2+错误!x+6=0.要使直线l:x-my+错误!m=0上存在点M满足与两点A(-1,0),B(1,0)连线的斜率k MA与k MB之积为3,则Δ=错误!错误!-24错误!≥0,即m2≥错误!.所以实数m的取值范围是错误!∪错误!.答案:错误!∪错误!三、解答题11.已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:(1)过定点A(-3,4);(2)斜率为错误!.解:(1)设直线l的方程为y=k(x+3)+4,它在x轴,y轴上的截距分别是-错误!-3,3k+4,由已知,得(3k+4)×错误!=±6,解得k1=-错误!或k2=-错误!.故直线l的方程为2x+3y-6=0或8x+3y+12=0.(2)设直线l在y轴上的截距为b,则直线l的方程是y=16x+b,它在x轴上的截距是-6b,由已知,得|-6b·b|=6,所以b=±1.所以直线l的方程为x-6y+6=0或x-6y-6=0.12.如图,射线OA,OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线y=错误!x 上时,求直线AB的方程.解:由题意可得k OA=tan 45°=1,k OB=tan(180°-30°)=-错误!,所以直线l OA:y=x,l OB:y=-错误!x.设A(m,m),B(-3n,n),所以AB的中点C错误!,由点C在直线y=错误!x上,且A,P,B三点共线得错误!解得m=3,所以A(错误!,错误!).又P(1,0),所以k AB=k AP=错误!=错误!,所以l AB:y=错误!(x-1),即直线AB的方程为(3+错误!)x-2y-3-错误!=0.1.直线l过点P(1,4),分别交x轴的正半轴和y轴的正半轴于A、B 两点,O为坐标原点,当|OA|+|OB|最小时,求l的方程.解:依题意,l 的斜率存在,且斜率为负,设直线l 的斜率为k ,则直线l 的方程为y -4=k (x -1)(k <0).令y =0,可得A 错误!;令x =0,可得B (0,4-k ).|OA |+|OB |=()1-4k +(4-k )=5-错误!=5+错误!≥5+4=9.所以当且仅当-k =错误!且k 〈0,即k =-2时,|OA |+|OB |取最小值.这时l 的方程为2x +y -6=0.2.如图,在矩形ABCD 中,AB =6,AD =4,矩形内的点M 到AB 与AD 的距离分别为1和错误!,过M 的直线交AB 、AD 分别为P 、Q ,求错误!·错误!的最大值及取最大值时P 、Q 的位置.解:分别以AB 和AD 所在的直线为x 轴与y 轴,建立直角坐标系xAy .则M 错误!,C (6,4).设P (a ,0),Q (0,b )(a 〉0,b 〉0),则直线PQ 的方程为错误!+错误!=1,所以错误!+错误!=1,错误!·错误!=(a -6,-4)·(-6,b -4)=-(6a +4b )+52. 又错误!(6a +4b )=13+6错误!≥13+6×2错误!=25.所以6a +4b ≥25,当且仅当a =b 且错误!+错误!=1,即a =b =错误!时,6a +4b 取得最小值25.所以错误!·错误!≤-25+52=27.所以,当AP =AQ =错误!时,错误!·错误!的最大值为27.。
2019-2020最新高三数学一轮复习第九篇平面解析几何第1节直线与方程基丛点练理

——教学资料参考参考范本——2019-2020最新高三数学一轮复习第九篇平面解析几何第1节直线与方程基丛点练理______年______月______日____________________部门第1节直线与方程【选题明细表】知识点、方法题号直线的倾斜角和斜率1,4,12直线的方程3,8,14直线的位置关系2,10,13直线的交点和距离问题5,9直线方程的综合应用6,7,11,15,16基础对点练(时间:30分钟)1.直线l:xsin 30°+ycos 150°+1=0的斜率是( A )(A) (B) (C)- (D)-解析:设直线l的斜率为k,则k=-=.2.(20xx大连二模)已知直线l1:(3+a)x+4y=5-3a和直线l2:2x+(5+a)y=8平行,则a等于( B )(A)-7或-1 (B)-7(C)7或1 (D)-1解析:由题意可得a≠-5,所以=≠,解得a=-7(a=-1舍去).3.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为( D )(A)4x-3y-3=0 (B)3x-4y-3=0(C)3x-4y-4=0 (D)4x-3y-4=0解析:由题意可设直线l0,l的倾斜角分别为α,2α,因为直线l0:x-2y-2=0的斜率为,则tan α=,所以直线l的斜率k=tan 2α===,所以由点斜式可得直线l的方程为y-0=(x-1),即4x-3y-4=0.4.(20xx枣庄模拟)将直线l沿y轴的负方向平移a(a>0)个单位,再沿x 轴正方向平移a+1个单位得直线l′,此时直线l′与l重合,则直线l′的斜率为( B )(A) (B)-(C) (D)-解析:设直线l:y=kx+b,l沿y轴负方向平移a个单位得l1:y=kx+b-a,再沿x轴正方向平移a+1个单位得l′:y=k(x-a-1)+b-a,即y=kx+b-ka-k-a,由l′与l重合得-a-ka-k=0,k=-.5.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2经过定点( B )(A)(0,4) (B)(0,2) (C)(-2,4) (D)(4,-2)解析:直线l1:y=k(x-4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l1与直线l2关于点(2,1)对称,故直线l2经过定点(0,2).故选B.6.不论m为何值时,直线l:(m-1)x+(2m-1)y=m-5恒过定点( D )(A)(1,-) (B)(-2,0) (C)(2,3) (D)(9,-4)解析:直线(m-1)x+(2m-1)y=m-5,化为(mx+2my-m)+(-x-y+5)=0,即直线l过x+2y-1=0与-x-y+5=0的交点,解方程组得7.(20xx合肥一模)已知直线l:x-y-1=0,l1:2x-y-2=0.若直线l2与l1关于l对称,则l2的方程是( B )(A)x-2y+1=0 (B)x-2y-1=0(C)x+y-1=0 (D)x+2y-1=0解析:因为l1与l2关于l对称,所以l1上任一点关于l的对称点都在l2上,故l与l1的交点(1,0)在l2上.又易知(0,-2)为l1上一点,设它关于l的对称点为(x,y),则解得即(1,0),(-1,-1)为l2上两点,可得l2的方程为x-2y-1=0.8.(20xx哈尔滨模拟)经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l的方程为.解析:设所求直线方程为+=1,由已知得解得或所以2x+y+2=0或x+2y-2=0为所求.答案:2x+y+2=0或x+2y-2=09.(20xx重庆检测)已知直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2的距离为.解析:直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,即3x+4y+=0,所以直线l1与l2的距离为=.答案:10.(20xx浙江温州十校联考)过两直线2x-y-5=0和x+y+2=0的交点且与直线3x+y-1=0平行的直线方程为.解析:联立得交点P(1,-3),设过点P且与直线3x+y-1=0平行的直线方程为3x+y+m=0,则3×1-3+m=0,解得m=0.答案:3x+y=011.已知两直线l1:ax-by+4=0和l2:(a-1) x+y+b=0,求满足下列条件的a,b的值.(1)l1⊥l2,且直线l1过点(-3,-1);(2)l1∥l2,且坐标原点到这两条直线的距离相等.解:(1)因为l1⊥l2,所以a(a-1)-b=0.又因为直线l1过点(-3,-1),所以-3a+b+4=0.故a=2,b=2.(2)因为直线l2的斜率存在,l1∥l2,所以直线l1的斜率存在,k1=k2,即=1-a.又因为坐标原点到这两条直线的距离相等,所以l1、l2在y轴上的截距互为相反数,即=b.故a=2,b=-2或a=,b=2.能力提升练(时间:15分钟)12.(20xx哈尔滨模拟)函数y=asin x-bcos x的一条对称轴为x=,则直线l:ax-by+c=0的倾斜角为( D )(A)45°(B)60°(C)120°(D)135°解析:由函数y=f(x)=asin x-bcos x的一条对称轴为x=知,f(0)=f(),即-b=a,所以直线l的斜率为-1,所以倾斜角为135°.13.若m>0,n>0,点(-m,n)关于直线x+y-1=0的对称点在直线x-y+2=0上,那么+的最小值等于.解析:设点(-m,n)关于直线x+y-1=0的对称点为(x0,y0),则有解得x0=1-n,y0=1+m,又点(x0,y0)在直线x-y+2=0上,所以1-n-1-m+2=0,所以m+n=2,所以+=(+)(m+n) =++≥.答案:14.(20xx淮安一调)已知入射光线经过点M(-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为.解析:设点M(-3,4)关于直线l:x-y+3=0的对称点为M′(a,b),则反射光线所在直线过点M′,解得a=1,b=0.又反射光线经过点N(2,6),所以所求直线的方程为=,即6x-y-6=0.答案:6x-y-6=015.已知直线l过点M(1,1),且与x轴,y轴的正半轴分别相交于A,B两点,O为坐标原点,求:(1)当|OA|+|OB|取得最小值时,直线l的方程;(2)当|MA|2+|MB|2取得最小值时,直线l的方程.解:(1)设A(a,0),B(0,b)(a>0,b>0).则直线l的方程为+=1,则+=1,所以|OA|+|OB|=a+b=(a+b)(+)=2++≥2+2=4,当且仅当“a=b=2”时取等号,此时直线l的方程为x+y-2=0.(2)设直线l的斜率为k,则k<0,直线l的方程为y-1=k(x-1),则A(1-,0),B(0,1-k),所以|MA|2+|MB|2=(1-1+)2+12+12+(1-1+k)2=2+k2+≥2+2=4,则当且仅当k2=,即k=-1时等号成立,则直线l的方程为y=-x+2.16.(20xx东营模拟)设直线l的方程为(a+1)x+y-2-a=0(a∈R).(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)若a>-1,直线l与x,y轴分别交于M,N两点,O为坐标原点,求△OMN 面积取最小值时,直线l的方程.解:(1)当直线l经过坐标原点时,设直线在两坐标轴上的截距都为0,此时a+2=0,解得a=-2,此时直线l的方程为-x+y=0,即x-y=0;当直线l不经过坐标原点,即a≠-2且a≠-1时,由直线在两坐标轴上的截距相等可得=2+a,解得a=0,此时直线l的方程为x+y-2=0.所以直线l的方程为x-y=0或x+y-2=0.(2)由直线方程可得M(,0),N(0,2+a),因为a>-1,所以S△OMN=××(2+a)=×=[(a+1)++2]≥×[2+2]=2,当且仅当a+1=,即a=0时等号成立,此时直线l的方程为x+y-2=0.精彩5分钟1.(20xx高考四川卷)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|·|PB|的最大值是.解题关键:两直线过定点,且两直线互相垂直.解析:易求定点A(0,0),B(1,3).当P与A和B均不重合时,不难验证PA ⊥PB,所以|PA|2+|PB|2=|AB|2=10,所以|PA|·|PB|≤=5(当且仅当|PA|=|PB|=时,等号成立),当P与A或B重合时,|PA|·|PB|=0,故|PA|·|PB|的最大值是5.答案:52.(20xx黄山一模)已知点A在直线x+2y-1=0上,点B在直线x+2y+3=0上,线段AB的中点为P(x0,y0),且满足y0>x0+2,则的取值范围为.解题关键:利用点到直线的距离,确定x0,y0的关系,求的范围转化为关于x0的函数,求其范围.解析:因为直线x+2y-1=0与直线x+2y+3=0平行,所以=,可得x0+2y0+1=0,因为y0>x0+2,所以-(1+x0)>x0+2,解得x0<-.设=k,所以k==--,因为x0<-,所以0<-<,所以-<<-.答案:(-,-)。
(全国通用版)2019版高考数学大一轮复习_第九章 平面解析几何 第1节 直线的方程课件 文 新人教A版

第1节直线的方程最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识梳理1.直线的倾斜角(1)定义:当直线l与x轴相交时,我们取x轴作为基准,向上x轴正向与直线l方向之间所成的角α叫做直线l的倾斜角.(2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为.[0,π)(3)范围:直线的倾斜角α的取值范围是.2.直线的斜率π(1)定义:当直线l的倾斜角α≠时,其倾斜角α的正切值2tan α叫做这条直线的斜率,斜率通常用小写字母k表示,即k=tan α.(2)斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为y2-y1k=x2-x1 .3.直线方程的五种形式名称几何条件方程适用条件纵截距、斜_________________y=kx+b斜截式点斜式率_____y-y=k(x-x0)0 与x轴不垂直的直线过一点、斜_________________y-y x-x1 1=_____1 2率y2-y x-x1_________________与两坐标轴均不垂直两点式过两点x y+=1_____的直线a b_________________不过原点且与两坐标截距式纵、横截距_____轴均不垂直的直线Ax+By+C=0(A+2[常用结论与微点提醒]1.直线的倾斜角α和斜率k 之间的对应关系:0°<α<9 0° 90°<α<1 80°α 0° 90° 不存 2.求直线方程时要注意判断直线斜率是否存在;每条直线都有 k 0 k >0 k <0 在 倾斜角,但不一定每条直线都存在斜率.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)直线的倾斜角越大,其斜率就越大.( )(2)直线的斜率为tan α,则其倾斜角为α.( )(3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.( )解析(1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k1=-1,k2=1,k1<k2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°.(3)两直线的斜率相等,则其倾斜角一定相等.答案(1)× (2)× (3)× (4)√2.(2018·衡水调研)直线x-y+1=0的倾斜角为( )A.30°B.45°C.120°D.150°解析由题得,直线y=x+1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°,故α=45°,故选B.答案 B3.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过( )A.第一象限C.第三象限B.第二象限D.第四象限解析由已知得直线Ax+By+C=0在x轴上的截距-CA>0,在y轴上的截距-CB>0,故直线经过第一、二、四象限,不经过第三象限.答案 C4.(必修2P89B5改编)若过两点A(-m,6),B(1,3m)的直线的斜率为12,则直线的方程为________.3m-6解析由题意得1+m=12,解得m=-2,∴A(2,6),∴直线AB的方程为y-6=12(x-2),整理得12x-y-18=0.答案12x-y-18=05.(必修2P100A9改编)过点P (2,3)且在两轴上截距相等的直线方程为________. 解析当纵、横截距均为 0时,直线方程为 3x -2y =0;当纵、横截距均不时, 设直线方程为ax +ay =1,则+=1,解得 a =5.所以直线方程为 x +y -5=0. 2 3 a a 答案 3x -2y =0或x +y -5=0考点一直线的倾斜角与斜率(典例迁移)π π【例1】(1)直线2x cos α-y-3=0α∈,的倾斜角的取值范围是( )6 3π ππ πA.,B.,6 3 4 3π ππ 2πC.,D.,4 24 3(2)(一题多解)(经典母题)直线l过点P(1,0),且与以A(2,1),B(0,3)为端点的线段有公共点,则直线l斜率的取值范围为________.解析 (1)直线2x cos α-y -3=0的斜率k =2cos α,因为 α∈, ,所以≤cos α≤ 23, π π 1 2 6 3因此 k =2·cos α∈[1, 3].设直线的倾斜角为 θ,则有 tan θ∈[1, 3]. π π 又 θ∈[0,π),所以 θ∈, , 4 3 π π 即倾斜角的取值范围是, . 4 3(2)法一设PA与PB的倾斜角分别为α,β,直线PA的斜率是k AP=1,直线PB的斜率是k BP=-3,当直线l由PA变化到与y轴平行的位置PC时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞). 当直线l由PC变化到PB的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,-3].故斜率的取值范围是(-∞,-3]∪[1,+∞).法二设直线l的斜率为k,则直线l的方程为y=k(x-1),即kx -y-k=0.∵A,B两点在直线l的两侧或其中一点在直线l上,∴(2k-1-k)(-3-k)≤0,即(k-1)(k+3)≥0,解得k≥1或k≤- 3.即直线l的斜率k的取值范围是(-∞,-3]∪[1,+∞).答案(1)B (2)(-∞,-3]∪[1,+∞)【迁移探究1】若将本例(2)中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.解设直线l的斜率为k,则直线l的方程为y=k(x+1),即kx-y+k=0.∵A,B两点在直线l的两侧或其中一点在直线l上,∴(2k-1+k)(-3+k)≤0,即(3k-1)(k-3)≤0,解得13≤k≤3.1即直线l的斜率的取值范围是3,3.【迁移探究2】若将本例(2)中的B点坐标改为B(2,-1),其他条件不变,求直线l倾斜角的范围.解由例1(2)知直线l的方程kx-y-k=0,∵A,B两点在直线l的两侧或其中一点在直线l上,∴(2k-1-k)(2k+1-k)≤0,即(k-1)(k+1)≤0,解得-1≤k≤1.π3π即直线l倾斜角的范围是0,∪,π.4 4规律方法 1.在分析直线的倾斜角和斜率的关系时,要根据正切函数k=tan α的性,ππππ当α取值在0,,即由0增大到α≠ 时,k由0增大到+∞,当α取值在,π2 2 2 2ππ即由α≠ 增大到π(α≠π)时,k由-∞增大到0. 2 22.斜率的两种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k=tan α率.y2-y1(2)公式法:若已知直线上两点A(x1,y1),B(x2,y2),一般根据斜率公式k=x2-x1(x1≠x2)求斜率.【训练1】(2018·惠州一调)直线x sin α+y+2=0的倾斜角的取值范围是( )π3πA.[0,π)B.0,∪,π4 4πππC.0,D.0,∪,π4 4 2解析设直线的倾斜角为θ,则有tan θ=-sin α.因为sin α∈[-1,1],所以1≤π 3πtan θ≤1,又θ∈[0,π),所以0≤θ≤或≤θ<π,故选B. 4 4答案 B考点二直线方程的求法【例2】根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为1010;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;(3)直线过点(5,10),且到原点的距离为5.解(1)由题设知,该直线的斜率存在,故可采用点斜式.设倾斜角为α,则sin α=1010(0≤α<π),从而cos α=±31010,则k=tan α=±13.1故所求直线方程为y=± (x+4).3即x+3y+4=0或x-3y+4=0.