(完整版)大学物理(力学)试卷
大学物理复习题(力学部分)
第一章一、填空题1、一质点做圆周运动,轨道半径为R=2m,速率为v = 5t2+ m/s,则任意时刻其切向加速度aτ=________,法向加速度a n=________.2、一质点做直线运动,速率为v =3t4+2m/s,则任意时刻其加速度a =________,位置矢量x =________.3、一个质点的运动方程为r = t3i+8t3j,则其速度矢量为v=_______________;加速度矢量a为________________.4、某质点的运动方程为r=A cosωt i+B sinωt j, 其中A,B,ω为常量.则质点的加速度矢量为a=_______________________________,轨迹方程为________________________________。
5、质量为m的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k,k为正的常数,该下落物体的极限速度是_________。
二、选择题1、下面对质点的描述正确的是 [ ]①质点是忽略其大小和形状,具有空间位置和整个物体质量的点;②质点可近视认为成微观粒子;③大物体可看作是由大量质点组成;④地球不能当作一个质点来处理,只能认为是有大量质点的组合;⑤在自然界中,可以找到实际的质点。
A.①②③;B.②④⑤;C.①③;D.①②③④。
2、某质点的运动方程为x = 3t-10t3+6 ,则该质点作[ ]A.匀加速直线运动,加速度沿x轴正方向;B.匀加速直线运动,加速度沿x轴负方向;C.变加速直线运动,加速度沿x轴正方向;D.变加速直线运动,加速度沿x轴负方向。
3、下面对运动的描述正确的是 [ ]A.物体走过的路程越长,它的位移也越大;B质点在时刻t和t+∆t的速度分别为 "v1和v2,则在时间∆t内的平均速度为(v1+v2)/2 ;C.若物体的加速度为恒量(即其大小和方向都不变),则它一定作匀变速直线运动;D.在质点的曲线运动中,加速度的方向和速度的方向总是不一致的。
大学物理力学试题 (1)
大学物理 力学测试题一、选择题(每小题3分,共30分)1.一物体沿直线的运动规律是x = t ³- 40t ,从t1到t 2这段时间内的平均速度是( )A .(t 1²+t 1t 2+t 2² )– 40B .3t 1²–40C .3(t 2–t 1)²-40D .(t 2–t 1)²-40 2.一质点作匀速率圆周运动时,( )A .它的动量不变,对圆心的角动量也不变.B .它的动量不变,对圆心的角动量不断改变.C .它的动量不断改变,对圆心的角动量不变.D .它的动量不断改变,对圆心的角动量也不断改变.3质量为m 的质点在外力作用下,其运动方程为j t B i t A rωωsin cos +=式中A 、B 、ω都是正的常量.由此可知外力在t =0到t =π/(2ω)这段时间内所作的功为( )A . )(21222B A m +ω B . )(222B A m +ωC . )(21222B A m -ωD . )(21222A B m -ω4.用细绳系一小球使之在竖直平面内作圆周运动,当小球运动到最高点时:( )A 它将受重力、绳的拉力和向心力的作B .它将受重力、绳的拉力和离心力的作用C .绳子中的拉力可能为零D .小球所受的合力可能为零5.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是( )A.匀加速运动B. 变加速运动C. 匀速直线运动D. 变减速运动6.如图3所示,一静止的均匀细棒,长为L 、质量为绕通过棒的端点且垂直于棒长的光滑固定轴,O 面内转动,转动惯量为231ML ,一质量为m 、速率为v 的子弹在水平面 内沿与棒垂直的方向射入并 穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此 时棒的角速度应为( )A .ML mv ; B .MLmv 23; C .ML mv 35; D .ML mv47。
大学物理力学考试题及答案
大学物理力学考试题及答案一、选择题(每题3分,共30分)1. 一个物体的质量为2kg,受到的力为10N,那么它的加速度是多少?A. 5 m/s²B. 10 m/s²C. 15 m/s²D. 20 m/s²答案:B2. 根据牛顿第二定律,力F、质量m和加速度a之间的关系是:A. F = m * aB. F = m / aC. F = a * mD. F = a + m答案:A3. 一个物体从静止开始自由下落,忽略空气阻力,其下落的加速度为:A. 9.8 m/s²B. 19.6 m/s²C. 0 m/s²D. 1 g答案:A4. 一个物体在水平面上以10 m/s的速度做匀速直线运动,它的动量大小为:A. 10 kg·m/sB. 20 kg·m/sC. 无法确定,因为物体的质量未知D. 5 kg·m/s答案:C5. 根据能量守恒定律,一个物体的动能和势能之和:A. 随时间增加而增加B. 随时间减少而减少C. 在没有外力作用下保持不变D. 总是大于物体的动能答案:C6. 一个弹簧的劲度系数为1000 N/m,如果挂上一个1kg的物体,弹簧伸长的长度是多少?A. 0.1 mB. 1 mC. 10 mD. 无法确定,因为缺少物体的加速度答案:A7. 两个物体之间的万有引力与它们的质量乘积成正比,与它们之间的距离的平方成反比。
这个定律是由哪位科学家提出的?A. 牛顿B. 爱因斯坦C. 伽利略D. 库仑答案:A8. 一个物体在斜面上下滑,斜面倾角为30°,物体与斜面之间的摩擦系数为0.1,那么物体受到的摩擦力大小为:A. mg sin(30°)B. mg cos(30°)C. μ(mg cos(30°))D. μ(mg sin(30°))答案:D9. 一个物体在水平面上以恒定的加速度加速运动,已知它的初速度为3 m/s,末速度为15 m/s,经过的时间为4秒,那么它的加速度是多少?A. 2.25 m/s²B. 4 m/s²C. 5 m/s²D. 10 m/s²答案:B10. 一个物体在竖直上抛运动中,达到最高点时,它的加速度为:A. 0 m/s²B. g (重力加速度)C. -g (重力加速度)D. 2g (重力加速度)答案:C二、填空题(每题4分,共20分)11. 牛顿第三定律指出,作用力和反作用力大小________,方向________,作用在________的物体上。
大学力学专业《大学物理(下册)》期末考试试卷 附答案
大学力学专业《大学物理(下册)》期末考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。
开始他们的压强和温度都相同,现将3J的热量传给氦气,使之升高一定的温度。
若使氧气也升高同样的温度,则应向氧气传递的热量为_________J。
2、一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度与不透明部分宽度相等,则可能看到的衍射光谱的级次为____________。
3、如图所示,轴沿水平方向,轴竖直向下,在时刻将质量为的质点由a处静止释放,让它自由下落,则在任意时刻,质点所受的对点的力矩=________ ;在任意时刻,质点对原点的角动量=_____________。
4、一个力F作用在质量为 1.0 kg的质点上,使之沿x轴运动.已知在此力作用下质点的运动学方程为 (SI).在0到4 s的时间间隔内, (1) 力F的冲量大小I =__________________. (2) 力F对质点所作的功W =________________。
5、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。
现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。
