人教版七年级上册试卷七年级数学第四章测试题(一).doc
人教版七年级数学上册第四章几何图形复习试题一(含答案) (53)
人教版七年级数学上册第四章几何图形复习试题一(含答案) 如图是一个正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.-9 B.-8C.-4 D.-7【答案】D【解析】【分析】首先确定出正方体的对面,然后利用加法法则计算即可.【详解】2与6为对面;1与−5为对面;−3与−4为对面.原正方体相对两个面上的数字之和的最小值是=−3+(−4)=−7.故选:D.【点睛】本题主要考查的是正方体相对两个面上的文字,掌握正方体对面的确定方法是解题的关键.22.用一个平面分别去截下列几何体:①正方体②圆柱③长方体④四棱柱.截面可能是三角形的有()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.【详解】①正方体能截出三角形;②圆柱不能截出三角形;③长方体沿体面对角线截几何体可以截出三角形;④四棱柱能截出三角形.故截面可能是三角形的有3个.故选:B.【点睛】本题考查几何体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.23.如图所示的是()的表面展开图()A.三棱柱B.三棱锥C.四棱柱D.四棱锥【答案】A【解析】【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】根据展开图可知,侧面为三个长方形,底边为三角形,∴此表面展开图是三棱柱的展开图.故选A.【点睛】本题考查几何体的展开图,解题的关键是掌握几何体展开图的还原.24.下面图形是棱椎的是( )A.B.C.D.【答案】B【解析】【分析】根据棱椎的性质,进行解答即可.【详解】A.是棱柱,故错误;B.正确;C.是球体,故错误;D.是圆柱,故错误;故选B.【点睛】此题考查立体几何的认识,解题关键在于识别图形.25.下面几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】主视图是从物体正面看所得到的的图形.【详解】解:从几何体正面看,从左到右的正方形的个数为:2,1,2.故选:B.【点睛】本题考查了三视图,主视图是从物体的正面看得到的视图,解答时学生易将三种试图混淆而错误地选其它选项.26.下面每个图形都是由6个全等的正方形组成的,其中是正方体的展开图的是()A.B.C.D.【答案】C【解析】【分析】利用正方体及其表面展开图的特点解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.【详解】解:能折叠成正方体的是故选:C.【点睛】本题主要考查展开图折叠成几何体的知识点,牢记正方体的展开图是解题的关键.27.如图所示几何体从正面看是()A.B.C.D.【答案】D【解析】【分析】此几何体从正面看所得到的图形从左到右小正方形的个数为:2,1,1,1,由此可得到答案.【详解】解:从正面看,从左到右小正方形的个数为:2,1,1,1故选:D.【点睛】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.28.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“毒”字相对的字是()A.卫B.防C.讲D.生【答案】B【解析】【分析】根据展开与折叠所学的知识,还原图形即可得到答案.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“讲”与面“生”相对,面“卫”与面“病”相对,面“毒”与面“防”相对.故选B.【点睛】本题考查图形的还原,关键在于空间想象能力还原出正方体.29.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有()A.4个B.3个C.2个D.1个【解析】【分析】对几何体逐个分析判断即可得出答案.【详解】圆的截面不可能是三角形;圆柱的截面不可能是三角形;圆锥的截面可能是三角形;三棱柱的截面可能是三角形;长方体的截面可能是三角形;故截面可能是三角形的几何体共有3个故选B【点睛】本题考查用一个面截几何体,熟练掌握各个几何体的截面的形状是解题关键.30.“礼义仁智信孝”是中华民族的传统美德,小明同学将这六个字分别写在一个正方体的六个表面上,此正方体的表面展开图如图所示,与“义”字所在面相对的面上的字是()A.仁B.智C.信D.孝【答案】D【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“义”相对的字.【详解】解:结合展开图可知,与“义”相对的字是“孝”.故选:D.【点睛】此题主要考查正方体的平面展开图,解题的关键是熟知正方体的平面展开图的特点.。
人教版七年级数学上册第四章综合素质评价试卷附答案 (1)
人教版七年级数学上册第四章综合素质评价一、选择题(每题3分,共30分)1.下列各组图形中,都是平面图形的是( )A.三角形、圆、球、圆锥 B.长方体、正方体、圆柱、球C.长方形、三角形、正方形、圆 D.扇形、长方形、三棱柱、圆锥2.【2022·永州】我市江华县有“神州瑶都”的美称,每逢“盘王节”会表演长鼓舞,长鼓舞中使用的“长鼓”内腔挖空,两端相通,两端鼓口为圆形,中间鼓腰较为细小,如图为类似“长鼓”的几何体,其从上面看得到的平面图形的大致形状是( )3.下列说法中,正确的是( )A.两点确定一条直线 B.两条射线组成的图形叫做角C.两点之间直线最短 D.若AB=BC,则点B为AC的中点4.若∠A=40°,则∠A的余角为( )A.30° B.40° C.50° D.140°5.【母题:教材P140习题T12】如图,∠1=60°,则点A在点B的( )A.北偏东60°B.南偏东60°C.南偏西60°D.南偏西30°6.【2023·清华附中模拟】已知线段AB=15 cm,点C是直线AB上一点,BC=5 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是( )A.10 cm B.5 cm C.10 cm或5 cm D.7.5 cm7.已知∠1=28°24′,∠2=28.24°,∠3=28.4°,则下列说法中,正确的是( )A.∠1=∠2<∠3 B.∠1=∠3>∠2C.∠1<∠2=∠3 D.∠1=∠2>∠38.【母题:教材P134练习T1】钟表在8:25时,时针与分针夹角的度数是( )A.101.5° B.102.5° C.120° D.125°9.【2022·枣庄】某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“亮”字所在面相对的面上的汉字是( )A.青 B.春 C.梦 D.想10.【2022·齐齐哈尔】由一些大小相同的小正方体搭成的几何体从三个角度看得到的平面图形都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为( )A.4个 B.5个 C.6个 D.7个二、填空题(每题3分,共24分)11.【2023·西工大附中月考】七棱柱有________个面,________个顶点.12.在校园中的一条大路两旁种植树木(树木种在一条直线上),确定了两棵树的位置就能确定一排树的位置,这利用了我们所学过的数学知识是______________________.13.【母题:教材P130习题T12】三条直线两两相交,最少有______个交点,最多有______个交点.14.笔尖在纸上快速滑动写出了一个又一个字,这说明了______________;钟表的时针和分针旋转一周,均形成一个圆面,这说明了______________.(从点、线、面的角度作答)15.【母题:教材P128练习T3】如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________.16.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.17.如图,某海域有A,B,O三个小岛,在小岛O处观测到小岛A在其北偏东62°的方向上,观测到小岛B在其南偏东38°12′的方向上,则∠AOB的补角等于________.18.往返于甲、乙两地的客车,中途停靠5个车站(来回票价一样),且任意两站之间的票价都不同,共有________种不同的票价,需准备________种车票.三、解答题(19~21题每题10分,其余每题12分,共66分)19.已知线段a,b,利用尺规,求作一条线段AB,使AB=a-2b.(不写作法,保留作图痕迹)20.点A,B,C,D的位置如图,按下列要求画出图形:(1)画直线AB,直线CD,它们相交于点E;(2)连接AC,连接BD,它们相交于点O;(3)画射线AD,射线BC,它们相交于点F.21.【母题:教材P128练习T3】如图,已知线段AB=4.8 cm,点M为AB的中点,点P在MB上,N为P B的中点,且NB=0.8 cm,求A P的长.22.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB =∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是____________;(2)若射线OE平分∠COD,求∠AOE的度数.23.如图是某种长方体产品的展开图,高为3 cm.(1)求每件这种产品的体积;(2)请为厂家设计一种包装纸箱,使每箱能装5件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少(纸的厚度不计,纸箱的表面积尽可能小),求此包装纸箱的表面积.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系.(3)如图③,当∠AOB=α,∠BOC=β(0°<α+β<180°)时,猜想∠MON与α,β的数量关系,并说明理由.答案一、1.C 【提示】平面图形有三角形,圆,长方形,正方形,扇形等;立体图形有球,圆锥,长方体,正方体,圆柱,三棱柱等,则C中全是平面图形,故选C.2.B3.A 【提示】两点确定一条直线,A正确;由同一个点射出的两条射线组成的图形叫做角,B错误;两点之间线段最短,C错误;若AB=BC,B有可能是AC的中点,也有可能A,B,C不在同一条直线上,如图,D错误.故选A.4.C 【提示】∠A=40°,∠A的余角为90°-40°=50°,故选C.5.C 【提示】如图,∠1=60°,所以点A在点B的南偏西60°,故选C.6.D 【提示】如图①,MN=15-52+52=7.5(cm);如图②,MN=15+52-52=7.5(cm).故选D.7.B 【提示】24′60=0.4°,所以∠1=28.4°=∠3>∠2,故选B.8.B 【提示】时针与分针的夹角是360°12×3+360°12×2560=102.5°,故选B.9.D 【提示】把展开图还原成正方体可知,“点”对“春”,“青”对“梦”,“亮”对“想”,故选D.10.C 【提示】从上面看知最下面一层一定有四个小正方体,从正面看和左面看知上面一层至少有处在对角的位置上的两个小正方体,故搭成该几何体的小正方体的个数最少为6个.二、11.9;14 【提示】七棱柱有7个侧面,2个底面,共9个面,7+7=14(个)顶点.12.两点确定一条直线13.1;3 【提示】如图①,最少有1个交点;如图②,最多有3个交点.14.点动成线;线动成面 【提示】笔尖为一个点,写出了字,说明了点动成线;时针和分针为线,旋转形成了圆面,说明了线动成面.15.4 【提示】因为点C 是线段AD 的中点,所以AD =2CD =2.因为点D 是线段AB的中点,所以AB =2AD =4.16.155° 【提示】因为OD 平分∠AOC ,所以∠BOD =∠AOB -∠AOD =∠AOB -12∠AOC =180°-50°2=155°. 17.100°12′ 【提示】由题图可知∠AOB 的补角为180°-∠AOB =62°+38°12′=100°12′.18.21;42 【提示】如图,甲、乙两地的车站分别用A 、G 表示,中途的五个车站分别用B ,C ,D ,E ,F 表示,用AB 表示起点为A ,终点为B 的车票票价,故有以下不同票价:AB ,AC ,AD ,AE ,AF ,AG ,BC ,BD ,BE ,BF ,BG ,CD ,CE ,CF ,CG ,DE ,DF ,DG ,EF ,EG ,FG ,共21种,来回车票不同,则需准备21×2=42(种)车票.三、19.【解】如图,线段AB就是所求的线段.20.【解】如图.21.【解】方法一因为N为PB的中点,所以PB=2NB.又知NB=0.8 cm,所以PB=2×0.8=1.6(cm).所以AP=AB-PB=4.8-1.6=3.2(cm).方法二因为N是PB的中点,所以PB=2NB.而NB=0.8 cm,所以PB=2×0.8=1.6(cm).因为M为AB的中点,所以AM=MB=12 AB.而AB=4.8 cm,所以AM=BM=2.4 cm.又因为MP=MB-PB=2.4-1.6=0.8(cm),所以AP=AM+MP=2.4+0.8=3.2(cm).【提示】(1)把一条线段分成两条相等线段的点,叫做这条线段的中点.(2)线段中点的表达形式有三种. 若点C是线段AB的中点,则①AC=BC;②AB=2AC=2BC;③AC=BC=12AB.熟悉它的表达形式对以后学习几何的推理论证有帮助.22.【解】(1)北偏东70°(2)因为∠AOB=40°+15°=55°,∠AOB=∠AOC,所以∠AOC=55°,所以∠BOC=110°.又因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.又因为OE平分∠COD,所以∠COE=35°.又因为∠AOC=55°,所以∠AOE=55°+35°=90°.23.【解】(1)长方体的高为3 cm,则长方体的宽为12-2×3=6(cm),长为12×(25-3-6)=8(cm).根据题意,可得每件这种产品的体积为8×6×3=144(cm3).(2)因为该产品的高为3 cm,宽为6 c m,长为8 cm,所以装5件这种产品,要使纸箱所用的材料尽可能少,应该尽量使6 cm×8 cm的面重叠在一起,所以用规格为15 cm×6 cm×8 cm的包装纸箱符合要求.所以包装纸箱的表面积为2×(8×6+8×15+6×15)=516(cm2).【提示】利用展开图求立体图形的表面积或体积时要把握两个关键:一是平面图形与立体图形之间的关系,二是展开图中的数据与原立体图形的数据之间的关系.24.【解】(1)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=45°.(2)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=12α.(3)∠MON=12α.理由:∠MON=∠MOC-∠NOC=12·(α+β)-12β=12α.。
人教版七年级上册数学《第四章几何图形初步》单元测试题(含解析)
人教版七年级上册数学《第四章几何图形初步》单元测试题(含解析)一.选择题(共10小题)1.如图所示的四种物体中,哪种物体最接近于圆柱()A.B.C.D.2.下列几何体的截面分别是()A.圆、平行四边形、三角形、圆B.圆、长方形、三角形、圆C.圆、长方形、长方形、三角形D.圆、长方形、三角形、三角形3.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山4.如图,图中共有线段()第 1 页共31 页A.7条B.8条C.9条D.10条5.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为()A.10B.8C.7D.66.如图,∠AOB是平角,∠AOC=50°,∠BOD=60°,OM平分∠BOD,ON平分∠AOC,则∠MON的度数是()A.135°B.155°C.125°D.145°7.将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若∠ABC=25°,则∠DBE的度数为()A.50°B.65°C.45°D.60°8.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()第 2 页共31 页A.S3<S1<S2B.S1<S2<S3C.S2<S1<S3D.S1=S2=S39.下列七个图形中是正方体的平面展开图的有()A.1个B.2个C.3个D.4个10.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°二.填空题(共8小题)11.下面的几何体中,属于柱体的有个.12.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是第 3 页共31 页13.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D 两点间的距离是.14.已知线段MN=16cm,点P为任意一点,那么线段MP与NP和的最小值是cm.15.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于.16.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是.17.如图,一纸片沿直线AB折成的V字形图案,已知图中∠1=62°,则∠2的度数=.18.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是.若∠1=28°32′35″,则∠1的补角=.三.解答题(共7小题)19.太阳可以近似地看成球体,已知太阳的半经为6.96×108m,太阳的体积大约是多少?(球的体积的计算公式是V=πr3,π取3.14)第 4 页共31 页20.已知一个长方体的长为1cm,宽为1cm,高为2cm,请求出:(1)长方体有条棱,个面;(2)长方体所有棱长的和;(3)长方体的表面积.21.如图所示,若剪下来折叠能拼成一个正方体盒子,请你想象一下,能否在空格中填上适当的数,使相对的两个面上的数互为相反数?22.如图,点B、C把线段MN分成三部分,其比是MB:BC:CN=2:3:4,P 是MN的中点,且MN=18cm,求PC的长.23.如图,∠AOB是平角,∠DOE=90°,OC平分∠DOB.(1)若∠AOE=32°,求∠BOC的度数;(2)若OD是∠AOC的角平分线,求∠AOE的度数.24.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说第 5 页共31 页明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD的度数.25.探索性问题:已知A,B在数轴上分别表示m,n.(1)填表:(2)若A,B两点的距离为d,则d与m,n有何数量关系.(3)在数轴上整数点P到4和﹣5的距离之和为9,求出满足条件的所有这些整数的和.第 6 页共31 页2018年秋人教版七年级上册数学《第四章几何图形初步》单元测试题参考答案与试题解析一.选择题(共10小题)1.如图所示的四种物体中,哪种物体最接近于圆柱()A.B.C.D.【解答】解:最接近圆柱的是生日蛋糕.故选:A.2.下列几何体的截面分别是()A.圆、平行四边形、三角形、圆B.圆、长方形、三角形、圆C.圆、长方形、长方形、三角形D.圆、长方形、三角形、三角形【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆,截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形,当截面平行于圆锥的底面时,截面图形是圆.所以这几个几何体的截面分别是:圆、长方形、三角形、圆,故选:B.3.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()第7 页共31 页A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山【解答】解:由图可得,三亚﹣﹣永兴岛两个点之间距离最短,故选:A.4.如图,图中共有线段()A.7条B.8条C.9条D.10条【解答】解:线段由AD,AE,DE,AB,AC,BD,EC,BC,故选:B.5.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为()A.10B.8C.7D.6【解答】解:∵AB=20,AD=14,∴BD=AB﹣AD=20﹣14=6,∵D为线段BC的中点,∴BC=2BD=12,∴AC=AB﹣BC=20﹣12=8.第8 页共31 页6.如图,∠AOB是平角,∠AOC=50°,∠BOD=60°,OM平分∠BOD,ON平分∠AOC,则∠MON的度数是()A.135°B.155°C.125°D.145°【解答】解:∵∠AOC+∠COD+∠BOD=180°,∴∠COD=180°﹣∠AOC﹣∠COD=70°,∵OM、ON分别是∠AOC、∠BOD的平分线,∴∠MOC=∠AOC=25°,∠DON=∠BOD=30°,∴∠MON=∠MOC+∠COD+∠DON=125°,故选:C.7.将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若∠ABC=25°,则∠DBE的度数为()A.50°B.65°C.45°D.60°【解答】解:∵一张长方形纸片沿BC、BD折叠,∴∠ABC=∠A′BC,∠EBD=∠E′BD,而∠ABC+∠A′BC+∠EBD+∠E′BD=180°,∴∠A′BC+∠E′BD=180°×=90°,即∠ABC+∠DBE=90°,∵∠ABC=25°,∴∠DBE=65°.第9 页共31 页8.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()A.S3<S1<S2B.S1<S2<S3C.S2<S1<S3D.S1=S2=S3【解答】解:∵矩形的长为a米,宽为b米,小路的宽为x米,∴S1=ab﹣(a+b)x+S4;S2=ab﹣(a+b)x+S5;S3=ab﹣(a+b)x+S6.∵S4=x•x=x2,S5=x•sin60°•x•sin60°=x2,S6=x•sin60°•=x2,∴S2<S1<S3.故选:C.9.下列七个图形中是正方体的平面展开图的有()A.1个B.2个C.3个D.4个【解答】解:由题可得,是正方体的平面展开图的有:故选:B.第10 页共31 页10.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°【解答】解:连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵()2+()2=()2,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.二.填空题(共8小题)11.下面的几何体中,属于柱体的有4个.【解答】解:柱体分为圆柱和棱柱,所以柱体有圆柱、正方体、六棱柱,三棱柱共4个.故答案为:4.12.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是中【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第11 页共31 页“我”与“城”是相对面,“北”与“三”是相对面,“爱”与“中”是相对面.故答案为:中.13.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D 两点间的距离是2或8.【解答】解:①如图1所示,∵AB=10,BC=6,∴AC=AB﹣BC=10﹣6=4,∵D是线段AC的中点,∴AD=AC=×4=2;②如图2所示,∵AB=10,BC=6,∴AC=AB+BC=10+6=16,∵D是线段AC的中点,∴AD=AC=×16=8.故答案为:2或8.14.已知线段MN=16cm,点P为任意一点,那么线段MP与NP和的最小值是16 cm.