(2)由题设知纵、横截距不为0,设直线方程为ax +12-y a =1,又直线过点(-3,4),-3 4 从而 a +12-a =1,解得 a =-4或 a=9. 故所求直线方程为4x -y +16=0或x +3y -9=0.(3)当斜率不存在时,所求直线方程为x -5=0满足题意;当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0.|10-5k | k 2+1=5,解得 k = .3 4 由点线距离公式,得 故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.规律方法 1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).【训练2】求适合下列条件的直线方程:(1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线 y =3x 的倾斜角的 2 倍;解 (1)设直线l 在x ,y 轴上的截距均为a , (3)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形.若a =0,即l 过点(0,0)和(4,1),1 ∴l 的方程为 y = x ,即 x -4y =0. 4 x y a a若 a ≠0,则设 l 的方程为+=1, 4 1 ∵l 过点(4,1),∴+=1,∴a =5,∴l 的方程为 x +y -5=0.a a 综上可知,直线 l 的方程为 x -4y =0或 x +y -5=0.(2)由已知:设直线y =3x 的倾斜角为α,则所求直线的倾斜角为∵tan 2αα.=3,∴tan 2α= 2tan α =-34.1-tan 2α又直线经过点A (-1,-3),因此所求直线方程为 y +3=-34(x +1),即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1.又过点(3,4),由点斜式得y -4=±(x -3).所求直线的方程为x -y +1=0或x +y -7=0.考点三直线方程的综合应用【例3】已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程. (1)证明直线l的方程可化为k(x+2)+(1-y)=0,x+2=0,x=-2,令解得1-y=0,y=1.∴无论k取何值,直线总经过定点(-2,1).1+2k (2)解由方程知,当 k ≠0时直线在 x 轴上的截距为- ,在 y 轴上的截距为 1k 1+2k - ≤-2, 解得 k >0;+2k ,要使直线不经过第四象限,则必须有 k 1+2k ≥1,当k =0时,直线为y =1,符合题意,故 k 的取值范围是 [0,+ ∞).(3)解由题意可知 k ≠0,再由 l 的方程,得 A ,0,B (0,1+2k ). 1+2k - k1+2k - <0, 解得 k >0.k 1+2k >0,依题意得1(1+2k )2 1 ·|1+2k |=2· = 4k +k +4≥2×(2×2+4)=4, 1 1 1 2 1 1+2k ∵S = ·|OA |·|OB |= · 2 k k 2 “=”成立的条件是 k >0且 4k =1k ,即 k=, 1 2∴S min =4,此时直线l 的方程为x -2y +4=0.规律方法 1.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.2.求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.【训练3】(一题多解)已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A,B两点,如图所示,求△ ABO的面积的最小值及此时直线l的方程.解法一设直线方程为ax +by =1(a >0,b >0), 点 P (3,2)代入得+=1≥2 ab 6,得 ab ≥24, 3 2 a b1 从而 S △ABO = ab ≥12,23 2 b 2 当且仅当=时等号成立,这时 k =-=-, a b a 3 从而所求直线方程为2x +3y -12=0.法二依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0), 2且有 A 3-,0,B (0,2-3k ),k 1 2 2 ∴S △ABO = (2-3k )3- k 4 (-k ) 2 4 1 2 1 12+(-9k )+ 12+2(-9k )· (-k ) = ≥1 = ×(12+12)=12. 2当且仅当-9k =-4k ,即 k =-时,等号成立, 2 3即△ABO 的面积的最小值为12.故所求直线的方程为2x +3y -12=0.。
高考数学一轮复习考点与题型总结:第九章 平面解析几何

精品基础教育教学资料,仅供参考,需要可下载使用!第九章 平面解析几何第一节 直线的倾斜角、斜率与直线的方程一、基础知识1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角叫做直线 l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (3)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)定义式:直线l 的倾斜角为α⎝⎛⎭⎫α≠π2,则斜率k =tan α. (2)坐标式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上, 且x 1≠x 2,则l 的斜率 k =y 2-y 1x 2-x 1.3.直线方程的五种形式名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含垂直于x 轴的直线 斜截式 y =kx +b 不含垂直于x 轴的直线 两点式 y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1(x 1≠x 2)和直线y =y 1(y 1≠y 2)截距式 x a +y b=1 不含垂直于坐标轴和过原点的直线一般式 Ax +By +C =0,A 2+B 2≠0平面内所有直线都适用二、常用结论特殊直线的方程(1)直线过点P 1(x 1,y 1),垂直于x 轴的方程为x =x 1; (2)直线过点P 1(x 1,y 1),垂直于y 轴的方程为y =y 1; (3)y 轴的方程为x =0; (4)x 轴的方程为y =0. 考点一 直线的倾斜角与斜率[典例] (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.[解析] (1)直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32, 因此k =2·cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ]. 又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3, 即倾斜角的取值范围是⎣⎡⎦⎤π4,π3.(2) 设P A 与PB 的倾斜角分别为α,β,直线P A 的斜率是k AP =1,直线PB 的斜率是k BP=-3,当直线l 由P A 变化到与y 轴平行的位置PC 时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l 由PC 变化到PB 的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,- 3 ].故直线l 斜率的取值范围是(-∞,- 3 ]∪[1,+∞). [答案] (1)B (2)(-∞,- 3 ]∪[1,+∞)[变透练清]1.(变条件)若将本例(1)中的条件变为:平面上有相异两点A (cos θ,sin 2 θ),B (0,1),则直线AB 的倾斜角α的取值范围是________.解析:由题意知cos θ≠0,则斜率k =tan α=sin 2θ-1cos θ-0=-cos θ∈[-1,0)∪(0,1],所以直线AB 的倾斜角的取值范围是⎝⎛⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 答案:⎝⎛⎦⎤0,π4∪⎣⎡⎭⎫3π4,π 2.(变条件)若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,则直线l 斜率的取值范围为________.解析:设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),即kx -y +k =0. ∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1+k )(-3+k )≤0, 即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值范围是⎣⎡⎦⎤13,3. 答案:⎣⎡⎦⎤13,3 3.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________.解析:因为k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4.答案:4考点二 直线的方程[典例] (1)若直线经过点A (-5,2),且在x 轴上的截距等于在y 轴上的截距的2倍,则该直线的方程为________________.(2)若直线经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半,则该直线的方程为________________.(3)在△ABC 中,已知A (5,-2),B (7,3),且AC 的中点M 在y 轴上,BC 的中点N 在x 轴上,则直线MN 的方程为________________.[解析] (1)①当横截距、纵截距均为零时,设所求的直线方程为y =kx ,将(-5,2)代入y =kx 中,得k =-25,此时,直线方程为y =-25x ,即2x +5y =0.②当横截距、纵截距都不为零时, 设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,此时,直线方程为x +2y +1=0.综上所述,所求直线方程为x +2y +1=0或2x +5y =0.(2)由3x +y +1=0得此直线的斜率为-3,所以倾斜角为120°,从而所求直线的倾斜角为60°,故所求直线的斜率为 3.又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3),即3x -y +6=0. (3)设C (x 0,y 0),则M ⎝⎛⎭⎫5+x 02,y 0-22,N ⎝⎛⎭⎫7+x 02,y 0+32.因为点M 在y 轴上,所以5+x 02=0,所以x 0=-5.因为点N 在x 轴上,所以y 0+32=0,所以y 0=-3,即C (-5,-3), 所以M ⎝⎛⎭⎫0,-52,N (1,0), 所以直线MN 的方程为x 1+y-52=1,即5x -2y -5=0.[答案] (1)x +2y +1=0或2x +5y =0 (2)3x -y +6=0 (3)5x -2y -5=0[题组训练]1.过点(1,2),倾斜角的正弦值是22的直线方程是________________. 解析:由题知,倾斜角为π4或3π4,所以斜率为1或-1,直线方程为y -2=x -1或y -2=-(x -1),即x -y +1=0或x +y -3=0.答案:x -y +1=0或x +y -3=02.过点P (6,-2),且在x 轴上的截距比在y 轴上的截距大1的直线方程为________________.解析:设直线方程的截距式为x a +1+y a =1,则6a +1+-2a=1,解得a =2或a =1,则直线的方程是x 2+1+y 2=1或x 1+1+y1=1,即2x +3y -6=0或x +2y -2=0.答案:2x +3y -6=0或x +2y -2=0考点三 直线方程的综合应用[典例] 已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA ―→|·|MB ―→|取得最小值时直线l 的方程.[解] 设A (a,0),B (0,b ),则a >0,b >0,直线l 的方程为x a +yb =1,所以2a +1b=1.|MA ―→|·| MB ―→|=-MA ―→·MB ―→=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝⎛⎭⎫2a +1b -5 =2b a +2ab≥4, 当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0.[解题技法]与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的性质或基本不等式求解.[题组训练]1.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab≥2+2b a ·ab=4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.2.已知直线l :x -my +3m =0上存在点M 满足与A (-1,0),B (1,0)两点连线的斜率k MA 与k MB 之积为3,则实数m 的取值范围是( )A .[-6, 6 ] B.⎝⎛⎭⎫-∞,-66∪⎝⎛⎭⎫66,+∞ C.⎝⎛⎦⎤-∞,-66∪⎣⎡⎭⎫66,+∞ D.⎣⎡⎦⎤-22,22 解析:选C 设M (x ,y ),由k MA ·k MB =3,得y x +1·y x -1=3,即y 2=3x 2-3.联立⎩⎨⎧x -my +3m =0,y 2=3x 2-3,得⎝⎛⎭⎫1m 2-3x 2+23m x +6=0(m ≠0), 则Δ=⎝⎛⎭⎫23m 2-24⎝⎛⎭⎫1m 2-3≥0,即m 2≥16,解得m ≤-66或m ≥66. ∴实数m 的取值范围是⎝⎛⎦⎤-∞,-66∪⎣⎡⎭⎫66,+∞.[课时跟踪检测]1.(2019·合肥模拟)直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.2.倾斜角为120°,在x 轴上的截距为-1的直线方程是( ) A.3x -y +1=0 B.3x -y -3=0 C.3x +y -3=0D.3x +y +3=0解析:选D 由于倾斜角为120°,故斜率k =- 3.又直线过点(-1,0),所以直线方程为y =-3(x +1),即3x +y +3=0.3.已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为( )A .2x +y -12=0B .2x -y -12=0C .2x +y -8=0D .2x -y +8=0解析:选C 由题知M (2,4),N (3,2),则中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.4.方程y =ax -1a表示的直线可能是( )解析:选C 当a >0时,直线的斜率k =a >0,在y 轴上的截距b =-1a <0,各选项都不符合此条件;当a <0时,直线的斜率k =a <0,在y 轴上的截距b =-1a >0,只有选项C符合此条件.故选C.5.在等腰三角形MON 中,MO =MN ,点O (0,0),M (-1,3),点N 在x 轴的负半轴上,则直线MN 的方程为( )A .3x -y -6=0B .3x +y +6=0C .3x -y +6=0D .3x +y -6=0解析:选C 因为MO =MN ,所以直线MN 的斜率与直线MO 的斜率互为相反数,所以k MN =-k MO =3,所以直线MN 的方程为y -3=3(x +1),即3x -y +6=0,选C.6.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1解析:选D 对于直线mx +ny +3=0,令x =0得y =-3n ,即-3n =-3,n =1.因为3x -y =33的斜率为60°,直线mx +ny +3=0的倾斜角是直线3x -y =33的2倍,所以直线mx +ny +3=0的倾斜角为120°,即-mn=-3,m = 3.7.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得⎩⎪⎨⎪⎧x =kk -1,y =2k -1k -1.又∵0<k <12,∴x =kk -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.8.若直线l :kx -y +2+4k =0(k ∈R)交x 轴负半轴于A ,交y 轴正半轴于B ,则当△AOB 的面积取最小值时直线l 的方程为( )A .x -2y +4=0B .x -2y +8=0C .2x -y +4=0D .2x -y +8=0解析:选B 由l 的方程,得A ⎝⎛⎭⎫-2+4k k ,0,B (0,2+4k ).依题意得⎩⎪⎨⎪⎧-2+4k k <0,2+4k >0,解得k >0.因为S =12|OA |·|OB |=12⎪⎪⎪⎪2+4k k ·|2+4k |=12·(2+4k )2k =12⎝⎛⎭⎫16k +4k +16≥12(2×8+16)=16,当且仅当16k =4k ,即k =12时等号成立.此时l 的方程为x -2y +8=0.9.以A (1,1),B (3,2),C (5,4)为顶点的△ABC ,其边AB 上的高所在的直线方程是________________.解析:由A ,B 两点得k AB =12,则边AB 上的高所在直线的斜率为-2,故所求直线方程是y -4=-2(x -5),即2x +y -14=0.答案:2x +y -14=010.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为________________.解析:由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0.答案:4x -3y -4=011.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________________.解析:由题意知直线l 的斜率存在,设直线l 的方程为y -2=k (x -1),直线l 在x 轴上的截距为1-2k ,令-3<1-2k <3,解不等式得k >12或k <-1.答案:(-∞,-1)∪⎝⎛⎭⎫12,+∞ 12.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].答案:[-2,2]13.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程为y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.第二节 两直线的位置关系一、基础知识1.两条直线平行与垂直的判定 (1)两条直线平行①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在, 设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离公式点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两平行直线间的距离公式两条平行直线Ax +By +C 1=0与Ax +By +C 2=0 间的距离d =|C 1-C 2|A 2+B 2.二、常用结论(1)与直线Ax +By +C =0(A 2+B 2≠0)垂直或平行的直线方程可设为: ①垂直:Bx -Ay +m =0;②平行:Ax +By +n =0. (2)与对称问题相关的四个结论:①点(x ,y )关于点(a ,b )的对称点为(2a -x,2b -y ).②点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x,2b -y ). ③点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ). ④点(x ,y )关于直线x +y =k 的对称点为(k -y ,k -x ),关于直线x -y =k 的对称点为(k +y ,x -k ).