6、将热量Q传给一定量的理想气体:(1)若气体的体积不变,则热量转化为_____________________________。
(2)若气体的温度不变,则热量转化为_____________________________。
(3)若气体的压强不变,则热量转化为_____________________________。
(完整版)大学物理(力学)试卷附答案
大 学 物 理(力学)试 卷一、选择题(共27分) 1.(本题3分)如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ] 2.(本题3分)几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 3.(本题3分)关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ] 4.(本题3分)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ]5.(本题3分)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ ] 6.(本题3分)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ]7.(本题3分)关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的. (C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ] 8.(本题3分)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ] 9.(本题3分)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫⎝⎛=R JmR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. [ ]二、填空题(共25分)10.(本题3分)半径为20 cm 的主动轮,通过皮带拖动半径为50 cm 的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s 内被动轮的角速度达到8πrad ·s -1,则主动轮在这段时间内转过了________圈. 11.(本题5分)绕定轴转动的飞轮均匀地减速,t =0时角速度为ω 0=5 rad / s ,t =20 s 时角速度为ω = 0.8ω 0,则飞轮的角加速度β =______________,t =0到 t =100 s 时间内飞轮所转过的角度θ =___________________. 12.(本题4分)半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =________,法向加速度a n =_______________. 13.(本题3分)一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度ω0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后,物体停止了转动.物体的转动惯量J =__________. 14.(本题3分)一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________. 15.(本题3分)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________. 16.(本题4分)在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一质量也为m 的套管B (可看作质点),套管用细线拉住,它到竖直的光滑固定轴OO '的距离为l 21,杆和套管所组成的系统以角速度ω0绕OO '轴转动,如图所示.若在转动过程中细线被拉断,套管将沿着杆滑动.在套管滑动过程中,该系统转动的角速度ωmm m0v 俯视图与套管离轴的距离x 的函数关系为_______________.(已知杆本身对OO '轴的转动惯量为231ml )三、计算题(共38分) 17.(本题5分)如图所示,一圆盘绕通过其中心且垂直于盘面的转轴,以角速度ω作定轴转动,A 、B 、C 三点与中心的距离均为r .试求图示A 点和B 点以及A 点和C 点的速度之差B A v v ϖϖ-和C A v v ϖϖ-.如果该圆盘只是单纯地平动,则上述的速度之差应该如何? 18.(本题5分)一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.19.(本题10分)一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.20.(本题8分)如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n ;(2) 两轮各自所受的冲量矩.21.(本题10分)空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .) 回答问题(共10分) 22.(本题5分)绕固定轴作匀变速转动的刚体,其上各点都绕转轴作圆周运动.试问刚体上任意一点是否有切向加速度?是否有法向加速度?切向加速度和法向加速度的大小是否变化?理由如何? 23.(本题5分)一个有竖直光滑固定轴的水平转台.人站立在转台上,身体的中心轴线与转台竖直轴线重合,两臂伸开各举着一个哑铃.当转台转动时,此人把两哑铃水平地收缩到胸前.在这一收缩过程中,(1) 转台、人与哑铃以及地球组成的系统机械能守恒否?为什么? (2) 转台、人与哑铃组成的系统角动量守恒否?为什么?(3) 每个哑铃的动量与动能守恒否?为什么?大 学 物 理(力学) 试 卷 解 答一、选择题(共27分)C D C C C D B C A 二、填空题(共25分) 10.(本题3分)20 参考解: r 1ω1=r 2ω2 , β1 = ω1 / t 1 ,θ1=21121t β 21211412ωθr r n π=π=4825411⨯π⨯⨯π=t =20 rev11.(本题5分)-0.05 rad ·s -2 (3分)250 rad (2分)12.(本题4分)0.15 m ·s -2(2分)1.26 m ·s -2(2分)参考解: a t =R ·β =0.15 m/s 2 a n =R ω 2=R ·2βθ =1.26 m/s 2 13.(本题3分)0.25 kg ·m 2(3分) 14.(本题3分)157N·m (3分) 15.(本题3分)3v 0/(2l )16.(本题4分)()2202347xl l +ω三、计算题(共38分) 17.(本题5分)解:由线速度r ϖϖϖ⨯=ωv 得A 、B 、C 三点的线速度ωr C B A ===v v v ϖϖϖ 1分各自的方向见图.那么,在该瞬时 ωr A B A 22==-v v v ϖϖϖθ=45° 2分同时 ωr A C A 22==-v v v ϖϖϖ方向同A v ϖ. 1分平动时刚体上各点的速度的数值、方向均相同,故0=-=-C A B A v v v v ϖϖϖϖ 1分 [注]此题可不要求叉积公式,能分别求出 A v ϖ、B v ϖ的大小,画出其方向即可. 18.(本题5分)解:根据转动定律: J d ω / d t = -k ω∴t Jkd d -=ωω2分 两边积分:⎰⎰-=t t Jk 02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k 3分19.