【解答】解:如图所示:所以线段MP与NP和的最小值是16cm,故答案为;1615.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于32°.第12 页共31 页【解答】解:∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2﹣∠1=12°,可得:5x﹣12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°16.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是60°.【解答】解:∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°﹣150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.17.如图,一纸片沿直线AB折成的V字形图案,已知图中∠1=62°,则∠2的度数=56°.【解答】解:由折叠可得出2∠1+∠2=180°,∵∠1=62°,第13 页共31 页∴∠2=180°﹣2×62°=56°,故答案为56°.18.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是∠AOD.若∠1=28°32′35″,则∠1的补角=151°27′25″.【解答】解:∵∠1=∠2,∴与∠1互补的角是∠AOD,∵∠1=28°32′35″,∴∠1的补角=151°27′25″,故答案为:∠AOD;151°27′25″三.解答题(共7小题)19.太阳可以近似地看成球体,已知太阳的半经为6.96×108m,太阳的体积大约是多少?(球的体积的计算公式是V=πr3,π取3.14)【解答】解:当r=6.96×108时,V=πr3≈×3.14×(6.96×108)3≈1.41×1027m3,答:太阳的体积大约是1.41×1027m3.20.已知一个长方体的长为1cm,宽为1cm,高为2cm,请求出:(1)长方体有12条棱,6个面;(2)长方体所有棱长的和;(3)长方体的表面积.【解答】解:(1)长方体有12条棱,6个面;第14 页共31 页故答案为:12,6;(2)(1+1+2)×4=4×4=16(cm).故长方体所有棱长的和是16cm;(3)(1×1+1×2+1×2)×2=(1+2+2)×2=5×2=10(cm2).故长方体的表面积是10cm2.21.如图所示,若剪下来折叠能拼成一个正方体盒子,请你想象一下,能否在空格中填上适当的数,使相对的两个面上的数互为相反数?【解答】解:依题意得:A=﹣2,B=﹣3,C=﹣4.22.如图,点B、C把线段MN分成三部分,其比是MB:BC:CN=2:3:4,P 是MN的中点,且MN=18cm,求PC的长.【解答】解:设MB=2x,则BC=3x,CN=4x,因为P是MN中点,所以MP=MN=×(2x+3x+4x)=x=9.解得x=2,∴PC=MC﹣MP=2x+3x﹣x=0.5x=1.23.如图,∠AOB是平角,∠DOE=90°,OC平分∠DOB.(1)若∠AOE=32°,求∠BOC的度数;(2)若OD是∠AOC的角平分线,求∠AOE的度数.第15 页共31 页【解答】解:(1)∠AOD=∠DOE﹣∠AOE=90°﹣32°=58°∠BOD=∠AOB﹣∠AOD=180°﹣58°=122°又OC平分∠BOD所以:∠BOC=∠BOD=×122°=61°(2)因为OC平分∠BOD,OD平分∠AOC 所以∠BOC=∠DOC=∠AOD又∠BOC+∠DOC+∠AOD=180°所以∠AOD=×180°=60°所以∠AOE=∠DOE﹣∠AOD=90°﹣60°=30°24.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD的度数.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,第16 页共31 页故答案为:30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.25.探索性问题:已知A,B在数轴上分别表示m,n.(1)填表:(2)若A,B两点的距离为d,则d与m,n有何数量关系.(3)在数轴上整数点P到4和﹣5的距离之和为9,求出满足条件的所有这些整数的和.【解答】解:(1)5﹣2=3;0﹣(﹣4)=4;6﹣(﹣6)=12;﹣4﹣(﹣5)=1;2﹣(﹣90)=92;﹣2.5﹣(﹣4.5)=2;故答案为:3,4,12,1,92,2;(2)∵数轴上两点间的距离d等于表示两点数之差的绝对值,第17 页共31 页∴d=|m﹣n|.(3)设整数点P表示的数为x,∵点P到4和﹣5的距离之和为9,∴|x﹣4|+|x﹣(﹣5)|=9,即x﹣4+x+5=9,﹣(x﹣4)+x+5=9(﹣5和4两点间所有的整数点均成立),x ﹣4﹣(x+5)=9(舍去)或﹣(x﹣4)﹣(x+5)=9,解得x=﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4;∴有这些整数的和为4+3+2+1+0﹣1﹣2﹣3﹣4﹣5=﹣5.第18 页共31 页人教版七年级上册数学第四章几何图形初步单元测试题(含答案)一、选择题1.角是指()A. 由两条线段组成的图形B. 由两条射线组成的图形C. 由两条直线组成的图形D. 有公共端点的两条射线组成的图形2.如果一个角的补角是150°,那么这个角的余角的度数是()A. 30°B. 60°C. 90°D. 120°3.下列说法正确的是()A. 经过两点有且只有一条线段B. 经过两点有且只有一条直线C. 经过两点有且只有一条射线D. 经过两点有无数条直线4.如图,四条线段中,最短和最长的一条分别是()A. acB. bdC. adD. bc5.如图,B在线段AC上,且BC=2AB,D,E分别是AB,BC的中点.则下列结论:①AB= AC;②B是AE的中点;③EC=2BD;④DE=AB.其中正确的有()A. 1个B. 2个C. 3个D. 4个6.已知∠α=70°,则∠α的补角为()A. 120°B. 110°C. 70°D. 20°7.下列语句中,正确的是().A. 比直角大的角钝角;B. 比平角小的角是钝角C. 钝角的平分线把钝角分为两个锐角;D. 钝角与锐角的差是锐角8.如图,已知AD平分∠BAE,若∠BAD=62°,则∠CAE的度数是()第19 页共31 页A. 55°B. 56°C. 58°D. 62°9.如图,下列关系式中与图不符合的式子是()A. AD-CD=AB+BCB. AC-BC=AD-BDC. AC-BC=AC+BDD. AD-AC=BD-BC10.如图是一个正方体的平面展开图,当把它拆成一个正方体,与空白面相对的字应该是()A. 北B. 京C. 欢D. 迎二、填空题11.已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC=________.12.若∠α=32°22′,则∠α的余角的度数为________.13.已知一个角的补角等于155°,则这个角的余角等于________14.八棱柱有________个顶点,________条棱,________个面.15.和互补,且-=50°,求和的度数. ________、 ________16.34.42°=________(用度、分、秒表示).17.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=________ °.18.用一个平面去截长方体,截面________是平行四边形(填“可能”或“不可能”).19.一条直线上有A、B、C三个点,AB=7cm,BC=4cm,则AC=________ .20.已知线段AB=1996,P、Q是线段AB上的两个点,线段AQ=1200,线段BP=1050,则线段PQ=________.三、解答题21.已知∠BOC=120°,∠AOB=70°,求∠AOC的大小。
七年级数学上学期第四单元几何图形初步测试卷5套带答案
第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。
人教版七年级数学上册第四章几何图形复习试题一(含答案) (80)
人教版七年级数学上册第四章几何图形复习试题一(含答案) 如图,下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?【答案】圆锥,圆柱,正方体,三棱柱;【解析】【分析】根据常见的几何体的平面展开图,进行分析判断,即可得到答案.【详解】解:根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:圆锥,圆柱,正方体,三棱柱;故答案为:圆锥,圆柱,正方体,三棱柱;【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.92.图1所示的三棱柱,高为7cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有条棱,有个面;(2)图2方框中的图形是该三棱柱的表面展开图的一部分,请将它补全;(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,需剪开条棱,需剪开棱的棱长的和的最大值为cm.【答案】(1)9,5;(2)见解析;(3)5,31.【解析】【分析】(1)n棱柱有n个侧面,2个底面,3n条棱,2n个顶点;(2)利用三棱柱及其表面展开图的特点解题;(3)三棱柱有9条棱,观察三棱柱的展开图可知没有剪开的棱的条数是4条,相减即可求出需要剪开的棱的条数.【详解】(1)这个三棱柱有条9棱,有个5面,故答案为:9,5;(2)如图(答案不唯一);(3)由图形可知:没有剪开的棱的条数是4条,则至少需要剪开的棱的条数是:9﹣4=5(条),故至少需要剪开的棱的条数是5条,需剪开棱的棱长的和的最大值为:7×3+5×2=31(cm),故答案为:5,31.【点睛】本题主要考查的是认识立体图形,明确n棱柱有n个侧面,2个底面,3n 条棱,2n个顶点;能够数出三棱柱没有剪开的棱的条数是解答此题的关键.93.如图,请在横线上写出哪种立体图形的表面能展开成下面的图形.【答案】圆柱,圆锥,三棱柱,六棱柱,四棱柱(长方体),三棱柱.【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:如图,按照从左往右的顺序,分别为圆柱,圆锥,三棱柱,六棱柱,四棱柱(长方体),三棱柱.故答案为:圆柱,圆锥,三棱柱,六棱柱,四棱柱(长方体),三棱柱.【点睛】本题考查了展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解题的关键.94.如图所示的三个图形经过折叠都能围成棱柱吗?先想一想,再折一折.并说出能围成的棱柱的名称.【答案】都能围成棱柱,依次为四棱柱(长方体),五棱柱,三棱柱.【解析】【分析】本题是操作问题,可以尝试操作,或想象操作.根据棱柱的特征,特别是侧面和上下两个底面的位置特征作答.【详解】第一个图形可以围成直四棱柱;第二个图折叠后可以围成五棱柱;第三个图形,将两个长方形往中间的那个面折叠,即可得一三棱柱.可以折成三棱柱.【点睛】本题考查了展开图折叠成几何体,熟练掌握常见立体图形的平面展开图的特征,是解题的关键.95.圆锥的侧面展开图是扇形,这个扇形可以是直角扇形也可以是半圆,请问这个扇形可以是整个圆吗?【答案】不可以是整个圆.【分析】根据圆锥的定义解答即可.【详解】解:圆锥的侧面展开图是扇形,这个扇形可以是直角扇形也可以是半圆,但这个扇形不可以是整个圆.【点睛】本题考查了圆锥的特征,明确圆锥立体图形的特征是解题的关键.96.将如图所示的平面图形折叠后形成的图形的名称依次是________、________、________.【答案】圆柱,六棱柱,圆锥.【解析】【分析】根据平面展开图的特征作答即可.【详解】一个长方形和两个圆折叠后,能围成的几何体是圆柱,所以第一个图形为圆柱;第二个图形折叠后能折成六棱柱;第三个图形,由一个扇形和一个圆形能围成圆锥.故答案为圆柱;六棱柱;圆锥.本题考查了展开图折叠成几何体,熟记常见立体图形的平面展开图的特征是解题的关键.97.指出如图所示的图形分别是什么图形的表面展开图.①②【答案】①是圆锥的表面展开图,②是圆柱的4表面展开图.【解析】【分析】根据几何体的平面展开图的特征分别进行判定即可.【详解】解:①是圆锥的展开图;②是圆柱的展开图.【点睛】本题考查了几何体展开图的知识点,熟记常见几何体的平面展开图的特征,是解决问题的关键.98.如图,在第一行中找出与第二行对应的几何体的表面展开图,并用线把它们连起来.?【答案】见解析.【解析】【分析】观察图形根据几何体和展开图的形状判定即可.【详解】解:如图所示.【点睛】本题考查了几何体的展开图,熟记常见几何体的展开图是解题的关键.99.如图,假定用A,B表示正方体相邻的两个面,用字母C表示与A相对的面,请在下面的正方体展开图中填写相应的字母.【答案】见解析.【解析】【分析】根据正方体有六个面,所以展开后两对面是横隔一行或竖隔一列继而得到C 的位置,【详解】解:如图.【点睛】本题考查了运用正方体的相对面解答问题,掌握:正方体的平面展开图中,相对的两个面中间必须隔着一个小正方形是解题的关键.100.下图所示的几何体(*)由若干个大小相同的小正方体构成.(1)下面五个平面图形中有三个是从三个方向看到的图形,把看到的图形与观测位置连接起来;(2)已知小正方体的边长为a,求这个几何体(*)的体积和表面积.【答案】(1)详见解析;(2)体积是:34a,表面积是:218a.【解析】【分析】(1)根据从物体不同方向看图的定义求解;(2)几何体的体积=原正方体体积-挖去的棱长为1的小正方体的体积;表面积与原来相同.【详解】解:(1)如图所示:(2)这个几何体的体积是:3⨯⨯⨯=,44a a a a表面积是:21818⨯⨯=.a a a【点睛】此题主要考查了平面图形,以及求几何体的体积和表面积,掌握主视图、左视图、俯视图是从那个角度所得到的图形是解题的关键.。
(必考题)人教版初中七年级数学上册第四章《几何图形初步》模拟测试题(答案解析)(1)
一、选择题1.(0分)[ID :68657]如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .52.(0分)[ID :68647]下列说法错误的是( )A .若直棱柱的底面边长都相等,则它的各个侧面面积相等B .n 棱柱有n 个面,n 个顶点C .长方体,正方体都是四棱柱D .三棱柱的底面是三角形3.(0分)[ID :68643]点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC 等于( ) A .3B .2C .3 或 5D .2 或 64.(0分)[ID :68640]α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对5.(0分)[ID :68628]如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°6.(0分)[ID :68627]一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒7.(0分)[ID :68624]如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°8.(0分)[ID :68622]如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒9.(0分)[ID :68619]如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=° 10.(0分)[ID :68618]“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线11.(0分)[ID :68609]平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( ) A .16B .22C .20D .1812.(0分)[ID :68603]已知α∠和β∠互补,且αβ∠>∠,则有下列式子: ①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个 13.(0分)[ID :68599]如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( ) A .30°B .60°C .120°D .150°14.(0分)[ID :68591]一个小立方块的六个面分别标有字母A ,B ,C ,D ,E ,F ,从三个不同的方向看形如图所示,则字母D 的对面是( )A.字母A B.字母F C.字母E D.字母B15.(0分)[ID:68565]用一个平面去截一个几何体,能截出如图所示的四种平面图形,则这个几何体可能是()A.圆柱B.圆锥C.长方体D.球二、填空题16.(0分)[ID:68713]请写出图中的立体图形的名称.①_______;②_______;③_______;④_______.17.(0分)[ID:68698]如图,共有_________条直线,_________条射线,_________条线段.18.(0分)[ID:68726]从起始站A市坐火车到终点站G市中途共停靠5次,各站点到A市距离如下:站点B C D E F G到A市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价____种.19.(0分)[ID:68708]如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.MN ,线20.(0分)[ID:68695]已知,如图,点M,N分别是线段AB,BC的中点,且9段1143BD AB CD ==,则线段BD 的长为________.21.(0分)[ID :68675]下面的图形是某些几何体的表面展开图,写出这些几何体的名称.22.(0分)[ID :68755]如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.23.(0分)[ID :68749]一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是_____立方厘米.(结果保留π) 24.(0分)[ID :68748]一个圆的周长是62.8m ,半径增加了2m 后,面积增加了____2m .(π取3.14)25.(0分)[ID :68744]如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =_______.26.(0分)[ID :68739]如图,上午6:30时,时针和分针所夹锐角的度数是_____.27.(0分)[ID :68728]如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.三、解答题28.(0分)[ID :68784]如图,∠AOB=∠DOC=90°,OE 平分∠AOD ,反向延长射线OE 至F.(1)∠AOD 和∠BOC 是否互补?说明理由; (2)射线OF 是∠BOC 的平分线吗?说明理由;(3)反向延长射线OA 至点G ,射线OG 将∠COF 分成了4:3的两个角,求∠AOD . 29.(0分)[ID :68811]如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点. (1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.30.(0分)[ID :68802]小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.D4.C5.A6.D7.B8.A9.C10.A11.B12.B13.C14.D15.A二、填空题16.圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断依据圆锥的概念可以对(4)进行判断【详解】(1)该立体图形的上下两17.63【解析】【分析】根据线段射线和直线的特点:线段有两个端点有限长可以测量;射线有一个端点无限长;直线无端点无限长;进行解答即可【详解】因为线段有两个端点射线只有一个端点所以由图可以看出:图中有1条18.14【分析】画出图形后分别求出BCCDDEEFFG的大小可得AB=FGBC=DECD=EF然后根据票价是由路程决定再分别求出从ABCDEF出发的情况相加即可【详解】解:①从A分别到BCDEFG共6种19.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出20.3【分析】根据等式的性质可得AB与BD的关系CD与BD的关系根据线段中点的性质可得AM与BM的关系DN与NC的关系根据线段的和差可得BD的长根据线段的和差可得答案【详解】∵∴AB=4BDCD=3BD21.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱;22.90【分析】根据折叠的性质及平角的定义求出根据BD为∠A′BE的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD为∠A′BE的平分线∴∴故答案为:90【点睛】此题考查折叠的性质23.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体24.16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷3125.【分析】先求出∠CAB及∠ABC的度数再根据三角形内角和是180°即可进行解答【详解】∵C岛在A岛的北偏东60°方向在B岛的北偏西45°方向∴∠CAB+∠ABC=180°﹣(60°+45°)=75°26.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动27.【分析】根据角平分线的性质计算出再根据角的关系即可求解【详解】∵平分平分∴∴∴【点睛】本题考查了角的平分线定义及性质熟练掌握角平分线的意义是解本题的关键三、解答题28.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.B解析:B【解析】A、若直棱柱的底面边长都相等,则它的各个侧面面积相等,说法正确;B、n棱柱有n+2个面,n个顶点,故原题说法错误;C、长方体,正方体都是四棱柱,说法正确;D、三棱柱的底面是三角形,说法正确;故选B.3.D解析:D【解析】试题此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况∵点A、B表示的数分别为﹣3、1,∴AB=4.第一种情况:在AB外,如答图1,AC=4+2=6;第二种情况:在AB内,如答图2,AC=4﹣2=2.故选D.4.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.5.A解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD=40°,∠BOC=50°,所以∠COD=90°,又因为OM,ON分别平分∠BOC和∠AOD,所以∠N OD+∠M OC=45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.6.D解析:D【分析】根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D . 