二次型及其矩阵表示

合集下载

线性代数:第五章二次型

线性代数:第五章二次型

线性代数:第五章⼆次型第五章⼆次型§1 ⼆次型及其矩阵表⽰⼀、⼆次型及其矩阵表⽰设是⼀个数域,⼀个系数在数域中的的⼆次齐次多项式称为数域上的⼀个元⼆次型,简称⼆次型.定义1 设是两组⽂字,系数在数域P中的⼀组关系式(2)称为由到的⼀个线性替换,或简称线性替换.如果系数⾏列式,那么线性替换(2)就称为⾮退化的.线性替换把⼆次型变成⼆次型.令由于所以⼆次型(1)可写成把(3)的系数排成⼀个矩阵(4)它称为⼆次型(3)的矩阵.因为所以把这样的矩阵称为对称矩阵,因此,⼆次型的矩阵都是对称的.令或应该看到⼆次型(1)的矩阵A的元素,当时正是它的项的系数的⼀半,⽽是项的系数,因此⼆次型和它的矩阵是相互唯⼀决定的.由此可得,若⼆次型且,则.令,于是线性替换(4)可以写成或者经过⼀个⾮退化的线性替换,⼆次型还是变成⼆次型,替换后的⼆次型与原来的⼆次型之间有什么关系,即找出替换后的⼆次型的矩阵与原⼆次型的矩阵之间的关系.设(7)是⼀个⼆次型,作⾮退化线性替换(8)得到⼀个的⼆次型,⼆、矩阵的合同关系现在来看矩阵与的关系.把(8)代⼊(7),有易看出,矩阵也是对称的,由此即得.这是前后两个⼆次型的矩阵的关系。

定义2 数域P上两个阶矩阵,称为合同的,如果有数域P上可逆的矩阵,使得.合同是矩阵之间的⼀个关系,具有以下性质:1) ⾃反性:任意矩阵都与⾃⾝合同.2) 对称性:如果与合同,那么与合同.3) 传递性:如果与合同,与合同,那么与合同.因此,经过⾮退化的线性替换,新⼆次型的矩阵与原来⼆次型的矩阵是合同的。

