脱烷烃精馏塔工艺计算
精馏塔的计算
FxF= DxD+ WxW
175 = D + WD=76.6kmol/h
175×0.44=0.974D+0.0235WW=98.4kmol/ h
例:将含24%(摩尔分率,以下同)易挥发组分的某混合液送入连续操作的精馏塔。要求馏出液中含95%的易挥发组分,残液中含3%易挥发组分。塔顶每小时送入全凝器850kmol蒸汽,而每小时从冷凝器流入精馏塔的回流量为670kmol。试求每小时能抽出多少kmol残液量。回流比为多少?
Y =nA/nB=yA/yB=yA/(1-yA)kmolA / kmolB
Y =pA/pB=pA/(P - pA)
在吸收操作中,通常A组分:指吸收质
B组分:液相xB指吸收剂,气相yB指惰气
四.吸收推动力:实际浓度与平衡浓度之差。即ΔY=Y–Y*(以气相浓度表示)
ΔX=X*- X(以液相浓度表示)
脱收推动力:ΔY=Y*- Y(以气相浓度表示)
气膜、液膜越厚,传质阻力越大,传质速率就越小,而膜越薄,自然越有利传质。
(三)提高吸收速率:流体力学指出,流速越大,边界膜越薄。因此按照双膜理论,在其它条件不变时,增大流速,就可以减小双膜阻力,从而提高吸收速率。
七.吸收速率
1.吸收速率:是指单位传质面积上,单位时间内吸收的溶质量。
在稳定操作的吸收设备中吸收设备内的任一部位上,相界面两侧的对流传质速率是相等的(否则会在界面处有溶质积累)。因此其中任何一侧有效膜中的传质速率都能代表该处的吸收速率。
阻力阻力
双膜理论模型
通过假设,把整个相际传质的复杂过程简化为吸收质只是经气、液两层的分子扩散过程。因此两膜层就成为吸收过程的两个基本阻力。
(二)在两相主体浓度一定的情况下,两膜层的阻力便决定了传质速率的大小。双膜理论也称双阻力理论。
精馏塔的工艺标准计算
2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。
(二)进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。
(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。
2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。
01.0=D HK x ,005.0=W LK x ,表2.1 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h5544.212132434.06868.212333=-=-=d f ωKmol/h表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0.1Mpa ,温度单位K编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0名称 A B C D表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯 -7.28607 1.38091 -2.83433 -2.79168 乙苯-7.486451.45488-3.37538-2.23048泡点方程:p x pni ii =∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni ii =∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α514.2=甲苯α1=乙苯α;136=底t ℃,96.1=甲苯α1=乙苯α; 133=进t ℃,38.4=苯α97.1=甲苯α1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。
精馏塔主要工艺尺寸计算
精馏塔主要工艺尺寸计算一、塔径D1、精馏段塔径初选板间距m H T 40.0=,取板上液层高度m h L 06.0=,故m h H L T 34.006.040.0=-=-; 0319.030.28.87792.00015.02121=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛vL SS V L ρρ 查Smith 关联图得C 20;依2.02020⎪⎭⎫⎝⎛=σC C 校正物系表面张力为m mN /45.21时的C0720.02045.21071.0202.02.020=⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛=σC Cs m Cu V V L /405.130.230.28.8770720.0max =-⨯=-=ρρρ可取安全系数为,则s m u u /843.0405.160.060.0max =⨯==故m u V D S 179.1843.092.044=⨯⨯==ππ 按标准,塔径圆整为1.2m,则空塔气速。
2、提馏段塔径初选板间距m H T 40.0=,取板上液层高度m h L 06.0=,故m h H L T 34.006.040.0=-=-; 0782.070.20.96041.00017.02121=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛vL SSV L ρρ 查Smith 关联图得C 20;依2.02020⎪⎭⎫⎝⎛=σC C 校正物系表面张力为m mN /92.19时的C ,即0679.02092.19068.0202.02.020=⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛=σC Cs m Cu V V L /279.170.270.20.9600679.0max =-⨯=-=ρρρ 可取安全系数为,则s m u u /767.0279.160.060.0max =⨯== 故m u V D S 825.0767.041.044=⨯⨯==ππ 按标准,塔径圆整为1.0m,则空塔气速。
为统一精馏段和提馏段塔径,取为。
精馏塔的工艺计算
2 精馏塔的工艺计算精馏塔的物料衡算基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。
(二)进料组成:乙苯h ;苯 Kmol/h ;甲苯h 。
(三)分离要求:馏出液中乙苯量不大于,釜液中甲苯量不大于。
物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。