【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.7.B解析:B 【解析】∵OC ⊥OD ,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B .8.A解析:A 【分析】根据题意,先求得∠COB 的值;OM 平分∠BOC ,ON 平分∠AOC ,则可求得∠AOM 、∠AON 的值;∠MON=∠AOM+∠AON ,计算得出结果. 【详解】∵∠AOB=90°,且∠AOC=40°, ∴∠COB=∠AOB+∠AOC=90°+40°=130°, ∵OM 平分∠BOC , ∴∠BOM=12∠BOC=65°, ∴∠AOM=∠AOB-∠BOM=25°, ∵ON 平分∠AOC , ∴∠AON=12∠AOC=20°, ∴∠MON=∠AOM+∠AON=45°. ∴∠MON 的度数是45°. 故选:A . 【点睛】本题考查了余角的计算,角的计算,角平分线的定义.首先确立各角之间的关系,根据角平分线定义得出所求角与已知角的关系转化是解题的关键.9.C解析:C 【分析】先根据同角的余角相等得出∠1=∠BCE ,再根据∠BCE+∠2=180°,得出∠1+∠2=180°即可. 【详解】 ∵EH ⊥BC ,∴∠1+∠B=90°,∵∠BAC=90°,∴∠BCE+∠B=90°,∴∠1=∠BCE.∵∠BCE+∠2=180°,∴∠1+∠2=180°,即∠1与∠2互补,故选:C.【点睛】本题考查了余角和补角.解题的关键是掌握余角和补角的定义,同角的余角相等的性质.10.A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A.【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型.11.B解析:B【分析】由题意可得7条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m,n的值,进而可得答案.【详解】解:根据题意可得:7条直线相交于一点时交点最少,此时交点为1个,即n=1;任意两直线相交都产生一个交点时,交点最多,此时交点为:7×(7﹣1)÷2=21,即m=21;则m+n=21+1=22.故选:B.【点睛】本题考查了直线的交点问题,注意掌握直线相交于一点时交点最少,任意n条直线两两相交时交点最多为12n(n﹣1)个.12.B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 13.C解析:C【分析】根据∠1的余角是∠2,并且∠1=2∠2求出∠1,再求∠1的补角.【详解】∵∠1的余角是∠2,∴∠1+∠2=90°,∵∠1=2∠2,∴2∠2+∠2=90°,∴∠2=30°,∴∠1=60°,∴∠1的补角为180°﹣60°=120°.故选:C .【点睛】本题考查了余角和补角,熟记概念并理清余角和补角的关系求解更简便.14.D解析:D【分析】根据与A 相邻的四个面上的数字确定即可.【详解】由图可知,A 相邻的四个面上的字母是B 、D 、E 、F ,所以,字母D的对面是字母B.故选:D.【点睛】本题考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解题的关键.15.A解析:A【解析】【分析】用平面截圆锥,得到的截面是圆、椭圆或者三角形等,不可能是四边形,用平面截球体,得到的截面始终是圆形;用平面截长方体,得到的截面是三角形,长方形等;接下来,用平面截圆柱,对得到的截面进行分析,即可得到答案.【详解】∵圆柱体的主视图只有矩形或圆,∴圆柱体的主视图符合题意.故选:A.【点睛】此题考查截一个几何体,熟练掌握常见几何体的特征是解题的关键.二、填空题16.圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断依据圆锥的概念可以对(4)进行判断【详解】(1)该立体图形的上下两解析:圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断,依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断,依据圆锥的概念可以对(4)进行判断.【详解】(1)该立体图形的上下两个底面是大小相同且平行的两个圆,所以是圆柱;(2)该立体图形的上下两个底面是相同且平行的两个三角形,三个侧面都是长方形,所以是三棱柱;(3)该立体图形的共有四个面,每个面都是三角形,所以是三棱锥;(4)该几何体只有一个底面,是圆,并且有一个顶点,所以是圆锥.答案:(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.【点睛】此题考查柱体与锥体的认识,掌握立体图的概念是解题的关键.17.63【解析】【分析】根据线段射线和直线的特点:线段有两个端点有限长可以测量;射线有一个端点无限长;直线无端点无限长;进行解答即可【详解】因为线段有两个端点射线只有一个端点所以由图可以看出:图中有1条解析:6 3【解析】【分析】根据线段、射线和直线的特点:线段有两个端点,有限长,可以测量;射线有一个端点,无限长;直线无端点,无限长;进行解答即可.【详解】因为线段有两个端点,射线只有一个端点,所以由图可以看出:图中有1条直线,3条线段,有6条射线.故此题答案为:1,6,3.【点睛】此题主要考查直线、线段和射线的特点,此类型的题,在数时,应做到有顺序,做到不遗漏、不重复.18.14【分析】画出图形后分别求出BCCDDEEFFG的大小可得AB=FGBC=DECD=EF然后根据票价是由路程决定再分别求出从ABCDEF出发的情况相加即可【详解】解:①从A分别到BCDEFG共6种解析:14【分析】画出图形后分别求出BC、CD、DE、EF、FG的大小,可得AB=FG,BC=DE,CD=EF,然后根据票价是由路程决定,再分别求出从A、B、C、D、E、F出发的情况,相加即可.【详解】解:①从A分别到B、C、D、E、F、G共6种票价,如图:BC=805﹣445=360,CD=1135﹣805=330,DE=1495﹣1135=360,EF=1825﹣1495=330,FG=2270﹣1825=445,即AB=FG,BC=DE,CD=EF,②∵BC=360,BD=690,BE=1050,BF=1380,BG=1825=AF,∴从B出发的有4种票价,有BC、BD、BE、BF,4种;③∵CD=330,CE=690=BD,CF=1020,CG=1465,∴从C出发的(除去路程相同的)有3种票价,有CD,CF,CG,3种;④∵DE=360=BC,DF=690=BD,DG=1135=AD,∴从D出发的(除去路程相同的)有0种票价;⑤∵EF=330=CD,EG=775,∴从E出发的(除去路程相同的)有1种票价,有EG,1种;⑥∵FG=445=AB,∴从F出发的(除去路程相同的)有0种票价;∴6+4+3+0+1+0=14.故答案为:14.【点睛】本题考查了线段知识的实际应用,正确理解题意、不重不漏的求出所有情况是解此题的关键,这是一道比较容易出错的题目,求解时注意分类全面.19.450°【分析】(1)∠AOE =90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA 即和为90°而有的角相加等于∠BOD 即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE =90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA ,即和为90°,而有的角相加等于∠BOD ,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD ,∠EOC ,∠EOB ,∠EOA ,∠DOC ,∠DOB ,∠DOA ,∠COB ,∠COA ,∠BOA 共10个;它们的度数之和是(∠EOD +∠DOA)+(∠EOC +∠COA)+(∠ EOB +∠BOA)+[(∠DOC +∠COB)+∠DOB]+∠EOA =90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.20.3【分析】根据等式的性质可得AB 与BD 的关系CD 与BD 的关系根据线段中点的性质可得AM 与BM 的关系DN 与NC 的关系根据线段的和差可得BD 的长根据线段的和差可得答案【详解】∵∴AB=4BDCD=3BD解析:3【分析】根据等式的性质,可得AB 与BD 的关系,CD 与BD 的关系,根据线段中点的性质,可得AM 与BM 的关系,DN 与NC 的关系,根据线段的和差,可得BD 的长,根据线段的和差,可得答案.【详解】 ∵1143BD AB CD ==,∴AB =4BD ,CD =3BD . 点M 、N 分别是线段AB 、BC 的中点,AM =BM =2BD ,DB =BN =NC .由线段的和差,得MN =MB +BN =3BD =9.所以BD =3.故答案为3.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质.21.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱; 解析:正方体 四棱锥 三棱柱【解析】【分析】根据常见的几何体的展开图进行判断.【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体 ,四棱锥 , 三棱柱;【点睛】此题考查几何体的展开图,解题关键在于掌握其展开图.22.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A ′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.23.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体 解析:12π或16π【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥,再利用圆锥的体积公式进行计算即可.【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥,①当绕它的直角边为3cm 所在的直线旋转所形成几何体的的体积是:2134123ππ⨯⨯=, ②当绕它的直角边为4cm 所在的直线旋转所形成几何体的的体积是:2143163ππ⨯⨯=, 故答案为:12π或16π.【点睛】此题主要考查了点、线、面、体,关键是掌握圆锥的体积公式,注意分类讨论. 24.16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m 后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷31解析:16.【分析】先根据圆的周长公式得到原来圆的半径,进一步得到半径增加了2m 后的半径,再根据圆的面积公式分别得到它们的面积,相减即可求解.【详解】解:3.14×(62.8÷3.14÷2+2)2﹣3.14×(62.8÷3.14÷2)2=3.14×(10+2)2﹣3.14×102=3.14×144﹣3.14×100=3.14×44=138.16(m 2)故答案为:138.16.【点睛】本题考查了有理数的混合运算,本题关键是熟练掌握圆的周长和面积公式.25.【分析】先求出∠CAB 及∠ABC 的度数再根据三角形内角和是180°即可进行解答【详解】∵C 岛在A 岛的北偏东60°方向在B 岛的北偏西45°方向∴∠CAB+∠ABC=180°﹣(60°+45°)=75°解析:【分析】先求出∠CAB 及∠ABC 的度数,再根据三角形内角和是180°即可进行解答.【详解】∵C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,∴∠CAB+∠ABC=180°﹣(60°+45°)=75°,∵三角形内角和是180°,∴∠ACB=180°﹣∠CAB ﹣∠ABC=180°﹣30°﹣45°=105°.故答案为105.【点睛】此题主要考查了方向角的概念和三角形的内角和定理,根据题意得到∠CAB 和∠ABC 的度数是解题关键.26.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°. 故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°. 27.【分析】根据角平分线的性质计算出再根据角的关系即可求解【详解】∵平分平分∴∴∴【点睛】本题考查了角的平分线定义及性质熟练掌握角平分线的意义是解本题的关键解析:112︒【分析】根据角平分线的性质计算出2AOC COE ∠=∠,2BOC COF ∠=∠,再根据角的关系,即可求解.【详解】∵OE 平分AOC ∠,OF 平分BOC ∠,∴2AOC COE ∠=∠,2BOC COF ∠=∠,∴2()2248AOC BOC COE COF EOF ︒∠+∠=∠+∠=∠=,∴360248112AOB ︒︒︒∠=-=.【点睛】本题考查了角的平分线定义及性质,熟练掌握角平分线的意义是解本题的关键.三、解答题28.(1)互补;理由见解析;(2)是;理由见解析;(3)54°或720()11【分析】(1)根据和等于180°的两个角互补即可求解;(2)通过求解得到∠COF =∠BOF ,根据角平分线的定义即可得出结论;(3)分两种情况:①当∠COG :∠GOF =4:3时;②当∠COG :∠GOF =3:4时;进行讨论即可求解.【详解】(1)因为∠AOD+∠BOC=360°﹣∠AOB﹣∠DOC=360°﹣90°﹣90°=180°,所以∠AOD和∠BOC互补.(2)因为OE平分∠AOD,所以∠AOE=∠DOE,因为∠COF=180°﹣∠DOC﹣∠DOE=90°﹣∠DOE,∠BOF=180°﹣∠AOB﹣∠AOE=90°﹣∠AOE,所以∠COF=∠BOF,即OF是∠BOC的平分线.(3)因为OG将∠COF分成了4:3的两个部分,所以∠COG:∠GOF=4:3或者∠COG:∠GOF=3:4.①当∠COG:∠GOF=4:3时,设∠COG=4x°,则∠GOF=3x°,由(2)得:∠BOF=∠COF=7x°因为∠AOB+∠BOF+∠FOG=180°,所以90°+7x+3x=180°,解方程得:x=9°,所以∠AOD=180°﹣∠BOC=180°﹣14x=54°.②当∠COG:∠GOF=3:4时,设∠COG=3x°,∠GOF=4x°,同理可列出方程:90°+7x+4x=180°,解得:x =90 () 11,所以∠AOD=180°﹣∠BOC=180°﹣14x720 ()11 .综上所述:∠AOD的度数是54°或720 () 11.【点睛】本题考查了余角和补角,角平分线的定义,同时涉及到分类思想的综合运用.29.(1)7.5;(2)12a,理由见解析;(3)能,MN=12b,画图和理由见解析【分析】(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN 即可求出MN的长度即可.(2)据题意画出图形,利用MN=MC+CN即可得出答案.(3)据题意画出图形,利用MN=MC-NC即可得出答案.【详解】解:(1)点M、N分别是AC、BC的中点,∴CM=12AC=4.5cm,CN=12BC=3cm,∴MN=CM+CN=4.5+3=7.5cm .所以线段MN 的长为7.5cm .(2)MN 的长度等于12a , 根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC )=12a ;(3)MN 的长度等于12b , 根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC )=12b .【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.30.(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.。
人教版 七年级数学上册 第四章同步测试题(含答案)
人教版七年级数学上册第四章同步测试题(含答案)4.1 几何图形一、选择题1. 如图所示的几何体是由形状、大小都完全相同的小正方体组合而成的,则图中的图形不是从正面、左面、上面看这个几何体得到的平面图形的是()2. 如图所示的几何体,从上面看得到的平面图形是()3. 下列四个图形中,是三棱锥的展开图的是()4. 如图,下列各组图形中全部属于柱体的是()5. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是( )6. 下列几何体中,含有曲面的有()A.1个B.2个C.3个D.4个7. 圆柱是由长方形绕着它的一边所在的直线旋转一周得到的,那么如图所示的几何体是图中的哪一个图形绕着直线旋转一周得到的()8. 将如图所示的长方体的表面展开,则得到的平面图形不可能是图中的 ()9. 如图,给定的是一个纸盒的外表面,图中的几何体能由它折叠而成的是()10. 如果一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形二、填空题11. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.12. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.13. 如图所示的图形中,是棱柱的有______.(填序号)14. 如图所示的8个立体图形中,是柱体的有,是锥体的有,是球的有.(填序号)15. 如图所示是某几何体的展开图,那么这个几何体是.16. 如图,把下列实物图和与其对应的立体图形连接起来.三、解答题17. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.18. 如图,是长方体的展开图,将其折叠成一个长方体,那么:(1)与点N重合的点是哪几个?(2)若AG=CK=14 cm,FG=2 cm,LK=5 cm,则该长方体的表面积和体积分别是多少?图19. 如图①是三个直立于水平面上的形状完全相同的几何体(下底面为圆,单位:cm),将它们拼成如图②所示的新几何体,求新几何体的体积(结果保留π).人教版七年级数学上册 4.1 几何图形同步课时训练-答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】A4. 【答案】B5. 【答案】B6. 【答案】B7. 【答案】A8. 【答案】C9. 【答案】B10. 【答案】C[解析] 一个棱柱有18条棱,则这个棱柱是六棱柱,六棱柱的底面是六边形.二、填空题11. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.12. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同13. 【答案】②⑥14. 【答案】①②⑤⑦⑧④⑥③15. 【答案】圆柱16. 【答案】①-C,②-B,③-D,④-E,⑤-A 连线略三、解答题17. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.18. 【答案】解:(1)与点N重合的点是点H,J.(2)由AG=CK=14 cm,LK=5 cm,可得CL=CK-LK=14-5=9(cm),所以长方体的表面积为2×(9×5+2×5+2×9)=146(cm2),体积为5×9×2=90(cm3).19. 【答案】解:π×22×(4+6)+[π×22×(4+6)]=40π+20π=60π(cm3).答:新几何体的体积为60π cm3.4.2直线、射线、线段同步练习试题(一)一.选择题1.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外2.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直3.有下列生活、生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设.②用两个钉子就可以把木条固定在墙上.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①④B.②④C.①②D.③④4.已知点A,B,C在同一直线上,若AB=20cm,AC=30cm,点M、N分别是线段AB、AC中点,求线段MN的长是()A.5cm B.5cm或15cm C.25cm D.5cm或25cm 5.已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC =BC=AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③6.如图,点C是AB的中点,点D是BC的中点,下列结论:①CD=AC﹣DB,②CD=AB,③CD=AD﹣BC,④BD=2AD﹣AB,正确的有()A.1个B.2个C.3个D.4个7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因()A.两点之间,线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离8.如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处9.老爷爷从家到超市有甲、乙、丙三条路可以选择,在不考虑其它因素的情况下,他选择了乙路前往,则其中蕴含着的数学道理是()A.两点确定一条直线B.两点之间线段最短C.连结直线外一点与直线上各点的所有线段中,垂线段最短D.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线10.如图所示,某公司员工住在A,B,C三个住宅区,已知A区有2人,B区有7人,C区有12人,三个住宅区在同一条直线上,且AB=150m,BC=300m,D 是AC的中点.为方便员工,公司计划开设通勤车免费接送员工上下班,但因为停车位紧张,在A,B,C,D四处只能设一个通勤车停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠站应设在()A.A处B.B处C.C处D.D处二.填空题11.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.12.点A到原点的距离为4,且位于原点的左侧,若一个点从A处向右移动2个单位长度,再向左移动7个单位长度,此时终点所表示的数为.13.如图,AE⊥AB于A点,DB⊥AB于B点,点P为线段AB上任意一点,若AE =2,DB=4,AB=8,则PE+PD的最小值是.14.曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好的观赏风光,如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是.15.如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是.三.解答题16.如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.17.如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.18.已知平面上点A,B,C,D(每三点都不在一条直线上).(1)经过这四点最多能确定条直线.(2)如图这四点表示公园四个地方,如果点B,C在公园里湖对岸两处,A,D在湖面上,要从B到C筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?19.已知如图,A,B,C三点在同一直线上,AB=6,BC=2.(1)已知点C在直线AB上,根据条件,请补充完整图形,并求AC的长;(2)已知点C在直线AB上,M,N分别是AB,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AC的长存在的数量关系;(3)已知点C在直线AB上,M,N分别是AC,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AB的长存在的数量关系.