这样把⼆次型的变换通过矩阵表⽰出来,为以下的讨论提供了有⼒的⼯具。

最后指出,在变换⼆次型时,总是要求所作的线性替换是⾮退化的。

从⼏何上看,这⼀点是⾃然的因为坐标变换⼀定是⾮退化的。

⼀般地,当线性替换是⾮退化时,由上⾯的关系即得.这也是⼀个线性替换,它把所得的⼆次型还原.这样就使我们从所得⼆次型的性质可以推知原来⼆次型的⼀些性质.§2 标准形⼀、⼆次型的标准型⼆次型中最简单的⼀种是只包含平⽅项的⼆次型. (1)定理1 数域上任意⼀个⼆次型都可以经过⾮化线性替换变成平⽅和(1)的形式.易知,⼆次型(1)的矩阵是对⾓矩阵,反过来,矩阵为对⾓形的⼆次型就只包含平⽅项.按上⼀节的讨论,经过⾮退化的线性替换,⼆次型的矩阵变到⼀个合同的矩阵,因此⽤矩阵的语⾔,定理1可以叙述为:定理2 在数域上,任意⼀个对称矩阵都合同于⼀对⾓矩阵.定理2也就是说,对于任意⼀个对称矩阵都可以找到⼀个可逆矩阵使成对⾓矩阵.⼆次型经过⾮退化线性替换所变成的平⽅和称为的标准形.例化⼆次型为标准形.⼆、配⽅法1.这时的变量替换为令,则上述变量替换相应于合同变换为计算,可令.于是和可写成分块矩阵,这⾥为的转置,为级单位矩阵.这样矩阵是⼀个对称矩阵,由归纳法假定,有可逆矩阵使为对⾓形,令,于是,这是⼀个对⾓矩阵,我们所要的可逆矩阵就是.2. 但只有⼀个.这时,只要把的第⼀⾏与第⾏互换,再把第⼀列与第列互换,就归结成上⾯的情形,根据初等矩阵与初等变换的关系,取⾏显然.矩阵就是把的第⼀⾏与第⾏互换,再把第⼀列与第列互换.因此,左上⾓第⼀个元素就是,这样就归结到第⼀种情形.3. 但有⼀与上⼀情形类似,作合同变换可以把搬到第⼀⾏第⼆列的位置,这样就变成了配⽅法中的第⼆种情形.与那⾥的变量替换相对应,取,于是的左上⾓就是,也就归结到第⼀种情形.4.由对称性,也全为零.于是,是级对称矩阵.由归纳法假定,有可逆矩阵使成对⾓形.取,就成对⾓形.例化⼆次型成标准形.§3 唯⼀性经过⾮退化线性替换,⼆次型的矩阵变成⼀个与之合同的矩阵.由第四章§4定理4,合同的矩阵有相同的秩,这就是说,经过⾮退化线性替换后,⼆次型矩阵的秩是不变的.标准形的矩阵是对⾓矩阵,⽽对⾓矩阵的秩就等于它对⾓线上不为零的平⽅项的个数.因之,在⼀个⼆次型的标准形中,系数不为零的平⽅项的个数是唯⼀确定的,与所作的⾮退化线性替换⽆关,⼆次型矩阵的秩有时就称为⼆次型的秩.⾄于标准形中的系数,就不是唯⼀确定的.在⼀般数域内,⼆次型的标准形不是唯⼀的,⽽与所作的⾮退化线性替换有关.下⾯只就复数域与实数域的情形来进⼀步讨论唯⼀性的问题.设是⼀个复系数的⼆次型,由本章定理1,经过⼀适当的⾮退化线性替换后,变成标准形,不妨假定化的标准形是. (1)易知就是的矩阵的秩.因为复数总可以开平⽅,再作⼀⾮退化线性替换(2)(1)就变成(3)(3)就称为复⼆次型的规范形.显然,规范形完全被原⼆次型矩阵的秩所决定,因此有定理3 任意⼀个复系数的⼆次型经过⼀适当的⾮退化线性替换可以变成规范形,且规范形是唯⼀的.定理3 换个说法就是,任⼀复数的对称矩阵合同于⼀个形式为的对⾓矩阵.从⽽有两个复数对称矩阵合同的充要条件是它们的秩相等.设是⼀实系数的⼆次型.由本章定理1,经过某⼀个⾮退化线性替换,再适当排列⽂字的次序,可使变成标准形(4)其中是的矩阵的秩.因为在实数域中,正实数总可以开平⽅,所以再作⼀⾮退化线性替换(5)(4) 就变成(6)(6)就称为实⼆次型的规范形.显然规范形完全被这两个数所决定.定理4 任意⼀个实数域上的⼆次型,经过⼀适当的⾮退化线性替换可以变成规范形,且规范形是唯⼀的.这个定理通常称为惯性定理.定义3 在实⼆次型的规范形中,正平⽅项的个数称为的正惯性指数;负平⽅项的个数称为的负惯性指数;它们的差称为的符号差.应该指出,虽然实⼆次型的标准形不是唯⼀的,但是由上⾯化成规范形的过程可以看出,标准形中系数为正的平⽅项的个数与规范形中正平⽅项的个数是⼀致的,因此,惯性定理也可以叙述为:实⼆次型的标准形中系数为正的平⽅项的个数是唯⼀的,它等于正惯性指数,⽽系数为负的平⽅项的个数就等于负惯性指数.定理5 (1)任⼀复对称矩阵都合同于⼀个下述形式的对⾓矩阵:.其中对⾓线上1 的个数等于的秩.(2)任⼀实对称矩阵都合同于⼀个下述形式的对⾓矩阵:,其中对⾓线上1的个数及-1的个数(等于的秩)都是唯⼀确定的,分别称为的正、负惯性指数,它们的差称为的符号差..§4 正定⼆次型⼀、正定⼆次型定义4 实⼆次型称为正定的,如果对于任意⼀组不全为零的实数都有.实⼆次型是正定的当且仅当.设实⼆次型(1)是正定的,经过⾮退化实线性替换(2)变成⼆次型(3)则的⼆次型也是正定的,或者说,对于任意⼀组不全为零的实数都有.因为⼆次型(3)也可以经⾮退化实线性替换变到⼆次型(1),所以按同样理由,当(3)正定时(1)也正定.这就是说,⾮退化实线性替换保持正定性不变.⼆、正定⼆次型的判别定理6 实数域上⼆次型是正定的它的正惯性指数等于.定理6说明,正定⼆次型的规范形为(5)定义5 实对称矩阵A称为正定的,如果⼆次型正定.因为⼆次型(5)的矩阵是单位矩阵E,所以⼀个实对称矩阵是正定的它与单位矩阵合同.推论正定矩阵的⾏列式⼤于零.定义6 ⼦式称为矩阵的顺序主⼦式.定理7 实⼆次型是正定的矩阵的顺序主⼦式全⼤于零.例判定⼆次型是否正定.定义7 设是⼀实⼆次型,如果对于任意⼀组不全为零的实数都有,那么称为负定的;如果都有,那么称为半正定的;如果都有,那么称为半负定的;如果它既不是半正定⼜不是半负定,那么就称为不定的.由定理7不难看出负定⼆次型的判别条件.这是因为当是负定时,就是正定的.定理8 对于实⼆次型,其中是实对称的,下列条件等价:(1)是半正定的;(2)它的正惯性指数与秩相等;(3)有可逆实矩阵,使其中;(4)有实矩阵使.(5)的所有主⼦式皆⼤于或等于零;注意,在(5)中,仅有顺序主⼦式⼤于或等于零是不能保证半正定性的.⽐如就是⼀个反例.证明 Th8,设的主⼦式全⼤于或等于零,是的级顺序主⼦式,是对应的矩阵其中是中⼀切级主⼦式之和,由题设,故当时,,是正定矩阵.若不是半正定矩阵,则存在⼀个⾮零向量,使令与时是正定矩阵⽭盾,故是半正定矩阵.Th8记的⾏指标和列指标为的级主⼦式为,对应矩阵是,对任意,有,其中⼜是半正定矩阵,从⽽.若,则P234,12T,存在使与⽭盾,所以.◇设为级实矩阵,且,则都是正定矩阵.◇设为实矩阵,则都是半正定矩阵.证明是实对称矩阵,令,则是维实向量是半正定矩阵,同理可证是半正定矩阵.◇设是级正定矩阵,则时,都是正定矩阵.证明由于正定,存在可逆矩阵,使,,从⽽为正定矩阵.正定⼜正定, ,正定,正定.对称当时,,从⽽正定.当时,所以与合同,因⽽正定.第五章⼆次型(⼩结)⼀、⼆次型与矩阵1. 基本概念⼆次型;⼆次型的矩阵和秩;⾮退化线性替换;矩阵的合同.2. 基本结论(1) ⾮退化线性替换把⼆次型变为⼆次型.(2) ⼆次型可经⾮退化的线性替换化为⼆次型.(3) 矩阵的合同关系满⾜反⾝性、对称性和传递性.⼆、标准形1. 基本概念⼆次型的标准形;配⽅法.2. 基本定理(1) 数域上任意⼀个⼆次型都可经过⾮退化的线性替换化为标准形式.(2) 在数域上,任意⼀个对称矩阵都合同于⼀对⾓矩阵.三、唯⼀性1. 基本概念复⼆次型的规范形;实⼆次型的规范形,正惯性指数、负惯性指数、符号差.2. 基本定理(1) 任⼀复⼆次型都可经过⾮退化的线性替换化为唯⼀的规范形式的秩.因⽽有:两个复对称矩阵合同它们的秩相等.(2) 惯性定律:任⼀实⼆次型都可经过⾮退化线性替换化为唯⼀的规范形式的秩,为的惯性指数.因⽽两个元实⼆次型可经过⾮退化线性替换互化它们分别有相同的秩和惯性指数.(4) 实⼆次型的标准形式中系数为正的平⽅项的个数是唯⼀确定的,它等于正惯性指数,⽽系数为负的平⽅项的个数就等于负惯性指数.四、正定⼆次型1. 基本概念正定⼆次型,正定矩阵;顺序主⼦式,负定⼆次型,半正定⼆次型,半负定⼆次型,不定⼆次型.2. 基本结论(1) ⾮退化线性替换保持实⼆次型的正定性不变.(2) 实⼆次型正定①与单位矩阵合同,即存在可逆矩阵,使得;②的顺序主⼦式都⼤于零.③的正惯性指数等于.。