01.0=D HK x , 005.0=W LK x ,表 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D= 0681.1005.06225.21322=⨯==W X W ,ωKmol/h 5662.90681.16343.10222=-=-=ωf d Kmol/h编号 组分 i f /kmol/h i f /% 1 苯 2 甲苯 3 乙苯总计100132434.001.02434.1333=⨯==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表精馏塔工艺计算操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位,温度单位K编号 组分 i f /kmol/h馏出液i d釜液i ω 1 苯 0 2 甲苯 3 乙苯总计组份 相对分子质量临界温度C T 临界压力C P苯 78 甲苯 92乙苯106名称 A B C D表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯甲苯乙苯泡点方程:p x pni i i=∑=10 试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni i i=∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α 514.2=甲苯α 1=乙苯α;136=底t ℃, 96.1=甲苯α 1=乙苯α;133=进t ℃, 38.4=苯α 97.1=甲苯α 1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。
简单精馏塔严格计算
设计一脱丙烷塔。
已知进料量h kmol /100,原料压力MPa 0.1,温度50℃,组成如下表。
塔操作压力0.817()MPa A ,塔顶设全凝器,塔底设再沸器。
分离要求:塔顶异丁烷含量为0.06,塔底丙烷含量为0.06解:(一)、用简捷法得到如下基本参数(二)LM 法1、初步确定理论级数1)设8=S 、2=n 、6=m (包括塔釜、进料板)、74.1=R 3252.75=D 6748.24=W 逐板计算,结果列表:2)设7=S 、2=n 、5=m (包括塔釜、进料板)、74.1=R 3252.75=D 6748.24=W 逐板计算3)比较进料板液摩尔分数已经接近,可进入第一次循环。
2、第一次循环 1)塔顶塔底量调整1585.035.165.684977.05652.0=+-==∆A d 4004.062.538.42206.01871.0-=+-=∆B d4509.07076.122107.02924.22716.02716.02107.0-=+-=∆C d 0073.09972.4037.00028.00102.00102.00370.0=+-=∆D d归零化,使得∑=∆0d ,i iw d∆-=∆-2)根据调整后的数据进行塔的逐板计算,结果列表,各板的汽液流率和摩尔分数列表 3)温度分布 4)计算各板气液流率 5)计算换热器热负荷 6)计算各板汽体液体流率 7)核算各板气液组成(1)各板汽液流率和温度确定相对挥发度 (2)逐板计算3、采用同样的方法,经过4次循环,结果如下:基本达到要求。
故理论板数为7.。
精馏塔工艺工艺设计计算
第三章 精馏塔工艺设计计算塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。
根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。
板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。
本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。
3.1 设计依据[6]3.1.1板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度T TTH E N Z )1(-= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。
(2) 塔径的计算uV D Sπ4=(3-2) 式中 D –––––塔径,m ;V S –––––气体体积流量,m 3/s u –––––空塔气速,m/su =(0.6~0.8)u max (3-3) VVL Cu ρρρ-=m a x (3-4) 式中 L ρ–––––液相密度,kg/m 3V ρ–––––气相密度,kg/m 3C –––––负荷因子,m/s2.02020⎪⎭⎫⎝⎛=L C C σ (3-5)式中 C –––––操作物系的负荷因子,m/sL σ–––––操作物系的液体表面张力,mN/m 3.1.2板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计W O W L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。
32100084.2⎪⎪⎭⎫⎝⎛=Wh OWl L E h (3-7)式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。
hTf L H A 3600=θ≥3~5 (3-8)006.00-=W h h (3-9) '360000u l L h W h=(3-10)式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。
塔精馏塔的计算1
一、塔精1.全的物料衡算由于水的沸点为100℃,正丁醇的沸点为117.7℃故水作为轻组分,正丁醇作为重组分,产品正丁醇从塔底出来。
%74.9874/05.018/95.018/95.0F =+=xM F =74⨯(1-0.9874)+0.9874⨯18=18.71kmol kg / F =20⨯1000/18.71=1069.03/kmol h总物料衡算 F=D+W=252 (1) 采用填料塔连续精馏由正丁醇-水平衡数据作图,画出正丁醇—水溶液y-x 图,求得mi n R 取min 5.1R R =过点(0.9994,0.9994)作平衡线的切线,则求出此线与y 轴的交点截距为0.5192,故求得最小回流比为0.9248,所以操作状态的回流比为1.387 数直角梯级即为理论塔板数:T N (包括再沸器)=9块其中精馏段1N =4块,提留段(包括再沸器)=5块,第五块为进料板。