考点一 两条直线的位置关系[典例] 已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.[解] (1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得⎩⎪⎨⎪⎧m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2,且l 1在y 轴上的截距为-1.[解题技法]1..由一般式确定两直线位置关系的方法[题组训练]1.已知直线4x+my-6=0与直线5x-2y+n=0垂直,垂足为(t,1),则n的值为() A.7B.9C.11 D.-7解析:选A由直线4x+my-6=0与直线5x-2y+n=0垂直得,20-2m=0,m=10.直线4x+10y-6=0过点(t,1),所以4t+10-6=0,t=-1.点(-1,1)又在直线5x-2y+n=0上,所以-5-2+n=0,n=7.2.(2019·保定五校联考)直线l1:mx-2y+1=0,l2:x-(m-1)y-1=0,则“m=2”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C由l1∥l2得-m(m-1)=1×(-2),得m=2或m=-1,经验证,当m=-1时,直线l1与l2重合,舍去,所以“m=2”是“l1∥l2”的充要条件,故选C.考点二距离问题[典例](1)过点P(2,1)且与原点O距离最远的直线方程为()A.2x+y-5=0B.2x-y-3=0C.x+2y-4=0 D.x-2y=0(2)若两平行直线l1:x-2y+m=0(m>0)与l2:2x+ny-6=0之间的距离是5,则m+n =( )A .0B .1C .-2D .-1[解析] (1)过点P (2,1)且与原点O 距离最远的直线为过点P (2,1)且与OP 垂直的直线,因为直线OP 的斜率为1-02-0=12,所以所求直线的斜率为-2,故所求直线方程为2x +y -5=0.(2)因为l 1,l 2平行,所以1×n =2×(-2),1×(-6)≠2×m ,解得n =-4,m ≠-3,所以直线l 2:x -2y -3=0.又l 1,l 2之间的距离是 5,所以|m +3|1+4=5,解得m =2或m =-8(舍去),所以m +n =-2,故选C.[答案] (1)A (2)C[解题技法]1.点到直线的距离的求法可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. 2.两平行线间的距离的求法(1)利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离.(2)利用两平行线间的距离公式. [题组训练]1.已知点P (2,m )到直线2x -y +3=0的距离不小于25,则实数m 的取值范围是________________.解析:由题意得,点P 到直线的距离为|2×2-m +3|22+12≥25,即|m -7|≥10,解得m ≥17或m ≤-3,所以实数m 的取值范围是(-∞,-3]∪[17,+∞).答案:(-∞,-3]∪[17,+∞)2.如果直线l 1:ax +(1-b )y +5=0和直线l 2:(1+a )x -y -b =0都平行于直线l 3:x -2y +3=0,则l 1,l 2之间的距离为________.解析:因为l 1∥l 3,所以-2a -(1-b )=0,同理-2(1+a )+1=0,解得a =-12,b =0,因此l 1:x -2y -10=0,l 2:x -2y =0,d =|-10-0|12+(-2)2=2 5.答案:2 5考点三 对称问题[典例] 已知直线l :2x -3y +1=0,点A (-1,-2). (1)求点A 关于直线l 的对称点A ′的坐标;(2)求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程. [解] (1)设A ′(x ,y ),再由已知得 ⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,所以A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,解得M ′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′方程为9x -46y +102=0.[变透练清]1.(变结论)在本例条件下,则直线l 关于点A (-1,-2)对称的直线l ′的方程为________________.解析:法一:在l :2x -3y +1=0上任取两点, 如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上. 易知M ′(-3,-5),N ′(-6,-7), 由两点式可得 l ′的方程为2x -3y -9=0. 法二:设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为 P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0. 答案:2x -3y -9=02.(2019·合肥四校联考)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.答案:6x -y -6=0[解题技法]1.中心对称问题的两个类型及求解方法 (1)点关于点对称若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1进而求解.(2)直线关于点对称①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程; ③轨迹法,设对称直线上任一点M (x ,y ),其关于已知点的对称点在已知直线上. 2.轴对称问题的两个类型及求解方法 (1)点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称, 由方程组⎩⎪⎨⎪⎧A ×x 1+x 22+B ×y 1+y22+C =0,y 2-y 1x 2-x 1×⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[课时跟踪检测]1.过点(1,0)且与直线x -2y -2=0垂直的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选C 因为直线x -2y -2=0的斜率为12,所以所求直线的斜率k =-2.所以所求直线的方程为y -0=-2(x -1), 即2x +y -2=0.2.已知直线l 1:2ax +(a +1)y +1=0和l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( ) A .2或12B.13或-1 C.13D .-1解析:选B 因为直线l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或-1.3.若点P 在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)解析:选C 设P (x,5-3x ),则d =|x -5+3x -1|12+(-1)2=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故P (1,2)或(2,-1).4.(2018·揭阳一模)若直线l 1:x -3y +2=0与直线l 2:mx -y +b =0关于x 轴对称,则m +b =( )A.13 B .-1 C .-13D .1解析:选B 直线l 1:x -3y +2=0关于x 轴对称的直线为x +3y +2=0.由题意知m ≠0. 因为mx -y +b =0,即x -y m +bm=0,且直线l 1与l 2关于x 轴对称,所以有⎩⎨⎧-1m =3,bm =2,解得⎩⎨⎧m =-13,b =-23,则m +b =-13+⎝⎛⎭⎫-23=-1. 5.点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是( )A .-32B.54 C .-65D.56解析:选D 由题意,知⎩⎨⎧3-11+2·k =-1,2=k ·⎝⎛⎭⎫-12+b ,解得⎩⎨⎧k =-32,b =54.∴直线方程为y =-32x +54,它在x 轴上的截距为-54×⎝⎛⎭⎫-23=56.故选D. 6.(2019·成都五校联考)已知A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .2x +y -7=0B .x +y -5=0C .2y -x -4=0D .2x -y -1=0解析:选B 由|P A |=|PB |得点P 一定在线段AB 的垂直平分线上,根据直线P A 的方程为x -y +1=0,可得A (-1,0),将x =2代入直线x -y +1=0,得y =3,所以P (2,3),所以B (5,0),所以直线PB 的方程是x +y -5=0,选B.7.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3 2B .2 2C .3 3D .4 2解析:选A 依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0.根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2. 8.已知点A (1,3),B (5,-2),在x 轴上有一点P ,若|AP |-|BP |最大,则P 点坐标为( ) A .(3.4,0) B .(13,0) C .(5,0)D .(-13,0)解析:选B 作出A 点关于x 轴的对称点A ′(1,-3),则A ′B 所在直线方程为x -4y -13=0.令y =0得x =13,所以点P 的坐标为(13,0).9.经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________.解析:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0得x =0,y =2,即P (0,2).因为l ⊥l 3,所以直线l 的斜率k =-43,所以直线l 的方程为y -2=-43x ,即4x +3y -6=0.答案:4x +3y -6=010.已知点P 1(2,3),P 2(-4,5)和A (-1,2),则过点A 且与点P 1,P 2距离相等的直线方程为________.解析:当直线与点P 1,P 2的连线所在的直线平行时,由直线P 1P 2的斜率k =3-52+4=-13,得所求直线的方程为y -2=-13(x +1),即x +3y -5=0.当直线过线段P 1P 2的中点时,因为线段P 1P 2的中点坐标为(-1,4),所以直线方程为x =-1.综上所述,所求直线方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-111.直线x -2y +1=0关于直线x =1对称的直线方程是________.解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.答案:x +2y -3=012.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0. 答案:x +4y -4=013.已知△ABC 的三个顶点是A (1,1),B (-1,3),C (3,4). (1)求BC 边的高所在直线l 1的方程;(2)若直线l 2过C 点,且A ,B 到直线l 2的距离相等,求直线l 2的方程.解:(1)因为k BC =4-33+1=14,又直线l 1与BC 垂直,所以直线l 1的斜率k =-1k BC =-4,所以直线l 1的方程是y =-4(x -1)+1,即4x +y -5=0.(2)因为直线l 2过C 点且A ,B 到直线l 2的距离相等, 所以直线l 2与AB 平行或过AB 的中点M , 因为k AB =3-1-1-1=-1,所以直线l 2的方程是y =-(x -3)+4,即x +y -7=0. 因为AB 的中点M 的坐标为(0,2), 所以k CM =4-23-0=23,所以直线l 2的方程是y =23(x -3)+4,即2x -3y +6=0. 综上,直线l 2的方程是x +y -7=0或2x -3y +6=0.第三节 圆的方程一、基础知识1.圆的定义及方程❶标准方程强调圆心坐标为(a ,b ),半径为r .❷(1)当D 2+E 2-4F =0时,方程表示一个点⎝⎛⎭⎫-D 2,-E 2; (2)当D 2+E 2-4F <0时,方程不表示任何图形. 2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.二、常用结论(1)二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是⎩⎪⎨⎪⎧A =C ≠0,B =0,D 2+E 2-4AF >0.(2)以A (x 1,y 1),B (x 2,y 2)为直径端点的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.考点一 求圆的方程[典例] (1)圆心在y 轴上,半径长为1,且过点A (1,2)的圆的方程是( )A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=4(2)圆心在直线x -2y -3=0上,且过点A (2,-3),B (-2,-5)的圆的方程为________. [解析] (1)根据题意可设圆的方程为x 2+(y -b )2=1,因为圆过点A (1,2),所以12+(2-b )2=1,解得b =2,所以所求圆的方程为x 2+(y -2)2=1.(2)法一:几何法设点C 为圆心,因为点C 在直线x -2y -3=0上,所以可设点C 的坐标为(2a +3,a ). 又该圆经过A ,B 两点,所以|CA |=|CB |, 即(2a +3-2)2+(a +3)2=(2a +3+2)2+(a +5)2,解得a =-2, 所以圆心C 的坐标为(-1,-2),半径r =10, 故所求圆的方程为(x +1)2+(y +2)2=10. 法二:待定系数法设所求圆的标准方程为(x -a )2+(y -b )2=r 2, 由题意得⎩⎪⎨⎪⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得a =-1,b =-2,r 2=10, 故所求圆的方程为(x +1)2+(y +2)2=10. 法三:待定系数法设圆的一般方程为x 2+y 2+Dx +Ey +F =0, 则圆心坐标为⎝⎛⎭⎫-D 2,-E2, 由题意得⎩⎪⎨⎪⎧-D2-2×⎝⎛⎭⎫-E2-3=0,4+9+2D -3E +F =0,4+25-2D -5E +F =0,解得D =2,E =4,F =-5.故所求圆的方程为x 2+y 2+2x +4y -5=0. [答案] (1)A (2)x 2+y 2+2x +4y -5=0[题组训练]1.已知圆E 经过三点A (0,1),B (2,0),C (0,-1),且圆心在x 轴的正半轴上,则圆E的标准方程为( )A.⎝⎛⎭⎫x -322+y 2=254 B.⎝⎛⎭⎫x +342+y 2=2516 C.⎝⎛⎭⎫x -342+y 2=2516D.⎝⎛⎭⎫x -342+y 2=254解析:选C 法一:根据题意,设圆E 的圆心坐标为(a,0)(a >0),半径为r ,则圆E 的标准方程为(x -a )2+y 2=r 2(a >0).由题意得⎩⎪⎨⎪⎧a 2+12=r 2,(2-a )2=r 2,a 2+(-1)2=r 2,解得⎩⎨⎧a =34,r 2=2516,所以圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516. 法二:设圆E 的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则由题意得⎩⎪⎨⎪⎧1+E +F =0,4+2D +F =0,1-E +F =0,解得⎩⎪⎨⎪⎧D =-32,E =0,F =-1,所以圆E 的一般方程为x 2+y 2-32x -1=0,即⎝⎛⎭⎫x -342+y 2=2516. 法三:因为圆E 经过点A (0,1),B (2,0),所以圆E 的圆心在线段AB 的垂直平分线y -12=2(x -1)上.又圆E 的圆心在x 轴的正半轴上, 所以圆E 的圆心坐标为⎝⎛⎭⎫34,0. 则圆E 的半径为|EB |=⎝⎛⎭⎫2-342+(0-0)2=54,所以圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516. 2.已知圆心在直线y =-4x 上,且圆与直线l :x +y -1=0相切于点P (3,-2),则该圆的方程是________________.解析:过切点且与x +y -1=0垂直的直线方程为x -y -5=0,与y =-4x 联立可求得圆心为(1,-4).所以半径r =(3-1)2+(-2+4)2=22, 故所求圆的方程为(x -1)2+(y +4)2=8. 答案:(x -1)2+(y +4)2=83.已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为________________.解析:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得⎩⎪⎨⎪⎧ 2D -4E -F =20,3D -E +F =-10.①②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6,得D 2-4F =36,④联立①②④,解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0. 答案:x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0考点二 与圆有关的轨迹问题[典例] (1)点P (4,-2)与圆x 2+y 2=4上任意一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1(2)已知圆C :(x -1)2+(y -1)2=9,过点A (2,3)作圆C 的任意弦,则这些弦的中点P 的轨迹方程为________.[解析] (1)设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎨⎧x =x 1+42,y =y 1-22,即⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.(2)设P (x ,y ),圆心C (1,1).因为P 点是过点A 的弦的中点,所以P A ―→⊥PC ―→. 又因为P A ―→=(2-x,3-y ),PC ―→=(1-x,1-y ). 所以(2-x )·(1-x )+(3-y )·(1-y )=0. 所以点P 的轨迹方程为⎝⎛⎭⎫x -322+(y -2)2=54. [答案] (1)A (2)⎝⎛⎭⎫x -322+(y -2)2=54[变透练清]1.(变条件)若将本例(2)中点A (2,3)换成圆上的点B (1,4),其他条件不变,则这些弦的中点P 的轨迹方程为________.解析:设P (x ,y ),圆心C (1,1).当点P 与点B 不重合时,因为P 点是过点B 的弦的中点,所以PB ―→⊥PC ―→.又因为PB ―→=(1-x,4-y ),PC ―→=(1-x,1-y ). 所以(1-x )·(1-x )+(4-y )·(1-y )=0. 所以点P 的轨迹方程为(x -1)2+⎝⎛⎭⎫y -522=94; 当点P 与点B 重合时,点P 满足上述方程. 综上所述,点P 的轨迹方程为(x -1)2+⎝⎛⎭⎫y -522=94. 答案:(x -1)2+⎝⎛⎭⎫y -522=942.已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PB Q =90°,求线段P Q 中点的轨迹方程.解:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设P Q 的中点为N (x ,y ). 