6.1二次型的定义及其矩阵表示

6.1二次型的定义及其矩阵表示
对称矩阵A的秩叫做二次型 f 的秩.
• 例1 用矩阵形式表示下列二次型 • (1) f (x, y) 5x2 8xy 3y2 • 解: a11 5, a12 a21 4, a22 3
• 所以
f
(x,
y)
x,Байду номын сангаас
y
5 4
4 x
3
y
• (2) • 解:
f
(x1, x2 , x3
a11 0, a12
一、二次型的概念
定义4.11
含有n个变量 x1 ,
x2 ,
,
x
的二次齐次函数
n
f x1 , x2 , , xn a11 x12 a22 x22 ann xn2
2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn
称为二次型. 简记为 f f (x1, , xn )
当aij是复数时, f称为复二次型 ;
当aij是实数时, f称为实二次型 .
1/21
二、二次型的表示方法
1.用和号表示
对二次型
f x1 , x2 , , xn a11 x12 a22 x22 ann xn2
2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn 取a ji aij , 则2aij xi x j aij xi x j a ji x j xi ,于是
)12x, 3a2 13
x1x2
0;
2 x2
x3
a21
1 2
, a22
0, a23
1;
a31 0, a32 1, a33 1
• 所以:
0
1 2
0
A
1 2
0

6-1 二次型及其矩阵表示

6-1 二次型及其矩阵表示
11 湘潭大学数学与计算科学学院 王文强 上一页 下一页 返 回
将其代入
f x T Ax , 有
f x Ax
T
Cy
T A Cy y T C T AC y .
合同矩阵
定义 使得 C AC B ,
T
设 A 和 B 是 n 阶矩阵,若存在
n 阶可逆矩阵
C,
则称 A 合同于 B ,记作 A ~ B .
2
x 1 ( a 11 x 1 a 12 x 2 a 1 n x n ) x 2 ( a 21 x 1 a 22 x 2 a 2 n x n ) x n ( a n 1 x 1 a n 2 x 2 a nn x n ) a 11 x 1 a 12 x 2 a 1 n x n a 21 x 1 a 22 x 2 a 2 n x n ( x 1 , x 2 , , x n ) a n 1 x 1 a n 2 x 2 a nn x n
12 湘潭大学数学与计算科学学院 王文强 上一页 下一页 返 回
合同关系是一种等价关系: (i) 反身性:
A
~
A
(ii) 对称性:若 A ~ B ,则 B ~ A (iii) 传递性:若 A ~ B,B ~ C 则 A ~ C .
13 湘潭大学数学与计算科学学院 王文强 上一页 下一页 返 回
作业
2.用矩阵表示
f a 11 x 1 a 12 x 1 x 2 a 1 n x 1 x n
2
a 21 x 2 x 1 a 22 x 2 a 2 n x 2 x n
2
a n 1 x n x 1 a n 2 x n x 2 a nn x n

6.1 二次型及其矩阵表示

6.1 二次型及其矩阵表示

6
第 六 章 二 次 型
§6.1 二次型及其矩阵表示
二、二次型的矩阵表示
推导 f ( x1 , x2 , L , xn ) =
2 a11 x1 + a12 x1 x2 + L + a1n x1 x n 2 + a 21 x 2 x1 + a22 x2 + L + a2 n x2 x n
LLLLLLLLLL 2 + a n1 xn x1 + an 2 xn x2 + L + ann xn
§6.1 二次型及其矩阵表示
一、二次型的概念
定义 含有 n 个变量的二次齐次多项式称为 n 元二次型。 个变量的二次齐次 二次齐次多项式称为 二次型。
(一般) 一般)
2 2 例如 (1) f ( x , y ) = 3 x + 8 x y + 2 y
是一个二 二次型。 是一个二元二次型。
2 2 2 (2) f ( x , y , z ) = x + 2 x y + 6 x z + 2 y + 4 y z + 4 z
2 2
3 4 x = ( x, y ) . 4 2 y
4
第 六 章 二 次 型
§6.1 二次型及其矩阵表示
一、二次型的概念
试试看: 试试看: (2) f ( x , y , z ) = x 2 + 2 x y + 6 x z + 2 y 2 + 4 y z + 4 z 2
=
x1 (a11 x1 + a12 x2 + L + a1n xn ) + x2 (a21 x1 + a22 x2 + L + a2 n x n )