实际塔板数求取:由平衡线得塔顶:9994.01==x y D ,在图中求得x 1=0.9946%892.574/985.018/015.018/015.0=+=W x由平衡线方程1(1)xy xαα=+-得顶α=8.99塔底:x x w m ==0.05892,y m =0.2234 同理得底α=4.56ααα==6.4塔顶温度100℃,塔底温度117.7℃ 定性温度为85.10827.117100=+℃查附录得s Pa ⋅=m 390.0μ1μ正丁醇=2.948求得()smPa m ⋅=⨯-+⨯=422.0948.29874.019874.0390.0μ⋅αmμ=6.4×0.422=2.70查得0E =55.1% 校正后为55.1%×1.1=60.61% 实际塔板:%1000⨯=PT N N E8110=-=+E N N T P ,取8块(包括再沸器)精馏段取4块 提馏段取4块 第5块进料板 3.塔高的计算有效高度:Z=øP ×Nt=0.67×(8-1)=4.67mZ=4×60.61%=2.42m(精馏段) Z=4.67-2.42=2.25m(提留段)实际填料高度:2.42×(1+0.2)=2.9m(精馏段) 2.25×(1+0.2)=2.7m(提留段) 设裙座为1m总塔高;H=2.9+2.7+1=6.6m4.泛点气速的计算影响泛点气速的因素很多,其中包括填料的特性、流体的物理性质以及液气比等。
精馏塔的工艺计算
2 精馏塔的工艺计算2、1精馏塔的物料衡算2、1、1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。
(二)进料组成:乙苯212、6868Kmol/h;苯3、5448 Kmol/h;甲苯10、6343Kmol/h 。
(三)分离要求:馏出液中乙苯量不大于0、01,釜液中甲苯量不大于0、005。
2、1、2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。
01.0=D HK x ,005.0=W LK x ,表2、1 进料与各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2、 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226、8659-13、2434=213、6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /% 1 苯 3、5448 1、5625 2 甲苯 10、6343 4、6875 3 乙苯 212、6868 93、7500总计226、86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h5544.212132434.06868.212333=-=-=d f ωKmol/h表2-2 物料衡算表2、2精馏塔工艺计算2、2、1操作条件的确定 一、塔顶温度纯物质饱与蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0、1Mpa,温度单位K编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3、5448 3、5448 0 2 甲苯 10、6343 9、5662 1、0681 3 乙苯 212、6868 0、1324 212、5544总计226、865913、2434213、6225组份 相对分子质量临界温度C T 临界压力C P 苯 78 562、2 48、9 甲苯 92 591、841、0 乙苯106617、236、0名称A B C D表2-3饱与蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105、5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6、98273 1、33213 -2、62863 -3、33399 甲苯 -7、28607 1、38091 -2、83433 -2、79168 乙苯-7、48645 1、45488-3、37538-2、23048泡点方程:p x pni ii =∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni ii =∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α514.2=甲苯α1=乙苯α;136=底t ℃,96.1=甲苯α1=乙苯α;133=进t ℃,38.4=苯α97.1=甲苯α1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。
塔的设计计算分离工程课程设计烷烃精馏
四. 塔的设计计算4.1.物料衡算物料的年处理量=20100001000580.4720.25860.21000.15⨯⨯⨯+⨯+⨯+⨯=405kmol/h(1) 选正戊烷为轻关键组分,选正己烷为重关键组分,(2) 由安托因经验公式:㏑*p =A-T C+ *p 单位kpa,T 为开尔文温度。
查化工热力学附录的相关数据:05nC A=6.6895 B=1339.4 t=-19.03 06nC A=6.9835 B=1549.94 t=-19.15( 3 ) 设塔顶温度d t =74℃,p=0.4Mpa∴取塔底温度t=69℃d(4)设塔底温度t=140℃ p=0.4Mpaw取塔底温度t=137℃w(5)以不清晰分割校核:以0nC为关键组分,各组分平均相对挥发度,用6泡点方程计算如下。
代入汉斯特别克公式得到lg ()id w=lg ()i d h +lg lg ih lh αα﹛lg ()l d w -lg ()hd w ﹜ =-1.0607+lg 0.127ihα 2.44=7.44㏒ih α-1.0607(6)塔顶温度d t =69℃,校核列表如下: 塔底温度w t =137℃,校核列表如下4.2.最小理论塔板数m N = lg lg l h h l D W lhx x x x α⎡⎤⎛⎫⎛⎫⨯⎢⎥⎪ ⎪⎝⎭⎝⎭⎣⎦ = 0.3640.530lg ()()0.030.029lg 4.54⎡⎤⨯⎢⎥⎣⎦=3.59≈4块4.3.确定回流比塔顶塔底平均温度t=(71+134)/2=102.5℃以庚烷为对比组分各组分的相对挥发度i α,p=0.4Mpa,t=102.5℃采用泡点进料e=0,通过试差法求θ。
取0θ=(ih il αα+)/2=3.2m R +1=10 2.45-+4.38 2.45-+2.03 2.45-+12.45-=0.8026+0.8261-0.145=1.4836m R =0.4836,取 1.6m R R ==0.77374.4.塔理论板数利用莫尔坎经验公式154.411exp 11117.2x x y x ⎡⎤+-⎛⎫⎛⎫=- ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎣⎦,其中1mR R x R -=+ 1mN N y N -=+,y=0.5代入求得N=9块该塔平均操作温度t=102.5℃,lh α=4.54.lh l ⨯=4.54⨯0.14=0.6356由奥康奈尔图查得总板数效率ηT = 0.54 实际塔板数 Na= NT/ηT = 9/0.54= 16.7≈17块 4.5.进料板位置:泡点进料可由柯克布莱德2,,lg 0.206lg D l W h l h D F W x nx m x x ⎡⎤⎛⎫⎛⎫⎢⎥=⨯⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=1.14所以 17=m+1.14m+1. 即m=3.57,n=9-3.57=5.43 。