(本题10分)θ BC AωB v ϖC v ϖA v ϖB v ϖ-A v ϖB v v A ϖϖ- -C v ϖ A v ϖ解:受力分析如图所示. 2分 2mg -T 1=2ma 1分 T 2-mg =ma 1分T 1 r -T r =β221mr 1分T r -T 2 r =β221mr 1分a =r β2分解上述5个联立方程得: T =11mg / 8 2分20.(本题8分)解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒1分 J A ωA +J B ωB = (J A +J B )ω, 2分 又ωB =0得 ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min 1分(2) A 轮受的冲量矩⎰t MAd = J A (ω -ωA ) = -4.19×10 2 N ·m ·s 2分负号表示与A ωϖ方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s 2分方向与A ωϖ相同.21.(本题10分)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.两个守恒及势能零点各1分,共3分小球到B 点时: J 0ω0=(J 0+mR 2)ω ① 1分()22220200212121BR m J mgR J v ++=+ωωω ② 2分 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得222002J mR RJ gR B ++=ωv 1分 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即:()R mg m C 2212=v , gR C 4=v 2分四、问答题(共10分) 22.(本题5分)答:设刚体上任一点到转轴的距离为r ,刚体转动的角速度为ω,角加速度为β,则由运动学关系有:切向加速度a t =r β 1分 法向加速度a n =r ω2 1分对匀变速转动的刚体来说β=d ω / d t =常量≠0,因此d ω=βd t ≠0,ω 随时间变化,即ω=ω (t ). 1分所以,刚体上的任意一点,只要它不在转轴上(r ≠0),就一定具有切向加速度和法向加速度.前者大小不变,后者大小随时间改变. 2分(未指出r ≠0的条件可不扣分)m 2m βT 2 2P ϖ1P ϖTa T 1a23.(本题5分)答:(1) 转台、人、哑铃、地球系统的机械能不守恒. 1分因人收回二臂时要作功,即非保守内力的功不为零,不满足守恒条件. 1分 (2) 转台、人、哑铃系统的角动量守恒.因系统受的对竖直轴的外力矩为零. 1分(3) 哑铃的动量不守恒,因为有外力作用. 1分 哑铃的动能不守恒,因外力对它做功. 1分 刚体题一 选择题 1.(本题3分,答案:C ;09B )一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.(本题3分,答案:D ;09A ) 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C)3 ω0. (D) 3 ω0.3.( 本题3分,答案:A ,08A )1.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. 二、填空题1(本题4分,08A, 09B )一飞轮作匀减速运动,在5s 内角速度由40πrad/s 减少到10π rad/s ,则飞轮在这5s 内总共转过了 圈,飞轮再经 的时间才能停止转动。
大学工程力学专业《大学物理(二)》月考试题C卷 附解析
大学工程力学专业《大学物理(二)》月考试题C卷附解析姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
2、一平行板空气电容器的两极板都是半径为R的圆形导体片,在充电时,板间电场强度的变化率为dE/dt.若略去边缘效应,则两板间的位移电流为__________________。
3、如图,在双缝干涉实验中,若把一厚度为e、折射率为n的薄云母片覆盖在缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O处的光程差为_________________。
4、一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度_____。
5、如图所示,一静止的均匀细棒,长为、质量为,可绕通过棒的端点且垂直于棒长的光滑固定轴在水平面内转动,转动惯量为。
一质量为、速率为的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为,则此时棒的角速度应为______。
6、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动的角速度_____。
7、如图所示,一束自然光入射到折射率分别为n1和n2的两种介质的交界面上,发生反射和折射.已知反射光是完全偏振光,那么折射角r的值为_______________________。
8、均匀细棒质量为,长度为,则对于通过棒的一端与棒垂直的轴的转动惯量为_____,对于通过棒的中点与棒垂直的轴的转动惯量_____。
9、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。
(完整版)大学物理力学测试题
《大学物理力学测试题》一、选择题1.下列力中不是保守力的是 ( )A 重力B 摩擦力C 万有引力D 静电力2.对于一个物理系统来说,下列哪种情况下系统的机械能守恒( )A 合外力为0B 合外力不做功C 外力和非保守内力都不做功D 外力和保守内力都不做功3.质量为m 的小球以水平速度v 与竖直墙做弹性碰撞,以小球的初速的方向为x 轴的正方向,则此过程中小球动量的增量为 ( )A mviB 0iC 2mviD 2mvi -4.以下四个物理量中是矢量的是哪一个 ( ) A 动能 B 转动惯量C 角动量D 变力作的功5.在卫星沿椭圆轨道绕地球运动过程中,下述不正确的说法是( )A 动量守恒B 角动量守恒C 动量不守恒D 动能不守恒 6.一运动质点的位置矢量为),(y x r ,则它的速度的大小是 ( )(A ) dt dr ; (B ) dt r d ; (C )dt dy dt dx +; (D )22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx 。
7.一质点的运动方程为()bt t b a at x -⎪⎭⎫ ⎝⎛-+=1ln 1,其中a 、b 为常数,则此质点的速度表达式为( )(A ))1ln(bt a --; (B ))1ln(bt a -; (C ) )1ln(bt b a --; (D ))1ln(bt ba -。
8.对于作用在有固定转轴的刚体上的力,以下说法不正确的是( )(A )当力平行于轴作用时,它对轴的力矩一定为零;(B )当力垂直于轴作用时,它对轴的力矩一定不为零;(C )如果是内力,则不会改变刚体的角动量;(D )如果是内力,则不会改变刚体的角加速度。
9. 均匀细杆OM 能绕O 轴在竖直平面内自由转动,如图所示。
今使细杆OM 从水平位置开始摆下,在细杆摆动到竖直位置的过程中,其角速度、角加速度的(A)角速度增大,角加速度减小;(B)角速度增大,角加速度增大;(C)角速度减小,角加速度减小;(D)角速度减小,角加速度增大。
大学力学专业《大学物理(一)》期中考试试卷A卷 含答案
姓名班级学号 ………密……….…………封…………………线…………………内……..………………不……………………. 准…………………答…. …………题…大学力学专业《大学物理(一)》期中考试试卷A 卷 含答案 考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