线性代数 二次型及其矩阵表示

线性代数 二次型及其矩阵表示


记作 X PY , X x1 , x2 ,L xn , Y y1 , y2 ,L yn 注 非退化线性变换的逆变换仍为非退化的;连续多次 施行非退化线性变换其结果仍为一个非退化的线性变换,
T T
且系数矩阵等于非退化线性变换矩阵的乘积.
n
n

2、二次型 f ( x1 , x2 , 的矩阵表示
2 , xn ) a11 x1 a12 x1 x2
a1n x1 xn
x1
x2
x2 a21 x1 a22 x2 a2 n xn xn an1 x1 an 2 x2 ann xn a11 a12 L a1n x1 a a22 L a2 n x2 ③ 21 L xn M M M M an1 an 2 L ann xn
f ( x1 , x2 ,
2 , xn ) a11 x1 a12 x1 x2 a1n x1 xn 2 a21 x2 x1 a22 x2 a2 n x2 xn 2 an1 xn x1 an 2 xn x2 ann xn
aij xi x j
i 1 j 1
f称为对称矩阵A的二次型; A称为二次型f的矩阵; 练习 写出下列二次型的对称矩阵.
例1
2 2 1)实数域R上的2元二次型 f ax 2bxy cy
2)实数域上R的3元二次型 2 2 f ( x1 , x2 , x3 ) 2 x1 4 x1 x2 6 x1 x3 5 x2 4 x2 x3 3)复数域C上的4元二次型 2 f ( x1 , x2 , x3 , x4 ) ix1 x2 3 x1 x4 5 x2 (3 i ) x2 x3 a b A 解: 1) b c

5-1 二次型及其矩阵表示

5-1 二次型及其矩阵表示

第五章 实二次型 5-1 二次型及其矩阵表示一、2元实二次型:两个实变量x,y的二次齐次多项式函数。

f(x,y)=ax2+2bxy+cy2[平方项 交叉项]=22Cy byx bxy ax +++=()⎥⎦⎤⎢⎣⎡++cy bx by ax y x=[]⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡y x c b b a y x 二次型f的矩阵A 未知量矩阵Xf(X)=XTAX(AT=A)叫二次型f的矩阵表示式。

二元二次型f−−−→←一一对应2阶实对称矩阵A。

二次型f的秩=秩(A)。

二、3元实二次型:三个实变量x1,x2x3的二次齐次多项式函数。

f(x1,x2,x3)=a11x12+2a12x1x2+2a13x1x3+a22x22+2a23x2x3+a33x32令aji=aij,其中1≤i<j≤3。

因为xixj=xjxi,所以f(x1,x2,x3)= a11x12+a12x1x2+a13x1x3+a21x2x1+a22x22+a23x2x3+a31x3x1+a32x3x2+a33x32=[]321x x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++333232131323222121313212111x a x a x a x a x a x a x a x a x a=[]321x x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x 二次型f的矩阵A 未知量矩阵Xf(x1,x2,x3)=XTAX(AT=A)叫二次型f的矩阵表示式。

三元二次型f−−−→←一一对应3阶实对称矩阵A。

二次型f的秩=秩(A)例(掌握)f(x1,x2,x3)=x12-2x22+3x32-4x1x2+x1x3,f的矩阵A=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---30210222121 f的矩阵表示式:f(x1,x2,x3)=[]321x x x ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---30210222121⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x 。

§5.1 二次型及矩阵表示

§5.1 二次型及矩阵表示

B = C ′AC , | C |≠ 0 , 则 A = (C −1 )′ BC −1 = P′BP, P = C −1 ≠ 0
若 则
A1 = C1′ AC1 , A2 = C2′ A1C2 , C1 ≠ 0, C2 ≠ 0 ,
(3)传递性:
A2 = (C1C2 )′ A(C1C2 ) = Q′AQ,
(5.1)
(5.2)
f ( x, y ) = a′x′2 + c′y′2
(5.3)
(5.1)的右边是一个二元齐次多项式,把它化为标准方程 用代数的语言来说,就是用变量替换(5.2)把二元齐次多项式 化为只含平方项的标准方程。
第五章 二次型
能不能把这个结果推广到一般的 n 元齐次多项式? 这需要引入 n 元齐次多项式的概念。 定义1:F是一个数域,系数在F中的n个文字 x1 , x2 ," , xn 的二次齐次多项式
第五章 二次型
例如: f ( x1 ) = 3 x12 是一元二次型;
2 f ( x1 , x2 ) = 2 x12 − 6 x1 x2 + 5 x2 是二元二次型;
2 2 f ( x1 , x2 , x3 ) = x12 + x1 x2 + 3 x1 x3 + 2 x2 + 4 x2 x3 + 3 x3
⎛ n ⎞ ⎜ ∑ a1 j x j ⎟ ⎜ jn=1 ⎟ ⎜ a x ⎟ n n n ∑ 2j j = ( x1 , x2 ,..., xn ) ⎜ j =1 ⎟ = x1 ∑ a1 j x j + x2 ∑ a2 j x j + " + xn ∑ anj x j ⎜ ⎟ j =1 j =1 j =1 # ⎜ n ⎟ ⎜ ⎜ ∑ anj x j ⎟ ⎟ ⎝ j =1 ⎠