精馏塔的工艺计算
2 精馏塔得工艺计算2、1精馏塔得物料衡算2、1、1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。
(二)进料组成:乙苯212、6868Km ol/h;苯3、5448 Kmol/h;甲苯10、6343Kmo l/h 。
(三)分离要求:馏出液中乙苯量不大于0、01,釜液中甲苯量不大于0、005。
2、1、2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。
表2、1 进料与各组分条件由《分离工程》P65式3-23得: ﻩKm ol /hW=F-D =226、8659-13、2434=213、6225Kmol/h Km ol/h K mo l/h K mol/h Kmo l/h表2-2 物料衡算表 2、2精馏塔工艺计算2、2、1操作编号 组分 /kmol/h /% 1 苯 3、5448 1、5625 2 甲苯 10、6343 4、6875 3 乙苯 212、6868 93、7500总计226、8659100编号 组分 /km ol/h 馏出液 釜液 1 苯 3、5448 3、5448 0 2 甲苯 10、6343 9、5662 1、0681 3 乙苯 212、6868 0、1324 212、5544总计226、865913、2434213、6225条件得确定 一、塔顶温度纯物质饱与蒸气压关联式(化工热力学 P199):表2-3 物性参数注:压力单位0、1Mp a,温度单位K表2-3饱与蒸汽压关联式数据 以苯为例,.033213.1434.098273.6()434.01()(1⨯+⨯-⨯-=-CSP PIn 同理,可得露点方程:,试差法求塔顶温度表2-4 试差法结果统计二、塔顶压力 塔顶压力 三、塔底温度泡点方程: 试差法求塔底温度组份 相对分子质量临界温度 临界压力 苯 78 562、2 48、9 甲苯 92 591、8 41、0 乙苯 106 617、2 36、0 名称 AB C D 苯-6、982731、33213-2、62863-3、33399 甲苯 -7、28607 1、38091 -2、83433 -2、79168 乙苯 -7、486451、45488 -3、37538-2、23048故塔底温度=136℃ 四、塔底压力 塔底压力 五、进料温度进料压力为,泡点方程: 试差法求进料温度六、相对挥发度得计算据化学化工物性数据手册,用内插法求得各个数据 ℃, ; ℃, ; ℃,综上,各个组份挥发度见下表 据清晰分割结果,计算最少平衡级数。
2--精馏塔的工艺计算
2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。
(二)进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。
(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。
2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。
01.0=D HK x , 005.0=W LK x ,表2.1 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0.1Mpa ,温度单位K编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0名称 A B C D表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯-7.286071.38091 -2.83433 -2.79168 乙苯 -7.486451.45488-3.37538-2.23048泡点方程:p x pni ii =∑=10 试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni ii =∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α 514.2=甲苯α 1=乙苯α;136=底t ℃, 96.1=甲苯α 1=乙苯α;133=进t ℃, 38.4=苯α 97.1=甲苯α 1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。
精馏塔指标计算
2.精馏塔工艺计算2.1塔的物料衡算2.1.1料液及塔顶,塔底产品含乙醇的摩尔分率F:原料液流量(kmol/s) xF:原料组成(摩尔分率,下同)D:塔顶产品流量(kmol/s) xD:塔顶组成W:塔底残液流量(kmol/s) xW:塔底组成2.1.2进料2.1.3物料衡算2.2有关的工艺计算2.2.1原料液的平均摩尔质量:Mf =xfMOHCHCH23+(1-xf)MOH2=0.1934⨯46+(1-0.1934)⨯18=23.4kg/kmol 同理可求得:MD =42.6972kg/kmol MW=18.5544kg/kmol45 C下,原料液中ρOH2=971.1kg/m3,ρOHCHCH23=735kg/m3由此可查得原料液,塔顶和塔底混合物的沸点,以上计算结果见表6。
表6 原料液`馏出液与釜残夜的流量与温度2.3 最小回流比及操作回流比的确定如图所示的乙醇-水物系的平衡曲线,具有下凹的部分,当操作线与q线的交点尚未落到平衡线上之前,操作线已与平衡线相切,如图中点g所示。
点g附近已出现恒浓区,相应的回流比便是最小回流比。
对于这种情况下的Rmin的求法只能是通过作图定出平衡线的切线之后,再由切线的截距或斜率求之。