3、请仔细阅读各种题目的回答要求,在密封线内答题,否则不予评分。
一、填空题(共10小题,每题2分,共20分)1、一平面余弦波沿Ox 轴正方向传播,波动表达式为 ,则x = -处质点的振动方程是_____;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。
2、一质点作半径为0.1m 的圆周运动,其运动方程为:(SI ),则其切向加速度为=_____________。
3、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R ,轮子转速为n ,则轮子中心O 与轮边缘b 之间的感应电动势为______________,电势最高点是在______________处。
4、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。
现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。
5、一束光线入射到单轴晶体后,成为两束光线,沿着不同方向折射.这样的现象称为双折射现象.其中一束折射光称为寻常光,它______________定律;另一束光线称为非常光,它___________定律。
6、一质点作半径为0.1m 的圆周运动,其角位置的运动学方程为:,则其切向加速度大小为=__________ 第1秒末法向加速度的大小为=__________。
7、图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
大学力学专业《大学物理(二)》期中考试试题 附答案
大学力学专业《大学物理(二)》期中考试试题附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质点作半径为0.1m的圆周运动,其角位置的运动学方程为:,则其切向加速度大小为=__________第1秒末法向加速度的大小为=__________。
2、质量为m的物体和一个轻弹簧组成弹簧振子,其固有振动周期为T.当它作振幅为A的自由简谐振动时,其振动能量E=__________。
3、一个半径为、面密度为的均匀带电圆盘,以角速度绕过圆心且垂直盘面的轴线旋转;今将其放入磁感应强度为的均匀外磁场中,的方向垂直于轴线。
在距盘心为处取一宽度为的圆环,则该带电圆环相当的电流为________,该电流所受磁力矩的大小为________ ,圆________盘所受合力矩的大小为________。
4、均匀细棒质量为,长度为,则对于通过棒的一端与棒垂直的轴的转动惯量为_____,对于通过棒的中点与棒垂直的轴的转动惯量_____。
5、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
6、刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成______,与刚体本身的转动惯量成反比。
(填“正比”或“反比”)。
7、质点在平面内运动,其运动方程为,质点在任意时刻的位置矢量为________;质点在任意时刻的速度矢量为________;加速度矢量为________。
8、如图所示,一静止的均匀细棒,长为、质量为,可绕通过棒的端点且垂直于棒长的光滑固定轴在水平面内转动,转动惯量为。
一质量为、速率为的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为,则此时棒的角速度应为______。
大学物理复习题(力学部分)
16. 质量为1kg的物体在笔直的公路上以初速 度50m/s从原点开始出发,受变力F=2t+2N 的力的作用,求:(1)物体在第10秒末的 速度。 (2)物体在10秒内的位移。 17.一质量为m的物体,在力 F=(ati +bt2j) 的作用 下,由静止开始运动,求在任一时刻此力 所 做功的功率为多少。
力学部分复习题
一、选择题
1.如果一个系统在一个过程中只有保守力做功, 那么该过程中有 ( ) (A)动能守恒 (B)机械能守恒 (C)动量守恒 (D)角动量守恒 2. 质点系的动能增量为: (A)质点系所有外力做的功 (B)质点系所有内力做的功 (C)质点系所有内力和外力做功的代数和 (D)质点系保守力做的功
0
0
14. 一飞轮以速率n=1500转/分转动,受到制动而均匀的 减速,经t=50s后静止。 (1)求角加速度和从制动开始到静止飞轮的转数N。 (2)求制动开始后t=25时飞轮的角速度。 (3)设飞轮的半径R=1m,求t=25s时飞轮边缘上的一点 的速度和加速度。 15.一质点沿半径为0.1m的圆作圆周运动,所转过的角速 度 θ = 2 + 4t 3 rad (1)在t=2s时,质点的切向和法向加速度各为多少? (2) 为多大时,质点的总加速度方向与半径成45° θ 角?
3、质量为10 kg的质点,在外力作用下做曲 v v v 2 线运动,该质点的速度为v = 4t i + 16 k (SI) , 则在t = 0 s到t =1 s时间内,合外力对质点 所做的功为 。 4、 哈雷慧星绕太阳的轨道是以太阳为一个 焦点的椭圆。它离太阳最近的距离是r1,此 时它的速率是v1。它离太阳最远时的速率是 v2,这时它离太阳的距离是r2= 。
4. 对于一个物体系来说,在下列条件中,哪 种情况下系统的机械能守恒? (A) 合外力为零. (B) 合外力不作功. (C) 外力和保守内力都不作功. (D)) A重力 B 摩擦力 C静电场力 D 弹力 6. 力F=12t(SI)作用在质量m=2kg的物体上, 使物体由原点从静止开始运动,则它在3s 末的动量大小应为:( )
大学物理力学题库及答案
36、质量为m的质点,以不变速率v沿图中正三角形ABC的水平光滑轨道 运动.质点越过A角时,轨道作用于质点的冲量的大小为 (A) mv. (B) mv. (C) mv. (D) 2mv. [ ] 37、一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其 中一块作自由下落,则另一块着地点(飞行过程中阻力不计) (A) 比原来更远. (B) 比原来更近. (C) 仍和原来一样远. (D) 条件不足,不能判定. [ ] 38、 如图所示,砂子从h=0.8 m 高处下落到以3 m/s的速率水平向右 运动的传送带上.取重力加速度g=10 m/s2.传送带给予刚落到传送 带上的砂子的作用力的方向为 (A) 与水平夹角53°向下. (B) 与水平夹角53°向上. (C) 与水平夹角37°向上. (D) 与水平夹角37°向下. [ ] 39、 质量为20 g的子弹沿X轴正向以 500 m/s的速率射入一木块后,与 木块一起仍沿X轴正向以50 m/s的速率前进,在此过程中木块所受冲量 的大小为 (A) 9 N·s . (B) -9 N·s . (C)10 N·s . (D) -10 N·s . [ ]
率 (A) 不得小于. (C) 必须等于. (B) 不得大于. (D) 还应由汽车的质量M决定. [ ]
35、 在作匀速转动的水平转台上,与转轴相距R处有一体积很小的工件 A,如图所示.设工件与转台间静摩擦系数为νs,若使工件在转台上无 滑动,则转台的角速度ω应满足 (A) . (B) . (C) . (D) . [ ]
一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为x=3t-5t3 + 6 (SI),则该质点 作 (A) 匀加速直线运动,加速度沿x轴正方向. (B) 匀加速直线运动,加速度沿x轴负方向. (C) 变加速直线运动,加速度沿x轴正方向. (D) 变加速直线运动,加速度沿x轴负方向.