参考答案与试题解析一.选择题1.【解答】解:如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.2.【解答】解:A、根据两点确定一条直线,故本选项不符合题意;B、确定树之间的距离,即得到相互的坐标关系,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.3.【解答】解:根据两点之间,线段最短,得到的是:①④;②③的依据是两点确定一条直线.故选:A.4.【解答】解:(1)当点C位于点B的右边时,MN=(AC﹣AB)=5cm,(2)当点C位于点A的左边时,MN=(AC+AB)=25cm故线段MN的长为5cm或25cm.故选:D.5.【解答】解:①点C在线段AB上,且AC=BC,则C是线段AB中点故①不符合题意;②AB=2BC,C不一定是线段AB中点故②不符合题意;③AC=BC=AB,则C是线段AB中点,故③符合题意.故选:B.6.【解答】解:∵点C是AB的中点,点D是BC的中点,∴AC=BC=AB,CD=BD=BC=AC,∴①CD=BC﹣DB=AC﹣DB,正确;②CD=BC=AB,正确;③CD=AD﹣AC=AD﹣BC,正确;④BD=AB﹣AD≠2AD﹣AB,错误.所以正确的有①②③3个.故选:C.7.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因是两点之间,线段最短,故选:A.8.【解答】解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∴当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.9.【解答】解:图中三条路线,甲和丙是曲线,乙是线段,由两点间线段最短,∴乙最短,故选:B.10.【解答】解:BD=(150+300)÷2﹣150=75(m),以点A为停靠点,则所有人的路程的和=7×150+12×(150+300)=6450m,以点B为停靠点,则所有人的路程的和=2×150+12×300=3900m,以点C为停靠点,则所有人的路程的和=2×(150+300)+7×300=3000m,以点D为停靠点,则所有人的路程的和=2×(150+300)÷2+7×75+12×(150+300)÷2=3675m.故停靠点的位置应设在点C.故选:C.二.填空题11.【解答】解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.12.【解答】解:∵点A到原点的距离为4,且位于原点的左侧,∴点A表示的数为﹣4,∵一个点从A处向右移动2个单位长度,再向左移动7个单位长度,∴﹣4+2﹣7=﹣9,故答案为:﹣9.13.【解答】解:过点D作DT⊥EA交EA的延长线于T,连接DE.∵AE⊥AB,DB⊥AB,DT⊥ET,∴∠B=∠T=∠BAT=90°,∴四边形ABDT是矩形,∴BD=AT=4,AB=DT=8,∴ET=AE+AT=2+4=6,∴DE===10,∵PE+PD≥DE,∴PE+PD≥10,∴PE+PD的最小值为10.故答案为10.14.【解答】解:其中蕴含的数学道理是两点之间线段最短,故答案为:两点之间线段最短.15.【解答】解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.三.解答题16.【解答】解:(1)∵AB=16cm,CD=6cm,∴AC+BD=AB﹣CD=10cm,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=16﹣5=11(cm);(2)∵AB=m,CD=n,∴AC+BD=AB﹣CD=m﹣n,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=m﹣(m﹣n)=.17.【解答】解:(1)∵AB=100=50,AP:BP=2:3,∴AP=20;(2)∵AP:BP=2:3,∴设AP=2x,BP=3x,若一根绳子沿B点对折成线段AB,则剪断后的三段绳子中分别为2x,2x,6x,∴6x=60,解得x=10,∴绳子的原长=2x+2x+6x=10x=100(cm);若一根绳子沿A点对折成线段AB,则剪断后的三段绳子中分别为4x,3x,3x,∴4x=60,解得x=15,∴绳子的原长=4x+3x+3x=10x=150(cm);综上所述,绳子的原长为100cm或150cm.故答案为100cm或150cm.18.【解答】解:(1)经过这四点最多能确定6条直线:直线AB,直线AD,直线BC,直线CD,直线AC,直线BD,故答案为:6;(2)从节省材料的角度考虑,应选择图中路线2;如果有人想在桥上较长时间观赏湖面风光,应选择路线1,因为两点之间,线段最短,路线2比路线1短,可以节省材料;而路线1较长,可以在桥上较长时间观赏湖面风光.19.【解答】解:(1)如图,如图1,∵AB=6,BC=2.∴AC=AB+BC=8;如备用图1,AC=AB﹣BC=4.答:AC的长为8或4;(2)如图,∵M,N分别是AB,BC的中点,∴BM=AB=3,BN=BC=1,∴MN=BM+BN=3+1=4,或MN=BM﹣BN=3﹣1=2.答:MN的长为4或2;(3)如图,∵M,N分别是AC,BC的中点,∴MC=AC=4,NC=BC=1,∴MN=MC﹣NC=4﹣1=34.3角同步练习试题(一)一.选择题1.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°2.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′3.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离4.下列语句错误的个数是()①一个角的补角不是锐角就是钝角;②角是由两条射线组成的图形;③如果点C是线段AB的中点,那么AB=2AC=2BC;④连接两点之间的线段叫做两点的距离.A.4个B.3个C.2个D.1个5.按图1~图4的步骤作图,下列结论错误的是()A.∠AOB=∠AOP B.∠AOP=∠BOPC.2∠BOP=∠AOB D.∠BOP=2∠AOP6.如图,用量角器度量∠AOB,可以读出∠AOB的度数为()A.30°B.60°C.120°D.150°7.如图,小王从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东60°方向行走至C处,则∠ABC等于()A.90°B.100°C.110°D.120°8.如图,将一副三角板按不同位置摆放,其中α和β互为余角的是()A.B.C.D.9.如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是()A.∠1=90°+∠3 B.∠3=90°+∠1 C.∠1=∠3 D.∠1=180°﹣∠310.为防止森林火灾的发生,会在森林中设置多个观测点,如图,若起火点M 在观测台B的南偏东46°的方向上,点A表示另一处观测台,若AM⊥BM,那么起火点M在观测台A的()A.南偏东44°B.南偏西44°C.北偏东46°D.北偏西46°二.填空题11.若两个角互补,且度数之比为3:2,求较大角度数为.12.若∠A=59.6°,则它的余角为°′.13.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.14.如图,点C在点B的北偏西60°的方向上,点C在点A的北偏西30°的方向上,则∠C等于度.15.如图,点A在点O的北偏西60°的方向上,点B在点O的南偏东20°的方向上,那么∠AOB的大小为°.三.解答题16.如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.17.如图,已知∠AOB=128°,OC平分∠AOB,请你在∠COB内部画射线OD,使∠COD和∠AOC互余,并求∠COD的度数.18.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,OD,OE始终是∠AOC与∠BOC的平分线.则∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,OD,OE仍始终是∠AOC与∠BOC的平分线,直接写出∠DOE的度数(不必写过程).19.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°).(1)若∠BOC=35°,求∠MOC的大小.(2)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由.(3)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=50°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.参考答案与试题解析一.选择题1.【解答】解:射线OA表示的方向是南偏东65°,故选:C.2.【解答】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.3.【解答】解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.4.【解答】解:①直角的补角是直角,故原说法错误;②角是由有公共的端点的两条射线组成的图形,故原说法错误;③如果点C是线段AB的中点,那么AB=2AC=2BC,说法正确;④连接两点之间的线段的长度叫做两点的距离,故原说法错误.故错误的个数有①②④共3个.故选:B.5.【解答】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.6.【解答】解:看内圈的数字可得:∠AOB=120°,故选:C.7.【解答】解:如图:∵小王从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东60°方向行走至点C处,∴∠DAB=40°,∠CBE=60°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+60°=100°.故选:B.8.【解答】解:A、α和β互余,故本选项正确;B、α和β不互余,故本选项错误;C、α和β不互余,故本选项错误;D、α和β不互余,故本选项错误.故选:A.9.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:A.10.【解答】解:如图:因为AM⊥BM,所以∠2+∠3=90°,因为南北方向的直线平行,所以∠2=46°,∠1=∠3,所以∠3=90°﹣∠2=90°﹣46°=44°,所以∠1=44°,所以起火点M在观测台A的南偏西44°,故选:B.二.填空题11.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.12.【解答】解:∵∠A=59.6°,∴∠A的余角为90°﹣59.6°=30.4°=30°24',故答案为30;24.13.【解答】解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.14.【解答】解:如图:根据题意可得:∠1=60°,∠2=30°,∵AE∥DB∥CF,∴∠BCF=∠1=60°,∠ACF=∠2=30°,∴∠ACB=30°.故答案为:30.15.【解答】解:如图,∵点A在点O北偏西60°的方向上,∴OA与西方的夹角为90°﹣60°=30°,又∵点B在点O的南偏东20°的方向上,∴∠AOB=30°+90°+20°=140°.故答案为:140.三.解答题16.【解答】解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.17.【解答】解:作OD⊥OA,则∠COD和∠AOC互余,如图所示.∵∠AOB=128°,OC平分∠AOB,∴∠AOC=∠AOB=64°,∵∠COD和∠AOC互余,∴∠COD=90°﹣∠AOC=26°.18.【解答】解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠BOC=(∠AOC+∠BOC)∠AOB =45°;(3)∠DOE的大小分别为45°和135°,如图3,则∠DOE为45°;如图4,则∠DOE为135°.分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.19.【解答】解:(1)∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC=90°+35°=125°.(2)ON平分∠AOC.理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM平分∠BOC,∴∠BOM=∠MOC.∴∠AON=∠NOC.∴ON平分∠AOC.(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°。
(必考题)人教版初中七年级数学上册第四章《几何图形初步》模拟测试卷(含答案解析)(1)
一、选择题1.(0分)[ID :68655]如图,∠AOB =12∠BOD ,OC 平分∠AOD ,下列四个等式中正确的是( )①∠BOC =13∠AOB ;②∠DOC =2∠BOC ;③∠COB =12∠BOA ;④∠COD =3∠COB .A .①②B .②③C .③④D .①④2.(0分)[ID :68646]有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A .白B .红C .黄D .黑3.(0分)[ID :68639]如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较4.(0分)[ID :68627]一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒5.(0分)[ID :68626]如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠COD D .∠DOE 的度数不能确定6.(0分)[ID :68623]下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( ) A .B .C .D .7.(0分)[ID :68621]已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ). A .5 B .9 C .10 D .168.(0分)[ID :68609]平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( ) A .16B .22C .20D .189.(0分)[ID :68603]已知α∠和β∠互补,且αβ∠>∠,则有下列式子: ①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个10.(0分)[ID :68596]如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .411.(0分)[ID :68594]如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .412.(0分)[ID :68593]如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定 13.(0分)[ID :68592]若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( ) A .∠A >∠B >∠CB .∠B >∠A >∠CC .∠A >∠C >∠BD .∠C >∠A >∠B14.(0分)[ID :68569]线段10AB cm =,C 为直线AB 上的点,且2BC cm =,,M N 分别是,AC BC 中点,则MN 的长度是( ) A .6cmB .5cm 或7cmC .5cmD .5cm 或6cm15.(0分)[ID :68562]下列图形中,是圆锥的表面展开图的是( )A .B .C .D .二、填空题16.(0分)[ID :68715]长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为___ (结果保留π).17.(0分)[ID :68714]硬币在桌面上快速地转动时,看上去象球,这说明了_________________.18.(0分)[ID :68696]下午3:40时,时钟上分针与时针的夹角是_________度.19.(0分)[ID :68726]从起始站A 市坐火车到终点站G 市中途共停靠5次,各站点到A 市距离如下: 站点B C D E F G 到A 市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价____种.20.(0分)[ID :68719]某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.21.(0分)[ID :68706]如图,点C ,M ,N 在线段AB 上,且M 是AC 的中点,CN :NB=1:2,若AC=12,MN=15,则线段AB 的长是_______.22.(0分)[ID :68678]如图,在自来水管道AB 的两旁有两个住宅小区C ,D ,现要在主水管道上开一个接口P 往C ,D 两小区铺设水管,为节约铺设水管的用料,接口P 应在如图所示的位置,请说明依据的数学道理是:___________________________________________________________________.23.(0分)[ID :68662]8点15分,时针与分针的夹角是______________。
人教版七年级数学上册第四章几何图形复习试题一(含答案) (49)
人教版七年级数学上册第四章几何图形复习试题一(含答案) 若一个直棱柱有12个顶点,则它有__________条棱,有__________个面.【答案】18 8【解析】【分析】一个直棱柱有12个顶点则说明它的上下底面是两个六边形,从而得知其是六棱柱,然后进一步求解即可.【详解】∵一个直棱柱有12个顶点,∴这个直棱柱的上下底面是两个六边形,∴这个直棱柱为六棱柱,∴面的个数为6+2=8个,棱的个数为6×3=18个.所以答案为18,8.【点睛】本题主要考查了直棱柱的相关性质,熟练掌握相关概念是解题关键.82.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.其中三面涂色的小正方体有8个,两面涂色的小正方体有12个,一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个;现将这个正方体的棱n等分,如果得到各面都没有涂色的小正方体125个,那么n的值为_____.【答案】7【解析】【分析】根据已知图形中没有涂色的小正方形个数得出变化规律,得将这个正方体的棱n等分,有3n-个是各个面都没有涂色的,列方程即可得到结论.(2)【详解】解:由题意可知:将这个正方体的棱n等分,有3n-个是各个面都没有涂(2)色的,所以3n-=,(2)125解得n=7,故答案为:7.【点睛】本题是立体几何的规律探究题,解题的关键是结合图形得出规律,列出方程,解方程即可.83.一个棱柱共有9个面,则它共有_____个顶点.【答案】14【解析】【分析】根据直棱柱的概念,可得,侧面有7个,底面有2个.,上下各有7个顶点,即可的答案解:∵一个棱柱共有9个面∴侧面有7个,底面有2个,∴侧棱有7条,∴上下底均为七边形,各有7个顶点∴则这个直棱柱共有14个顶点【点睛】本题主要考查直棱柱的概念,掌握直棱柱的侧棱数与一个底面的边数及顶点数之间的关系是解题的关键.84.若一个七棱柱共有_______个面, _______条棱,________个顶点。
人教版数学七年级上册 第4章几何图形初步单元测试题(一)
几何图形初步单元测试题(一)一.选择题1.如图,一个正方块的六个面分别标有A、B、C、D、E、F,从三个不同方向看到的情况如图所示,则A的对面应该是字母()A.B B.C C.E D.F2.围成下列立体图形的各个面中,每个面都是平的是()A.B.C.D.3.下列几何体中,不是柱体的是()A.B.C.D.4.如图所示的沙漏,可以看作是由下列所给的哪个平面图形绕虚线旋转一周而成的()A.B.C.D.5.如图是某个几何体的展开图,该几何体是()A.三棱锥B.三棱柱C.圆柱D.圆锥6.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′7.如图,将一副三角板叠在一起使直角顶点重合于点O,(两块三角板可以在同一平面内自由转动),下列结论一定成立的是()A.∠BOA>∠DOC B.∠BOA﹣∠DOC=90°C.∠BOA+∠DOC=180°D.∠BOC≠∠DOA8.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离9.如图所示,截面的形状是()A.长方形B.平行四边形C.梯形D.五边形10.某正方体的平面展开图如图所示,这个正方体可能是下面四个选项中的()A.B.C.D.二.填空题11.一个棱柱有7个面,这是棱柱,有个侧面.12.如图,是一个正方体的展开图,如果正方体相对的面上标注的值相等,则y2x=.13.一个正方体的体积是216立方厘米,这个正方体的表面积是平方厘米.14.有一个正方体,六个面上分别写有数字1,2,3,4,5,6,如图是我们能看到的三种情况,如果记6的对面数字为a,2的对面数字为b,那么a+b的值为.15.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.三.解答题16.如图,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的实物(用线连接).17.如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.18.在七年级第一章的学习中,我们已经学习过:点动成,线动成,动成体.比如:(1)圆规在纸上划过会留下一个封闭的痕迹,这种现象说明.(2)一个人手里拿着一个绑在一根棍上的半圆面,当这个人把这个半圆面绕着这根棍飞快地旋转起来时就会看到一个球,这种现象说明.(3)聪明的你一定观察过生活中还有许多类似的现象,你能举出一个例子吗?并解释该现象.19.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上,试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.参考答案与试题解析一.选择题1.【解答】解:由图可知,A相邻的字母有D、E、B、F,所以A对面的字母是C.故选:B.2.【解答】解:A、球面不是平面,故本选项错误;B、六个面都是平面,故本选项正确;C、上面不是平面,故本选项错误;D、侧面不是平面,故本选项错误;故选:B.3.【解答】解:圆柱体,正方体、棱柱都是柱体,而圆锥是锥体,故选:D.4.【解答】解:由图可知,只有D选项图形绕直线l旋转一周得到如图所示立体图形,故选:D.5.【解答】解:从展开图可知,该几何体有五个面,两个三角形的底面,三个长方形的侧面,因此该几何体是三棱柱,故选:B.6.【解答】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.7.【解答】解:因为是直角三角板,所以∠AOC=∠BOD=90°,所以∠BOA+∠DOC=∠AOC+∠BOC+∠DOC=∠AOC=∠BOD=180°,故选:C.8.【解答】解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.9.【解答】解;由于面与面相交成线,前后平行,上下面平行,可得截面的对边是平行的,因此是平行四边形,故选:B.10.【解答】解:根据题意及图示经过折叠后符合只有A.故选:A.二.填空题11.【解答】解:一个棱柱有7个面,这是五棱柱,有5个侧面.故答案为:五,5.12.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“1”是相对面,“y”与“﹣1”是相对面,∴x=1,y=﹣1,∴y2x=(﹣1)2=1.故答案为:1.13.【解答】解:设这个正方体的棱长为a厘米,则,a3=216,解得a=6,棱长为6厘米的正方体的表面积为6×6×6=216(平方厘米),故答案为:216.14.【解答】解:根据给出的图形可得:6的对面数字为3,2的对面数字为4,则a=3,b=4,所以a+b的值为7;故答案为:7.15.【解答】解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.三.解答题(共4小题)16.【解答】解:立体图形与实物相对应的情况如下:17.【解答】解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.18.【解答】解:(1)故答案为:线,面,面;(2)由点、线、面、体的关系得,点动成线,故答案为:点动成线;(3)由点、线、面、体的关系得,面动成体,故答案为:面动成体;(4)例如:彗星从天空中划过一道明亮的弧线陨落,是点动成线的例子。