如图1-63所示,可用下式算出:1min min +R R =1934.08814.037.08814.0-- ⇒ R min =2.889可取操作回流比R=1.5⨯2.889=4.3342.4 全凝器冷凝介质的消耗量塔顶全凝器的热负荷:Q C =(R+1)D(I VD -I LD ) 可以查得I VD =1266kJ/kg I LD =253.9kJ/kg,所以 Q C =(1.612+1)⨯2.0330⨯(1266-253.9)=5317.45kJ/h取水为冷凝介质,其进出冷凝器的温度分别为25 C 和35 C 则 平均温度下的比热c pc =4.174kJ/kg C,于是冷凝水用量可求 W C =)(c Q 12pc C t t -=)2535(174.445.5317-⨯=127.4kg/h4.精馏塔主体尺寸计算4.3提留段塔径的计算1t 2DF t t +=705.91258.9983.83=+=℃查t-x-y 图在91.705℃下:0552.0=x A, A y 3273.0= 9448.0=xB, B y 6727.0=KmolKg xM xM MBAL/5456.199448.0180552.04621=⨯+⨯=+=M g =M 1y A +M 2y B =46⨯0.3273+18⨯0.6727=27.1644 kg/kmol 汽塔气相平均密度 v ρ=RTPM g=)705.91273(314.81644.27325.101+⨯⨯=0.9077 kg/m 3x AW =LA Mx M 1=5456.190552.046⨯=0.1299x BW =1-x AW =0.8701 汽塔的液相平均密度 在91.705℃下查表得:A ρ=729.5 kg/m 3B ρ=964.3 kg/m 3Lρ1=AAWx ρ+BBWx ρ=7295.01299.0+9643.08701.0=1.0804 L ρ=925.6 kg/m 3V=(R+1)D=(4.334+1)⨯8.057=42.976 kmol/h v B =vg 3600 vM ρ⨯ =9077.036001644.27976.42⨯⨯=0.3573 m/sL '=L+qF=8.811+1⨯10.09=18.901 kmol/h L 3=LLML ρ⨯3600'=6.92536005456.19901.18⨯⨯=0.1109⨯103-m 3/s查化工数据手册求取:A σ=16.1 mN/mB σ=60.05 mN/m5.塔高的确定:Z=(TT E N -1)H T =(7968.015-1)⨯0.45=8.02 m塔板结构尺寸的确定: ● 溢流装置● 由于塔径小于800mm,所以采用单溢流弓形降液管,平行受液盘及平行溢流堰, 取堰长L w =0.66D,即L w =0.66⨯0.3=0.198m 出口堰高HW=H1-HOW,66.0=DLw,则H ow =m 003.0)0198.02412.0(1100084.232=⨯⨯H w =H l - H OW =0.06-0.003=0.057m 降液管的宽度W d 与降液管的面积A f 由66.0=Dlw,125.0Dw d ,=tf A A 0.0700W d =0.125⨯0.3=0.0375mA f =0.07⨯3202.04m D=π停留时间(03.25100899.045.0005.03s LsHtAf =⨯⨯=⋅=- 〉5S 符合要求)降液管底隙高度Ho h o =h w -0.006=0.051m 取边缘宽度取边缘宽度为W C =0.03m 安定区宽度安定区宽度为W S =0.050m 开孔区面积A a X=(2-D W d +W S )=)050.00375.0(23.0+-=0.0625mR=-2D W C =0.15-0.03=0.12mA a =2[x 222180R xR π+-sin 1-Rx =0.068m 2。
精馏塔的计算
X1、X2—分别为出塔和进塔液体的组成,
(1)分子扩散的阻力和速率主要决定于扩散物质和流体的温度以及某些物理性质。
(2)分子扩散速率与其在扩散方向上的浓度梯度成正比。
分子扩散系数是物质的物理性质之一。扩散系数大,表示分子扩散快。
(3)分子在液体中扩散速率比在气体中要慢的多。因为液体的密度比气体的密度大得多,其分子间距小。
2.涡流扩散:通过流体质点的湍动和旋涡而传递物质的现象。主要发生在湍流流体中。
所以气体的摩尔分率为yA=pA/P=vA/V;xD
yB=PB/P= vB/V或yB=1-yAF,xF
三.物料衡算(双组分)
对总物料衡算F =D+W
对易挥发组分衡算FxF=DxD+ WxW
式中:W
F——原料液、塔顶产品(馏出液)、塔底产品(釜残液)流量,kmol/hxW
xF、xD、xW——分别为原料液、馏出液、釜残液中易挥发组分的摩尔分率
二.吸收分类
组分数目:单组分吸收,多组分吸收。
化学反应:物理吸收,化学吸收。
热效应:等温吸收,非等温吸收。
三.相组成表示
1.比质量分率XW(YW):混合物中两组分的质量之比。
XW(YW)= GA/GB=αA/αBkgA / kgB
2.比摩尔分率X(Y):混合物中两组分的摩尔数之比。
X =nA/nB=xA/xB=xA/(1-xA)kmolA / kmolB
3.对流扩散:湍流主体与相界面间的涡流扩散与分子扩散两种传质作用的总称。
它与传热过程的对流传热类似。
六.吸收机理
(一)吸收机理(双膜理论要点)
1.相互接触的汽液两流体间存在着稳定的相界面,界面两侧各存在着一个很薄的有效层流膜层。吸收质以分子扩散方式通过两膜层。
精馏塔的工艺计算
精馏塔的工艺计算精馏塔的计算对于要完成多组分分离设备的最终设计,必须使用严格算法,但是近似算法可以为严格计算提供合适的迭代变量初值,因此本设计中采用两种方法相结合,并以计算机进行数值求解的方式来确定各级上的温度、压力、流率、气液组成和理论板数。
计算过程描述如下:第一步确定关键组分塔Ⅰ重关键组分(HK):四氯化硅(SiCl4)轻关键组分(LK):三氯氢硅(SiHCl3) 轻组分(LNK):二氯硅烷(SiH2Cl2)塔Ⅱ重关键组分(HK):三氯化硅(SiHCl3)轻关键组分(LK):二氯硅烷(SiH2Cl2) 重组分(HNK):四氯化硅(SiCl4)塔Ⅰ塔顶42℃SiH2Cl2 1.167397 1.916284 馏出液中SiHCl3质量含量>=93.946釜液中SiCl4质量含量>=94.000SiHCl315.3096 25.13082塔釜78℃SiCl444.44285 72.95299塔Ⅱ塔顶35℃SiH2ClⅠ塔塔顶出料流量Ⅰ塔塔顶出料组成馏出液中SiH2Cl2质量含量>=99.600釜液中SiHCl3质量含量>=99.500塔釜65℃SiCl4第三步用FUG简捷计算法求出MESH计算的初始理论板数组分塔Ⅰ塔Ⅱ进塔组成/% 塔顶组成/% 塔釜组成/% 进塔组成/% 塔顶组成/% 塔釜组成/% SiH2Cl2 1.916284 7.221959 0 7.221959 99.67945 0.374527 SiHCl325.13072 92.62967 0.751706 92.62967 0.320551 99.46612 SiCl472.95299 0.148369 99.24829 0.148369 0 0.159357 Σ100.00 100.00 100.00 100.00 100.00 100.002.由Fenske公式计算mNlg lg LK HKLK HKd d w w Nm a-轾骣骣犏琪琪琪琪犏桫桫臌=3.由恩特伍德公式计算最小回流比,,1()i i Fim i i D m m i x q R x R a a q a a q ü?=-?-?y?=?-?t??4.由芬斯克公式计算非清晰分割的物料组成()1i i Nm HK i HK HK f w d w a -=骣琪+琪桫,()()HK i i HK HK i NmHK i HKHK d f w d d w a a--骣琪琪桫=骣琪+琪桫5.由Kirkbride 经验式确定进料位置0.2062,,,,HK F LK WR S LK F HK D z x N W N z x D 轾骣骣骣犏琪琪琪=琪犏琪琪桫犏桫桫臌6.由吉利兰关系式计算理论板数即0.56680.750.75Y X=-式中1m R R X R -=+ ,1mN N Y N -=+ 第四步由MESH 方程计算理论板数 1. 用FUG 简捷计算法得到的理论板数N 和进料位置M 作为初始值,初始化汽液流量j V 和j L 。