二次型及其矩阵表示

二次型及其矩阵表示

二次型的标准型的意 义
标准型在二次型的理论和应用中具有 重要意义。例如,通过研究标准型, 我们可以更好地了解二次型的性质和 特点。此外,标准型也常常用于求解 二次型的最小二乘问题等应用中。
二次型的标准化的方 法
二次型的标准化方法包括将二次型转 化为标准型的过程。这个过程可以通 过正交变换来实现,具体来说就是通 过一系列可逆变换将二次型转化为其 同类中最为简单的一种形式。
02
二次型的矩阵表示
二次型的矩阵形式
二次型的矩阵形式
二次型可以表示为矩阵的形式,其中矩阵元素是二次项系数。对于一个二次型 $f(x_1, x_2, \ldots, x_n)$,其矩阵形式可以表示为 $f = x^T A x$,其中 $A$ 是一个对称矩阵。
矩阵的对称性
对于一个二次型 $f = x^T A x$,如果存在一个可逆矩阵 $P$,使得 $f = (Px)^T A (Px)$ ,则称该二次型是正定的。正定二次型的矩阵 $A$ 是对称正定的。
正定二次型的性质
正定二次型具有一些特殊的性质。例如,正定二次型的标准型是唯一的,并且可以通过正 交变换将任何一个正定二次型转化为标准型。此外,正定二次型的矩阵是正定的,即其所 有特征值都是正的。
二次型的标准型介绍
二次型的标准型定义
二次型的标准型是指将二次型转化为 其同类中最为简单的一种形式。通过 作可逆变换,任何一个二次型都可以 化为标准型。
03
二次型的计算方法
二次型的矩阵计算
矩阵的二次型
对于一个给定的矩阵A,其二次型可以通过对其进行矩阵乘法 得到。
矩阵的奇异值分解
奇异值分解是一种将矩阵分解为三个矩阵的乘积的方法,这种 方法可以用于计算二次型的值。

6.1二次型及其矩阵表示、合同矩阵(全)

6.1二次型及其矩阵表示、合同矩阵(全)

第六章二次型§1 二次型及其矩阵表示、合同矩阵§2 化二次型为标准形§3 二次型与对称矩阵的正定性§1 二次型及其矩阵表示、合同矩阵定义6.1.1:含有n 个变量x 1, x 2, … , x n 的二次齐次多项式()n x x x f ,,,21 nn x x a x x a x x a x x a x a 1141143113211221112222+++++= nn x x a x x a x x a x a 22422432232222222+++++ 2nnn xa +当系数属于数域F 时,称为数域F 上的一个n 元二次型。

本章讨论实数域上的n 元二次型,简称二次型。

nn x x a x x a x a 334334233322++++22212111222121213131,12111121211221212222221122,1222(,,,)n nn nn n n nn n n nn n n n nn nniji ji j f x x x a x a x a xa x x a x x a x x a x a x x a x x a x x a x a x x a x x a x x a xax x --==+++++++=++++++++++++=∑i j j i ij i j i j i j j i i j22212111222121213131,12111121211221212222221122,1222(,,,)n nn nn n n nn n n nn n n n nn nniji ji j f x x x a x a x a xa x x a x x a x x a x a x x a x x a x x a x a x x a x x a x x a xax x --==+++++++=++++++++++++=∑i j j i ij i j i j i j j i i j212111121211221212222221122(,,,)n n n n n n n n n nn nf x x x a x a x x a x x a x x a x a x x a x x a x x a x =+++++++++++11111221()n n x a x a x a x+++22112222()n nx a x a x a x ++++1122()n n n nn n x a x a xa x +++11112212112222121122(,,,)n n n n n n n nn n a x a x a x a x a x a x x x x a x a x a x +++⎛⎫⎪+++⎪= ⎪⎪+++⎝⎭1112112122221212(,,,)n n n n n nn n a a a x a a a x x x x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭Tx Ax=其中A = (a ij )n ×n , x = (x 1, x 2, ···, x n )TA 为对称矩阵,称A 为二次型对应的矩阵,A 的秩为二次型的秩。