(完整版)大学物理(力学)试卷附答案
大 学 物 理(力学)试 卷一、选择题(共27分) 1.(本题3分)如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ] 2.(本题3分)几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 3.(本题3分)关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ] 4.(本题3分)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ]5.(本题3分)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ ] 6.(本题3分)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ]7.(本题3分)关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的. (C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ] 8.(本题3分)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ] 9.(本题3分)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫⎝⎛=R JmR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. [ ]二、填空题(共25分)10.(本题3分)半径为20 cm 的主动轮,通过皮带拖动半径为50 cm 的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s 内被动轮的角速度达到8πrad ·s -1,则主动轮在这段时间内转过了________圈. 11.(本题5分)绕定轴转动的飞轮均匀地减速,t =0时角速度为ω 0=5 rad / s ,t =20 s 时角速度为ω = 0.8ω 0,则飞轮的角加速度β =______________,t =0到 t =100 s 时间内飞轮所转过的角度θ =___________________. 12.(本题4分)半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =________,法向加速度a n =_______________. 13.(本题3分)一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度ω0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后,物体停止了转动.物体的转动惯量J =__________. 14.(本题3分)一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________. 15.(本题3分)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________. 16.(本题4分)在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一质量也为m 的套管B (可看作质点),套管用细线拉住,它到竖直的光滑固定轴OO '的距离为l 21,杆和套管所组成的系统以角速度ω0绕OO '轴转动,如图所示.若在转动过程中细线被拉断,套管将沿着杆滑动.在套管滑动过程中,该系统转动的角速度ωmm m0v 俯视图与套管离轴的距离x 的函数关系为_______________.(已知杆本身对OO '轴的转动惯量为231ml )三、计算题(共38分) 17.(本题5分)如图所示,一圆盘绕通过其中心且垂直于盘面的转轴,以角速度ω作定轴转动,A 、B 、C 三点与中心的距离均为r .试求图示A 点和B 点以及A 点和C 点的速度之差B A v v ϖϖ-和C A v v ϖϖ-.如果该圆盘只是单纯地平动,则上述的速度之差应该如何? 18.(本题5分)一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.19.(本题10分)一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.20.(本题8分)如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n ;(2) 两轮各自所受的冲量矩.21.(本题10分)空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .) 回答问题(共10分) 22.(本题5分)绕固定轴作匀变速转动的刚体,其上各点都绕转轴作圆周运动.试问刚体上任意一点是否有切向加速度?是否有法向加速度?切向加速度和法向加速度的大小是否变化?理由如何? 23.(本题5分)一个有竖直光滑固定轴的水平转台.人站立在转台上,身体的中心轴线与转台竖直轴线重合,两臂伸开各举着一个哑铃.当转台转动时,此人把两哑铃水平地收缩到胸前.在这一收缩过程中,(1) 转台、人与哑铃以及地球组成的系统机械能守恒否?为什么? (2) 转台、人与哑铃组成的系统角动量守恒否?为什么?(3) 每个哑铃的动量与动能守恒否?为什么?大 学 物 理(力学) 试 卷 解 答一、选择题(共27分)C D C C C D B C A 二、填空题(共25分) 10.(本题3分)20 参考解: r 1ω1=r 2ω2 , β1 = ω1 / t 1 ,θ1=21121t β 21211412ωθr r n π=π=4825411⨯π⨯⨯π=t =20 rev11.(本题5分)-0.05 rad ·s -2 (3分)250 rad (2分)12.(本题4分)0.15 m ·s -2(2分)1.26 m ·s -2(2分)参考解: a t =R ·β =0.15 m/s 2 a n =R ω 2=R ·2βθ =1.26 m/s 2 13.(本题3分)0.25 kg ·m 2(3分) 14.(本题3分)157N·m (3分) 15.(本题3分)3v 0/(2l )16.(本题4分)()2202347xl l +ω三、计算题(共38分) 17.(本题5分)解:由线速度r ϖϖϖ⨯=ωv 得A 、B 、C 三点的线速度ωr C B A ===v v v ϖϖϖ 1分各自的方向见图.那么,在该瞬时 ωr A B A 22==-v v v ϖϖϖθ=45° 2分同时 ωr A C A 22==-v v v ϖϖϖ方向同A v ϖ. 1分平动时刚体上各点的速度的数值、方向均相同,故0=-=-C A B A v v v v ϖϖϖϖ 1分 [注]此题可不要求叉积公式,能分别求出 A v ϖ、B v ϖ的大小,画出其方向即可. 18.(本题5分)解:根据转动定律: J d ω / d t = -k ω∴t Jkd d -=ωω2分 两边积分:⎰⎰-=t t Jk 02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k 3分19.(本题10分)θ BC AωB v ϖC v ϖA v ϖB v ϖ-A v ϖB v v A ϖϖ- -C v ϖ A v ϖ解:受力分析如图所示. 2分 2mg -T 1=2ma 1分 T 2-mg =ma 1分T 1 r -T r =β221mr 1分T r -T 2 r =β221mr 1分a =r β2分解上述5个联立方程得: T =11mg / 8 2分20.(本题8分)解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒1分 J A ωA +J B ωB = (J A +J B )ω, 2分 又ωB =0得 ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min 1分(2) A 轮受的冲量矩⎰t MAd = J A (ω -ωA ) = -4.19×10 2 N ·m ·s 2分负号表示与A ωϖ方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s 2分方向与A ωϖ相同.21.(本题10分)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.两个守恒及势能零点各1分,共3分小球到B 点时: J 0ω0=(J 0+mR 2)ω ① 1分()22220200212121BR m J mgR J v ++=+ωωω ② 2分 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得222002J mR RJ gR B ++=ωv 1分 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即:()R mg m C 2212=v , gR C 4=v 2分四、问答题(共10分) 22.