精馏塔的简洁计算公式
精馏塔的简洁计算公式精馏塔是一种用于分离液体混合物的设备,通过不同组分的沸点差异来实现分离。
在工程设计和操作中,需要对精馏塔进行计算和分析,以确保其正常运行和达到预期的分离效果。
在本文中,我们将介绍精馏塔的简洁计算公式,帮助读者更好地理解和应用这些公式。
1. 精馏塔的传质效率公式。
精馏塔的传质效率是评价其性能的重要指标之一。
传质效率通常用塔板数或高度来表示,其计算公式如下:N = HETP × (n-1)。
其中,N表示塔板数或塔高度,HETP表示每塔板传质高度,n表示理论板数。
2. 精馏塔的塔板压降公式。
塔板压降是精馏塔运行中需要考虑的重要参数之一。
塔板压降的计算公式如下:ΔP = ρ× g × H × (1-ε) + ΔPv。
其中,ΔP表示塔板压降,ρ表示液体密度,g表示重力加速度,H表示塔板高度,ε表示塔板孔隙率,ΔPv表示气体速度压降。
3. 精馏塔的塔顶温度计算公式。
精馏塔的塔顶温度是其操作中需要重点关注的参数之一。
塔顶温度的计算公式如下:T = T0 + ΔT。
其中,T表示塔顶温度,T0表示进料温度,ΔT表示塔顶降温。
4. 精馏塔的塔板液体高度计算公式。
塔板液体高度是精馏塔操作中需要实时监测和控制的参数之一。
塔板液体高度的计算公式如下:H = H0 + ΔH。
其中,H表示塔板液体高度,H0表示初始液位高度,ΔH表示液位变化量。
5. 精馏塔的塔板塔顶气体速度计算公式。
塔板塔顶气体速度是精馏塔操作中需要关注的参数之一。
塔板塔顶气体速度的计算公式如下:V = Q / A。
其中,V表示塔板塔顶气体速度,Q表示气体流量,A表示塔板横截面积。
总结。
精馏塔是一种重要的分离设备,其性能和操作参数需要通过计算和分析来进行评估和控制。
本文介绍了精馏塔的传质效率、塔板压降、塔顶温度、塔板液体高度和塔板塔顶气体速度的计算公式,希望能对读者有所帮助。
当然,精馏塔的计算和分析涉及到更多的参数和复杂的情况,需要结合具体的工程实际情况进行综合分析和计算。
2精馏塔的工艺计算
2精馏塔的⼯艺计算2 精馏塔的⼯艺计算2.1精馏塔的物料衡算2.1.1基础数据(⼀)⽣产能⼒:10万吨/年,⼯作⽇330天,每天按24⼩时计时。
(⼆)进料组成:⼄苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。
(三)分离要求:馏出液中⼄苯量不⼤于0.01,釜液中甲苯量不⼤于0.005。
2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,⼄苯为重关键组分,苯为⾮轻关键组分。
01.0=D HK x , 005.0=W LK x ,表2.1 进料和各组分条件由《分离⼯程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+?=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=?==W X W ,ωKmol/h编号组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 ⼄苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=?==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表2.2精馏塔⼯艺计算2.2.1操作条件的确定⼀、塔顶温度纯物质饱和蒸⽓压关联式(化⼯热⼒学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-编号组分 i f /kmol/h馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 ⼄苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份相对分⼦质量临界温度C T 临界压⼒C P苯 78 562.2 48.9 甲苯 92 591.841.0 ⼄苯106617.236.0名称A B C D表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=?-?-?+?-?-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =?=?-=同理,可得MPa P b 1.00985.00?=露点⽅程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计⼆、塔顶压⼒塔顶压⼒Mpa p 1.0013.1?=顶三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯-7.286071.38091 -2.83433 -2.79168 ⼄苯 -7.486451.45488-3.37538-2.23048泡点⽅程:p x pni i i=∑=10 试差法求塔底温度故塔底温度=136℃四、塔底压⼒塔底压⼒Mpa p 1.0013.1?=底五、进料温度进料压⼒为Mpa p 1.0013.1?=进,泡点⽅程:p x pni i i=∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化⼯物性数据⼿册,⽤内插法求得各个数据5.105=顶t ℃,961.5=苯α 514.2=甲苯α 1=⼄苯α;136=底t ℃, 96.1=甲苯α 1=⼄苯α;133=进t ℃, 38.4=苯α 97.1=甲苯α 1=⼄苯α.2lg )1324.05544.2120681.15612.9lg(lg ))()lg((min =?==-HK LK W LKHK D HK LK x xx x N α2.2.2塔板数的确定⼀、最⼩回流⽐R min本设计为泡点进料,即饱和液体进料,q =1由恩特伍德公式: 1)(min ,+=-∑R x i mD i i θαα1i iix q ααθ=--∑019375.01148.2046875.0148.21705.5015625.01705.5=-?+-?+-?=-∑θθθθααi i i x试差法求得=θ 2.3 则最⼩回流⽐304.113.2101.013.2148.27223.0148.23.21705.52677.01705.51)(min =--?