在Rt △PB Q 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥P Q , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段P Q 中点的轨迹方程为x 2+y 2-x -y -1=0.[课时跟踪检测]A 级1.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8D .(x -1)2+(y -1)2=8解析:选B 直径的两端点分别为(0,2),(2,0),所以圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2.2.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为( ) A .1 B .2 C. 2D .4解析:选B 由半径r =12D 2+E 2-4F =124a 2+4b 2=2,得a 2+b 2=2.∴点(a ,b )到原点的距离d =a 2+b 2=2,故选B.3.以(a,1)为圆心,且与两条直线2x -y +4=0与2x -y -6=0同时相切的圆的标准方程为( )A .(x -1)2+(y -1)2=5B .(x +1)2+(y +1)2=5C .(x -1)2+y 2=5D .x 2+(y -1)2=5解析:选A 由题意知,圆心到这两条直线的距离相等,即圆心到直线2x -y +4=0的距离d =|2a -1+4|5=|2a -1-6|5,解得a =1,d =5,∵直线与圆相切,∴r =d =5, ∴圆的标准方程为(x -1)2+(y -1)2=5.4.(2019·银川模拟)方程|y |-1=1-(x -1)2表示的曲线是( ) A .一个椭圆 B .一个圆 C .两个圆D .两个半圆解析:选D 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y =1上方的半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心、1为半径、直线y =-1下方的半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆,选D.5.已知a ∈R ,若方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则此圆的圆心坐标为( )A .(-2,-4)B.⎝⎛⎭⎫-12,-1 C .(-2,-4)或⎝⎛⎭⎫-12,-1 D .不确定解析:选A ∵方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,∴a 2=a +2≠0,解得a =-1或a =2.当a =-1时,方程化为x 2+y 2+4x +8y -5=0.配方,得(x +2)2+(y +4)2=25,所得圆的圆心坐标为(-2,-4),半径为5.当a =2时,方程化为x 2+y 2+x +2y +52=0,此时方程不表示圆.故选A.6.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为( )A .(x +1)2+y 2=2B .(x +1)2+y 2=8C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A 直线x -y +1=0与x 轴的交点(-1,0). 根据题意,圆C 的圆心坐标为(-1,0).因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离, 即r =d =|-1+0+3|12+12=2,则圆的方程为(x +1)2+y 2=2.7.圆C 的直径的两个端点分别是A (-1,2),B (1,4),则圆C 的标准方程为________. 解析:设圆心C 的坐标为(a ,b ),则a =-1+12=0,b =2+42=3,故圆心C (0,3).半径r =12|AB |=12[1-(-1)]2+(4-2)2= 2.∴圆C 的标准方程为x 2+(y -3)2=2. 答案:x 2+(y -3)2=28.已知圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3),若M (m ,6)在圆C 内,则m 的取值范围为________.解析:设圆心为C (a,0),由|CA |=|CB |, 得(a +1)2+12=(a -1)2+32,解得a =2. 半径r =|CA |=(2+1)2+12=10. 故圆C 的方程为(x -2)2+y 2=10. 由题意知(m -2)2+(6)2<10, 解得0<m <4. 答案:(0,4)9.若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是________________.解析:抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3相切,所以r =d =|-1+3|2=2,故该圆的标准方程是x 2+(y -1)2=2.答案:x 2+(y -1)2=210.(2019·德州模拟)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的标准方程为________________. 解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3,所以圆C 的标准方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=911.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 所以直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又直径|CD |=410, 所以|P A |=210. 所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2,所以圆心P (-3,6)或P (5,-2),所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40. 12.已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解:(1)法一:设C (x ,y ),因为A ,B ,C 三点不共线, 所以y ≠0.因为AC ⊥BC ,所以k AC ·k BC =-1,又k AC =y x +1,k BC =yx -3,所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).法二:设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).B 级1.(2019·伊春三校联考)已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -1)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:选B 圆C 1:(x +1)2+(y -1)2=1,圆心C 1为(-1,1),半径为1.易知点C 1(-1,1)关于直线x -y -1=0对称的点为C 2,设C 2(a ,b ),则⎩⎪⎨⎪⎧b -1a +1=-1,a -12-b +12-1=0,解得⎩⎪⎨⎪⎧a =2,b =-2,所以C 2(2,-2),所以圆C 2的圆心为C 2(2,-2),半径为1,所以圆C 2的方程为(x -2)2+(y +2)2=1.故选B.2.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________________.解析:因为直线mx -y -2m -1=0(m ∈R )恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r =2,故所求圆的标准方程为(x -1)2+y 2=2.答案:(x -1)2+y 2=23.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程.解:(1)把圆C 1的方程化为标准方程得(x -3)2+y 2=4, ∴圆C 1的圆心坐标为C 1(3,0).(2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知:MC 1⊥MO ,∴MC 1―→·MO ―→=0. 又∵MC 1―→=(3-x ,-y ),MO ―→=(-x ,-y ), ∴x 2-3x +y 2=0.易知直线l 的斜率存在,故设直线l 的方程为y =mx , 当直线l 与圆C 1相切时, 圆心到直线l 的距离d =|3m -0|m 2+1=2, 解得m =±255.把相切时直线l 的方程代入圆C 1的方程化简得 9x 2-30x +25=0,解得x =53.当直线l 经过圆C 1的圆心时,M 的坐标为(3,0). 又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴53<x ≤3. ∴点M 的轨迹C 的方程为x 2-3x +y 2=0,其中53<x ≤3,其轨迹为一段圆弧.第四节 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )相离相切相交图形量化 方程观点 Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|) 相离外切相交内切内含图形量的关系 d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题。
【新编】高三数学一轮总复习第九章平面解析几何课时跟踪检测理-参考下载

第九章 平面解析几何第一节 直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°.(2)范围:直线l 倾斜角的取值范围是0°≤α<180°. 2.斜率公式(1)直线l 的倾斜角为α≠90°,则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.直线方程的五种形式1.若直线l 的倾斜角为60°,则该直线的斜率为________. 解析:因为tan 60°=3,所以该直线的斜率为 3. 答案: 32.过点(0,1),且倾斜角为45°的直线方程是________.解析:因为直线的斜率k =tan 45°=1,所以由已知及直线的点斜式方程,得y -1=x -0,即y =x +1.答案:y =x +13.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a =________.解析:令x =0,则l 在y 轴的截距为2+a ;令y =0,得直线l 在x 轴上的截距为1+2a.依题意2+a =1+2a,解得a =1或a =-2.答案:1或-24.已知a ≠0,直线ax +my -5m =0过点(-2,1),则此直线的斜率为________. 解析:因为直线ax +my -5m =0过点(-2,1),所以-2a +m -5m =0,得a =-2m ,所以直线方程为-2mx +my -5m =0.又a ≠0,所以m ≠0,所以直线方程-2mx +my -5m =0可化为-2x +y -5=0,即y =2x +5,故此直线的斜率为2.答案:21.利用两点式计算斜率时易忽视x 1=x 2时斜率k 不存在的情况.2.用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误.3.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式. 4.由一般式Ax +By +C =0确定斜率k 时易忽视判断B 是否为0,当B =0时,k 不存在;当B ≠0时,k =-A B.[小题纠偏]1.下列有关直线l :x +my -1=0的说法: ①直线l 的斜率为-m ; ②直线l 的斜率为-1m;③直线l 过定点(0,1); ④直线l 过定点(1,0).其中正确的说法是________(填序号).解析:直线l :x +my -1=0可变为my =-(x -1).当m ≠0时,直线l 的方程又可变为y =-1m (x -1),其斜率为-1m,过定点(1,0);当m =0时,直线l 的方程又可变为x =1,其斜率不存在,过点(1,0).所以①②不正确,④正确.又将点(0,1)代入直线方程得m -1=0,故只有当m =1时直线才会过点(0,1),即③不正确.答案:④2.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为________. 解析:①若直线过原点,则k =-43,所以y =-43x ,即4x +3y =0.②若直线不过原点.设x a +y a=1,即x +y =a .则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案:4x +3y =0或x +y +1=0考点一 直线的倾斜角与斜率基础送分型考点——自主练透[题组练透]1.直线x =π3的倾斜角等于________.解析:直线x =π3,知倾斜角为π2.答案:π22.(2016·南通调研)关于直线的倾斜角和斜率,有下列说法: ①两直线的倾斜角相等,它们的斜率也相等; ②平行于x 轴的直线的倾斜角为0°或180°;③若直线过点P 1(x 1,y 1)与P 2(x 2,y 2),则该直线的斜率为y 1-y 2x 1-x 2. 其中正确说法的个数为________.解析:若两直线的倾斜角均为90°,则它们的斜率都不存在,所以①不正确.直线倾斜角α的取值范围为0°≤α<180°,所以平行于x 轴的直线的倾斜角为0°,不可能是180°,所以②不正确.当x 1=x 2时,过点P 1(x 1,y 1)与P 2(x 2,y 2)的直线的斜率不存在;当x 1≠x 2时,过点P 1(x 1,y 1)与P 2(x 2,y 2)的直线的斜率才为y 1-y 2x 1-x 2,所以③不正确.答案:03.已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.解析:如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k PA =-2,k l =-1m.∴-1m ≤-2或-1m ≥32.解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为-23≤m ≤12.答案:⎣⎢⎡⎦⎥⎤-23,12[谨记通法]求倾斜角的取值范围的2个步骤及1个注意点(1)2个步骤:①求出斜率k =tan α的取值范围;②利用三角函数的单调性,借助图象或单位圆数形结合,确定倾斜角α的取值范围. (2)1个注意点:求倾斜角时要注意斜率是否存在.考点二 直线方程重点保分型考点——师生共研[典例引领](1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程.(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解:(1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程,解得a=-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0.[由题悟法]直线方程求法中2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时应用]已知直线l 过(2,1),(m,3)两点,则直线l 的方程为______________. 解析:①当m =2时,直线l 的方程为x =2;②当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,代入方程2x -(m -2)y +m -6=0,即为x =2, 所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0考点三 直线方程的综合应用常考常新型考点——多角探明[命题分析]直线方程的综合应用是常考内容之一,它与函数、导数、不等式、圆相结合,命题多为客观题.常见的命题角度有:(1)与基本不等式相结合的最值问题; (2)与导数几何意义相结合的问题; (3)与圆相结合求直线方程问题.[题点全练]角度一:与基本不等式相结合的最值问题1.(2015·福建高考改编)若直线x a +y b=1(a >0,b >0)过点(1,1),则a +b 的最小值等于________.解析:将(1,1)代入直线x a +y b=1得1a +1b=1,a >0,b >0,故a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a+ab≥2+2=4,等号当且仅当a =b 时取到,故a +b 的最小值为4.答案:4角度二:与导数的几何意义相结合的问题2.(2016·苏州模拟)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为________.解析:由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案:⎣⎢⎡⎦⎥⎤-1,-12 角度三:与圆相结合求直线方程问题3.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是________________.解析:直线OA 的方程为y =x ,代入半圆方程得A (1,1), ∴H (1,0),直线HB 的方程为y =x -1, 代入半圆方程得B ⎝⎛⎭⎪⎫1+32,-1+32.所以直线AB 的方程为y -1-1+32-1=x -11+32-1,即3x +y -3-1=0. 答案:3x +y -3-1=0[方法归纳]处理直线方程综合应用的2大策略(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.一抓基础,多练小题做到眼疾手快1.直线x +3y +1=0的倾斜角是________. 解析:由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,所以α=5π6.答案:5π62.直线l :x sin 30°+y cos 150°+1=0的斜率是________. 解析:设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.答案:333.倾斜角为135°,在y 轴上的截距为-1的直线方程是________.解析:直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0.答案:x +y +1=04.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎦⎥⎤π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是__________.解析:∵k =tan α,α∈⎣⎢⎡⎦⎥⎤π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π∴-3≤k <0或33≤k ≤1. 答案:[-3,0)∪⎣⎢⎡⎦⎥⎤33,1 5.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不经过第________象限. 解析:由题意知A ·B ·C ≠0,直线方程变形为y =-ABx -C B.∵A ·C <0,B ·C <0,∴A ·B >0,∴其斜率k =-A B <0,又y 轴上的截距b =-C B>0.∴直线过第一、二、四象限,不经过第三象限.答案:三二保高考,全练题型做到高考达标1.(2016·常州一中月考)已知直线l 的斜率为k ,倾斜角为θ,若30°<θ<90°,则实数k 的取值范围是________.解析:因为30°<θ<90°,所以斜率k >0,且斜率k 随着θ的增大而增大,所以k >33. 答案:⎝⎛⎭⎪⎫33,+∞ 2.(2016·南京学情调研)直线x +(a 2+1)y +1=0的倾斜角的取值范围是________. 