(本题5分)答:设刚体上任一点到转轴的距离为r ,刚体转动的角速度为ω,角加速度为β,则由运动学关系有:切向加速度a t =r β 1分 法向加速度a n =r ω2 1分对匀变速转动的刚体来说β=d ω / d t =常量≠0,因此d ω=βd t ≠0,ω 随时间变化,即ω=ω (t ). 1分所以,刚体上的任意一点,只要它不在转轴上(r ≠0),就一定具有切向加速度和法向加速度.前者大小不变,后者大小随时间改变. 2分(未指出r ≠0的条件可不扣分)m 2m βT 2 2P ϖ1P ϖTa T 1a23.(本题5分)答:(1) 转台、人、哑铃、地球系统的机械能不守恒. 1分因人收回二臂时要作功,即非保守内力的功不为零,不满足守恒条件. 1分 (2) 转台、人、哑铃系统的角动量守恒.因系统受的对竖直轴的外力矩为零. 1分(3) 哑铃的动量不守恒,因为有外力作用. 1分 哑铃的动能不守恒,因外力对它做功. 1分 刚体题一 选择题 1.(本题3分,答案:C ;09B )一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.(本题3分,答案:D ;09A ) 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C)3 ω0. (D) 3 ω0.3.( 本题3分,答案:A ,08A )1.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. 二、填空题1(本题4分,08A, 09B )一飞轮作匀减速运动,在5s 内角速度由40πrad/s 减少到10π rad/s ,则飞轮在这5s 内总共转过了 圈,飞轮再经 的时间才能停止转动。
大学力学专业《大学物理(二)》开学考试试卷
大学力学专业《大学物理(二)》开学考试试卷姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、质量分别为m和2m的两物体(都可视为质点),用一长为l的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O转动,已知O轴离质量为2m的质点的距离为l,质量为m的质点的线速度为v且与杆垂直,则该系统对转轴的角动量(动量矩)大小为________。
2、一根无限长直导线通有电流I,在P点处被弯成了一个半径为R的圆,且P点处无交叉和接触,则圆心O处的磁感强度大小为_______________,方向为_________________。
3、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
4、气体分子的最可几速率的物理意义是__________________。
5、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:()。
①②③④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处。
(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________6、设作用在质量为1kg的物体上的力F=6t+3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s的时间间隔内,这个力作用在物体上的冲量大小I=__________________。
7、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。
大学力学专业《大学物理(一)》能力检测试题A卷 附答案
姓名班级学号………密……….…………封…………………线…………………内……..………………不…………………….准…………………答….…………题…大学力学专业《大学物理(一)》能力检测试题A卷附答案考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
3、请仔细阅读各种题目的回答要求,在密封线内答题,否则不予评分。
一、填空题(共10小题,每题2分,共20分)1、一质点作半径为0.1m的圆周运动,其角位置的运动学方程为:,则其切向加速度大小为=__________第1秒末法向加速度的大小为=__________。
2、气体分子的最可几速率的物理意义是__________________。
3、二质点的质量分别为、. 当它们之间的距离由a缩短到b时,万有引力所做的功为____________。
4、一长为的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
抬起另一端使棒向上与水平面呈60°,然后无初转速地将棒释放,已知棒对轴的转动惯量为,则(1) 放手时棒的角加速度为____;(2) 棒转到水平位置时的角加速度为____。
()5、如图所示,轴沿水平方向,轴竖直向下,在时刻将质量为的质点由a处静止释放,让它自由下落,则在任意时刻,质点所受的对点的力矩=________ ;在任意时刻,质点对原点的角动量=_____________。
6、已知质点的运动方程为,式中r的单位为m,t的单位为s。
则质点的运动轨迹方程,由t=0到t=2s内质点的位移矢量______m。
7、一小球沿斜面向上作直线运动,其运动方程为:,则小球运动到最高点的时刻是=_______S。
8、三个容器中装有同种理想气体,分子数密度相同,方均根速率之比为,则压强之比_____________。
9、真空中有一半径为R均匀带正电的细圆环,其电荷线密度为λ,则电荷在圆心处产生的电场强度的大小为____。
大学工程力学专业《大学物理(二)》月考试卷 附答案
大学工程力学专业《大学物理(二)》月考试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质量为0.2kg的弹簧振子, 周期为2s,此振动系统的劲度系数k为_______ N/m。
2、均匀细棒质量为,长度为,则对于通过棒的一端与棒垂直的轴的转动惯量为_____,对于通过棒的中点与棒垂直的轴的转动惯量_____。
3、一个质点的运动方程为(SI),则在由0至4s的时间间隔内,质点的位移大小为___________,在由0到4s的时间间用内质点走过的路程为___________。
4、质点p在一直线上运动,其坐标x与时间t有如下关系:(A为常数) (1) 任意时刻t,质点的加速度a =_______; (2) 质点速度为零的时刻t =__________.5、质量为的物体,初速极小,在外力作用下从原点起沿轴正向运动,所受外力方向沿轴正向,大小为。
物体从原点运动到坐标为点的过程中所受外力冲量的大小为_________。
6、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。
7、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。
一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。
8、一束光线入射到单轴晶体后,成为两束光线,沿着不同方向折射.这样的现象称为双折射现象.其中一束折射光称为寻常光,它______________定律;另一束光线称为非常光,它___________定律。
9、质点在平面内运动,其运动方程为,质点在任意时刻的位置矢量为________;质点在任意时刻的速度矢量为________;加速度矢量为________。
大学力学专业《大学物理(一)》综合检测试题B卷 附解析
姓名班级学号 ………密……….…………封…………………线…………………内……..………………不……………………. 准…………………答…. …………题…考试须知:123 一、填空题(共10小题,每题2分,共20分)1、一个绕有500匝导线的平均周长50cm 的细螺绕环,铁芯的相对磁导率为600,载有0.3A 电流时, 铁芯中的磁感应强度B 的大小为___________;铁芯中的磁场强度H 的大小为___________ 。
2、质点在平面内运动,其运动方程为,质点在任意时刻的位置矢量为________;质点在任意时刻的速度矢量为________;加速度矢量为________。
3、如图所示,一静止的均匀细棒,长为、质量为,可绕通过棒的端点且垂直于棒长的光滑固定轴在水平面内转动,转动惯量为。
一质量为、速率为的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为,则此时棒的角速度应为______。
4、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度_____。