+-?+-?=--∑=θααi m D i i x R ,⼆、实际回流⽐根据混合物分离的难易程度,取实际回流⽐为最⼩回流⽐的1.2倍则R =1.2 R min =1.2×1.304=1.565组份进料温度133塔顶温度105.5 塔底温度136 平均相对挥发度苯 4.38 5.9615.1705 甲苯 1.97 2.5141.962.148 ⼄苯111565.1304.1565.11min =+-=+-R R R 查《化⼯原理》下P33图1-28吉利兰图得52.02min=+-N N N将26.6min =N 代⼊,求得N=15.2 四、进料板的计算5.9lg )()(lg )(=???? ??÷=-HKLK HK LK m R f d f d N α3lg )()(lg )(=?÷=-HKLK HK LK m S f f N αωω因为S Rm S m R R S N NN N N N N ===+)()(2.15, 12.112.1535.9135.9)()(1)()(=?+=?+=N N N N N N m S mR mS m R R 08.412.112.15=-=-=R S N N N所以,第5层理论板是加料版。
精馏塔的工艺计算
2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。
(二)进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。
(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。
2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。
01.0=D HK x ,005.0=W LK x ,表2.1 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h5544.212132434.06868.212333=-=-=d f ωKmol/h表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0.1Mpa ,温度单位K编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0名称 A B CD表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯 -7.28607 1.38091 -2.83433 -2.79168 乙苯-7.486451.45488-3.37538-2.23048泡点方程:p x pni ii =∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni ii =∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α514.2=甲苯α1=乙苯α;136=底t ℃,96.1=甲苯α1=乙苯α; 133=进t ℃,38.4=苯α97.1=甲苯α1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一总论1.1塔设备简述在化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取等单元操作中,气液传质设备必不可少。
塔设备就是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一。
塔设备一般分为级间接触式和连续接触式两大类。
前者的代表是板式塔,后者的代表则为填料塔,在各种塔型中,当前应用最广泛的是筛板塔与浮阀塔。
筛板塔在十九世纪初已应用与工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。
五十年代来,由于工业生产实践,对筛板塔作了较充分的研究并且经过了大量的工业生产实践,形成了较完善的设计方法。
筛板塔和泡罩塔相比较具有下列特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。
当前各炼厂的气体分离装置大部分仍然采用精馏分离。
化工生产中所处理的原料中间产物和粗产品等几乎都是由若干组分组成的混合物,蒸馏是分离液体混合物的典型单元操作。
低沸点烃类混合物是利用精馏方法使混合物得到分离的,其基本原理是利用被分离的各组分具有不同的挥发度,即各组分在同一压力下具有不同的沸点将其分离的。
其实质是不平衡的汽液两相在塔盘上多次逆向接触,多次进行部分汽化和部分冷凝,传质、传热,使气相中轻组分浓度不断提高,液相中重组分浓度不断提高,从而使混合物得到分离。
塔设备是能够实现蒸馏的气液传质设备,广泛应用于化工、石油化工、石油等工业中,其结构形式基本上可以分为板式塔和填料塔两大类。
板式塔用途较广,它是逐级接触式的气液传质设备。
浮阀塔于50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔型,特别是在石油、化学工业中使用最普遍,对其性能研究也较充分。
浮阀塔板的结构特点是在塔板上开有若干大孔,每个孔上装有一个可以上、下浮动的阀片,浮阀的型式很多,目前国内最常用型式的为F型和1V-4型。
F型浮阀的结构简单、制造方便、节省材料、性能良好,广泛用1于化工及炼油生产中,现已列入部颁标准(JB1118-68)。
操作时,由阀孔上升的气流,经过阀片与塔板的间隙与塔板上横流的液体接触,浮阀开度随气体负荷而变,当气量很小时,气体仍能通过静止开度的缝隙而鼓泡。
1.2我国化工工艺发展我国石油工业具有一定的水平,但还是一个发展中的国家,摆在我们石油工作者面前的任务是繁重的。
炼油工业要对现有的炼油厂进行技术改造,继续坚持“自力更生,革新挖潜,全面提高,综合利用,大搞化工原料,赶超世界先进水平”的发展方针。
要立足现有基础,搞好一、二次加工和系统工程的配套,扩大综合生产能力;要革新工艺,革新技术,革新设备,把老装置开出新水平;要发展加氢技术,发展新型催化剂和添加剂,全面提高产品质量,增加品种;要开展综合利用,大搞三次加工,增产有机化工原料;要充分利用热能,大力降低消耗,各项经济技术指标要创出新水平;要治理“三废”,保护环境,为实现赶超世界先进水平而奋斗。
二设计方案的选择2.1工艺设计的原则工艺流程设计是工艺设计的核心,在整个设计中,设备选型、工艺计算、设备布置等工作都与工艺流程有直接关系。
只有流程确定后,其他各项工作才能展开,工艺流程设计设计各个方面,而各个方面的变化又反过来影响工艺流程设计,设置使流程发生较大的变化。
因此,工艺流程设计是动手最早,而往往结束最晚。