考点解析-人教版七年级数学上册第四章几何图形初步专项测试试题(含解析)
人教版七年级数学上册第四章几何图形初步专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒2、如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC =50°,∠ABC =60°,则∠EAD +∠ACD =( )A.75°B.80°C.85°D.90°3、粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线4、下图是由六个相同的小正方体搭成的几何体,这个几何体从正面看到的图形是( )A.A B.B C.C D.D5、互不重合的A、B、C三点在同一直线上,已知AC=2a+1,BC=a+4,AB=3a,这三点的位置关系是()A.点A在B、C两点之间B.点B在A、C两点之间C.点C在A、B两点之间D.无法确定6、下列判断正确的有()(1)正方体是棱柱,长方体不是棱柱;(2)正方体是棱柱,长方体也是棱柱;(3)正方体是柱体,圆柱也是柱体;(4)正方体不是柱体,圆柱是柱体.A.1个B.2个C.3个D.4个7、下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.8、如图所示,正方体的展开图为()A.B.C.D.9、一个几何体由大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则从正面看该几何体的形状图为()A.B.C.D.10、永定河,“北京的母亲河”.近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A,B两地间的河道改直后大大缩短了河道的长度.这一做法的主要依据是()A.两点确定一条直线B.垂线段最短C.过一点有且只有一条直线与已知直线垂直D.两点之间,线段最短第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为_____cm.2、甲从A出发向北偏东45°走到点B,乙从点A出发向北偏西30°走到点C,则∠BAC=______.3、如图①是一个小正方体的侧面展开图,小正方体从如图②所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,这时小正方体朝上面的字是__________.4、如图所示,从O点出发的五条射线,可以组成________个小于平角的角.===,则AB=______AD,AE=_____AC,BE=______AE,BE=5、如图,若AB BC CD DE_______CD.三、解答题(5小题,每小题10分,共计50分)1、(1)如图所示的长方体,长、宽、高分别为4,3,6.若将它的表面沿某些棱剪开,展成一个平面图形,则下列图形中,可能是该长方体表面展开图的有________(填序号).(2)图A,B分别是题(1)中长方体的两种表面展开图,求得图A的外围周长为52,请你求出图B 的外围周长.(3)第(1)题中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.2、如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:=a ______,b =_________;(2)先化简,再求值:()()2223252ab a b ab a ab ⎡⎤------⎣⎦.3、下列第二行的哪种几何体的表面能展开成第一行的平面图形?请对应连线.4、已知:如图①所示,OC 是AOB ∠内部一条射线,且OD 平分AOC ∠,OE 平分BOC ∠.(1)若80AOC ∠=︒,50BOC ∠=︒,则EOD ∠的度数是______.(2)若AOC α∠=,BOC β∠=,求EOD ∠的度数,并根据计算结果直接写出EOD ∠与AOB ∠之间的数量关系.(写出计算过程)(3)如图③所示,射线OC 在AOB ∠的外部,且OD 平分AOC ∠,OE 平分BOC ∠.试着探究EOD ∠与AOB ∠之间的数量关系.(写出详细推理过程)5、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数-参考答案-一、单选题1、B【解析】【分析】根据OC 平分AOD ∠且15COD ∠=︒可得30AOD ∠=︒,再结合68AOB ∠=︒即可求得答案.【详解】解:∵OC 平分AOD ∠且15COD ∠=︒,∴230AOD COD ∠=∠=︒,又∵68AOB ∠=︒,∴38BOD AOB AOD ∠=∠-∠=︒,故选:B.【考点】本题考查了角的计算,熟练掌握角平分线的定义是解决本题的关键.2、A【解析】【分析】依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.【详解】∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.【考点】本题考查了角平分线的定义和三角形内角和定理,解决问题的关键是三角形外角性质以及角平分线的定义的运用.3、B【解析】【分析】点动线,线动成面,将滚筒看做线,在运动过程中形成面.【详解】解:滚筒看成是线,滚动的过程成形成面,故选:B .【考点】本题考查点、线、面的关系;理解点动成线,线动成面的过程是解题的关键.4、B【解析】【分析】主视图就是从正面看到的视图.【详解】从正面看,一层三个正方形,左侧由三层正方形.故选B【考点】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5、A【解析】【分析】分别对每种情况进行讨论,看a 的值是否满足条件再进行判断.【详解】解:①当点A 在B 、C 两点之间,则满足BC AC AB =+,即4213a a a +=++,解得:34a =,符合题意,故选项A 正确; ②点B 在A 、C 两点之间,则满足AC BC AB =+,即2143a a a +=++, 解得:32a =-,不符合题意,故选项B 错误;③点C 在A 、B 两点之间,则满足AB BC AC =+,即3421a a a =+++,解得:a 无解,不符合题意,故选项C 错误;故选项D 错误;故选:A .【考点】本题主要考查了线段的和与差及一元一次方程的解法,分类讨论并列出对应的式子是解本题的关键.6、B【解析】【分析】根据棱柱的定义:有两个面平行,其余面都是四边形,并且相邻的两个四边形的公共边都互相平行;柱体的定义:一个多面体有两个面互相平行且相同,余下的每个相邻两个面的交线互相平行,进行判断即可.【详解】解:(1)正方体是棱柱,长方体是棱柱,故此说法错误;(2)正方体是棱柱,长方体也是棱柱,故此说法正确;(3)正方体是柱体,圆柱也是柱体,故此说法正确;(4)正方体是柱体,圆柱是柱体,故此说法错误.故选B.【考点】本题主要考查了棱柱和柱体的定义,解题的关键在于能够熟练掌握相关定义.7、B【解析】【分析】根据图中三角形,圆,正方形所处的位置关系即可直接选出答案.【详解】三角形图案的顶点应与圆形的图案相对,而选项A与此不符,所以错误;三角形图案所在的面应与正方形的图案所在的面相邻,而选项C与此也不符,三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B.故选B.【考点】此题主要考查了展开图折叠成几何体,同学们可以动手折叠一下,有助于空间想象力的培养.8、A【解析】【分析】根据正方体的展开图的性质判断即可;【详解】A中展开图正确;B中对号面和等号面是对面,与题意不符;C中对号的方向不正确,故不正确;D中三个符号的方位不相符,故不正确;故答案选A.【考点】本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键.9、A【解析】【分析】由已知条件可知,从正面看有3列,每列小正方形数目分别为4,2,3,据此可得出图形.【详解】解:根据所给出的图形和数字可得:从正面看有3列,每列小正方形数目分别为4,3,2,则符合题意的是:故选:A.【考点】本题考查了从不同方向看几何体等知识,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.10、D【解析】【分析】根据线段的性质分析得出答案.由题意中改直后A,B两地间的河道改直后大大缩短了河道的长度,其注意依据是:两点之间,线段最短,故选:D.【考点】此题考查线段的性质:两点之间线段最短,掌握题中的改直的结果是大大缩短了河道的长度的含义是解题的关键.二、填空题1、1【解析】【分析】先根据中点定义求BC的长,再利用线段的差求CD的长.【详解】解:∵C为AB的中点,AB=8cm,∴BC=12AB=12×8=4(cm),∵BD=3cm,∴CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为1.【点睛】此题主要考查线段的长度,解题的关键是熟知线段长度的运算关系.2、75°##75度【解析】先根据题意正确画出方向角,再利用∠CAB=∠CAD+∠BAD解答即可.【详解】解:如图所示,∠CAD=30°,∠BAD=45°,故∠BAC=∠CAD+∠BAD=30°+45°=75°.故答案为:75°.【点睛】本题考查的是方向角,解答此题时要熟知用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.3、路【解析】【分析】先由图1分析出:“国”和“兴”是对面,“梦”和“中”是对面,“复”和“路”是对面,再由图2结合空间想象得出答案.【详解】解:由图1可知:“国”和“兴”是对面,“梦”和“中”是对面,“复”和“路”是对面,再由图2可知,1、2、3、4、5分别对应的面是“兴”、“梦”、“中”、“兴”、“复”,所以第5格朝上的字是“路”.所以答案是路.【点睛】本题考查了正方体的展开图,用空间想象去解决正方体的滚动是解题的关键.4、10【解析】【分析】由一条射线OA为边可以得到4个角,然后求4+3+2+1和即可.【详解】解:由一条射线OA为边可以得到4个角,5条射线所成小于平角的角个数=4+3+2+1=10个.故答案为:10【点睛】本题考查了如何求角的数量问题,按照顺序求出一射线为边最多的角,然后求从1到最大数所有数的和是解题关键.5、132343【解析】【分析】根据AB=BC=CD=DE得到线段之间的数量关系即可推出结论.【详解】∵AB=BC=CD=DE,∴AD=3AB,AE=4AB,AC=2AB,BE=3AB,∴13AB AD=,2AE AC=,34BE AE=,3BE CD=.故答案为:13,2,34,3.【点睛】本题考查了线段,弄清线段之间的数量关系是解题的关键.三、解答题1、(1)①②③;(2)28;(3)能,70【解析】【分析】(1)根据长方体展开图的特征可得解;(2)给图B标上尺寸,然后根据周长意义可得解;(3)为了使外围周长最大,可以沿着长方体长度为6的4条棱和长度为4的2条棱剪开即可得到解答.【详解】解:(1)根据长方体展开图的特征可得答案为:①②③;(2)由已知可以给图B标上尺寸如下:∴图B的外围周长为6×3+4×4+4×6=58.(3)能.如图所示.外围周长为6×8+4×4+3×2=48+16+6=70.【考点】本题考查长方体的应用,熟练掌握长方体的各种展开图是解题关键.2、(1)1-,13-;(2)22242a ab b +-,289 【解析】【分析】(1)先根据正方体的平面展开图确定a 、b 、c 所对的面的数字,再根据相对的两个面上的数互为倒数,确定a 、b 、c 的值;(2)先去括号,再合并同类项化简代数式后代入求值即可.【详解】解:(1)由长方体纸盒的平面展开图知,a 与-1、b 与-3、c 与2是相对的两个面上的数字或字母, 因为相对的两个面上的数互为倒数, 所以111,,32a b c =-=-=.故答案为:1-,13-. (2)()()2223252ab a b ab a ab ⎡⎤------⎣⎦ 22233252ab a b ab a ab =-+-+-+22242a ab b =+-将11,,3a b =-=-代入, 原式()()22112141233⎛⎫⎛⎫=⨯-+⨯-⨯--⨯- ⎪ ⎪⎝⎭⎝⎭ 42239=+- 289=. 【考点】本题考查了正方体的平面展开图、倒数及整式的加减化简求值,解决本题的关键是根据平面展开图确定a 、b 、c 的值.3、见解析.【解析】【分析】根据几何体的平面展开图的特征可知:(1)是五棱柱的展开图;(2)是圆锥的展开图;(3)是圆柱的展开图;(4)是正方体的展开图;(5)是两个四棱锥的展开图.【详解】连线如下:【考点】本题考查了几何体的展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.4、(1)65°;(2)12EOD AOB ∠=∠(或2AOB EOD ∠=∠),见解析;(3)12EOD AOB ∠=∠.见解析 【解析】【分析】(1)根据角平分线的性质计算即可;(2)根据角平分线的性质进行表示即可;(3)根据角平分线的性质分析判断即可;【详解】(1)∵OD 平分AOC ∠,OE 平分BOC ∠, ∴12EOC BOC ∠=∠,12DOC AOC ∠=∠,又∵80AOC ∠=︒,50BOC ∠=︒,∴402565EOF ∠=︒+︒=︒;故答案是:65︒.(2)方法1:∵OE 平分AOC ∠,AOC a ∠=, ∴12COE a ∠=, ∵OD 平分BOC ∠,AOC β∠=, ∴12COD β∠=, ∴1122EOD COE COD a β∠=∠+∠=+, EOD ∠与AOB ∠之间的关系为:12EOD AOB ∠=∠(或2AOB EOD ∠=∠); 方法2:∵OD 平分AOC ∠,OE 平分BOC ∠, ∴12EOA AOC ∠=∠,12BOE BOC ∠=∠, ∴()EOD AOB DOA BOE ∠=∠-∠+∠,1122AOB AOC BOC ⎛⎫=∠-∠+∠ ⎪⎝⎭, ()12AOB AOC BOC =∠-∠+∠, 12AOB AOB =∠-∠, 12AOB =∠, ∵AOC α∠=,BOC β∠=, ∴()12EOD αβ∠=+, EOD ∠与AOB ∠之间的关系为:12EOD AOB ∠=∠(或2AOB EOD ∠=∠); (3)∵OD 平分AOC ∠,OE 平分BOC ∠, ∴12COD AOC ∠=∠,12COE BOC ∠=∠, ∴111222EOD COD COE AOC BOC AOB ∠=∠-∠=∠-∠=∠. 【考点】本题主要考查了角平分线的综合应用,准确分析计算是解题的关键.5、(1)AOD ∠、BOC ∠;(2)45︒;(3)见解析.【解析】【分析】(1)根据余角的定义可解答;(2)根据补角的定义列方程可解答;(3)设出∠AOE 的度数,依次表达图中的补角,可解.【详解】(1)由题意可得于∠AOE 互余的角为:AOD ∠、BOC ∠(2)设AOD x ∠=︒.∵AOD x ∠=︒,∴180180BOD AOD x ∠=︒-∠=︒-︒,BOC AOD x ∠=∠=︒.∵OE CD ⊥,∴90EOC EOD ∠=∠=︒.又∵EOB DOB ∠=∠,∴90180x x ︒+︒=︒-︒,即45x =.∴904545AOE EOD AOD ∠=∠-∠=︒-︒=︒.(3)设∠AOE =α,且0°<α<90°由(1)可知,∠AOD =∠BOC =90°-α,∠BOE =180°-α, ∴∠BOD =180°-∠AOD =180°-(90°-α)=90°+α,∵OF 平分∠BOD ,∴∠BOF =∠DOF =45°+2α, ∴∠AOF =∠AOD +∠DOF =90°-α+45°+2α=135°-2α, ∠EOF =∠AOF +∠AOE =135°+2α, ∠COF =∠BOC +∠BOF =90°-α+45°+2α=135°-2α=∠AOF ,①当∠AOF +∠AOE =180°时,即135°-2α+α=180°,解得α=90°,不符合题意; ②当∠EOF +∠AOE =180°时,即135°+2α+α=180°,解得α=30°,符合题意; ③当∠BOD +∠AOE =180°时,即90°+α+α=180°,解得α=45°,符合题意; 综上可知,当锐角30AOE ∠=︒时,互补角有2个,为EOB ∠、EOF ∠.当锐角45AOE ∠=︒时,互补角有3个,为EOB ∠、AOC ∠、DOB ∠.当锐角AOE ∠不等于45︒和30时,互补角有1个,为EOB ∠.【考点】本题主要考查补角的定义,角平分线的定义,熟练掌握补角的定义是解题关键.。
人教版七年级数学上册第四章几何图形复习试题一(含答案) (50)
人教版七年级数学上册第四章几何图形复习试题一(含答案) 一个正方体的六个面分别标有字母A,B,C,D,E,F,从三个不同方向看到的情形如图.(1)A对面的字母是,B对面的字母是;(请直接填写答案)(2)已知A=x,B=﹣x2+3x,C=﹣3,D=1,E=x2019,F=6.①若字母A表示的数与它对面的字母表示的数互为相反数,求E的值;②若2A﹣3B+M=0,求出M的表达式.【答案】(1)D,E;(2)①E=﹣1;②M=﹣3x2+7x.【解析】【分析】(1)根据正方体各个面上的字母分布特点,即可求得答案,(2)①由(1)题可知,字母A表示的数与它对面的字母D表示的数互为相反数,即可得到答案,②把A=x,B=﹣x2+3x,代入2A﹣3B+M=0,即可得到M的表达式.【详解】(1)由图可得,A与B、C、E、F都相邻,故A对面的字母是D;E与A、C、D、F都相邻,故B对面的字母是E;故答案为:D,E;(2)①∵字母A表示的数与它对面的字母D表示的数互为相反数,∴x=﹣1,∴E=(﹣1)2019=﹣1;②∵2A﹣3B+M=0,∴2x﹣3(﹣x2+3x)+M=0,∴M=﹣2x+3(﹣x2+3x)=﹣3x2+7x.【点睛】本题主要考查正方体各个面上字母相对和相邻的关系以及整式的加减法和求值,观察图形,得到A,B对面的字母,式解题的关键.92.如图,是一个由小正方体所搭成的几何体,从上面看到的平面图形,从正方形中的数字表示该位置小正方体的个数,请你画出它从正面和从左面看到的平面图形.【答案】见解析【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,3,2,从左面看有3列,每列小正方形数目分别为1,3,3.据此可画出图形.【详解】解:如图所示:从正面看从左面看【点睛】本题考查从不同方向看小正方体所搭成的几何体所得到的平面图形.关键是要得出从不同方向看有几列,每列有几个小正方形.93.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在图上补全.(请在备用图中画出所有可能)(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的4倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是720cm,求这个长方体纸盒的体积.【答案】(1)8,(2)四种可能,图形见详解(3)128000 cm2【解析】【分析】(1)根据展开后的图形即可解题,(2)根据长方体的展开图的特点,进行画图,注意考虑周全.,(3)利用底面是正方形, 最长的一条棱是最短的一条棱的4倍,棱长的和是720cm,求出长宽高,即可解题.【详解】解:(1)由展开图发现,小明一共剪开了8条棱,故答案是8,(2)如下图,四种可能,(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长即高为acm,则长与宽相等为4acm.∵长方体纸盒所有棱长的和是720cm,∴4(a+4a+4a)=720,解得a=20 这长方体纸盒的体积为20×80×80=128000cm2故答案是8;四种情况;128000 cm2【点睛】本题考查了立体图形的展开,属于简单题,熟悉立体图形的性质是解题关键.94.如图是一个正方体的表面展开图,每个面上都标注了字母,请根据要求回答下列问题:(1)如果面B在正方体的底部,那么面_______会在上面;(2)如果面E在前面,从左面看是B,那么面_______会在上面;(3)从右面看是面C,面A在后面,那么面_______会在上面.【答案】(1)D;(2)A;(3)D【解析】【分析】首先将展开图折叠起来,然后即可得解.【详解】将展开图折叠起来,即可得出(1)如果面B在正方体的底部,那么面D会在上面;(2)如果面E在前面,从左面看是B,那么面A会在上面;(3)从右面看是面C,面A在后面,那么面D会在上面.【点睛】此题主要考查对正方体的表面展开图的理解,熟练掌握,即可解题.95.十八世纪瑞士数学家欧拉证明了简单多面体中项点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列儿种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现项点数(V)、面数(F)、棱数(F)之间存在的关系式是__________________________.(2)一个多面体的面数比顶点数小8,且有30条棱,则这多面体的顶点数是20;(3)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱,设该多面体表面三角形的个数为x个,八边形的个数为y个,求x+y的值.【答案】(1) 见解析,V+F-E=2;(2) 20;(3)26【解析】【分析】(1)观察表格可以看出:顶点数+面数-棱数=2,关系式为:V+F-E=2;(2)代入(1)中公式进行计算;(3)根据欧拉公式可得顶点数+面数-棱数=2,然后表示出棱数,进而可得面数.【详解】解:(1)根据题意得如下图∵4+4-6=2,8+6-12=2,6+8-12=2,∴顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F-E=2;(2)由(1)可知:V+F-E=2,∵一个多面体的面数比顶点数小8,且有30条棱,∴V+V-8-30=2,即V=20;(3)∵有48个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有48×3÷2=72条棱,设总面数为F,48+F-72=2,解得F=26,∴x+y=26.【点睛】本题考查了多面体的顶点数,面数,棱数之间的关系及灵活运用,得出欧拉公式是解题关键.96.从正面、左面观察如图所示几何体,分别画出你所看到的几何体的形状图.【答案】见解析【解析】【分析】从正面看、左面看、上面看到的行、列上各有几个小立方体,然后画出相应的视图即可.【详解】解:【点睛】考查简单几何体的三视图,看到的图形要注意“长对正,宽相等,高平齐”,把握每列上有几层是正确画出图形的关键.97.(1)观察下列多面体,并把下表补充完整.(2)观察上表中的结果,你能发现a 、b 、c 之间有什么关系吗?请写出关系式.【答案】(1)8、7、18;(2)a +c -2=b【解析】【分析】(1)只要将各个图形的顶点数、棱数、面数数一下就可以得出答案;(2)通过观察找出每个图形中“顶点数、棱数、面数”之间隐藏的数量关系,用公式表示出来即可.【详解】解:(1)通过计算可得出四棱柱的顶点数为8;五棱柱的面数为7;六棱柱的棱数为18;故答案为:8、7、18;(2)通过观察找出每个图形中“顶点数、棱数、面数”之间隐藏的数量关系,可得出:a+c-2=b.【点睛】本题考查的知识点是欧拉公式,公式描述了简单多面体顶点数、面数、与棱数特有的规律.98.⑴三棱柱有条棱,四棱柱有条棱,五棱柱有条棱;⑵n棱柱有条棱;⑶三十棱柱有条棱.【答案】(1)9,12,15;(2)3n;(3)30.【解析】【分析】由于三棱柱有9条棱,四棱柱有12条棱,五棱柱有15条棱,即棱的条数是棱数的3倍,由此可得到n棱柱的棱的条数,进而得到三十棱柱的棱数.【详解】(1)三棱柱有9条棱,四棱柱有12条棱,五棱柱有15条棱,…(2)由(1)得:n棱柱有3n条棱;(3)三十棱柱有90条棱.故答案为:9,12,15,3n,30.【点睛】本题考查了认识立体图形.结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.99.如图是一个正方体的平面展开图,标注了字母A的是正方体的正面,且正方体的左面与右面标注的式子相等,求x的值.【答案】x=1【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“-2”是相对面,“3”与“1”是相对面,“x”与“3x-2”是相对面,∵正方体的左面与右面标注的式子相等,∴x=3x-2,解得x=1.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.100.用棱长为1的小立方体摆成如图所示的几何体,请完成下列问题:画出该几何体的三视图.【答案】如图所示见解析.【解析】【分析】从正面看,得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可.【详解】从正面看,得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,如图所示:本题考查了作图-三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.。