二次型及其矩阵表示

二次型及其矩阵表示
非对称二次型:矩阵不是对称矩阵
半正定二次型:矩阵的所有特征值都是非负数
半负定二次型:矩阵的所有特征值都是非正数
实二次型:矩阵的系数都是实数
对称二次型:矩阵是对称矩阵
正定二次型:矩阵的所有特征值都是正数
负定二次型:矩阵的所有特征值都是负数
二次型的矩阵表示方法
01
02
03
04
标准二次型:二次型可以表示为矩阵乘以向量的形式,其中矩阵是对称矩阵。
02
二次型在经济学中的应用
生产函数:二次型可以用来表示生产函数,分析生产过程中的投入与产出关系。
成本函数:二次型可以用来表示成本函数,分析生产过程中的成本与产量关系。
效用函数:二次型可以用来表示效用函数,分析消费者在消费过程中的满足程度与消费量关系。
投资函数:二次型可以用来表示投资函数,分析投资者在投资过程中的收益与投资量关系。
主成分分析在二次型中的应用
01
主成分分析(PCA)是一种用于降维和多元数据分析的统计学方法。
04
02
03
在二次型中,主成分分析可以用来寻找数据的主成分,即数据的主要方向。
通过主成分分析,我们可以将二次型矩阵分解为两个矩阵的乘积,其中一个矩阵是对角矩阵,另一个矩阵是低秩矩阵。
这种分解方法可以简化二次型的计算,提高计算效率。
二次型在物理学中的应用
电磁学:二次型在电磁学中用于描述电磁场的分布和相互作用,如麦克斯韦方程组、高斯定理等。
03
量子力学:二次型在量子力学中用于描述粒子的状态和运动规律,如薛定谔方程、海森堡不确定性原理等。
04
力学:二次型在力学中用于描述物体的运动和受力情况,如牛顿第二定律、胡克定律等。
01
光学:二次型在光学中用于描述光的传播和折射现象,如菲涅尔方程、折射定律等。

§1 二次型及其矩阵表示、化二次型为标准形

§1 二次型及其矩阵表示、化二次型为标准形
2)若x=Cy为可逆线性变换,则有可逆线性变换 y C 1 x
§1 二次型及其矩阵表示,化二次型为标准形
3、二次型经过可逆线性变换仍为二次型
事实上,
f ( x1, x2,..., xn ) xT Ax
x Cy
— —— —— —— —
| C | 0
(Cy)T A(Cy)
yT (CT AC ) y yT By g( y1, y2,..., yn )

L L L L
ann xn2
称为n元二次型(或简称二次型).
§1 二次型及其矩阵表示,化二次型为标准形
注意
1) 为了计算和讨论的方便,式①中 xij (i j) 的系数
写成 2aij .
2) 式① 也可写成
n
f ( x1, x2 ,L , xn ) aii xi2 2
aij xi x j
an1
a22 M an2
... ...
a2n x2
M ann

xMn
n

a1 j x j

( x1,
x2 ,...,

xn )

j1 n
a2 j x j
j1
M

n

anj x j
j1

§1 二次型及其矩阵表示,化二次型为标准形
原二次型矩阵是合同的.
进而,有: 若AT A, BT B,
二次型 xT Ax 可经可逆的线性变换化为二次型 yT By
A与B合同.
§1 二次型及其矩阵表示,化二次型为标准形
四、 化二次型为标准形
二次型中非常简单的一种是只含平方项的二次型

二次型及其矩阵表示

二次型及其矩阵表示

f ( x1, x2 ,L , xn ) a11x12 a12 x1x2 L L a1n x1xn
a21 x2 x1 a22 x22 L a2n x2 xn L L L L L L L L
an1 xn x1 an2 xn x2 L ann xn2
nn
aij xi x j .
基本结论
1、二次型经过线性替换仍为二次型. 2、二次型X´AX经非退化线性替换化为二次型Y´BY
A 与 B合同,即存在可逆阵 C Pnn,使 B CAC.
3、矩阵的合同关系具有反身性、对称性、传递性.
§5.1 二次型及其矩阵表示
f ( x1, x2 ,L , xn ) a11x12 2a12 x1x2 L 2a1n x1xn
a22 x22 L L L 2a2n x2 xn
a33 x32 L 2a3n x3 xn

Байду номын сангаас
L L L L
ann xn2
称为数域P上的一个n元二次型(Quadratic Form).
§5.1 二次型及其矩阵表示
)
2 7
4 8
6 5
x2 x3
n
3. xi2
xi x j
i 1
1i jn
n
4. ( xi x)2,
i 1
其中
x
1 n
n i 1
xi .
§5.1 二次型及其矩阵表示
二、非退化线性替换
1、定义 x1, x2 ,L , xn; y1, y2 ,L , yn 是两组文字,
cij P,i, j 1,2,...n
非退化线性替换:
x1 c11 y1 c12 y2 L c1n yn

6_1二次型及其矩阵表示 矩阵合同1

6_1二次型及其矩阵表示   矩阵合同1

A
a21 an1
a22 an2
显然由矩阵A可确定一个二次型:
f xT Ax
a1n a2n ann
其中aii 为二次型中xi 2的系数,
aij aji i j 为二次型中xi xj系数的一半。
在二次型的矩阵表示中,任给一个二次型, 就唯一地确定一个对称矩阵;
反之,任给一个对称矩阵,也可唯一地确定 一个二次型。
解之得c=3
三、线性变换
实二次型的基本问题是研究如何把一个复杂的
二次型通过适当的线性变换化为比较简单的标准形 ,使问题得到简化。
1. 线性变换的定义
设x1 , x2 , xn ; y1 , y2 , yn是两组变量,
x1 c11 y1 c12 y2 c1n yn
x2
c21
y1
c22
y2
第一节 二次型 矩阵合同
一、二次型及其标准形定义
定义1
含有n个变量
x1
,
x2
,,
x
的二次齐次函数
n
f x1 , x2 ,, xn a11 x12 a22 x22 ann xn2
2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn
称为二次型.
当aij是复数时, f称为复二次型 ;
当aij是实数时, f称为 实二次型 .
(我们仅讨论实二次型)。
只含有平方项的二次型
f d1 y12 d2 y22 dn yn2
称为二次型的标准形(或法式). 例如
f x1, x2 , x3 2 x12 4 x22 5 x32 4 x1 x3 f x1, x2 , x3 x1 x2 x1 x3 x2 x3
c22 cn2