5、如图所示,一束自然光入射到折射率分别为n1和n2的两种介质的交界面上,发生反射和折射.已知反射光是完全偏振光,那么折射角r 的值为_______________________。
6、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为(SI ),(SI ).其合振运动的振动方程为x =____________。
7、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
8、一圆锥摆摆长为I 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角,则: (1) 摆线的张力T =_____________________; (2) 摆锤的速率v =_____________________。
大学工程力学专业《大学物理(二)》期末考试试题C卷 附解析
大学工程力学专业《大学物理(二)》期末考试试题C卷附解析姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一个质点的运动方程为(SI),则在由0至4s的时间间隔内,质点的位移大小为___________,在由0到4s的时间间用内质点走过的路程为___________。
2、一小球沿斜面向上作直线运动,其运动方程为:,则小球运动到最高点的时刻是=_______S。
3、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动的角速度_____。
4、一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I=3A时,环中磁场能量密度w =_____________ .()5、一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度与不透明部分宽度相等,则可能看到的衍射光谱的级次为____________。
6、三个容器中装有同种理想气体,分子数密度相同,方均根速率之比为,则压强之比_____________。
7、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:()。
①②③④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处。
(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________8、静电场中有一质子(带电荷) 沿图示路径从a点经c点移动到b点时,电场力作功J.则当质子从b点沿另一路径回到a点过程中,电场力作功A=___________;若设a点电势为零,则b点电势=_________。
2022年大学力学专业《大学物理(一)》开学考试试卷D卷 含答案
姓名 班级学号 ………密……….…………封…………………线…………………内……..………………不……………………. 准…………………答…. …………题…2022年大学力学专业《大学物理(一)》开学考试试卷D 卷含答案考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
3、请仔细阅读各种题目的回答要求,在密封线内答题,否则不予评分。
一、填空题(共10小题,每题2分,共20分)1、简谐振动的振动曲线如图所示,相应的以余弦函数表示的振动方程为__________。
2、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度_____。
3、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为(SI ),(SI ).其合振运动的振动方程为x =____________。
4、一个绕有500匝导线的平均周长50cm 的细螺绕环,铁芯的相对磁导率为600,载有0.3A 电流时, 铁芯中的磁感应强度B 的大小为___________;铁芯中的磁场强度H 的大小为___________ 。
5、两列简谐波发生干涉的条件是_______________,_______________,_______________。
6、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。
7、一维保守力的势能曲线如图所示,则总能量为的粒子的运动范围为________;在________时,粒子的动能最大;________时,粒子的动能最小。
8、一平面余弦波沿Ox 轴正方向传播,波动表达式为 ,则x = -处质点的振动方程是_____;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。
2022年大学力学专业《大学物理(一)》开学考试试卷D卷 附答案
姓名班级学号………密……….…………封…………………线…………………内……..………………不…………………….准…………………答….…………题…2022年大学力学专业《大学物理(一)》开学考试试卷D卷附答案考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
3、请仔细阅读各种题目的回答要求,在密封线内答题,否则不予评分。
一、填空题(共10小题,每题2分,共20分)1、质量为M的物体A静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为的小球B以沿水平方向向右的速度与物体A发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L=__________。
2、一质点作半径为R的匀速圆周运动,在此过程中质点的切向加速度的方向______,法向加速度的大小______。
(填“改变”或“不变”)3、质量为的物体,初速极小,在外力作用下从原点起沿轴正向运动,所受外力方向沿轴正向,大小为。
物体从原点运动到坐标为点的过程中所受外力冲量的大小为_________。
4、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
5、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
6、质点p在一直线上运动,其坐标x与时间t有如下关系:(A为常数) (1) 任意时刻t,质点的加速度a =_______; (2) 质点速度为零的时刻t =__________.7、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
8、简谐振动的振动曲线如图所示,相应的以余弦函数表示的振动方程为__________。
9、一平面余弦波沿Ox轴正方向传播,波动表达式为,则x = -处质点的振动方程是_____;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大 学 物 理(力学)试 卷一、选择题(共27分)1.(本题3分)如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]2.(本题3分)几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ]3.(本题3分)关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ]4.(本题3分)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ] 5.(本题3分) 将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ ]6.(本题3分)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ] 7.(本题3分)关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量.(2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的.(C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ]8.(本题3分)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ]9.(本题3分)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ ] 二、填空题(共25分)10.(本题3分)半径为20 cm 的主动轮,通过皮带拖动半径为50 cm 的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s 内被动轮的角速度达到8πrad ·s -1,则主动轮在这段时间内转过了________圈.11.