人教版七年级数学上册第四章测试题含答案
人教版数学七年级上册 第四章测试卷一、选择题(每小题3分,共30分)1.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( )A.圆柱B.球C.圆D.圆锥第1题图2.下列说法正确的是( )A.两点确定一条直线B.两条射线组成的图形叫作角C.两点之间直线最短D.若AB =BC ,则点B 为AC 的中点3.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是( )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对4.如图,长度为18cm 的线段AB 的中点为M ,点C 是线段MB 的一个三等分点,则线段AC 的长为( )A.3cmB.6cmC.9cmD.12cm第4题图 第5题图5.如图,∠AOB 为平角,且∠AOC =27∠BOC ,则∠BOC 的度数是( ) A.140° B.135° C.120° D.40°6.如图,有一个正方体纸巾盒,它的平面展开图是( )7.若一个角的补角的余角是28°,则这个角的度数为()A.62°B.72°C.118°D.128°8.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A,D,B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A.30°B.45°C.55°D.60°9.两根木条,一根长20cm,一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cmB.4cmC.2cm或22cmD.4cm或44cm10.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因.第11题图第12题图12.如图所示的图形中,柱体为(请填写你认为正确物体的序号).13.如图,直线AB,CD交于点O,我们知道∠1=∠2,那么其理由是.第13题图14.已知BD=4,延长BD到A,使BA=6,点C是线段AB的中点,则CD =.15.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有种不同的票价,需准备种车票.16.如图①所示的∠AOB纸片,OC平分∠AOB,如图②,把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=12∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB =°.第16题图第18题图17.已知A、B、C三点都在数轴上,点A在数轴上对应的数为2,且AB=5,BC=3,则点C在数轴上对应的数为.18.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是cm2.三、解答题(共66分)19.(10分)观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.20.(10分)如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3.求线段CD,AB的长;(2)试说明:AD+AB=2AC.21.(10分)如图,将两块直角三角尺的顶点叠放在一起.(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的关系,并说明理由.22.(12分)已知线段AB=20cm,M是线段AB的中点,C是线段AB延长线上的点,AC:BC=3:1,点D是线段BA延长线上的点,AD=AB.求:(1)线段BC的长;(2)线段DC的长;(3)线段MD的长.23.(12分)如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).24.(12分)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.参考答案与解析1.A 2.A 3.B 4.D 5.A 6.B 7.C 8.B 9.C10.B 解析:以B,C,D,E为端点的线段有BC,BD,BE,CE,CD,ED共6条,故①正确;图中互补的角就是分别以C,D为顶点的两对角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故②正确;由∠BAE=100°,∠CAD=40°,根据图形可以求出∠BAC+∠CAE+∠BAE+∠BAD+∠DAE+∠DAC=100°+100°+100°+40°=340°,故③错误;当F在线段CD上时最小,则点F到点B,C,D,E的距离之和为FB+FE+FD+FC=2+3+3+3=11,当F和E重合时最大,则点F到点B、C、D、E的距离之和为FB+FE+FD+FC=8+0+3+6=17,故④错误.故选B.11.两点之间,线段最短12.①②③⑥13.同角的补角相等14.1 15.10 20 16.12017.-6或0或4或10 18.3019.解:图略.(10分)20.解:(1)∵C是线段BD的中点,BC=3,∴CD=BC=3.又∵AB+BC+CD =AD,AD=8,∴AB=8-3-3=2.(5分)(2)∵AD+AB=AC+CD+AB,BC=CD,∴AD+AB=AC+BC+AB=AC+AC=2AC.(10分)21.解:(1)由题意知∠ACD=∠ECB=90°,∴∠ACB=∠ACD+∠DCB=∠ACD+∠ECB-∠ECD=90°+90°-35°=145°.(3分)(2)由(1)知∠ACB=180°-∠ECD,∴∠ECD=180°-∠ACB=40°.(6分)(3)∠ACB +∠DCE =180°.(7分)理由如下:∵∠ACB =∠ACD +∠DCB =90°+90°-∠DCE ,∴∠ACB +∠DCE =180°.(10分)22.解:(1)设BC =x cm ,则AC =3x cm.又∵AC =AB +BC =(20+x )cm ,∴20+x =3x ,解得x =10.即BC =10cm.(4分)(2)∵AD =AB =20cm ,∴DC =AD +AB +BC =20cm +20cm +10cm =50cm.(8分)(3)∵M 为AB 的中点,∴AM =12AB =10cm ,∴MD =AD +AM =20cm +10cm =30cm.(12分)23.解:(1)图略.(4分)(2)∠BAC =90°-80°+90°-20°=80°.(8分)(3)约2.3cm ,即实际距离约23海里.(12分)24.解:(1)由已知得∠BOC =180°-∠AOC =150°,又∠COD 是直角,OE 平分∠BOC ,∴∠DOE =∠COD -12 ∠BOC =90°-12×150°=15°.(3分)(2)∠DOE =12a .(6分) 解析:由(1)知∠DOE =∠COD -12∠BOC =90°,∴∠DOE =90°-12(180°-∠AOC )=12∠AOC =12α. (3)①∠AOC =2∠DOE .(7分)理由如下:∵∠COD 是直角,OE 平分∠BOC ,∴∠COE =∠BOE =90°-∠DOE ,∴∠AOC =180°-∠BOC =180°-2∠COE =180°-2(90°-∠DOE ),∴∠AOC =2∠DOE .(9分)②4∠DOE -5∠AOF =180°.(10分)理由如下:设∠DOE =x ,∠AOF =y ,∴∠AOC -4∠AOF =2∠DOE -4∠AOF =2x -4y ,2∠BOE +∠AOF =2(90°-x )+y =180°-2x +y ,∴2x -4y =180°-2x +y ,即4x -5y =180°,∴4∠DOE -5∠AOF =180°.(12分)人教版数学七年级上册 第四章测试卷一、选择题(每小题3分,共30分)1.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( )A.圆柱B.球C.圆D.圆锥第1题图2.下列说法正确的是( )A.两点确定一条直线B.两条射线组成的图形叫作角C.两点之间直线最短D.若AB =BC ,则点B 为AC 的中点3.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是( )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对4.如图,长度为18cm 的线段AB 的中点为M ,点C 是线段MB 的一个三等分点,则线段AC 的长为( )A.3cmB.6cmC.9cmD.12cm第4题图 第5题图5.如图,∠AOB 为平角,且∠AOC =27∠BOC ,则∠BOC 的度数是( ) A.140° B.135° C.120° D.40°6.如图,有一个正方体纸巾盒,它的平面展开图是( )7.若一个角的补角的余角是28°,则这个角的度数为( )A.62°B.72°C.118°D.128°8.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A ,D ,B 三点在同一直线上,BM 为∠ABC 的平分线,BN 为∠CBE 的平分线,则∠MBN 的度数是( )A.30°B.45°C.55°D.60°9.两根木条,一根长20cm ,一根长24cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A.2cmB.4cmC.2cm或22cmD.4cm或44cm10.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因.第11题图第12题图12.如图所示的图形中,柱体为(请填写你认为正确物体的序号).13.如图,直线AB,CD交于点O,我们知道∠1=∠2,那么其理由是.第13题图14.已知BD=4,延长BD到A,使BA=6,点C是线段AB的中点,则CD =.15.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有种不同的票价,需准备种车票.16.如图①所示的∠AOB纸片,OC平分∠AOB,如图②,把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=12∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB =°.第16题图第18题图17.已知A、B、C三点都在数轴上,点A在数轴上对应的数为2,且AB=5,BC=3,则点C在数轴上对应的数为.18.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是cm2.三、解答题(共66分)19.(10分)观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.20.(10分)如图,B是线段AD上一点,C是线段BD的中点. (1)若AD=8,BC=3.求线段CD,AB的长;(2)试说明:AD+AB=2AC.21.(10分)如图,将两块直角三角尺的顶点叠放在一起. (1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的关系,并说明理由.22.(12分)已知线段AB=20cm,M是线段AB的中点,C是线段AB延长线上的点,AC:BC=3:1,点D是线段BA延长线上的点,AD=AB.求:(1)线段BC的长;(2)线段DC的长;(3)线段MD的长.23.(12分)如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).24.(12分)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.成为学生喜欢的教师你可以问问身边的教师,他们上学的时候是否曾经受到过积极教师的影响,很可能所有人都有过这样的经历。
人教版七年级数学上册直线、射线、线段测试题
人教版7年级数学考试题测试题人教版初中数学第四章几何图形初步4. 2直线、射线、线段一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法中正确的个数为①射线OP和射线PO是同一条射线;②连接两点的线段叫两点间的距离;③两点确定一条直线;④若AC=BC,则C是线段AB的中点.A.1个B.2个C.3个D.4个2.已知线段AB=8cm,在线段AB的延长线上取一点C,使线段AC=12cm,那么线段AB和AC中点的距离为A.2cm B.3cm C.4cm D.5cm3.如图,C、D、E分别为线段AD,CE,DB的中点,那么图中与线段AC相等的线段有A.2条B.3条C.4条D.5条4.下列说法中错误的是A.A、B两点间的距离为5kmB.A、B两点间的距离是线段AB的长度C.A、B两点间的距离就是线段ABD.线段AB的中点M到A、B的距离相等5.如图所示,不同的线段的条数是A.4条B.5条C.10条D.12条二、填空题:请将答案填在题中横线上.6.要在墙上钉一根木条,使它不能转动,则至少需要2个钉子,主要依据是__________.7.直线、射线、线段没有粗细之分.直线__________端点,向两边无限延伸;射线只有一个端点,向一边无限延伸;线段有两个端点,所以线段可以__________.8.如图.(1)AB=AC+__________=AD+__________=__________+CD+__________;(2)AC=__________–CD=AB–__________–__________;(3)AD+BC=AB+__________.(4)若AC=BD,则__________=__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.如图,图中有几条射线?其中可表示的是哪几条?10.已知A、M、N、B为一直线上顺次4个点,若AM∶MN=5∶2,NB–AM=12,AB=24,求BM的长.11.往返于A、B两地的客车,途中要停靠C、D两个车站,如图所示.(1)需要设定几种不同的票价?(2)需要准备多少种车票?附赠材料:以学生为第一要务目标我们教育工作的最终目标只有一个:学生。
人教版七年级数学上册《第四章》单元测试题及答案
人教版七年级数学上册《第四章》单元测试题及答案人教版七年级数学上册第四章单元测试题及答案一、选择题(每小题3分,共30分)1.下列说法正确的是()A.①②2.(2013•浙江温州中考)下列各图中,经过折叠能围成一个立方体的是(C)3.在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是(C)4.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有(B)5.如图所示,从A地到达B地,最短的路线是(A)6.(2013•云南昭通中考)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是(B)7.如图所示的立体图形从上面看到的图形是(D)8.如果∠1与∠2互为补角,且∠1∠2,那么∠2的余角是(。
)C.(∠1-∠2)9.若∠=40.4°,∠=40°4′,则∠与∠的关系是(。
)D.以上都不对10.下列叙述正确的是()B.110°和90°的角互为补角二、填空题(每小题3分,共24分)11.(2013•山东枣庄中考)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为12.12.(2012•山东菏泽中考)已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC=5cm.13.若一个角的补角是这个角的余角的3倍,则这个角的度数是多少?答案:设这个角的度数为x,则它的补角为90-x,余角为180-x。
根据题意,有90-x=3(180-x),解得x=30.因此,这个角的度数为30°。
14.已知直线上有A、B、C三点,其中AB=3cm,BC=5cm,则AC的长度是多少?答案:根据三角形两边之和大于第三边的性质,知ACBC-AB=2cm。
人教版数学七年级上册《几何图形初步》单元检测题(带答案)
人教版数学七年级上学期第四章单元测试(考试时间:90分钟试卷满分:120分)第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个几何体中,是三棱柱的为A.B.C.D.2.如图的几何体由5个相同的小正方体搭成.从正面看,这个几何体的形状是A.B.C.D.3.如图,将直角三角形ABC绕斜边AB所在直线旋转一周得到的几何体是A.B.C.D.4.下列说法正确的是A.延长直线AB B.延长射线ABC.反向延长射线AB D.延长线段AB到点C,使AC=BC5.“汽车上雨刷器的运动过程”能说明的数学知识是A.点动成线B.线动成面C.面动成体D.面与面交于线6.已知∠α=75°,则∠α的余角等于A.15°B.25°C.75°D.105°7.如图,将一块三角形木板截去一部分后,发现剩余木板的周长要比原三角形木板的周长大,能正确解释这一现象的数学知识是A.两直线相交只有一个交点B.两点之间,线段最短C.经过一点有无数条直线D.两点确定一条直线8.在一条直线上,依次有E、F、G、H四点.如果点F是线段EG的中点,点G是线段FH的中点,则有A.EF=2GH B.EF>GHC.EF>2GH D.EF=GH9.∠COD=36°19′,下列正确的是A.∠COD=36.19°B.∠COD的补角为144°41′C.∠COD的余角为53°41′D.∠COD的余角为53°19′10.如图,OC平分∠AOB,下列结论错误的是A.∠AOB=2∠AOC B.∠AOC=∠BOCC.∠AOC=12∠AOB D.∠BOC=∠AOB第Ⅱ卷二、填空题(本题共8小题,每小题3分,共24分)11.24°18′=__________°.12.如图,用圆规比较两条线段A'B'和AB的长短,则AB__________A'B'.(填“>”“=”或“<”)13.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是__________.①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.14.如图,∠BAD和∠CAE都是直角,若∠BAE=135°17′,则∠CAD=__________.15.如图,能用字母表示的以点C为端点的线段的条数为m,能用字母表示的以点C为端点的射线的条数为n,则m–n的值为__________.16.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”对面的字是__________.17.如图,点C、D、E是线段AB上的三个点,下面关于线段CE的表示,其中正确的有__________.①CE=CD+DE;②CE=CB–EB;③CE=CB–DB;④CE=AD+DE–AC.18.一个无盖的长方体的包装盒展开后如图所示(单位:cm),则该长方体的体积为__________cm3.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)如图,写出图中的所有角,并比较它们的大小,通过测量指出哪些角是直角,哪些角是锐角,哪些角是钝角.20.(本小题满分6分)如图是由小正方形组成的图,请你用三种方法分别在下图中添画两个小正方形,使它能成为正方体的表面展开图.21.(本小题满分8分)已知∠A=24.1°+6°,∠B=56°–26°30′,∠C=18°12′+11.8°,试通过计算,比较∠A,∠B和∠C的大小.22.(本小题满分8分)如图,∠2是∠1的4倍,∠2的补角比∠1的余角大45°.(1)求∠1、∠2的度数;(2)若∠AOD=90°,试问OC平分∠AOB吗?为什么?23.(本小题满分6分)如图是一个正方体的展开图,标注了字母A,C的面分别是正方体的正面和底面,其他面分别用字母B,D,E,F表示.已知A=kx+1,B=3x–2,C=1,D=x–1,E=2x–1,F=x.(1)如果正方体的左面与右面所标注字母代表的代数式的值相等,求出x的值;(2)如果正面字母A代表的代数式与对面字母代表的代数式的值相等,且x为整数,求整数k的值.24.(本小题满分10分)如图,已知A、O、B三点共线,OC、OE分别平分∠AOD、∠DOB.(1)试探究∠COD和∠DOE的关系;(2)若∠DOE:∠COD=2:3,求∠COB的度数.25.(本小题满分10分)已知直角三角板的直角顶点C放在直尺的一边MN上,(1)若点A和点B在直线MN的上方(如图1),求此时∠ACM与∠BCN的数量关系;(2)若把这把直角三角板绕顶点C旋转到点A在直线MN的下方,点B仍然在直线MN的上方时(如图2),求∠ACM与∠BCN的数量关系;(3)若把这把直角三角板绕顶点C旋转到点A和点B都在直线MN的下方时(如图3),求∠ACM 与∠BCN的数量关系.26.(本小题满分12分)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s 的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?