解析:依题意,直线的斜率k =-1a 2+1∈[)-1,0,因此其倾斜角的取值范围是⎣⎢⎡⎭⎪⎫3π4,π. 答案:⎣⎢⎡⎭⎪⎫3π4,π3.若k ∈R ,直线kx -y -2k -1=0恒过一个定点,则这个定点的坐标为________.解析:y +1=k (x -2)是直线的点斜式方程,故它所经过的定点为(2,-1). 答案:(2,-1)4.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为________.解析:由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝ ⎛⎭⎪⎫122=43, 所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0. 答案:4x -3y -4=05.直线l 1:(2m 2-5m +2)x -(m 2-4)y +5=0的斜率与直线l 2:x -y +1=0的斜率相同,则m 等于________.解析:由题意知m ≠±2,直线l 1的斜率为2m 2-5m +2m 2-4,直线l 2的斜率为1,则2m 2-5m +2m 2-4=1,即m 2-5m +6=0,解得m =2或3(m =2不合题意,舍去),故m =3.答案:36.直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点________. 解析:直线l 的方程变形为a (x +y )-2x +y +6=0,由⎩⎪⎨⎪⎧x +y =0,-2x +y +6=0,解得x =2,y =-2,所以直线l 恒过定点(2,-2). 答案:(2,-2)7.一条直线经过点A (2,-3),并且它的倾斜角等于直线y =13x 的倾斜角的2倍,则这条直线的一般式方程是________.解析:∵直线y =13x 的倾斜角为30°,所以所求直线的倾斜角为60°, 即斜率k =tan 60°= 3. 又该直线过点A (2,-3),故所求直线为y -(-3)=3(x -2),即3x -y -33=0. 答案:3x -y -33=08.(2016·盐城调研)若直线l :x a +yb=1(a >0,b >0)经过点(1,2),则直线l 在x 轴和y 轴上的截距之和的最小值是________.解析:由直线l :x a +y b=1(a >0,b >0)可知直线在x 轴上的截距为a ,直线在y 轴上的截距为b .求直线在x 轴和y 轴上的截距之和的最小值,即求a +b 的最小值.由直线经过点(1,2)得1a +2b =1.于是a +b =(a +b )×⎝ ⎛⎭⎪⎫1a +2b =3+b a +2a b ,因为b a +2a b≥2b a ·2ab=22(当且仅当b a=2ab时取等号),所以a +b ≥3+2 2.答案:3+2 29.已知A (1,-2),B (5,6),直线l 经过AB 的中点M ,且在两坐标轴上的截距相等,求直线l 的方程.解:法一:设直线l 在x 轴,y 轴上的截距均为a . 由题意得M (3,2).若a =0,即l 过点(0,0)和(3,2), ∴直线l 的方程为y =23x ,即2x -3y =0.若a ≠0,设直线l 的方程为x a +y a=1, ∵直线l 过点(3,2), ∴3a +2a=1,解得a =5,此时直线l 的方程为x 5+y5=1,即x +y -5=0.综上所述,直线l 的方程为2x -3y =0或x +y -5=0.法二:由题意知M (3,2),所求直线l 的斜率k 存在且k ≠0,则直线l 的方程为y -2=k (x -3),令y =0,得x =3-2k;令x =0,得y =2-3k .∴3-2k =2-3k ,解得k =-1或k =23,∴直线l 的方程为y -2=-(x -3)或y -2=23(x -3),即x +y -5=0或2x -3y =0.10.过点A (1,4)引一条直线l ,它与x 轴,y 轴的正半轴的交点分别为(a,0)和(0,b ),当a +b 最小时,求直线l 的方程.解:法一:由题意,设直线l :y -4=k (x -1),由于k <0, 则a =1-4k,b =4-k .∴a +b =5+⎝ ⎛⎭⎪⎫-4k-k ≥5+4=9.当且仅当k =-2时,取“=”. 故得l 的方程为y =-2x +6. 法二:设l :x a +y b=1(a >0,b >0), 由于l 经过点A (1,4),∴1a +4b=1,∴a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +4b =5+4a b +b a≥9,当且仅当4a b =ba时,即b =2a 时,取“=”,即a =3,b =6.∴所求直线 l 的方程为x 3+y6=1,即y =-2x +6.三上台阶,自主选做志在冲刺名校1.已知曲线y =1e x +1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________.解析:y ′=-e xx +2=-1e x+1ex +2,因为e x >0,所以e x+1e x ≥2e x·1ex =2当且仅当e x =1e x ,即x =0时取等号,所以e x+1ex +2≥4,故y ′=-1e x+1ex +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝ ⎛⎭⎪⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12. 答案:122.已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,∴A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ). 又-1+2k k<0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k ) =12⎝⎛⎭⎪⎫4k +1k +4≥12(4+4)=4,当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y+4=0.第二节 两直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.距离|P 1P 2|=x 2-x 12+y 2-y 121.已知过点A (-2,m )和B (m,4)的直线与斜率为-2的直线平行,则实数m 的值是________.解析:由题意可知k AB =4-mm +2=-2,所以m =-8.答案:-82.已知直线l :y =3x +3,那么直线x -y -2=0关于直线l 对称的直线方程为__________.解析:由⎩⎪⎨⎪⎧x -y -2=0,3x -y+3=0,得交点坐标P ⎝ ⎛⎭⎪⎫-52,-92.又直线x -y -2=0上的点Q (2,0)关于直线l 的对称点为Q ′⎝ ⎛⎭⎪⎫-175,95,故所求直线(即PQ ′)的方程为y +9295+92=x +52-175+52,即7x +y +22=0.答案:7x +y +22=03.与直线y =-3x +1平行,且在x 轴上的截距为-3的直线l 的方程为________. 解析:由题意,知直线l 的斜率为-3,且在x 轴上的截距为-3,所以直线l 的方程为y -0=-3[x -(-3)],即3x +y +9=0 .答案:3x +y +9=01.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知p :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,q :a =-1,则p 是q 的________条件(填“充要”“充分不必要”“必要不充分”“既不充分又不必要”).解析:由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.答案:充要2.已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.解析:①若l 1的斜率不存在,此时t =1,l 1的方程为x =13,l 2的方程为y =-25,显然l 1⊥l 2,符合条件;若l 2的斜率不存在,此时t =-32,易知l 1与l 2不垂直.②当l 1,l 2的斜率都存在时,直线l 1的斜率k 1=-t +21-t ,直线l 2的斜率k 2=-t -12t +3,∵l 1⊥l 2,∴k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-t +21-t ·⎝ ⎛⎭⎪⎫-t -12t +3=-1,所以t =-1.综上可知t =-1或t =1. 答案:-1或1考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.(2016·金陵中学模拟)若直线ax +2y +1=0与直线x +y -2=0互相垂直,那么a 的值等于________.解析:由a ·1+2·1=0得a =-2. 答案:-22.(2016·金华十校模拟)“直线ax -y =0与直线x -ay =1平行”是“a =1”成立的________条件(填“充要”“充分不必要”“必要不充分”“既不充分又不必要”).解析:由直线ax -y =0与x -ay =1平行得a 2=1,即a =±1,所以“直线ax -y =0与x -ay =1平行”是“a =1”的必要不充分条件.答案:必要不充分3.(2016·启东调研)已知直线l 1:(a -1)x +y +b =0,l 2:ax +by -4=0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(1,1);(2)l 1∥l 2,且l 2在第一象限内与两坐标轴围成的三角形的面积为2. 解:(1)∵l 1⊥l 2, ∴a (a -1)+b =0.① 又l 1过点(1,1), ∴a +b =0.②由①②,解得⎩⎪⎨⎪⎧a =0,b =0或⎩⎪⎨⎪⎧a =2,b =-2.当a =0,b =0时不合题意,舍去. ∴a =2,b =-2.(2)∵l 1∥l 2,∴a -b (a -1)=0,③由题意,知a >0,b >0,直线l 2与两坐标轴的交点坐标分别为⎝⎛⎭⎪⎫4a ,0,⎝⎛⎭⎪⎫0,4b.则12×4a ×4b=2,得ab =4,④ 由③④,得a =2,b =2.[谨记通法]由一般式确定两直线位置关系的方法在判断两直线位置关系时,比例式1A 2与1B 2,1C 2的关系容易记住,在解答填空题时,建议多用比例式来解答.考点二 距离问题重点保分型考点——师生共研[典例引领]已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2.解:设点P 的坐标为(a ,b ).∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.① 又点P (a ,b )到直线l :4x +3y -2=0的距离为2, ∴|4a +3b -2|5=2,即4a +3b -2=±10,② 由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎪⎨⎪⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝ ⎛⎭⎪⎫277,-87.[由题悟法] 处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.注意直线方程为一般式. (2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而计算简便,如本例中|PA |=|PB |这一条件的转化处理.[即时应用](2016·苏州检测)已知三条直线2x -y -3=0,4x -3y -5=0和ax +y -3a +1=0相交于同一点P .(1)求点P 的坐标和a 的值;(2)求过点(-2,3)且与点P 的距离为25的直线方程.解:(1)由⎩⎪⎨⎪⎧2x -y -3=0,4x -3y -5=0,解得⎩⎪⎨⎪⎧x =2,y =1,所以点P 的坐标为(2,1).将点P 的坐标(2,1)代入直线ax +y -3a +1=0,可得a =2.(2)设所求直线为l ,当直线l 的斜率不存在时,直线l 的方程为x =-2,此时点P 与直线l 的距离为4,不合题意.当直线l 的斜率存在时,设直线l 的斜率为k , 则直线l 的方程为y -3=k (x +2), 即kx -y +2k +3=0.点P 到直线l 的距离d =|2k -1+2k +3|k 2+1=25,解得k =2,所以直线l 的方程为2x -y +7=0.考点三 对称问题常考常新型考点——多角探明[命题分析]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型. 常见的命题角度有: (1)点关于点对称; (2)点关于线对称; (3)线关于线对称; (4)对称问题的应用.[题点全练]角度一:点关于点的对称问题1.(2016·苏北四市调研)点P (3,2)关于点Q (1,4)的对称点M 的坐标为________. 解析:设M (x ,y ),则⎩⎪⎨⎪⎧3+x 2=1,2+y2=4,∴x =-1,y =6, ∴M (-1,6). 答案:(-1,6)角度二:点关于线的对称问题2.已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为________.解析:设A ′(x ,y ),由已知得⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,故A ′⎝ ⎛⎭⎪⎫-3313,413. 答案:A ′⎝ ⎛⎭⎪⎫-3313,413角度三:线关于线的对称问题3.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________________. 解析:设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0, 即x -2y +3=0. 答案:x -2y +3=0 角度四:对称问题的应用4.(2016·淮安一调)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a --·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=0[方法归纳]1.中心对称问题的2个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的2个类型及求解方法(1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). (2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.一抓基础,多练小题做到眼疾手快1.(2015·盐城二模)若直线y =kx +1与直线2x +y -4=0垂直,则k =________. 解析:因为直线2x +y -4=0的斜率为-2, 故由条件得k =12.答案:122.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________.解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79. 答案:-13或-793.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是________. 解析:因为直线3x +4y -3=0与直线6x +my +14=0平行,所以3m -24=0,解得m =8,故直线6x +my +14=0可化为3x +4y +7=0,所以两平行直线间的距离是d =|-3-7|32+42=2.答案:24.(2016·宿迁模拟)直线x -2y +1=0关于直线x =1对称的直线方程是________. 解析:设所求直线上任一点(x ,y ),则它关于直线x =1的对称点(2-x ,y )在直线x -2y +1=0上,即2-x -2y +1=0,化简得x +2y -3=0.答案:x +2y -3=05.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________. 解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]二保高考,全练题型做到高考达标1.(2015·苏州二模)已知直线l 1:(3+a )x +4y =5-3a 和直线l 2:2x +(5+a )y =8平行,则a =________.解析:由题意可得a ≠-5,所以3+a 2=45+a ≠5-3a8,解得a =-7(a =-1舍去).答案:-72.(2016·南京一中检测)P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上的任意一点,则PQ 的最小值为________.解析:因为36=48≠-125,所以两直线平行,根据平面几何的知识,得PQ 的最小值为这两条平行直线间的距离.在直线3x +4y -12=0上取一点(4,0),此点到另一直线6x +8y +5=0的距离为|6×4+8×0+5|62+82=2910,所以PQ 的最小值为2910. 答案:29103.(2015·苏北四市调研)已知直线l 1:ax +(3-a )y +1=0,l 2:2x -y =0.若l 1⊥l 2,则实数a 的值为________.解析:由2×a +(3-a )×(-1)=0,解得a =1. 答案:14.(2016·天一中学检测)已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是________.解析:因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设它关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧x +02-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1,即(1,0),(-1,-1)为l 2上两点,可得l 2的方程为x -2y -1=0. 答案:x -2y -1=05.已知定点A (1,0),点B 在直线x -y =0上运动,当线段AB 最短时,点B 的坐标是________.解析:因为定点A (1,0),点B 在直线x -y =0上运动,所以当线段AB 最短时,直线AB 和直线x -y =0垂直,AB 的方程为y +x -1=0,它与x -y =0联立解得x =12,y =12,所以B 的坐标是⎝ ⎛⎭⎪⎫12,12.答案:⎝ ⎛⎭⎪⎫12,126.(2016·无锡调研)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析:依题意,设直线l :y -4=k (x -3), 即kx -y +4-3k =0,则有|-5k +2|k 2+1=|k +6|k 2+1,因此-5k +2=k +6,或-5k +2=-(k +6), 解得k =-23或k =2,故直线l 的方程为2x +3y -18=0或2x -y -2=0. 答案:2x +3y -18=0或2x -y -2=07. 设A ,B 是x 轴上的两点,点P 的横坐标为3,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是________________.解析:由|PA |=|PB |知点P 在AB 的垂直平分线上.由点P 的横坐标为3,且PA 的方程为x -y +1=0,得P (3,4).直线PA ,PB 关于直线x =3对称,直线PA 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,∴直线PB 的方程为x +y -7=0. 答案:x +y -7=08.(2016·江苏五星级学校联考)已知点P (x ,y )到A (0,4)和B (-2,0)的距离相等,则2x+4y的最小值为________.解析:由题意得,点P 在线段AB 的中垂线上,则易得x +2y =3,∴2x+4y≥22x·4y=22x +2y=42,当且仅当x =2y =32时等号成立,故2x +4y的最小值为4 2.