流程设计的主要任务包括两个方面:一是确定生产流程中各个生产过程的具体内容、顺序和组合方式;二是绘制工艺流程图,要求以图解的形式表示生产过程中,当原料经过各个单元操作过程得到产品时,物料和能量发生的变化及其流向,以及采用了哪些化工过程和设备,再进一步通过图解形式表示出化工管道流程和计量控制流程。
选型和工艺设计的原则如下:⑴合理性即设备必须满足工艺一般要求,设备与工艺流程、生产规模、工艺操作条件、工艺控制水平相适应,又能充分发挥设备的能力。
⑵先进性要求设备的运转可靠性、自控水平、生产能力、转化率、收率、效率要尽可能的达到先进水平。
⑶安全性要求安全可靠、操作稳定、弹性好、无事故隐患。
对工艺和建筑,地基、厂房等无苛刻要求;工人在操作时,劳动强度小,尽量避免高温高压操作,尽量不用有毒有害的设备附件附料。
⑷经济性设备投资省,易于加工、维修、更新,没有特殊的维护要求,运行费用减少。
引进先进设备,亦应反复对比报价,考察设备性能,考虑是否易于被国内消化吸收和改进利用,避免盲目性。
总之,在设备的设计及选型中,要综合考虑合理性、先进性、安全性、经济性的原则,审慎的研究,认真的设计。
2.2精馏操作对塔设备的要求精馏所进行的是气、液两相之间的传质,而作为气、液两相传质所用的塔设备,首先必须要能使气、液两相得到充分的接触,以达到较高的传质效率。
但是,为了满足工业生产和需要,塔设备还得具备下列各种基本要求:(1) 气、液处理量大,即生产能力大时,仍不致发生大量的雾沫夹带、拦液或液泛等破坏操作的现象。
(2) 操作稳定,弹性大,即当塔设备的气、液负荷有较大范围的变动时,仍能在较高的传质效率下进行稳定的操作并应保证长期连续操作所必须具有的可靠性。
(3) 流体流动的阻力小,即流体流经塔设备的压力降小,这将大大节省动力消耗,从而降低操作费用。
对于减压精馏操作,过大的压力降还将使整个系统无法维持必要的真空度,最终破坏物系的操作。
(4) 结构简单,材料耗用量小,制造和安装容易。
(5) 耐腐蚀和不易堵塞,方便操作、调节和检修。
(6) 塔内的滞留量要小。
2.2.1板式塔类型:气-液传质设备主要分为板式塔和填料塔两大类。
精馏操作既可采用板式塔,也可采用填料塔,板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。
板式塔在工业上最早使用的是泡罩塔(1813年)、筛板塔(1832年),其后,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。
目前从国内外实际使用情况看,主要的塔板类型为浮阀塔、筛板塔及泡罩塔,而前两者使用尤为广泛。
2.2.2筛板塔:筛板塔也是传质过程常用的塔设备,它的主要优点有:(1) 结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右。
(2) 处理能力大,比同塔径的泡罩塔可增加10~15%。
(3) 塔板效率高,比泡罩塔高15%左右。
(4) 压降较低,每板压力比泡罩塔约低30%左右。
筛板塔的缺点是:(1) 塔板安装的水平度要求较高,否则气液接触不匀。
(2) 操作弹性较小(约2~3)。
(3) 小孔筛板容易堵塞。
2.2.3浮阀塔:浮阀塔是在泡罩塔的基础上发展起来的,它主要的改进是取消了升气管和泡罩,在塔板开孔上设有浮动的浮阀,浮阀可根据气体流量上下浮动,自行调节,使气缝速度稳定在某一数值。
这一改进使浮阀塔在操作弹性、塔板效率、压降、生产能力以及设备造价等方面比泡罩塔优越。
但在处理粘稠度大的物料方面,又不及泡罩塔可靠。
浮阀塔广泛用于精馏、吸收以及脱吸等传质过程中。
塔径从200mm到6400mm,使用效果均较好。
国外浮阀塔径,大者可达10m,塔高可达80m,板数有的多达数百块。
浮阀塔之所以这样广泛地被采用,是因为它具有下列特点:(1) 处理能力大,比同塔径的泡罩塔可增加20~40%,而接近于筛板塔。
(2) 操作弹性大,一般约为5~9,比筛板、泡罩、舌形塔板的操作弹性要大得多。
(3) 塔板效率高,比泡罩塔高15%左右。
(4) 压强小,在常压塔中每块板的压强降一般为400~660N/m2。
(5) 液面梯度小。
(6) 使用周期长。
粘度稍大以及有一般聚合现象的系统也能正常操作。
(7) 结构简单,安装容易,制造费为泡罩塔板的60~80%,为筛板塔的120~130%据此本课程设计选取浮阀塔。
2.3设计方案确定2.3.1操作条件的确定:确定设计方案是指确定整个精馏装置的流程、各种设备的结构型式和某些操作指标。
本设计的操作压力为101.3kpa。
塔顶设置冷凝器,塔底设置再沸器。
2.3.2进料状态:进料状态与塔板数、塔径、回流量及塔的热负荷都有密切的联系。
在实际的生产中进料状态有多种,但一般都将料液预热到泡点或接近泡点才送入塔中,这主要是由于此时塔的操作比较容易控制,不致受季节气温的影响。
此外,在泡点进料时,精馏段与提馏段的塔径相同,为设计和制造上提供了方便。
本设计采用泡点进料。
2.3.3加热方式:蒸馏釜的加热方式通常采用间接蒸汽加热,设置再沸器。
有时也可采用直接蒸汽加热。
若塔底产物近于纯水,而且在浓度稀薄时溶液的相对挥发度较大,便可采用直接蒸汽加热。
直接蒸汽加热的优点是:可以利用压力较低的蒸汽加热;在釜内只须安装鼓泡管,不须安置庞大的传热面。
这样,可节省一些操作费用和设备费用。
然而,直接蒸汽加热,由于蒸汽的不断通入,对塔底溶液起了稀释作用,在塔底易挥发物损失量相同的情况下,塔底残液中易挥发组分的浓度应较低,因而塔板数稍有增加。
本设计采用间接加热方式。
三 脱烷烃精馏塔工艺计算 3.1全塔物料平衡计算 3.1.1 原始数据获取:表3-1 原料各组分数据汇总3.1.2物料衡算 物料的年处理量=77100001000/80001299/580.3720.35860.251000.1kmol h ⨯⨯=⨯+⨯+⨯+⨯根据设计要求选择05n C -为轻关键组分,06n C -正己烷为重关键组分,04n C -为轻组分,07n C -为重组分,轻组分和清关键组分从塔顶流出,重组分和重关键组分从塔釜流出。
假定为清晰分割, 4,w x ≈0,7,D x ≈0,则根据物料衡算关系列出下表:表3-2 各组分物料衡算关系联立物料衡算式方程: 1383D W +=389.7454.650.050.05W D D +-+=0.05324.750.05129.9W D W +-+=表3-3 清晰分割物料衡算计算结果汇总3.1.3用泡点方程计算塔底温度:对于压力低于200kpa 和分子结构相似的组分所构成的系统可按理想物系处理,汽液平衡常数仅与系统的温度和压力有关,与溶液的组成无关。
当已知压力和温度时,由P-T-K 图可以直接查得平衡常数。
初设w t =70℃,由K-P-T 图按P=101.3kpa 查得各组分的i k 值,求得各组分相平衡常数值,计算结果如下表3-3:表3-4 泡点方程计算塔底温度结果在所设的72℃条件下,1|1|0.0030.01ci iW i k X =-=<∑,符合要求。
3.1.4露点方程计算塔顶温度∴塔底温度为72℃。