参考答案11.24.3 12.< 13.①④14.44°43′15.2 16.顺17.①②④18.9619.【解析】由图可知,图中的角为:∠DOC、∠COB、∠BOA、∠DOB、∠COA、∠DOA;大小关系为:∠DOC=∠BOA<∠COB<DOB=∠COA<∠DOA;(3分)直角是:∠DOB、∠COA;锐角是:∠DOC、∠COB、∠BOA;钝角是:∠DOA.(6分)20.【解析】如图所示:(6分)21.【解析】因为∠A=24.1°+6°=30.1°=30°6′,∠B=56°–26°30′=29°30′,(4分)∠C=18°12′+11.8°=18°12′+11°48′=29°60′=30°,(6分)所以∠A>∠C>∠B.(8分)22.【解析】(1)因为∠2是∠1的4倍,所以∠2=4∠1,∠1的余角=90°–∠1,∠2的补角=180°–∠2=180°–4∠1,由题意得,(180°–4∠1)–(90°–∠1)=45°,解得∠1=15°,所以,∠2=4×15°=60°;(4分)(2)OC平分∠AOB.理由如下:因为∠AOD=90°,∠2=60°,所以∠AOB=90°–60°=30°,因为∠1=15°,所以∠BOC=30°–15°=15°,所以∠AOC=∠BOC,所以OC平分∠AOB.(8分)23.【解析】(1)因为正方体的左面D与右面B所标注的代数式的值相等,所以x–1=3x–2,解得x=12;(3分)(2)因为正面字母A代表的代数式与对面F代表的代数式的值相等,所以kx+1=x,所以(k–1)x=–1,因为x为整数,所以x,k–1为–1的因数,所以k–1=±1,所以k=0或k=2,综上所述,整数k的值为0或2.(6分)24.【解析】(1)因为OC、OE分别平分∠AOD、∠DOB,所以∠COD=12∠AOD,∠DOE=12∠DOB,所以∠COD+∠DOE=12(∠AOD+∠DOB)=90°;(4分)(2)设∠DOE=2x,∠COD=3x,由(1)可知:∠DOE+∠COD=90°,(6分)所以2x+3x=90°,所以x=18°,所以∠DOE=36°,∠COD=54°,所以∠COB=∠COD+2∠DOE=54°+72°=126°.(10分)25.【解析】(1)当点A和点B在直线MN的上方时,因为∠ACB=90°,所以∠ACM+∠BCN=180°–∠ACB=180°–90°=90°;(3分)(2)当点A在直线MN的下方,点B仍然在直线MN的上方时,因为∠BCN=180°–∠BCM,∠ACM=90°–∠BCM,所以∠BCN–∠ACM=(180°–∠BCM)–(90°–∠BCM)=90°;(6分)(3)当点A和点B都在直线MN的下方时,因为∠BCN=180°–∠BCM,∠ACM=90°+∠BCM,所以∠ACM+∠BCN=(180°–∠BCM)+(90°+∠BCM)=270°.(10分)26.【解析】(1)因为线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,所以CM=12AC=5厘米,CN=12BC=3厘米,所以MN=CM+CN=8厘米;(4分)(2)因为点M,N分别是AC,BC的中点,所以CM=12AC,CN=12BC,所以MN=CM+CN=12AC+12BC=12a;(8分)(3)①当0<t≤5时,C是线段PQ的中点,得10–2t=6–t,解得t=4;②当5<t≤163时,P为线段CQ的中点,2t–10=16–3t,解得t=265;③当163<t≤6时,Q为线段PC的中点,6–t=3t–16,解得t=112;④当6<t≤8时,C为线段PQ的中点,2t–10=t–6,解得t=4(舍),综上所述:t=4或265或112.(12分)。
2020年人教版七年级数学上册《第4章几何图形初步》单元测试卷(解析版)
2020年人教版七年级数学上册《第4章几何图形初步》单元测试卷一.选择题(共10小题)1.一个棱柱有10个面,那么它的棱数是()A.16B.20C.22D.242.如图所示的圆台中,可由下列图中的()图形绕虚线旋转而成.A.B.C.D.3.一个长方体音箱,长是宽的2倍,宽和高相等,它的体积是54000cm2,则这个音箱的长是()A.30cm B.60cm C.300cm D.600cm4.下面图形中,平面图形是()A.B.C.D.5.如图是一个几何体的展开图,这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱6.下列各图中,经过折叠能围成一个正方体的是()A.B.C.D.7.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国B.厉C.害D.了8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.9.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG 是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧10.如图,依据尺规作图的痕迹,计算∠α=()A.56°B.68°C.28°D.34°二.填空题(共8小题)11.一个直棱柱有八个面,所有侧棱长的和为24cm,则每条侧棱的长是cm.12.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是.13.一个五棱柱的面数为个,棱数为条,顶点数为个.14.若两正方体所有棱长之和为48,表面积之和为72,则体积之和为.15.已知甲乙两圆的周长之比是3:4,那么甲乙两圆的直径之比是.16.如图所示,是一个立体图形的展开图,这立体图形是.17.用一张边长是10cm的正方形铁皮围成一个圆柱体,这个圆柱的侧面积是cm2.18.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为.三.解答题(共8小题)19.打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是12米,高是底面半径的,(1)求这堆小麦的体积是多少立方米?(π取3.14)(2)在某仓库有一些相同的圆柱形有盖平顶粮仓,每个粮仓的高为1.1米,侧面积为π,求该粮仓的底面积是多少平方米?(结果保留π)(3)在(2)的条件下,若将打谷场上的这堆小麦全部装入仓库的圆柱形的粮仓内,至少需要多少个这样的粮仓?20.在一个长方形中,长和宽分别为4cm、3cm,若该长方形绕着它的一边旋转一周,形成的几何体的体积是多少?(结果用π表示)21.三棱柱有9条棱、6个顶点、5个面,三棱锥有6条棱、4个顶点、4个面;四棱柱有12条棱、8个顶点、6个面,四棱锥有8条棱、5个顶点、5个面等等,问能否组成一个有24条棱,10个面,15个顶点的多面体?请简要说明.22.棱长为a的正方体,摆放成如图所示的形状,动手试一试,并回答下列问题:(1)如果这一物体摆放了如图所示的上下三层,由几个正方体构成?(2)如图形所示物体的表面积是多少?23.如图,点C是线段AB的中点.(1)尺规作图:延长AB到D,使BD=AB(不写作法,保留作图痕迹).(2)若AC=2cm,求AD的长.24.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)25.如图,已知∠AOB=60°,∠AOD是∠AOB的补角.(1)在∠AOB的外部画出它的余角∠AOC,并用直尺和圆规作出∠AOD的平分线OE;(不写作法,保留作图痕迹)(2)在完成画图和作图后所得的图形中,与∠EOD互余的角有.26.如图,AD是Rt△ABC斜边BC上的高.(1)尺规作图:作∠C的平分线,交AB于点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母);(2)在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何?请予以证明;(3)在(2)的条件下,连结DE、DH.求证:ED⊥HD.2020年人教版七年级数学上册《第4章几何图形初步》单元测试卷参考答案与试题解析一.选择题(共10小题)1.一个棱柱有10个面,那么它的棱数是()A.16B.20C.22D.24【分析】根据八棱柱的定义可知,一个棱柱有10个面,那么这个棱柱是八棱柱,即可得出答案.【解答】解:一个棱柱有10个面,那么这个棱柱是八棱柱,它的棱数为3×8=24;故选:D.【点评】本题考查了棱柱的特征:n棱柱有(n+2)个面,有3n条棱;熟记棱柱的特征是解题的关键.2.如图所示的圆台中,可由下列图中的()图形绕虚线旋转而成.A.B.C.D.【分析】根据面动成体的原理即可解.【解答】解:圆台是梯形绕直角腰旋转而成.故选:A.【点评】考查了点、线、面、体,解决本题的关键是掌握各种面动成体的特征.3.一个长方体音箱,长是宽的2倍,宽和高相等,它的体积是54000cm2,则这个音箱的长是()A.30cm B.60cm C.300cm D.600cm【分析】根据立方根的定义和长方体的体积公式解答.【解答】解:设长方体的宽为xcm,则高是xcm,长是2xcm,根据题意,得2x3=54000,x3=27000,x=30,所以这个音箱的长是60cm.故选:B.【点评】本题考查了立方根的定义和长方体的体积公式,解题的关键掌握立方根的定义.4.下面图形中,平面图形是()A.B.C.D.【分析】根据平面图形和立体图形是区别即可解答.【解答】解:选项A是圆锥,选项B是圆柱,选项C是四棱柱,选项D是三角形,三角形是平面图形.故选:D.【点评】本题考查了平面图形和立体图形的认识,掌握定义是解题的关键.5.如图是一个几何体的展开图,这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【分析】根据四棱柱的展开图解答.【解答】解:由图可知,这个几何体是四棱柱.故选:D.【点评】本题考查了展开图折叠成几何体,熟记四棱柱的展开图的形状是解题的关键.6.下列各图中,经过折叠能围成一个正方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、是“田”字格,故不能折叠成一个正方体;B、是“凹”字格,故不能折叠成一个正方体;C、折叠后有两个面重合,缺少一个面,所以也不能折叠成一个正方体;D、可以折叠成一个正方体.故选:D.【点评】本题考查了展开图折叠成几何体.注意只要有“田”、“凹”字格的展开图都不是正方体的表面展开图.7.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国B.厉C.害D.了【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中有“我”字的一面相对面上的字是国.故选:A.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.【分析】A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.【解答】解:根据分析可知,选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q.故选:A.【点评】此题主要考查了过直线外以及过直线上一点作已知直线的垂线,熟练掌握基本作图方法是解题关键.9.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG 是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【分析】运用作一个角等于已知角可得答案.【解答】解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.故选:D.【点评】本题主要考查了作图﹣基本作图,解题的关键是熟习作一个角等于已知角的方法.10.如图,依据尺规作图的痕迹,计算∠α=()A.56°B.68°C.28°D.34°【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故选:A.【点评】本题考查的是作图﹣基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.二.填空题(共8小题)11.一个直棱柱有八个面,所有侧棱长的和为24cm,则每条侧棱的长是4cm.【分析】先根据这个棱柱有8个面,求出这个棱柱是6棱柱,有6条侧棱,再根据所有侧棱的和为24cm,即可得出答案.【解答】解:∵这个棱柱有八个面,∴这个棱柱是6棱柱,有6条侧棱,∵所有侧棱的和为24cm,∴每条侧棱长为24÷6=4(cm);故答案为:4【点评】本题考查了立体图形,主要利用了棱柱面的个数与棱数的关系,是一道基础题.12.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱.【分析】根据面动成体可得长方形ABCD绕CD边旋转可得答案.【解答】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故答案为:圆柱.【点评】此题主要考查了点线面体,是基础题,熟悉常见几何体的形成是解题的关键.13.一个五棱柱的面数为7个,棱数为15条,顶点数为10个.【分析】根据五棱柱的形状可得答案.【解答】解:一个五棱柱的面数为7个,棱数为15条,顶点数为10个.故答案为:7,15,10.【点评】此题主要考查了认识立体图形,关键是掌握五棱柱的形状.14.若两正方体所有棱长之和为48,表面积之和为72,则体积之和为40.【分析】根据正方体的棱有12条,设其中一个正方体的棱长为x,则另一个为4﹣x,根据正方体的表面积公式列方程解答即可.【解答】解:设其中一个正方体的棱长为x,则另一个为4﹣x,根据题意得,6x2+6(4﹣x)2=72,解得,,故这两个正方体的棱长分别为2+,2﹣,体积之和为:=(2++2﹣)[﹣(2+)(2﹣)+]=40.故答案为:40【点评】此题考查正方体的表面积公式的灵活应用,根据正方体一个面的面积求出正方体的棱长是解决此类问题的关键.15.已知甲乙两圆的周长之比是3:4,那么甲乙两圆的直径之比是3:4.【分析】根据圆的周长公式C=πd或C=2πr,圆的周长和半径(直径)成正比例,已知两个圆的周长之比是3:4,两个圆的直径的比也是3:4;由此解答.【解答】解:∵甲乙两圆的周长之比是3:4,∴甲乙两圆的直径之比是3:4.故答案为:3:4.【点评】考查了认识平面图形,此题主要根据圆的周长计算方法进行判断,两个圆的周长之比等于两个圆的半径(直径)的比.16.如图所示,是一个立体图形的展开图,这立体图形是圆锥.【分析】根据圆锥表面展开图的特点解题.【解答】解:如图所示,是一个立体图形的展开图,这个立体图形是圆锥.故答案为:圆锥.【点评】本题考查圆锥表面展开图,记住圆锥的表面展开图的特征是解题的关键.17.用一张边长是10cm的正方形铁皮围成一个圆柱体,这个圆柱的侧面积是100cm2.【分析】易得此几何体为圆柱,那么侧面积=底面周长×高,依此即可求解.【解答】解:10×10=100(cm2).答:这个圆柱的侧面积是100cm2.故答案:100.【点评】考查了展开图折叠成几何体,本题难点是确定几何体的形状,关键是找到等量关系里相应的量.18.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为115°.【分析】利用角平分线的作法可得出答案.【解答】解:∵根据作法可得AG是∠CAB的角平分线,∴∠DAC=∠CAB=×50°=25°,∴∠ADB=∠DAC+∠ACD=25°+90°=115°故答案为:115°.【点评】本题主要考查了基本作图,解的关键是熟记角平分线的作法.三.解答题(共8小题)19.打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是12米,高是底面半径的,(1)求这堆小麦的体积是多少立方米?(π取3.14)(2)在某仓库有一些相同的圆柱形有盖平顶粮仓,每个粮仓的高为1.1米,侧面积为π,求该粮仓的底面积是多少平方米?(结果保留π)(3)在(2)的条件下,若将打谷场上的这堆小麦全部装入仓库的圆柱形的粮仓内,至少需要多少个这样的粮仓?【分析】(1)根据圆锥的体积公式解答即可;(2)根据圆柱的侧面积公式即可求出r,再根据圆的面积公式解答即可;(3)求出一个圆柱形的粮仓的体积,然后用麦的体积去除以一个圆柱形的粮仓的体积即可解答.【解答】解(1)(米),V=≈24×3.14=75.36(立方米),麦这堆小麦的体积是75.36立方米;(2),(米),(平方米),所以该粮仓的底面积是4π平方米;(3)(立方米),,所以至少需要6个这样的粮仓.【点评】本题主要考查了圆柱和圆锥的体积公式、圆柱的侧面积公式,熟练掌握公式是解答本题的关键.20.在一个长方形中,长和宽分别为4cm、3cm,若该长方形绕着它的一边旋转一周,形成的几何体的体积是多少?(结果用π表示)【分析】圆柱体的体积=底面积×高,注意底面半径和高互换得圆柱体的两种情况.【解答】解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3.故形成的几何体的体积是36πcm3或48πcm3.【点评】本题考查圆柱体的体积的求法,注意分情况讨论.21.三棱柱有9条棱、6个顶点、5个面,三棱锥有6条棱、4个顶点、4个面;四棱柱有12条棱、8个顶点、6个面,四棱锥有8条棱、5个顶点、5个面等等,问能否组成一个有24条棱,10个面,15个顶点的多面体?请简要说明.【分析】简单多面体的顶点数V、面数F及棱数E间的关系为:V+F﹣E=2.这个公式叫欧拉公式.依此即可求解.【解答】解:∵10+15﹣24=1,不符合欧拉公式V+F﹣E=2,∴不能组成一个有24条棱,10个面,15个顶点的多面体.【点评】考查了欧拉公式,公式描述了简单多面体顶点数、面数、棱数特有的规律.解题的关键是熟练掌握欧拉公式.22.棱长为a的正方体,摆放成如图所示的形状,动手试一试,并回答下列问题:(1)如果这一物体摆放了如图所示的上下三层,由几个正方体构成?(2)如图形所示物体的表面积是多少?【分析】(1)分别数出各层正方体的个数,再相加即可求解;(2)每个方向上均有6个等面积的小正方形,求出1个正方形面积,再乘36即可求解.【解答】解:(1)第一层1个,第一层3个,第一层6个,1+3+6=10(个).答:由10个正方体构成;(2)每个正方形面积为a2,左面:6小正方形,前面:6小正方形,右面:6小正方形,后面:6小正方形,上面:6小正方形,下面:6小正方形.物体的表面积为:6×6a2=36a2(平方单位).答:如图形所示物体的表面积是36a2平方单位.【点评】本题考查了立体图形的有关知识,关键是要注意立体图形的各个面,及每个面的正方形的个数.23.如图,点C是线段AB的中点.(1)尺规作图:延长AB到D,使BD=AB(不写作法,保留作图痕迹).(2)若AC=2cm,求AD的长.【分析】(1)在AB的延长线上截取BD=AB即可;(2)根据中点的定义先求出AB,再求出AD的长.【解答】解:(1)如图所示:(2)∵点C是线段AB的中点,AC=2cm,∴AB=4cm,∵BD=AB,∴AD=8cm.【点评】本题考查了作图﹣基本作图:作一条线段等于已知线段,线段中点的定义等知识,作出点D是解题的关键.24.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)【分析】延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB 的延长线于点M和点N,再作线段MN的垂直平分线CD即可.【解答】解:延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB的延长线于点M和点N,再作线段MN的垂直平分线CD,如下图所示:【点评】本题考查作图﹣基本作图,掌握作垂直平分线的基本步骤为解题关键.25.如图,已知∠AOB=60°,∠AOD是∠AOB的补角.(1)在∠AOB的外部画出它的余角∠AOC,并用直尺和圆规作出∠AOD的平分线OE;(不写作法,保留作图痕迹)(2)在完成画图和作图后所得的图形中,与∠EOD互余的角有∠COE、∠AOC.【分析】(1)按要求作图;(2)根据∠AOB=60°,分别计算各角的度数,可作解答.【解答】解:(1)如图所示:(2)∵OC⊥BD,∴∠BOC=∠COD=90°,∵∠AOB=60°,∴∠AOC=30°,∠AOD=120°,∵OE平分∠AOD,∴∠AOE=∠DOE=60°,∴与∠EOD互余的角有:∠COE、∠AOC.故答案为:∠COE、∠AOC.【点评】本题考查了角平分线的定义、余角以及角的计算,还考查了基本作图﹣角平分线、过直线上一点作已知直线的垂线;注意基本作图时要认真、准确.26.如图,AD是Rt△ABC斜边BC上的高.(1)尺规作图:作∠C的平分线,交AB于点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母);(2)在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何?请予以证明;(3)在(2)的条件下,连结DE、DH.求证:ED⊥HD.【分析】(1)利用尺规作∠C的平分线即可解决问题;(2)结论:FH=HC.只要证明∠HCF=∠HFC即可;(3)只要证明△EAD∽△HCD,可得∠ADE=∠CDH,推出∠EDH=∠ADC=90°即可;【解答】解:(1)如图所示:(2)结论:FH=HC.理由:∵FH∥BC,∴∠HFC=∠FCB,∵∠FCB=∠FCH,∴∠FCH=∠HFC,∴FH=HC.(3)∵AD是Rt△ABC斜边BC上的高,∴∠ADC=∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,∴∠B=∠CAD,∵∠AEF=∠B+∠ECB,∠AFE=∠CAD+∠ACF,∠ACF=∠ECB,∴∠AEF=∠AFE,∴AE=AF,∵FH∥CD,∴=,∵AF=AE,CH=FH,∴=,∴=,∵∠BAD=∠DCH,∴△EAD∽△HCD,∴∠ADE=∠CDH,∴∠EDH=∠ADC=90°,∴ED⊥DH.【点评】本题考查作图﹣基本作图,等腰三角形的判定和性质、相似三角形的判定和性质、平行线分线段成比例定理等知识,本题综合性比较强,属于中考常考题型.。
人教版七年级数学上册第四章几何图形复习试题一(含答案) (85)