二次型

二次型

第六章 二 次 型I 重要知识点一、二次型及其矩阵表示1、二次型的定义:以数域P 中的数为系数,关于x 1,x 2,…,x n 的二次齐次多项式f (x 1,x 2,…,x n )=a 11x 12+2a 12x 1x 2+ … +2a 1n x 1x n+a 22x 22+ … +a 2n x 2x n + … (3) +a nn x n 2称为数域P 上的一个n 元二次型,简称二次型。

2、二次型的矩阵表示 设n 阶对称矩阵A =⎪⎪⎪⎪⎪⎭⎫⎝⎛nn nnn n a a a a a a a a a 212221211211 则n 元二次型可表示为下列矩阵形式:f (x 1,x 2,…,x n )=( x 1,x 2,…,x n ) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn nnn n a a a a a a a a a212221211211⎪⎪⎪⎪⎪⎭⎫⎝⎛n x x x 21=X TAX其中 X =( x 1,x 2,…,x n )T 。

对称矩阵A 称为二次型的系数矩阵,简称为二次型的矩阵。

矩阵A 的秩称为二次型f (x 1,x 2,…,x n )的秩。

二次型与非零对称矩阵一一对应。

即,给定一个二次型,则确定了一个非零的对称矩阵作为其系数矩阵;反之,给定一个非零的对称矩阵,则确定了一个二次型以给定的对称矩阵为其系数矩阵。

3、线性变换设x 1,x 2,…,x n 和y 1,y 2,…,y n 为两组变量,关系式⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn nn y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 其中c ij (i ,j =1,2,…,n )为实数域R (或复数域C )中的数,称为由x 1,x 2,…,x n 到y 1,y 2,…,y n 线性变换,简称线性变换。

线性变换的矩阵表示,设n 阶矩阵C =⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n c c c c c c c c c212222111211则从x 1,x 2,…,x n 到y 1,y 2,…,y n 线性变换可表示为下列矩阵形式:X =CY其中X =( x 1,x 2,…,x n )T 和Y =( y 1,y 2,…,y n )T ,C 称为线性变换的系数矩阵。

61二次型及其矩阵表示

61二次型及其矩阵表示
取 a ji aij , 则 2aij xi x j aij xi x j a ji x j xi ,
于是
上页 下页 返回 结束
f a11 x12 a12 x1 x2 a1n x1 xn
a21 x2 x1 a22 x22 a2n x2 xn
an1 xn x1 an2 xn x2 ann xn2
x2(a21 x1 a22 x2 a2n xn )
xn (an1 x1 an2 x2 ann xn )
( x1,
x2 ,,
xn)
a11 a21
x1 x1
a12 x2
a22 x2
a1n a2n
xn xn
an1 x1 an2 x2 ann xn
上页 下页 返回 结束
都为二次型;
f x1, x2 , x3 x12 4x22 4x32
为二次型的标准形.
上页 下页 返回 结束
二、二次型的表示方法
1.用和号表示 对二次型
f x1 , x2 ,, xn a11 x12 a22 x22 ann xn2
2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn
a11
x1
,
x2
,,
xn
a21
a12
a22
a1n x1 a2n x2
an1 an2 ann xn

a11
A
a21
a12
a22
a1n
a2n
,
x1
x
x2
,
an1 an2 ann
xn
则二次型可记作 f xT Ax,其中A为对称矩阵.
上页 下页 返回 结束
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 二次型
§5.1 二次型及其矩阵表示 §5.2 标准形 §5.3 唯一性 §5.4 正定二次型
§5.1 二次型及其矩阵表示
一、n元二次型 二、非退化线性替换 三、矩阵的合同 四、小结
§5.1 二次型及其矩阵表示
问题的引入
解析几何中
中心与坐标原点重合的有心二次曲线 f ax2 2bxy cy2
又 B (CAC ) CAC CAC B
Y BY g( y1, y2 ,..., yn )是一个 y1, y2 ,L , yn 二次型.
§5.1 二次型及其矩阵表示
三、矩阵的合同
1、定义 设 A, B Pnn,若存在可逆矩阵
C Pnn , 使 B CAC,则称A与B合同(congruent). 注意 1. 合同具有 反身性(reflexivity):A EAE
| C1C 2 || C1 || C 2 | 0, 即C1C2可逆. 2. 合同矩阵具有相同的秩. 3. 与对称矩阵合同的矩阵是对称矩阵.
§5.1 二次型及其矩阵表示
2、经过非退化线性替换,新二次型矩阵与 原二次型矩阵是合同的.
二次型X´AX可经非退化线性替换化为二次型Y´BY
A与B合同.
§Hale Waihona Puke .1 二次型及其矩阵表示§5.1 二次型及其矩阵表示
注意 1. 二次型的矩阵总是对称矩阵,即A A. 2. 二次型与它的矩阵相互唯一确定,即 若 X AX X BX 且 A A, B B,则 A B.
(这表明在选定文字 x1, x2 ,..., xn 下,二次型 f ( x1, x2,..., xn ) X AX 完全由对称矩阵A决定.)