(本题5分)绕定轴转动的飞轮均匀地减速,t =0时角速度为ω 0=5 rad / s ,t =20 s 时角速度为ω =0.8ω 0,则飞轮的角加速度β =______________,t =0到 t =100 s 时间内飞轮所转过的角度θ =___________________.12.(本题4分)半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =________,法向加速度a n =_______________.13.(本题3分)一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度ω0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后,物体停止了转动.物体的转动惯量J =__________.14.(本题3分)一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________.15.(本题3分)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________. 16.(本题4分)在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一质量也为m 的套管B (可看作质点),套管用细线拉住,它到竖直的光滑固定m m m 0v 俯视图轴OO '的距离为l 21,杆和套管所组成的系统以角速度ω0绕OO '轴转动,如图所示.若与套管离轴的距离x 的函数关系为_______________.(已知杆本身对OO '轴的转动惯量为231ml )三、计算题(共38分)17.(本题5分)如图所示,一圆盘绕通过其中心且垂直于盘面的转轴,以角速度ω作定轴转动,A 、B 、C 三点与中心的距离均为r .试求图示A 点和B 点以及A 点和C 点的速度之差B A v v ϖϖ-和C A v v ϖϖ-.如果该圆盘只是单纯地平动,则上述的速度之差应该如何?18.(本题5分)一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.19.(本题10分)一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.20.(本题8分)如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩.21.(本题10分)空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)回答问题(共10分)22.(本题5分)绕固定轴作匀变速转动的刚体,其上各点都绕转轴作圆周运动.试问刚体上任意一点是否有切向加速度?是否有法向加速度?切向加速度和法向加速度的大小是否变化?理由如何?23.(本题5分)一个有竖直光滑固定轴的水平转台.人站立在转台上,身体的中心轴线与转台竖直轴线重合,两臂伸开各举着一个哑铃.当转台转动时,此人把两哑铃水平地收缩到胸前.在这一收缩过程中,(1) 转台、人与哑铃以及地球组成的系统机械能守恒否?为什么?(2) 转台、人与哑铃组成的系统角动量守恒否?为什么?(3) 每个哑铃的动量与动能守恒否?为什么?大 学 物 理(力学) 试 卷 解 答一、选择题(共27分)C D C C C D B C A二、填空题(共25分)10.(本题3分)20参考解: r 1ω1=r 2ω2 , β1 = ω1 / t 1 , θ1=21121t β 21211412ωθr r n π=π=4825411⨯π⨯⨯π=t =20 rev11.(本题5分)-0.05 rad ·s -2 (3分)250 rad (2分)12.(本题4分)0.15 m ·s -2(2分)1.26 m ·s -2(2分)参考解: a t =R ·β =0.15 m/s 2 a n =R ω 2=R ·2βθ =1.26 m/s 213.(本题3分)0.25 kg ·m 2(3分)14.(本题3分)157N·m (3分)15.(本题3分)3v 0/(2l )16.(本题4分)()2202347x l l +ω 三、计算题(共38分) 17.(本题5分)解:由线速度r ϖϖϖ⨯=ωv 得A 、B 、C 三点的线速度ωr C B A ===v v v ϖϖϖ 1分 各自的方向见图.那么,在该瞬时 ωr A B A 22==-v v v ϖϖϖθ=45°2分 同时 ωr A C A 22==-v v v ϖϖϖ方向同A v ϖ.1分 平动时刚体上各点的速度的数值、方向均相同,故0=-=-C A B A v v v v ϖϖϖϖ1分 [注]此题可不要求叉积公式,能分别求出 A v ϖ、B v ϖ的大小,画出其方向即可.18.(本题5分)解:根据转动定律: J d ω / d t = -k ω∴ t J kd d -=ωω2分 两边积分: ⎰⎰-=tt J k02/d d 100ωωωω得 ln2 = kt / JθBCAω B v ϖC v ϖA v ϖB v ϖ-A v ϖB v v A ϖϖ--C v ϖ A v ϖ∴ t =(J ln2) / k 3分19.(本题10分)解:受力分析如图所示. 2分2mg -T 1=2ma 1分 T 2-mg =ma 1分 T 1 r -T r =β221mr 1分 T r -T 2 r =β221mr 1分 a =r β2分解上述5个联立方程得: T =11mg / 8 2分20.(本题8分)解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒1分J A ωA +J B ωB = (J A +J B )ω, 2分又ωB =0得 ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s转速 ≈n 200 rev/min 1分(2) A 轮受的冲量矩⎰t M A d = J A (ω -ωA ) = -4.19×10 2 N ·m ·s 2分 负号表示与A ωϖ方向相反.B 轮受的冲量矩⎰t M B d = J B (ω - 0) = 4.19×102 N ·m ·s 2分 方向与A ωϖ相同.21.(本题10分)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.两个守恒及势能零点各1分,共3分小球到B 点时: J 0ω0=(J 0+mR 2)ω ① 1分()22220200212121B R m J mgR J v ++=+ωωω ② 2分 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得: ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得0222002J mR R J gR B ++=ωv 1分 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即:()R mg m C 2212=v , gR C 4=v 2分四、问答题(共10分)22.(本题5分)答:设刚体上任一点到转轴的距离为r ,刚体转动的角速度为ω,角加速度为β,则由运动学关系有:切向加速度a t =r β 1分法向加速度a n =r ω2 1分对匀变速转动的刚体来说β=d ω / d t =常量≠0,因此d ω=βd t ≠0,ω 随时间变化,即ω=ω (t ). 1分所以,刚体上的任意一点,只要它不在转轴上(r ≠0),就一定具有切向加速度和法向加速m 2m β T 2 2P ϖ 1P ϖ T a T 1 a度.前者大小不变,后者大小随时间改变. 2分(未指出r ≠0的条件可不扣分)23.(本题5分)答:(1) 转台、人、哑铃、地球系统的机械能不守恒. 1分因人收回二臂时要作功,即非保守内力的功不为零,不满足守恒条件. 1分(2) 转台、人、哑铃系统的角动量守恒.因系统受的对竖直轴的外力矩为零. 1分(3) 哑铃的动量不守恒,因为有外力作用. 1分哑铃的动能不守恒,因外力对它做功. 1分刚体试题一 选择题1.(本题3分,答案:C ;09B )一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.(本题3分,答案:D ;09A ) 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. 3.( 本题3分,答案:A ,08A )1.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大.二、填空题1(本题4分,08A, 09B )一飞轮作匀减速运动,在5s 内角速度由40π rad/s 减少到10π rad/s ,则飞轮在这5s 内总共转过了 圈,飞轮再经 的时间才能停止转动。