答案:4 29.已知光线从点A (-4,-2)射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上的C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.解:作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′, 则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C . 故BC 所在的直线方程为y -6-4-6=x -1-2-1,即10x -3y +8=0. 10.已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4). (1)证明直线l 过某定点,并求该定点的坐标. (2)当点P 到直线l 的距离最大时,求直线l 的方程.解:(1)证明:直线l 的方程可化为a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3,∴直线l 恒过定点(-2,3).(2)设直线l 恒过定点A (-2,3),当直线l 垂直于直线PA 时,点P 到直线l 的距离最大.又直线PA 的斜率k PA =4-33+2=15,∴直线l 的斜率k l =-5. 故直线l 的方程为y -3=-5(x +2),即5x +y +7=0. 三上台阶,自主选做志在冲刺名校1.(2016·湖北七市三联)设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是________.解析:依题意得|a -b |=a +b2-4ab =1-4c ,当0≤c ≤18时,22≤|a -b |=1-4c ≤1.因为两条直线间的距离等于|a -b |2,所以两条直线间的距离的最大值与最小值分别是22,12. 答案:22,122.(2016·徐州一中检测)已知平面上一点M (5,0),若直线上存在点P 使PM =4,则称该直线为“切割型直线”.下列直线中是“切割型直线”的是________(填序号).①y =x +1;②y =2;③y =43x ;④y =2x +1.解析:设点M 到所给直线的距离为d ,①d =|5+1|12+-2=32>4,故直线上不存在点P 到点M 的距离等于4,不是“切割型直线”;②d =2<4,所以在直线上可以找到两个不同的点P ,使之到点M 的距离等于4,是“切割型直线”;③d =|4×5-0|-2+42=4,所以直线上存在一点P ,使之到点M 的距离等于4,是“切割型直线”;④d =|2×5+1|22+-2=1155>4,故直线上不存在点P ,使之到点M 的距离等于4,不是“切割型直线”.故填②③. 答案:②③3.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R). (1)若l 1∥l 2,求b 的取值范围; (2)若l 1⊥l 2,求|ab |的最小值.解:(1)因为l 1∥l 2,所以-b -(a 2+1)a 2=0,即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎪⎫a 2+122+14,因为a 2≥0,所以b ≤0.又因为a 2+1≠3,所以b ≠-6. 故b 的取值范围是(-∞,-6)∪(-6,0].(2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0,显然a ≠0,所以ab =a +1a,|ab |=⎪⎪⎪⎪⎪⎪a +1a ≥2,当且仅当a=±1时等号成立,因此|ab |的最小值为2.第三节 圆的方程1.圆的定义及方程点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2. [小题体验]1.(教材习题改编)圆x 2+y 2-4x +6y =0的圆心坐标是________. 解析:由(x -2)2+(y +3)2=13,知圆心坐标为(2,-3). 答案:(2,-3)2.圆心在y 轴上且通过点(3,1)的圆与x 轴相切,则该圆的方程是________. 解析:设圆心为(0,b ),半径为r ,则r =|b |, ∴圆的方程为x 2+(y -b )2=b 2. ∵点(3,1)在圆上,∴9+(1-b )2=b 2,解得b =5. ∴圆的方程为x 2+y 2-10y =0. 答案:x 2+y 2-10y =03.(教材习题改编)已知圆心为C 的圆过点A (1,1),B (2,-2)且圆心C 在直线l :x -y +1=0上,则圆的标准方程为________________________.答案:(x +3)2+(y +2)2=254.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是________. 解析:因为点(1,1)在圆(x -a )2+(y +a )2=4的内部,所以(1-a )2+(1+a )2<4. 即a 2<1,故-1<a <1. 答案:(-1,1)对于方程x 2+y 2+Dx +Ey +F =0表示圆时易忽视D 2+E 2-4F >0这一成立条件. [小题纠偏]1.方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是________. 解析:由(4m )2+4-4×5m >0,得m <14或m >1.答案:m ∈⎝⎛⎭⎪⎫-∞,14∪(1,+∞) 2.方程x 2+y 2+ax -2ay +2a 2+3a =0表示的图形是半径为r (r >0)的圆,则该圆圆心位于第________象限.解析:因为方程x 2+y 2+ax -2ay +2a 2+3a =0表示的图形是半径为r 的圆,所以a 2+(-2a )2-4(2a 2+3a )=-3a 2-12a >0,即a (a +4)<0,所以-4<a <0.又该圆圆心坐标为⎝ ⎛⎭⎪⎫-a2,a ,显然圆心位于第四象限.答案:四考点一 圆的方程基础送分型考点——自主练透[题组练透]1.(易错题)(2015·镇江调研)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为________.解析:由题意知圆C 的半径为2,且圆心坐标可设为(2,b ),因此有-2+b -2=2,解得b =±3,从而圆C 的方程为(x -2)2+(y ±3)2=4.答案:(x -2)2+(y ±3)2=42.(2016·徐州模拟)若圆C 的半径为1,点C 与点(2,0)关于点(1,0)对称,则圆C 的标准方程为________.解析:因为点C 与点(2,0)关于点(1,0)对称,故由中点坐标公式可得C (0,0),所以所求圆的标准方程为x 2+y 2=1.答案:x 2+y 2=13.(2015·全国卷Ⅱ改编)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为________.解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0,则⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,解得⎩⎪⎨⎪⎧D =-2,E =-433,F =1.∴△ABC 外接圆的圆心为⎝⎛⎭⎪⎫1,233,故△ABC 外接圆的圆心到原点的距离为12+⎝⎛⎭⎪⎫2332=213. 答案:213[谨记通法]1.求圆的方程的2种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法:①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.2.确定圆心位置的3种方法(1)圆心在过切点且与切线垂直的直线上.(2)圆心在圆的任意弦的垂直平分线上,如“题组练透”第1题. (3)两圆相切时,切点与两圆圆心共线.[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质. 考点二 与圆有关的最值问题常考常新型考点——多角探明[命题分析]与圆有关的最值问题也是命题的热点内容,它着重考查数形结合与转化思想. 常见的命题角度有: (1)斜率型最值问题; (2)截距型最值问题; (3)距离型最值问题; (4)建立目标函数求最值问题.[题点全练]角度一:斜率型最值问题1.(2016·苏州模拟)已知实数x ,y 满足方程x 2+y 2-4x +1=0,求y x的最大值和最小值.解:原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆.yx的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx .当直线y =kx 与圆相切时(如图),斜率k 取最大值或最小值, 此时|2k -0|k 2+1=3,解得k =± 3.所以y x的最大值为3,最小值为- 3. 角度二:截距型最值问题2.在[角度一]条件下求y -x 的最大值和最小值.解:y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直。
江苏专版高考数学一轮复习第九章解析几何第一节直线与方程教案理含解析苏教版

江苏专版高考数学一轮复习第九章解析几何第一节直线与方程教案理含解析苏教版第一节 直线与方程1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°.(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α⎝ ⎛⎭⎪⎫α≠π2,则斜率k =tan_α. (2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.直线方程的五种形式 名称 方程适用范围 点斜式 y -y 0=k (x -x 0) 不含直线x =x 0 斜截式 y =kx +b 不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1(x 1≠x 2) 和直线y =y 1(y 1≠y 2)截距式 x a +y b=1 不含垂直于坐标轴和过原点的直线一般式 Ax +By +C =0,A 2+B 2≠0平面内所有直线都适用[小题体验]1.若过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为________. 答案:12.已知a ≠0,直线ax +my -5m =0过点(-2,1),则此直线的斜率为________. 答案:23.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析:由已知,得BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,且直线BC 边上的中线过点A ,则BC 边上中线的斜率k =-113,故BC 边上的中线所在直线方程为y +12=-113⎝ ⎛⎭⎪⎫x -32,即x +13y +5=0.答案:x +13y +5=04.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a =________. 解析:令x =0,则l 在y 轴的截距为2+a ;令y =0,得直线l 在x 轴上的截距为1+2a.依题意2+a =1+2a,解得a =1或a =-2.答案:1或-21.点斜式、斜截式方程适用于不垂直于x 轴的直线;两点式方程不能表示垂直于x ,y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.3.求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.[小题纠偏]1.若直线l 经过点A (1,2),且倾斜角是直线y =x +3的倾斜角的2倍,则直线l 的方程为____________.解析:因为直线y =x +3的倾斜角为α=45°,所以所求直线l 的倾斜角为2α=90°,所以直线l 的方程为x =1.答案:x =12.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为________. 解析:①若直线过原点,则k =-43,所以y =-43x ,即4x +3y =0. ②若直线不过原点. 设x a +y a=1,即x +y =a . 则a =3+(-4)=-1, 所以直线的方程为x +y +1=0.答案:4x +3y =0或x +y +1=0考点一 直线的倾斜角与斜率 基础送分型考点——自主练透[题组练透]1.(2019·启东中学检测)倾斜角为135°,在y 轴上的截距为-1的直线方程是________.解析:直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0.答案:x +y +1=02.(2018·绥化一模)直线x sin α+y +2=0的倾斜角的取值范围是________. 解析:因为直线x sin α+y +2=0的斜率k =-sin α,又-1≤sin α≤1,所以-1≤k ≤1.设直线x sin α+y +2=0的倾斜角为θ,所以-1≤tan θ≤1,而θ∈[0,π),故倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.答案:⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π3.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________.解析:因为k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4.答案:44.已知线段P Q 两端点的坐标分别为P (-1,1)和Q(2,2),若直线l :x +my +m =0与线段P Q 有交点,则实数m 的取值范围是________.解析:如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k Q A =32,k PA =-2,k l =-1m. 结合图象知,若直线l 与P Q 有交点, 应满足-1m ≤-2或-1m ≥32.解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段P Q 有交点.所以实数m 的取值范围为⎣⎢⎡⎦⎥⎤-23,12.答案:⎣⎢⎡⎦⎥⎤-23,121.倾斜角α与斜率k 的关系当α∈⎣⎢⎡⎭⎪⎫0,π2且由0增大到π2⎝ ⎛⎭⎪⎫α≠π2时,k 的值由0增大到+∞.当α∈⎝ ⎛⎭⎪⎫π2,π时,k 也是关于α的单调函数,当α在此区间内由π2⎝ ⎛⎭⎪⎫α≠π2增大到π(α≠π)时,k 的值由-∞趋近于0(k ≠0).2.斜率的2种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率.(2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.考点二 直线的方程重点保分型考点——师生共研[典例引领](1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程;(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解:(1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时, 设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程, 解得a =-12,所以直线方程为x +2y +1=0; 当直线过原点时,设直线方程为y =kx ,则-5k =2, 解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0.求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时应用]1.过点P (6,-2),且在x 轴上的截距比在y 轴上的截距大1的直线方程为________________.解析:设直线方程的截距式为xa +1+y a =1,则6a +1+-2a=1,解得a =2或a =1,则直线方程为x 2+1+y 2=1或x 1+1+y1=1,即2x +3y -6=0或x +2y -2=0.答案:2x +3y -6=0或x +2y -2=02.在△ABC 中,已知A (5,-2),B (7,3),且AC 的中点M 在y 轴上,BC 的中点N 在x 轴上,则直线MN 的方程为________________.解析:设C (x 0,y 0),则M ⎝⎛⎭⎪⎫5+x 02,y 0-22,N ⎝ ⎛⎭⎪⎫7+x 02,y 0+32.因为点M 在y 轴上,所以5+x 02=0,所以x 0=-5.因为点N 在x 轴上,所以y 0+32=0,所以y 0=-3,即C (-5,-3),所以M ⎝ ⎛⎭⎪⎫0,-52,N (1,0), 所以直线MN 的方程为x1+y-52=1,即5x -2y -5=0. 答案:5x -2y -5=0 考点三 直线方程的综合应用 题点多变型考点——多角探明[锁定考向]直线方程的综合应用是常考内容之一,它常与函数、导数、不等式、圆相结合,命题多为客观题.常见的命题角度有:(1)与基本不等式相结合的最值问题; (2)与导数的几何意义相结合的问题; (3)与圆相结合求直线方程的问题.角度一:与基本不等式相结合的最值问题1.(2019·如皋检测)过点P (2,1)的直线l 与x 轴,y 轴正半轴分别交于A ,B 两点. (1)当OA ·OB 最小时,求直线l 的方程; (2)当2OA +OB 最小时,求直线l 的方程.解:设直线l 的方程为y -1=k (x -2)(k <0),则l 与x 轴,y 轴正半轴分别交于A ⎝ ⎛⎭⎪⎫2-1k ,0,B (0,1-2k )两点. (1)OA ·OB =⎝⎛⎭⎪⎫2-1k ·(1-2k )=4+(-4k )+⎝ ⎛⎭⎪⎫-1k ≥4+2-4k ·⎝ ⎛⎭⎪⎫-1k =8,当且仅当-4k =-1k ,即k =-12时取得最小值8.故当OA ·OB 最小时,所求直线l 的方程为y -1=-12(x -2),即x +2y -4=0.(2)2OA +OB =2⎝⎛⎭⎪⎫2-1k +(1-2k )=5+⎝ ⎛⎭⎪⎫-2k +(-2k )≥5+2⎝ ⎛⎭⎪⎫-2k ·-2k =9,当且仅当-2k=-2k ,即k =-1时取得最小值9.故当2OA +OB 最小时,所求直线l 的方程为y -1=-(x -2),即x +y -3=0. 角度二:与导数的几何意义相结合的问题2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为________.解析:由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,所以0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案:⎣⎢⎡⎦⎥⎤-1,-12 角度三:与圆相结合求直线方程的问题3.(2018·徐州调研)已知点P 是圆O :x 2+y 2=4上的动点,点A (4,0),若直线y =kx +1上总存在点Q ,使点Q 恰是线段AP 的中点,求实数k 的取值范围.解:设P (2cos θ,2sin θ),则AP 的中点坐标为Q(cos θ+2,sin θ), 因为点Q 在直线y =kx +1上,所以sin θ=k (cos θ+2)+1,即k =sin θ-1cos θ+2,即k 表示单位圆上的点(cos θ,sin θ)与点(-2,1)连线的斜率. 设过点(-2,1)的直线方程为y -1=k (x +2),若要满足题意,则圆心到直线kx -y +2k +1=0的距离d =|2k +1|k 2+1≤1,解得k ∈⎣⎢⎡⎦⎥⎤-43,0. [通法在握]处理直线方程综合应用的思路(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.[演练冲关]1.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.解析:由已知画出简图,如图所示. 