x2 xn
n
n
n
x1 a1 j x j x2 a2 j x j L xn anj x j
j 1
j 1
j 1
n
n
nn
( xi aij x j )
aij xi x j
i 1
j 1
i1 j1
于是有 f ( x 1 , x 2 ,..., xn ) X AX .
称为数域P上的一个n元二次型(Quadratic Form).
§5.1 二次型及其矩阵表示
注意
1. 为了计算和讨论的方便,式①中 xi x j i j 的系数
写成 2aij .
2. 式① 也可写成
n
f ( x1 , x2 , , xn )
aii
x
2 i

2
aij xi x j .
2、线性替换的矩阵表示
x1
y1
c11 c12 ... c1n

X


x2 M
,Y
xn


y2 M
,
C
yn


c21 L cn1
c22 ... LL cn2 ...
c2n L cnn

则③可表示为
X=CY

若|C| ≠0,则④为非退化线性替换.
正因为如此,讨论二次型时矩 阵是一个有力的工具.
§5.1 二次型及其矩阵表示
练习1 写出矩阵表示
1. 实数域R上的2元二次型 f ax2 2bxy cy2
2. 实数域R上的3元二次型 f ( x1, x2 , x3 ) 2x12 4x1x2 6x1x3 5x22 3x2 x3 7 x32

x2 c11 y1 LLLL
c12 y2 L LLLL
L
c1n L
yn
xn cn1 y1 cn2 y2 L cnn yn
只含平方项的多项式
(标准形)
§5.1 二次型及其矩阵表示
一、n元二次型
1、定义 设P为数域, aij P,i, j 1,2,L ,n,
2.
(
x1
,
x2
,
x3
)

2 7
4 8
6 5


x2 x3

n
3. xi2
xi x j
i 1
1i jn
n
4. ( xi x)2,
i 1
其中
x

1 n
n i 1
xi .
§5.1 二次型及其矩阵表示
二、非退化线性替换
1、定义 x1, x2 ,L , xn; y1, y2 ,L , yn 是两组文字,
c1n yn LL cnn yn
,或X=CY,
|C|
≠0.
矩阵的合同:B CAC, C Pnn可逆.
§5.1 二次型及其矩阵表示
基本结论
1、二次型经过线性替换仍为二次型. 2、二次型X´AX经非退化线性替换化为二次型Y´BY
A 与 B合同,即存在可逆阵 C Pnn,使 B CAC.
cij P,i, j 1,2,...n
x1 c11 y1 c12 y2 L c1n yn
关系式

x2 xn

L
c11 y1 LLL cn1 y1
c12 y2 L LLLL cn2 y2 L

L
c1n yn L cnn yn

称为由 x1, x2 ,L , xn到y1, y2 ,L , yn 的一个线性替换;
3、矩阵的合同关系具有反身性、对称性、传递性.
§5.1 二次型及其矩阵表示
若系数行列式|cij|≠0,则称③为非退化线性替换 (non-degenerate linear transformation).
§5.1 二次型及其矩阵表示
y
.
y
x

0
x
例1
x x cos y sin
变换

y

x sin

y cos
是非退化的.
§5.1 二次型及其矩阵表示
选择适当角度 θ,逆时针旋转 坐标轴
x xcos ysin y xcos ysin
f ax2 cy2
(标准方程)
§5.1 二次型及其矩阵表示
二次齐次多项式
代数观点下
f ( x1, x2 ,L , xn )
作适当的非退 化线性替换
x1 c11 y1 c12 y2 L c1n yn
an1 xn x1 an2 xn x2 L ann xn2
nn

aij xi x j .

i1 j1
§5.1 二次型及其矩阵表示
a11 a12 ... a1n

A


a21 L
a22 ... a2n L L L
an1 an2 ... ann
n个文字 x1, x2 ,L , xn 的二次齐次多项式
f ( x1, x2 ,L , xn ) a11x12 2a12 x1x2 L 2a1n x1xn
a22 x22 L L L 2a2n x2 xn
a33 x32 L 2a3n x3 xn

L L L L
ann xn2
a2n L ann


x2 M xn
n

a1 j x j

( x1,
x2 ,...,

xn )

j1 n
a2 j x j
j1
M

n

anj x j
j1

§5.1 二次型及其矩阵表示
x1

X

§5.1 二次型及其矩阵表示
3、二次型经过非退化线性替换仍为二次型
X CY
f
( x1, x2 ,..., xn )

X AX
————————
| C | 0
(CY ) A(CY )
Y (CAC )Y 令——B————C——AC Y BY g( y1, y2 ,..., yn )
例2 证明:矩阵A与B合同,其中
1

i1

A



2
O

,
n
B



i 2
O
,
in
i1, i2 ,L , in是1,2,L ,n的 一个排列.
§5.1 二次型及其矩阵表示
四、小结
基本概念
nn
n元二次型:f ( x1, x2,L , xn )
( A P nn )
则矩阵A称为二次型 f ( x1, x2 ,L , xn ) 的矩阵 (matrix).
§5.1 二次型及其矩阵表示
(2)
a11 a12 ... a1n x1
X AX

( x1,
x2 ,...,
xn
)

a21 L
an1
a22 L an2
... L ...
3. 复数域C上的4元二次型 f ( x1, x2 , x3 , x4 ) ix1x2 3x1x4 5x22 (3 i)x2 x3
§5.1 二次型及其矩阵表示
练习2 写出下列二次型的矩阵
1. 4 x1 x2 2 x1 x3 2 x2 x3
1 3 5 x1
i 1
1i jn
§5.1 二次型及其矩阵表示
2、二次型的矩阵表示
(1) 约定①中aij=aji,i<j ,由 xixj=xjxi,有
相关文档
最新文档