人教版七年级数学上册第四章几何图形复习试题一(含答案) 下列图形不能围成封闭几何体的是()A.B.C.D.【答案】B【解析】【分析】由平面图形的折叠及圆柱、正方体、圆锥和三棱柱的展开图解题.【详解】A. 是正方体的展开图,能围成封闭几何体,不符合题意;B.是缺少一个面的圆柱,不能围成封闭几何体,符合题意;C. 是圆锥的展开图,能围成封闭几何体,不符合题意;D. 是三棱柱的展开图,能围成封闭几何体,不符合题意.故选B.【点睛】此题考查展开图折叠成几何体,解题关键在于掌握展开图.二、解答题42.图1,2,3均是由棱长为1的小立方块摆放而成的几何体,按照这样的方法继续摆放,自上而下分别叫做第一层、第二层、…、第n层,当摆至第n 层时,构成这个几何体的小立方块的总个数记为ka,它的表面积记为n S试求:(1)2k和2S;(2)3k和3S;(3)10k和10S.【答案】(1)4,18;(2)10,36;(3)220,330.【解析】【分析】(1)(2)根据已知图形进而求出第2、3层的小正方体的个数以及总数和几何体的表面积;(3)根据(1)(2)的计算出的结果可得10k=1+3+6+10+15+21+28+36+45+55,10S=(1+2+3+…+10)×6,再计算即可.【详解】解:(1)题图2中,2134S=+⨯=k=+=.2(12)618(2)题图3中,313610S=++⨯=k=++=.3(123)636(3)1013610152128364555220k =+++++++++=.10(1210)6330S =+++⨯=.【点睛】本题主要是立体图形以及寻找规律的问题,试着找出题中的规律是解题的关键.43.如图是一个长为8cm ,宽为6cm 的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1,图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大.(结果保留π)【答案】见解析【解析】【分析】绕长旋转得到的圆柱的底面半径为6cm ,高为8cm ,从而计算体积即可;绕宽旋转得到的圆柱底面半径为8cm ,高为6cm ,从而计算体积即可.【详解】解:图1方式旋转得到几何体的体积:26888π2π⨯⨯=(3cm )图2方式旋转得到几何体的体积:286384ππ⨯⨯=(3cm ).因为384π288π>,所以图2方式得到的几何体的体积大.【点睛】本题考查了面动成体及圆柱体体积计算公式,掌握将长方形围绕着长与宽旋转所得的圆柱体的底面半径及高来计算体积是解题的关键.44.如图所示的是某几何体的表面展开图.(1)这个几何体的名称是_________;(2)画出从三个方向看这个竖直放置的几何体的形状图;(3)求这个几何体的体积.【答案】(1) 圆柱(2)见解析;(3)500π.【解析】【分析】(1)由展开图可直接得到答案,此几何体为圆柱;(2)圆柱的左视图与主视图都是长方形,俯视图是圆;(3)根据圆柱体的体积公式=底面积×高计算即可.【详解】解:(1)圆柱(2)如图所示.(3)这个几何体的体积为21020500π2π⎛⎫⨯⨯=⎪⎝⎭.【点睛】本题考查了由展开图折叠成立体图形、立体图形的三视图及圆柱体的体积公式,掌握立体图形的展开图及三视图是解题的关键.45.如图是由几个完全相同的小立方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的形状图.【答案】见解析.【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为1,4,2;从左面看有3列,每列小正方形数目分别为3,4,2.据此可画出图形.【详解】解:如图所示.【点睛】本题考查了作图-三视图,由三视图判断几何体,能根据俯视图对几何体进行推测分析,有一定的挑战性,关键是从俯视图中得出几何体的排列信息.46.一仓库管理员需要清点仓库的物品,物品全是一些大小相同的正方体箱子,他不能搬下箱子进行清点,后来,他想出了一个办法,通过从三个不同方向观察物品的形状图,求出了仓库里的存货,他所看到的三个形状图如下,仓库管理员清点出存货的个数是多少?【答案】8个【解析】【分析】从俯视图中可以看出最底层正方体箱子的个数及形状,从主视图可以看出每一层正方体箱子的层数和个数,从左视图确定中间位置应有两排2个,从而算出总的个数.【详解】解:由三个形状图可判断箱子的堆放数量如图,+++++=(个).所以一共有8个正方体箱子.1112218【点睛】本题考查了由三视图判断几何体,需要一定的想象力,结合三视图推出每一层的正方体箱子个数,47.如图所示,给出了6个立体图形.找出图中具有相同特征的图形,并说明相同特征.①②③④⑤⑥【答案】见解析【解析】【分析】立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.其中长方体、正方体、棱柱、棱锥是多面体,能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.【详解】解:①③都是由六个面组成的;①③④的面都是平的;②⑤⑥都有一个面不是平的;②⑥至少有一个面是圆;①③的六个面都是四边形,等等.【点睛】本题考查了认识立体图形,解题的关键是掌握常见立体图形的特征;48.说出图中几何体截面的形状.①②③④【答案】见解析【解析】【分析】根据图形观察即可得出结论.【详解】解:①是长方形;②是圆;③是梯形;④是长方形.【点睛】本题考查了截一个几何体,截面的形状,掌握截面形状与被截的几何体和截面的角度和方向有关是解题的关键.49.如图所示的立体图形分别是由几个面围成的,它们是平的还是曲的?①②③④【答案】见解析【解析】【分析】根据图形的形状进行解答即可.【详解】解:①是由一个曲面围成的;②是由五个平面围成的;③是由一个曲面和一个平面围成的;④是由三个平面和一个曲面围成的.【点睛】此题主要考查了认识立体图形,掌握简单几何体的形状和特点以及平面和曲面的不同是解题的关键.50.请你画出如图所示的几何体从正面、左面、上面看到的形状图.【答案】见解析【解析】【分析】由简单几何体的三视图的定义即可画出.【详解】解:如图所示.【点睛】此题主要考查简单几何体的三视图,解题的关键是从各方向直接观察即可画出.。
七年级上册数学第四章第一节测试卷及答案人教版
A.正方体B.球C.圆锥D.圆柱体【答案】D【解析】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.4.如图所示的四种物体中,哪种物体最接近于圆柱A.B.C.D.生日蛋糕弯管 烟囱酒瓶【答案】A【解析】最接近圆柱的是生日蛋糕.故选A.5.下列图形中,含有曲面的立体图形是A.B.C.D.【答案】D二、填空题:请将答案填在题中横线上.6.若一个棱柱有7个面,则它是__________棱柱.【答案】57.正方体有__________个面,__________个顶点,经过每个顶点有__________条棱.【答案】6,8,3【解析】正方体有6个面,8个顶点,经过每个顶点有3条棱,故答案为:6,8,3.8.下列图形中,表示平面图形的是__________;表示立体图形的是__________.(填入序号)【答案】①③;②④【解析】表示平面图形的是①③;表示立体图形的是②④.故答案为:①③;②④.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.将下列几何体与它的名称连接起来.【解析】如图:10.如图所示的正方体的六个面分别标着连续的整数,求这六个整数的和.11.一个长方体如图所示.(1)求它的体积和表面积;(用含a、b的代数式表示)(2)当a=10,b=8时,该长方体的表面积是__________.【解析】(1)体积为a⋅b⋅6=6ab,表面积为2(ab+6a+6b)=2ab+12a+12b.(2)当a=10,b=8时,原式=2×10×8+12×10+12×8=376,故答案为376.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是A.B.C.D.【答案】D【解析】绕直线l旋转一周,可以得到圆台,故选D.2.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是A.B.C.D.【答案】A【解析】A、上面小下面大,侧面是曲面,故A正确;3.汽车的雨刷把玻璃上的雨水刷干净属于__________的实际应用.A.点动成线B.线动成面C.面动成体D.以上答案都不对【答案】B【解析】汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故选B.4.一个直角三角形绕其直角边旋转一周得到的几何体可能是A.B.C.D.【答案】D【解析】以直角三角形的一条直角边所在直线为对称轴旋转一周,得到一个圆锥,故选D.5.生活中我们见到的自行车的辐条运动形成的几何图形可解释为A.点动成线B.线动成面C.面动成体D.以上答案都不对【答案】B【解析】生活中我们见到的自行车的辐条运动形成的几何图形可解释为:线动成面,故选B.二、填空题:请将答案填在题中横线上.6.雨点从高空落下形成的轨迹说明了点动成线,那么一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了__________.【答案】面动成体【解析】一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了面动成体,故答案为:面动成体.7.将一个半圆绕它的直径所在的直线旋转一周得到的几何体是__________.【答案】球【解析】将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故答案为:球.8.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为__________cm3.(结果保留π)【答案】27πcm39.笔尖在纸上快速滑动写出英文字母C,这说明了__________.【答案】点动成线【解析】笔尖在纸上快速滑动写出英文字母C,这说明了点动成线;故答案为:点动成线.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
人教版七年级上册数学第四章测试题(含答案)
人教版七年级上册数学第四章测试题(含答案)(考试时间:120分钟满分:120分)分数:____________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列图形中,∠1和∠2互为余角的是(D)A BC D2.如图,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,则他选择最近的一条路线是(B)A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B3.如图,下列图形中,是四棱柱的侧面展开图的为(A)A B C D4.如图所示,将左边的图形折成一个立方体后为右边的四个立方体中的(B)A BC D5.下列判断中错误的有(D)①延长射线OA;②直线比射线长,射线比线段长;③如果线段P A=PB,那么点P是线段AB的中点;④连接两点间的线段,叫做两点间的距离.A.0个B.2个C.3个D.4个6.如图,下列说法中不正确的是(D)A.OC的方向是南偏东30°B.OA的方向是北偏东45°C.OB的方向是西偏北30°D.∠AOB的度数是75°7.以长方形3 cm长的边所在直线为轴旋转一周形成圆柱体甲,以长方形2 cm长的边所在直线为轴旋转一周形成圆柱体乙,记两个圆柱的体积为V甲,V乙,侧面积为S甲,S乙,则下列式子中正确的是(A)A.V甲<V乙,S甲=S乙B.V甲>V乙,S甲>S乙C.V甲=V乙,S甲=S乙D.V甲>V乙,S甲<S乙8.★点P,Q在线段AB中点的同一侧,点P将AB分为2∶3的两段,点Q将AB分为3∶4的两段,若PQ=2 cm,则AB的长为(C)A.80 cm B.75 cm C.70 cm D.60 cm9.★如图,∠AOB=∠COD,若∠AOD=110°,∠BOC=70°,则以下结论中正确的有①∠AOC=∠BOD=90°;②∠AOB=20°;③∠AOB=∠AOD-∠AOC;④∠AOB=2 11∠BOD.(C)A.1个B.2个C.3个D.4个10.射线OA上有B,C两点,若OB=8,BC=2,线段OB,BC的中点分别为D,E,则线段DE的长为(D)A.5 B.3 C.1 D.5或3第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.一个角的补角是36°35′,这个角是143°25′.12.C ,D 是直线AB 上两点,D 是AC 的中点,且BC =13AC ,DC =3 cm ,则AB = 4或8 cm.13.如图,O 为直线AB 上一点,已知∠1=40°,OD 平分∠BOC ,则∠AOD = 110° .第13题图 第14题图14.如图,点A ,O ,B 在同一条直线上,射线OD 平分∠BOC ,射线OE 在∠AOC 的内部,且∠DOE =90°,写出图中所有互为余角的角: ∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4 .15.如图,一个正三棱柱的底面边长为3 cm ,侧棱长为5 cm ,则此三棱柱共有 3 个侧面,侧面展开图的面积为 45 cm 2.16.★有两根木条,一根长60 cm ,另一根长100 cm ,将它们的一端重合,放在同一条直线上,则两根木条的中点间的距离是 80cm 或20cm .17.★如图①所示的纸片是∠AOB 的一部分,OC 平分∠AOB ,如图②,把∠AOB 沿OC 对折成∠COB (OA 与OB 重合),从O 点引一条射线OE ,使∠BOE =12∠EOC ,再沿OE 把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB = 120 °.18.★如图,下列几何体是由棱长均为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面涂色的小立方体共有 (8n -4) 个.选择、填空题答题卡一、选择题(每小题3分,共30分) 题号12345678 9 10 得分 答案 D B A B D D A CCD二、填空题(每小题3分,共24分)得分:________11. 143°25′ 12. 4或8 13. 110°14. ∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4 15. 3 45 16. 80cm 或20cm 17. 120 18. (8n -4)三、解答题(共66分)19.(8分)计算:(1)48°39′+67°31′-21°17′;解:原式=116°10′-21°17′=94°53′.(2)23°53′×3-107°43′÷5.解:原式=71°39′-21°32′36″=50°6′24″.20.(9分)如图,已知A,B,O三点.根据下列要求画图:(1)连接线段AB;(2)画射线OA、射线OB;(3)在线段AB上取一点C,在射线OA上取一点D(点C,D不与点A重合),画直线CD,使直线CD与射线OB交于点E.题图答图解:如图.21.(8分)如图,已知∠AOE是平角,∠DOE=20°,OB平分∠AOC,且∠COD∶∠BOC =2∶3,求∠BOC的度数.解:设∠COD=2x°,则∠BOC=3x°.∵OB平分∠AOC,∴∠AOB=3x°.∴2x+3x+3x+20=180.解得x=20.∴∠BOC=3×20°=60°.22.(10分)李老师到市场买菜,发现如果把10千克的菜放到托盘秤上,指标盘上的指针转了180度.第二天李老师就给同学们出了两个问题.(1)如果把0.6千克的菜放到托盘秤上,指针转过多少度角?(2)如果指针转了7°12′,这些菜有多少千克?解:(1)由题意得(180÷10) ×0.6=10.8(度).即指针转过10.8度角.(2)(10÷180)×7°12′=0.4(千克).故这些菜有0.4千克.23.(10分)画图并计算:如图,已知线段AB =2 cm ,延长线段AB 至点C ,使得BC =12AB ,再反向延长AC 至点D ,使得AD =AC .(1)准确地画出图形,并标出相应的字母;(2)线段DC 的中点是哪个点?线段AB 的长是线段DC 长的几分之几? (3)求出线段BD 的长度.解:(1)画图如图所示..(2)线段DC 的中点是点A ,线段AB 的长是线段DC 长的13.(3)∵BC =12AB =12×2=1(cm).∴AC =AB +BC =2+1=3(cm).∵AD =AC =3 cm ,∴BD =DA +AB =3+2=5(cm).24.(9分)已知m ,n 满足算式(m -6)2+||n -2=0.(1)求m ,n 的值;(2)已知线段AB =m ,在直线AB 上取一点P ,恰好使AP =nPB ,点Q 为PB 的中点,求线段AQ 的长.解:(1)m =6,n =2.(2)线段AB =6,AP =2PB ,①当点P 在线段AB 上时,如图①, ∵P A +PB =AB ,而AB =6,AP =2PB , ∴2PB +PB =6, ∴PB =2,AP =4.∵点Q 是BP 的中点,∴PQ =12PB =1,∴AQ =AP +PQ =4+1=5;②当点P 在线段AB 的延长线上时,如图②, ∵P A =PB +AB ,AB =6,AP =2PB , ∴6+PB =2PB ,PB =6, ∵点Q 为BP 的中点, ∴BQ =12PB =3,∴AQ =AB +BQ =6+3=9, ∴线段AQ 的长为5或9.25.(12分)如图①,点O 为直线AB 上一点,将直角三角板OMN 的直角顶点放在点O 处,射线OC 平分∠MOB .① ②(1)若∠AOM =30°,求∠CON 的度数;(2)若∠AOM =α,直接写出∠CON 的度数(用含α的代数式表示);(3)将图①中的直角三角板OMN 绕顶点O 顺时针旋转至图②的位置,一边OM 在射线OB 的上方,另一边ON 在直线AB 的下方.①探究∠AOM 和∠CON 的度数之间的关系,写出你的结论,并说明理由; ②当∠AOC =3∠BON 时,求∠AOM 的度数. 解:(1)∵∠AOM =30°,∴∠BOM =180°-∠AOM =150°. ∵∠MON =90°,OC 平分∠BOM , ∴∠CON =∠MON -12∠BOM =15°.(2)∵∠AOM =α,∴∠BOM =180°-∠AOM =180°-α. ∵∠MON =90°,OC 平分∠BOM , ∴∠CON =∠MON -12∠BOM =12α.故∠CON =12α.(3)设∠AOM =β,则∠BOM =180°-β, ①∠AOM =2∠CON ,理由:∵OC 平分∠BOM ,∴∠MOC =12∠BOM =12(180°-β)=90°-12β.∵∠MON =90°,∴∠CON =∠MON -∠MOC =12β,∴∠AOM =2∠CON ;②由①知∠BON =∠MON -∠BOM =β-90°, ∠AOC =∠AOM +∠MOC =90°+12β,∵∠AOC =3∠BON ,∴90°+12β=3(β-90°),解得β=144°,∴∠AOM =144°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C A C
∠ABC ∠CAB
B
七年级数学第四章测试题(一)
时间:100分钟,满分:120分
一、选择题(每题3分,共24分) 1、下列说法正确的是( )
(A )线段AB 和线段BA 是两条线段(B )射线AB 和射线BA 是两条射线。
(C )直线AB 和直线BA 是两条直线。
(D )直线AB 和直线a 不能是同一条直线。
2、下图中角的表示方法正确的个数有( )
(A )1个 (B )2个 (C )3个 (D )4个
3、下列图形折叠起来不能做成一个开口的盒子的是( )
(A) (B) (C) (D) 4、若∠A=20°18′,∠B=20°14′30″, ∠C=20.25°则( )
(A)∠A >∠B >∠C (B)∠B >∠A >∠C (C)∠A >∠C >∠B (D)∠C >∠A >∠B 5、经过任意三点中的两点共可以画出( )
(A )一条直线 (B )一条或三条直线(C )两条直线(D )三条直线 6、两锐角之和一定是( )
(A )、钝角 (B )、锐角 (C )、直角 (D )、钝角、锐角、直角都有可能 7、用三角板不能拼出的角度是( )
(A )15° (B ) 75° (C )105° (D )125° 8、下列判断正确的是( )
(A )一个角的余角大于这个角 (B ) 一个角的补角大于这个角
(C )一个角的余角不小于它的补角 (D )一个角的补角与它的余角的差等于90度。
二、填空题(每题3分,共27分)
A
B
直线是平角
∠AOB 是平角
A B C D A
B C
D O
10、有公共顶点的两条射线分别表示南偏东17°与北偏东35°,则这两条射线组成的角的度数为 。
11、如图,若CB 等于15cm ,DB 等于23cm,且D 是AC 的中点,则AC=
12、九时三十分,时针与分针的夹角度数是 。
13、如图,从学校A 到书店B 最近的路线是(1)号路线,其道理用几何知识解释应
是 。
14、 一条铁路线上有3个城市,需要设计 种不同的车票。
(相同城市间的往返车票是不同的类型) 15、试用几何语言描述下图:
16、摩托车车轮快速转动,看起来像个整体平面,这说明了 17、图中有 对余角,∠1= ,∠2=
三、画图题:( 5+6+6=17分)
1、已知:∠AOB ,求作:∠A ′O ′B ′=∠AOB (用尺规作图,保留作图痕迹,不写步骤)
(2)
(1) A C
B
2、如右图,从正面,左面,上面观察这个图形,各能得到什么平面图形。
3、已知线段AB ,根据下列步骤作图,然后回答: (1)延长AB 至C ,使BC=
2
3AB (2)再反向延长线段AB 至D ,使AD =2
1AB (3)线段CD 是线段AD 的多少倍?
四、计算题:(5+5=10分)
1、180°-(11°25′26″×2 + 67°20′20″)
2、已知:如图所示三棱柱,AB=8cm ,BC=10cm ,AC=6cm ,∠BAC=90°三棱柱高是15cm ,求:该三棱柱的表面积。
五、解答题:(7+8+5=20
分 )
1、一个角的余角比它的补角的4
3
还少50°,求这个角。
A B
2、如图,∠AOB 是直角,OD 平∠BOC ,OE 平分∠AOC ,
求:(1)∠EOD 的度数。
(2)当OC 在0A B 内绕点O 转动时,
DOE 的值会不会改变?
3、一只小虫从点A 出发向北偏西30o 方向爬行了3cm 到点B ,再从
点B 出发向北偏东060方向爬行了3cm 到点C ,
(1)试画图确定A 、B 、C 的位置
(2)从图上量出点C 到点A 的距离(精确到0.1cm ) (3)指出点C 在点A 的什么方位?
六、探索规律:(10分)
已知如图,∠AOB 是锐角,以O 为端点向AOB 内部作一条射线,则图中有多少个角?若作二条、三条射线
有多少个角?n 条时有多少个角?画一画,你发现什么规律?
A
A A
O
B
A
O
B
D
C E
第三章答案:
一、填空题:
1、-2 ;
2、答案不唯一;
3、18平方米;
4、90元,72元,12元;
5、2;
6、1;
7、-6;8、3;9、10;10、3(5-x)-2(4+x)=6;
二、选择题:
1、D;
2、D;
3、D;
4、C;
5、C;
6、A;
7、C;
8、B;
三、解方程:
(1)x=7;(2)y=-2
5
(3)x=-
25
14
四、解下列应用题:
1、(1)216、(2)、能使9个数的和为2007;其中最大的数为231;
2、解:设小宝打了30分钟后,求小贝帮助又合作了X分钟打完。
由题意得:+(1
50
+
1
30
)X=1
解得: X=7.5
则30+7.5=37.5<40
所以他能在要求时间内打完。
3、解:设他当天批发了西红柿X千克,则豆角为(40-X)千克.
由题意得:1.2X+1.6(40-X)=60
解得: X=10
则40-X=30(千克)
10×(1.8-1.2)+30×(2.5-1.6)=33(元)
则他当天卖完这些西红柿和豆角能赚33元钱。
4、解:设捐款2元的人数为X人,则捐款5元的人数为(55-7-6-x)人,
即(42-x)人。
由题意得:2x+5(42-x)+6+70=274
解得:x=4
则:42-x=38(人)
所以表中捐款为2元的人数为4人;捐款为5元的人数为38人.
5、解:设用X 张铁皮做盒身,(150-X)张铁皮做盒底可正好配套.
由题意得:2×16x=43(150-x)
解得:x=86.
则:150-x=64(张)
所以用86张做盒身,64张做盒底正好配套.
五、阅读题:
(1)等式两边同时加上2b等式仍然成立;等式两边同时除以不为0的数等式仍然成立,而a=0,所以出现了错误结论。
②当2X+1<0时,原方程可化为:2X+1=-5;解得:X=-3; 第四章答案: 一:选择题:
1、 B ;
2、B ;
3、B
4、C ;
5、B ;
6、D ;
7、D ;
8、D ; 二:填空:
9、45o;10、1280;11、16;12、1050
;13、两点之间线段最短;14、6种;
15、直线AB 与直线CD 相交于点O ;16、线动形成面;17、4对;∠BAD
∠CAD
三、画图题:1、略;2、略;3、略; 四、1、0
'"894848
2、
12
×6×8×2+6×15+8×15+10×15=408米2
五、1、020
2、(1)045EOD
(2) EOD 度数不会改变。
3、(1)图略; (2) 4.2CA cm
(3)C 在A 的北偏东015方向。
六、图中有3个角;有6个角;有10个角;有
(2)(1)
2
n
n 个角。
初中数学试卷
桑水出品。