因为l 1:ax -2y =2a -4, 所以当x =0时,y =2-a , 即直线l 1与y 轴交于点A (0,2-a ). 因为l 2:2x +a 2y =2a 2+4, 所以当y =0时,x =a 2+2, 即直线l 2与x 轴交于点C (a 2+2,0).易知l 1与l 2均过定点(2,2),即两直线相交于点B (2,2).则四边形AOCB 的面积为S =S △AOB +S △BOC =12(2-a )×2+12(a 2+2)×2=⎝ ⎛⎭⎪⎫a -122+154≥154.所以S min =154,此时a =12.答案:122.已知点P 在直线x +3y -2=0上,点Q 在直线x +3y +6=0上,线段P Q 的中点为M (x 0,y 0),且y 0<x 0+2,求y 0x 0的取值范围.解:依题意可得|x 0+3y 0-2|10=|x 0+3y 0+6|10,化简得x 0+3y 0+2=0,又y 0<x 0+2,k OM=y 0x 0,在坐标轴上作出两直线,如图,当点M 位于线段AB (不包括端点)上时,k OM >0,当点M 位于射线BN 上除B 点外时,k OM <-13.所以y 0x 0的取值范围是⎝⎛⎭⎪⎫-∞,-13∪(0,+∞).一抓基础,多练小题做到眼疾手快1.(2019·南通模拟)将直线y =2x 绕原点逆时针旋转π4,则所得直线的斜率为________.解析:设直线y =2x 的倾斜角是α,则tan α=2,将直线y =2x 绕原点逆时针旋转π4,则倾斜角变为α+π4,∴所得直线的斜率k =tan ⎝ ⎛⎭⎪⎫α+π4=2+11-2×1=-3. 答案:-32.(2018·南通中学月考)过点P (-2,4)且斜率k =3的直线l 的方程为________. 解析:由题意得,直线l 的方程为y -4=3[x -(-2)],即3x -y +10=0. 答案:3x -y +10=03.若直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,则实数k 的取值范围是________.解析:解方程组⎩⎪⎨⎪⎧y =-2x +3k +14,x -4y =-3k -2,得⎩⎪⎨⎪⎧x =k +6,y =k +2,因为直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限, 所以k +6>0且k +2<0,所以-6<k <-2. 答案:(-6,-2)4.(2018·南京名校联考)曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为________.解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)), 因为y ′=3x 2-1≥-1,所以tan θ≥-1,结合正切函数的图象可知,θ的取值范围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.答案:⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π5.(2019·无锡模拟)已知直线(a -2)y =(3a -1)x -1,若这条直线不经过第二象限,则实数a 的取值范围是________.解析:若a -2=0,即a =2时,直线方程可化为x =15,此时直线不经过第二象限,满足条件;若a -2≠0,直线方程可化为y =3a -1a -2x -1a -2,此时若直线不经过第二象限,则3a -1a -2≥0,1a -2≥0,解得a >2. 综上,满足条件的实数a 的取值范围是[2,+∞). 答案:[2,+∞)6.(2018·南京调研)已知函数f (x )=a sin x -b cos x ,若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为________.解析:由f ⎝⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x 知函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π2,所以-b =a ,则直线ax -by +c =0的斜率为a b =-1,故其倾斜角为3π4.答案:3π4二保高考,全练题型做到高考达标1.(2019·泰州模拟)倾斜角为120°,在x 轴上的截距为-1的直线方程是________. 解析:由于倾斜角为120°,故斜率k =- 3.又直线过点(-1,0),所以直线方程为y = -3(x +1),即3x +y +3=0.答案:3x +y +3=02.(2018·泗阳中学检测)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段P Q 的中点坐标为(1,-1),则直线l 的斜率为________.解析:设P (x,1),Q(7,y ),则x +72=1,y +12=-1,所以x =-5,y =-3,即P (-5,1),Q(7,-3),故直线l 的斜率k =-3-17+5=-13.答案:-133.(2019·苏州调研)已知θ∈R ,则直线x sin θ-3y +1=0的倾斜角的取值范围是________.解析:设直线的倾斜角为 α,则tan α=33sin θ, ∵-1≤sin θ≤1,∴-33≤tan α≤33, 又α∈[0,π),∴0≤α≤π6或5π6≤α<π. 答案:⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π4.已知两点A (0,1),B (1,0),若直线y =k (x +1)与线段AB 总有公共点,则实数k 的取值范围是________.解析:y =k (x +1)是过定点P (-1,0)的直线,k PB =0,k PA =1-00--1=1,所以实数k 的取值范围是[0,1]. 答案:[0,1]5.已知点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是________.解析:因为点P (x ,y )在直线x +y -4=0上,所以y =4-x ,所以x 2+y 2=x 2+(4-x )2=2(x -2)2+8,当x =2时,x 2+y 2取得最小值8.答案:86.(2019·南京模拟)过点P (2,3)且在两坐标轴上的截距相等的直线方程为________________.解析:若直线的截距不为0,可设为x a +y a=1,把P (2,3)代入,得2a +3a=1,a =5,直线方程为x +y -5=0.若直线的截距为0,可设为y =kx ,把P (2,3)代入,得3=2k ,k =32,直线方程为3x -2y =0.综上,所求直线方程为x +y -5=0或3x -2y =0. 答案:x +y -5=0或3x -2y =07.已知直线l :y =kx +1与两点A (-1,5),B (4,-2),若直线l 与线段AB 相交,则实数k 的取值范围是______________.解析:易知直线l :y =kx +1的方程恒过点P (0,1), 如图,∵k PA =-4,k PB =-34,∴实数k 的取值范围是(-∞,-4]∪⎣⎢⎡⎭⎪⎫-34,+∞. 答案:(-∞,-4]∪⎣⎢⎡⎭⎪⎫-34,+∞8.若直线l :x a +yb=1(a >0,b >0)经过点(1,2),则直线l 在x 轴和y 轴上的截距之和的最小值是________.解析:由直线l :x a +y b=1(a >0,b >0)可知直线在x 轴上的截距为a ,在y 轴上的截距为b .求直线在x 轴和y 轴上的截距之和的最小值,即求a +b 的最小值.由直线经过点(1,2)得1a +2b=1.于是a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +2b =3+b a +2a b ,因为b a +2a b≥2b a ·2ab=22⎝ ⎛⎭⎪⎫当且仅当b a =2a b 时取等号,所以a +b ≥3+22,故直线l 在x 轴和y 轴上的截距之和的最小值为3+2 2.答案:3+2 29.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k-3,3k+4,由已知,得(3k +4)⎝ ⎛⎭⎪⎫4k+3=±6,解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,所以b =±1.所以直线l 的方程为x -6y +6=0或x -6y -6=0.10.已知直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y +6-2m =0. (1)求实数m 的取值范围;(2)若直线l 的斜率不存在,求实数m 的值; (3)若直线l 在x 轴上的截距为-3,求实数m 的值; (4)若直线l 的倾斜角是45°,求实数m 的值.解:(1)当x ,y 的系数不同时为零时,方程表示一条直线, 令m 2-2m -3=0,解得m =-1或m =3; 令2m 2+m -1=0,解得m =-1或m =12.所以实数m 的取值范围是(-∞,-1)∪(-1,+∞). (2)由(1)易知,当m =12时,方程表示的直线的斜率不存在.(3)依题意,有2m -6m 2-2m -3=-3,所以3m 2-4m -15=0,所以m =3或m =-53,由(1)知所求m =-53.(4)因为直线l 的倾斜角是45°,所以斜率为1.由-m 2-2m -32m 2+m -1=1,解得m =43或m =-1(舍去).所以直线l 的倾斜角为45°时,m =43.三上台阶,自主选做志在冲刺名校1.(2018·无锡期末)过点(2,3)的直线l 与x 轴的正半轴,y 轴的正半轴分别交于A ,B 两点,当△AOB (O 为坐标原点)面积最小时,直线l 的方程为________________.解析:设直线l 的斜率为k ,且k <0,所以直线l 的方程为y -3=k (x -2),即kx -y +3-2k =0.令x =0,得y =3-2k ,所以B (0,3-2k );令y =0,得x =2-3k,所以A ⎝⎛⎭⎪⎫2-3k,0.则△AOB 的面积为S =12(3-2k )⎝ ⎛⎭⎪⎫2-3k =12⎝ ⎛⎭⎪⎫6+6-9k -4k ≥12⎣⎢⎡⎦⎥⎤12+2-9k·-4k =12,当且仅当-9k =-4k ,即k =-32时等号成立,所以直线l 的方程为3x +2y -12=0.答案:3x +2y -12=02.已知曲线y =1e x +1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________.解析:y ′=-exe x+12=-1e x+1ex +2,因为e x >0,所以e x+1e x ≥2e x·1ex =2(当且仅当e x =1e x ,即x =0时取等号),所以e x+1e x +2≥4,故y ′=-1e x+1e x +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝ ⎛⎭⎪⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12.答案:123.已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围是[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,所以A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ). 又-1+2k k<0且1+2k >0,所以k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎪⎫4k +1k +4≥12(4+4)=4,当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.。
(江苏专用)2020版高考数学大一轮复习第九章平面解析几何9.1直线的方程教案(含解析)

第九章平面解析几何§9.1直线的方程考情考向分析以考查直线方程的求法为主,直线的斜率、倾斜角也是考查的重点.题型主要在解答题中与圆、圆锥曲线等知识交汇出现,有时也会在填空题中出现.1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0°.(2)范围:直线l 倾斜角的范围是[0°,180°).2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.直线方程的五种形式概念方法微思考1.直线都有倾斜角,是不是都有斜率?倾斜角越大,斜率k 就越大吗? 提示 倾斜角α∈[0,π),当α=π2时,斜率k 不存在;因为k =tan α⎝⎛⎭⎪⎫α≠π2.当α∈⎝⎛⎭⎪⎫0,π2时,α越大,斜率k 就越大,同样α∈⎝⎛⎭⎪⎫π2,π时也是如此,但当α∈(0,π)且α≠π2时就不是了.2.“截距”与“距离”有何区别?当截距相等时应注意什么?提示 “截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.应注意过原点的特殊情况是否满足题意.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)若直线的斜率为tan α,则其倾斜角为α.( × ) (3)斜率相等的两直线的倾斜角不一定相等.( × )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )题组二 教材改编2.[P80T6]若过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为. 答案 1解析 由题意得m -4-2-m=1,解得m =1.3.[P88T13]过点P (2,3)且在两坐标轴上截距相等的直线方程为. 答案 3x -2y =0或x +y -5=0解析 当截距为0时,直线方程为3x -2y =0; 当截距不为0时,设直线方程为x a +y a=1,则2a +3a=1,解得a =5.所以直线方程为x +y -5=0.题组三 易错自纠4.直线x +(a 2+1)y +1=0的倾斜角的取值范围是.答案 ⎣⎢⎡⎭⎪⎫3π4,π 解析 由直线方程可得该直线的斜率为-1a 2+1,又-1≤-1a 2+1<0,所以倾斜角的取值范围是⎣⎢⎡⎭⎪⎫3π4,π. 5.(2018·江苏省南京市秦淮中学期末)已知倾斜角为90°的直线经过点A (2m ,3),B (2,-1),则m 的值为. 答案 1解析 ∵倾斜角为90°的直线经过点A (2m ,3),B (2,-1), ∴2m =2,解得m =1.6.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为. 答案 x -2y +2=0或x =2解析 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形的面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意;③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k ,依题意有12×⎪⎪⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x -2y +2=0.综上可知,直线m 的方程为x -2y +2=0或x =2.题型一 直线的倾斜角与斜率例1(1)直线x sin α+y +2=0的倾斜角的取值范围是.答案 ⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫34π,π解析 设直线的倾斜角为θ,则有tan θ=-sin α,又sin α∈[-1,1],θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为.答案 (-∞,-3]∪[1,+∞)解析 如图,∵k AP =1-02-1=1,k BP =3-00-1=-3,∴k ∈(-∞,- 3 ]∪[1,+∞). 引申探究1.若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围. 解 ∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02-(-1)=13,k BP =3-00-(-1)= 3.如图可知,直线l 斜率的取值范围为⎣⎢⎡⎦⎥⎤13,3.2.若将本例(2)中的B 点坐标改为(2,-1),其他条件不变,求直线l 倾斜角的取值范围. 解 如图,直线PA 的倾斜角为45°,直线PB 的倾斜角为135°,由图象知l 的倾斜角的取值范围为[0°,45°]∪[135°,180°). 思维升华 (1)倾斜角α与斜率k 的关系①当α∈⎣⎢⎡⎭⎪⎫0,π2时,k ∈[0,+∞).②当α=π2时,斜率k 不存在.③当α∈⎝ ⎛⎭⎪⎫π2,π时,k ∈(-∞,0). (2)斜率的两种求法①定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. ②公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.(3)倾斜角α范围与直线斜率范围互求时,要充分利用y =tan α的单调性. 跟踪训练1(1)若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =. 答案 1±2或0解析 ∵平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,∴k AB =k AC , 即a 2+a 2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a =1± 2.(2)若直线l 经过A (3,1),B (2,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是.答案 ⎣⎢⎡⎭⎪⎫π4,π2 解析 直线l 的斜率k =1+m 23-2=1+m 2≥1,所以k =tan α≥1.又y =tan α在⎝⎛⎭⎪⎫0,π2上是增函数,因此π4≤α<π2.题型二 求直线的方程例2求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等; (2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14;(3)过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点且AB =5. 解 (1)方法一 设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(3,2),∴3a +2a=1,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. 方法二 由题意,所求直线的斜率k 存在且k ≠0, 设直线方程为y -2=k (x -3),令y =0,得x =3-2k,令x =0,得y =2-3k ,由已知3-2k =2-3k ,解得k =-1或k =23,∴直线l 的方程为y -2=-(x -3)或y -2=23(x -3),即x +y -5=0或2x -3y =0. (2)设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点坐标为(1,4),此时AB =5,即x =1为所求. 设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k (x -1),得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2.(k ≠-2,否则与已知直线平行).则B 点坐标为⎝ ⎛⎭⎪⎫k +7k +2,4k -2k +2. 由已知⎝⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=52,解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.思维升华在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.跟踪训练2根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)经过点P (4,1),且在两坐标轴上的截距相等; (3)直线过点(5,10),到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0≤α<π),从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0. (2)设直线l 在x ,y 轴上的截距均为a . 若a =0,即l 过(0,0)及(4,1)两点, ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(4,1),∴4a +1a=1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0. 由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上可知,所求直线方程为x -5=0或3x -4y +25=0.题型三 直线方程的综合应用命题点1 与基本不等式相结合求最值问题例3已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA →|·|MB →|取得最小值时直线l 的方程. 解 设A (a ,0),B (0,b ),则a >0,b >0,直线l 的方程为x a +y b=1,所以2a +1b=1.|MA →|·|MB →|=-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5=(2a +b )⎝ ⎛⎭⎪⎫2a +1b -5=2b a +2a b≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0. 命题点2 由直线方程解决参数问题例4已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值. 解 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,当a =12时,四边形的面积最小.思维升华与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.跟踪训练3过点P (4,1)作直线l 分别交x 轴,y 轴正半轴于A ,B 两点,O 为坐标原点. (1)当△AOB 面积最小时,求直线l 的方程; (2)当OA +OB 取最小值时,求直线l 的方程. 解 设直线l :x a +y b=1(a >0,b >0), 因为直线l 经过点P (4,1),所以4a +1b=1.(1)4a +1b=1≥24a ·1b=4ab,所以ab ≥16,当且仅当a =8,b =2时等号成立, 所以当a =8,b =2时,△AOB 的面积最小, 此时直线l 的方程为x 8+y2=1,即x +4y -8=0. (2)因为4a +1b=1,a >0,b >0,所以OA +OB =a +b =(a +b )·⎝ ⎛⎭⎪⎫4a +1b =5+a b +4b a≥5+2a b ·4ba=9, 当且仅当a =6,b =3时等号成立,所以当OA +OB 取最小值时,直线l 的方程为x 6+y3=1,即x +2y -6=0.1.直线3x -y +a =0(a 为常数)的倾斜角为. 答案 60°解析 设直线的倾斜角为α,斜率为k , 化直线方程为y =3x +a ,∴k =tan α= 3. ∵0°≤α<180°,∴α=60°.2.过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是.答案 x =2解析 ∵直线y =-x -1的斜率为-1,则倾斜角为3π4,依题意,所求直线的倾斜角为3π4-π4=π2,∴斜率不存在,∴过点(2,1)的直线方程为x =2.3.直线MN 的斜率为2,其中点N (1,-1),点M 在直线y =x +1上,则点M 的坐标为. 答案 M (4,5)解析 设M 的坐标为(a ,b ),若点M 在直线y =x +1上, 则有b =a +1.① 若直线MN 的斜率为2,则有b +1a -1=2.②联立①②可得a =4,b =5, 即M 的坐标为(4,5).4.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则k 1,k 2,k 3的大小关系为.答案 k 1<k 3<k 2解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.5.(2018·江苏江阴中学检测)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是.答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞解析 设直线的斜率为k ,如图,过定点A 的直线经过点B 时,直线l 在x 轴上的截距为3,此时k =-1;过定点A 的直线经过点C 时,直线l 在x 轴上的截距为-3,此时k =12,所以满足条件的直线l 的斜率的取值范围是(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞. 6.一条直线经过点A (2,-3),并且它的倾斜角等于直线y =13x 的倾斜角的2倍,则这条直线的一般式方程是. 答案3x -y -33=0解析 因为直线y =13x 的倾斜角为π6,所以所求直线的倾斜角为π3,即斜率k =tan π3= 3.又该直线过点A (2,-3),故所求直线为y -(-3)=3(x -2), 即3x -y -33=0.7.不论实数m 为何值,直线mx -y +2m +1=0恒过定点. 答案 (-2,1)解析 直线mx -y +2m +1=0可化为m (x +2)+(-y +1)=0,∵m ∈R ,∴⎩⎪⎨⎪⎧x +2=0,-y +1=0,∴x =-2,y =1,∴直线mx -y +2m +1=0恒过定点(-2,1).8.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为.答案 x +13y +5=0解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在的直线方程为y -0-12-0=x +532+5,即x +13y +5=0.9.经过点A (4,2),且在x 轴上的截距等于在y 轴上的截距的3倍的直线l 的方程的一般式为.答案 x +3y -10=0或x -2y =0解析 当截距为0时,设直线方程为y =kx ,则4k =2, ∴k =12,∴直线方程为x -2y =0.当截距不为0时,设直线方程为x 3a +ya =1,由题意得,43a +2a =1,∴a =103.∴x +3y -10=0.综上,直线l 的一般式方程为x +3y -10=0或x -2y =0. 10.过点A (3,-1)且在两坐标轴上截距相等的直线有条. 答案 2解析 ①当所求的直线与两坐标轴的截距都不为0时, 设该直线的方程为x +y =a , 把(3,-1)代入所设的方程得a =2,则所求直线的方程为x +y =2,即x +y -2=0. ②当所求的直线与两坐标轴的截距为0时, 设该直线的方程为y =kx ,把(3,-1)代入所设的方程得k =-13,则所求直线的方程为y =-13x ,即x +3y =0.综上,所求直线的方程为x +y -2=0或x +3y =0.11.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,(m -0)·(-3n -1)=(n -0)·(m -1),解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0. 12.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.(1)证明 直线l 的方程可化为y =k (x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1). (2)解 直线l 的方程可化为y =kx +2k +1, 则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,故k 的取值范围是k ≥0.(3)解 依题意,直线l 在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,且k >0, 所以A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ), 故S =12OA ·OB =12×1+2k k ×(1+2k )=12⎝⎛⎭⎪⎫4k +1k +4≥12×(4+4)=4,当且仅当4k =1k ,即k =12时取等号,故S 的最小值为4,此时直线l 的方程为x -2y +4=0.13.已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为. 答案 150°解析 由y =2-x 2,得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,以2为半径的圆的一部分,其图象如图所示.显然直线l 的斜率存在,设过点P (2,0)的直线l 为y =k (x -2), 则圆心到此直线的距离d =|-2k |1+k2, 弦长AB =22-⎝ ⎛⎭⎪⎫|-2k |1+k 22=22-2k21+k2, 所以S △AOB =12×|-2k |1+k2×22-2k 21+k 2≤(2k )2+2-2k22(1+k 2)=1, 当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,由图可得k =-33⎝ ⎛⎭⎪⎫k =33舍去, 故直线l 的倾斜角为150°.14.设点A (-2,3),B (3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值范围是.答案 ⎝ ⎛⎭⎪⎫-43,52解析 直线ax +y +2=0恒过点M (0,-2),且斜率为-a , ∵k MA =3-(-2)-2-0=-52,k MB =2-(-2)3-0=43,结合题意可知-a >-52,且-a <43,∴a ∈⎝ ⎛⎭⎪⎫-43,52.2115.已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝ ⎛⎭⎪⎫π3-x =f ⎝ ⎛⎭⎪⎫π3+x ,则直线ax -by +c =0的倾斜角为.答案 2π3解析 由f ⎝ ⎛⎭⎪⎫π3-x =f ⎝ ⎛⎭⎪⎫π3+x 知函数f (x )的图象关于x =π3对称, 所以f (0)=f ⎝⎛⎭⎪⎫2π3,所以a =-3b , 由直线ax -by +c =0知其斜率k =a b =-3,所以直线的倾斜角为2π3. 16.已知动直线l 0:ax +by +c -3=0(a >0,c >0)恒过点P (1,m ),且Q (4,0)到动直线l 0的最大距离为3,则12a +2c的最小值为. 答案 32解析 ∵动直线l 0:ax +by +c -3=0(a >0,c >0)恒过点P (1,m ),∴a +bm +c -3=0. 又Q (4,0)到动直线l 0的最大距离为3, ∴(4-1)2+m 2=3,解得m =0.∴a +c =3.则12a +2c =13(a +c )⎝ ⎛⎭⎪⎫12a +2c =13⎝ ⎛⎭⎪⎫52+c 2a +2a c ≥13⎝ ⎛⎭⎪⎫52+2 c 2a ·2a c =32, 当且仅当c =2a =2时取等号.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高三数学一轮复习第九篇平面解析几何第1节直线与方
程课时训练理
【选题明细表】
1.直线l:xsin 30°+ycos 150°+1=0的斜率是( A )
(A) (B) (C)- (D)-
解析:设直线l的斜率为k,则k=-=.
2.直线x+a2y+6=0和(a-2)x+3ay+2a=0无公共点,则a的值为( C )
(A)3或-1 (B)0或3
(C)0或-1 (D)-1或0或3
解析:两直线无公共点,即两直线平行,
所以
解得a=0或a=-1.故选C.
3.(xx新泰模拟)已知直线l1:ax+(a+2)y+1=0,l2:x+ay+2=0.若l1⊥l2,则实数a的值是( C )
(A)0 (B)2或-1 (C)0或-3 (D)-3
解析:因为l1⊥l2,所以a+a(a+2)=0,则a=0或a=-3,故选C.
4.(xx枣庄模拟)将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l′,此时直线l′与l重合,则直线l′的斜率为( B )
(A) (B)-
(C) (D)-
解析:设直线l:y=kx+b,l沿y轴负方向平移a个单位得l1:y=kx+b-a,再沿x轴正方向平移a+1个单位得l′:y=k(x-a-1)+b-a,即y=kx+b-ka-k-a,由l′与l重合得-a-ka-k=0,k=-.
5.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2经过定点( B )
(A)(0,4) (B)(0,2) (C)(-2,4) (D)(4,-2)
解析:直线l1:y=k(x-4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l1与直线l2关于点(2,1)对称,故直线l2经过定点(0,2).
故选B.
6.不论m为何值时,直线l:(m-1)x+(2m-1)y=m-5恒过定点( D )
(A) (1,- ) (B)(-2,0) (C)(2,3) (D)(9,-4)
解析:直线(m-1)x+(2m-1)y=m-5,
化为(mx+2my-m)+(-x-y+5)=0,
即直线l过x+2y-1=0与-x-y+5=0的交点,
解方程组
得
7.(xx合肥一模)已知直线l:x-y-1=0,l1:2x-y-2=0.若直线l2与l1关于l对称,则l2的方程是( B )
(A)x-2y+1=0 (B)x-2y-1=0
(C)x+y-1=0 (D)x+2y-1=0
解析:因为l1与l2关于l对称,
所以l1上任一点关于l的对称点都在l2上,
故l与l1的交点(1,0)在l2上.
又易知(0,-2)为l1上一点,
设它关于l的对称点为(x,y),
则
解得
即(1,0),(-1,-1)为l2上两点,
可得l2的方程为x-2y-1=0.
8.经过点P(1,4)的直线在两坐标轴上的截距都是正值,且截距之和最小,则直线的方程为( B )
(A)x+2y-6=0 (B)2x+y-6=0
(C)x-2y+7=0 (D)x-2y-7=0
解析:直线过P(1,4),代入后舍去选项A,D;又在两坐标轴上的截距均为正值,舍去选项C.故选B.
9.已知平面内两点A(1,2),B(3,1)到直线l的距离分别是,-,则满足条件的直线l的条数为( C )
(A)1 (B)2 (C)3 (D)4
解析:由题知满足题意的直线l在线段AB两侧各有1条;又因为|AB|=,所以还有1条为过线段AB上的一点且与AB垂直的直线,故共3条.故选C.
10.(xx哈尔滨模拟)经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l的方程为.
解析:设所求直线方程为+=1,
由已知得
解得或
所以2x+y+2=0或x+2y-2=0为所求.
答案:2x+y+2=0或x+2y-2=0
11.已知两直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.
(1)l1⊥l2,且直线l1过点(-3,-1);
(2)l1∥l2,且坐标原点到这两条直线的距离相等.
解:(1)因为l1⊥l2,所以a(a-1)-b=0.
又因为直线l1过点(-3,-1),所以-3a+b+4=0.
故a=2,b=2.
(2)因为直线l2的斜率存在,l1∥l2,
所以直线l1的斜率存在,k1=k2,
即=1-a.
又因为坐标原点到这两条直线的距离相等,
所以l1、l2在y轴上的截距互为相反数,即=b.
故a=2,b=-2或a=,b=2.
能力提升练(时间:15分钟)
12.(xx哈尔滨模拟)函数y=asin x-bcos x的一条对称轴为x=,则直线l:ax-by+c=0的倾斜角为( D )
(A)45°(B)60° (C)120°(D)135°
解析:由函数y=f(x)=asin x-bcos x的一条对称轴为x=知,
f(0)=f(),即-b=a,
所以直线l的斜率为-1,
所以倾斜角为135°.
13.若m>0,n>0,点(-m,n)关于直线x+y-1=0的对称点在直线x-y+2=0上,那么+的最小值等于.
解析:设点(-m,n)关于直线x+y-1=0的对称点为(x0,y0),
则有
解得x0=1-n,y0=1+m,
又点(x0,y0)在直线x-y+2=0上,
所以1-n-1-m+2=0,
所以m+n=2,
所以+=(+) (m+n)=++≥.
答案:
14.(xx淮安一调)已知入射光线经过点M(-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为.
解析:设点M(-3,4)关于直线l:x-y+3=0的对称点为M′(a,b),
则反射光线所在直线过点M′,
解得a=1,b=0.
又反射光线经过点N(2,6),
所以所求直线的方程为=,
即6x-y-6=0.
答案:6x-y-6=0
15.已知直线l过点M(1,1),且与x轴,y轴的正半轴分别相交于A,B两点,O为坐标原点,求:
(1)当|OA|+|OB|取得最小值时,直线l的方程;
(2)当|MA|2+|MB|2取得最小值时,直线l的方程.
解:(1)设A(a,0),B(0,b)(a>0,b>0).
则直线l的方程为+=1,
则+=1,
所以|OA|+|OB|=a+b=(a+b) (+)=2++≥2+2=4,
当且仅当“a=b=2”时取等号,此时直线l的方程为x+y-2=0.
(2)设直线l的斜率为k,则k<0,
直线l的方程为y-1=k(x-1),
则A(1-,0),B(0,1-k),
所以|MA|2+|MB|2=(1-1+)2+12+12+(1-1+k)2=2+k2+≥2+2=4,
则当且仅当k2=,即k=-1时等号成立,
则直线l的方程为y=-x+2.
16. (xx东营模拟)设直线l的方程为(a+1)x+y-2-a=0(a∈R).
(1)若直线l在两坐标轴上的截距相等,求直线l的方程;
(2)若a>-1,直线l与x,y轴分别交于M,N两点,O为坐标原点,求△OMN面积取最小值时,直线l的方程.
解:(1)当直线l经过坐标原点时,设直线在两坐标轴上的截距都为0,此时a+2=0,解得a=-2, 此时直线l的方程为-x+y=0,即x-y=0;
当直线l不经过坐标原点,即a≠-2且a≠-1时,
由直线在两坐标轴上的截距相等可得=2+a,
解得a=0,此时直线l的方程为x+y-2=0.
所以直线l的方程为x-y=0或x+y-2=0.
(2)由直线方程可得M(,0),N(0,2+a),
因为a>-1,
所以S△OMN=××(2+a)
=×
=[(a+1)++2]
≥×[2+2]=2,
当且仅当a+1=,即a=0时等号成立,
此时直线l的方程为x+y-2=0.
精彩5分钟
1.(xx高考四川卷)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|·|PB|的最大值是.
解题关键:两直线过定点,且两直线互相垂直.
解析:易求定点A(0,0),B(1,3).当P与A和B均不重合时,不难验证PA⊥PB,所以|PA|2+|PB|2=|AB|2=10,所以|PA|·|PB|≤=5(当且仅当|PA|=|PB|=时,等号成立),当P与A或B重合时,|PA|·|PB|=0,故|PA|·|PB|的最大值是5.
答案:5
2.(xx黄山一模)已知点A在直线x+2y-1=0上,点B在直线x+2y+3=0上,线段AB的中点为P(x0,y0),且满足y0>x0+2,则的取值范围为.
解题关键:利用点到直线的距离,确定x0,y0的关系,求的范围转化为关于x0的函数,求其范围.
解析:因为直线x+2y-1=0与直线x+2y+3=0平行,
所以=,
可得x0+2y0+1=0,
因为y0>x0+2,
所以-(1+x0)>x0+2,
解得x0<-.
设=k,
所以k==--,
因为x0<-,
所以0<-<,
所以-<<-.
答案:(-,-)。