地热采暖三大问题的解决方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地热采暖三大问题的解决方法
发布时间:2005-11-24 点击次数:1024次
我国松辽、华北、苏北和汾渭盆地等众多城镇地区有较丰富的90℃以下的低温地热资源,有稳定的采暖市场需求。使用地热采暖能做到无污染、可持续,还有综合利用发展地方经济的可能;同时低温地热是低焓热能,用于采暖是用得其所。抓住机会发展地热供热对我国许多城镇地区提高人民生活质量有重大作用。用地热供热有三大问题必须解决,一是资源能实现可持续利用,不破坏环境。二是要采用能抗腐蚀的地热间接采暖系统。三是所需要的资金能筹措经营能获利,才能与常规采暖竞争。
1 地热资源可持续利用条件
1.1 地热资源的可再生性
近年我国地热采暖增长的速率和增长的绝对值在世界各国中是最快的,主要是经营利润推动的,如果管理控制不当,将对已开发地区资源可再生和环境造成近期难以恢复的恶果。在北京、天津、西安和大庆林甸地区都已出现地热供热能否实现可持续问题,有的甚至相当严重。天津地区10多年前开采基岩雾迷山地层热水井大多有自喷能力,目前静水位已降至地表面以下60米左右,并每年大致平均下降6米左右在继续。西安和大庆林甸都发生了有的地热井地热水接近衰竭导致地下和地面工程几近报废的情况。人们怀疑地热是否属于可再生能源?专家们是有过争议的,2000年在日本召开的世界地热大会上,大多数专家认为地热能仍然可看成为可再生能源。地热的可再生是基于地球内部有巨大的热量,但在人类活动地区并可被利用的仅只是很小的一部分。世界各地许多天然温泉多少世纪以来没有衰减,说明了它的可再生性。这种状况显然是地表排放与地下深处热补充之间有平衡关系存在。只要利用的地热量不超过天然可补充的,就能完全看成是可再生的,它的再生补充能力是由地壳构造所控制,不同的地点和开采方式其差异性是非常大的。
从地热井的热储层开采流体和热量,导致热储层的流量和热量都会逐步减少,开采停止后受天然作用驱动,开始压力、温度梯度的再生过程,压力恢复最快,跟着是温度重新上升,恢复能力随着时间延长而减小,理论上要无限长时间才能全部恢复再生,再生显示是渐近线特性,再生力初始很强而后放慢。然而实际补充再生恢复到95%所需时间要短的多。地热资源不需像矿物燃料如煤、油、天燃气所需的地质年代才能生成,因此地热的再生从总体所需时间看可以被认为是可再生的。
可再生与可持续发展有关系但又是两个不同的概念,可再生是说明资源的一个性质,而可持续是说明资源利用方式。可持续发展必须有可再生作为基础,可持续开采仅只能在可再生能源中获得,没有再生能力是不可能持续发展的。这可以用开发海洋渔业作比方,海洋的渔业资源是有再生能力的,但长期捕捞过量超过再生能力,渔业资源将被破坏而衰竭,没有了持续发展,要永续利用就不能超出再生能力,地热能的再生与它有相似之处。
按资源补充状态分类有对流型和导热型的,地热井热源如有来自地下较深处对流热水补充的,可再生能力强;而我国北方各大盆地是沉积盆地热水,仅靠导热补充热的能力差也可看成“有限制的可再生能源”。
1.2 低温地热供热的可持续发展
只要开采的地热量不超过天然补充的就是可持续的,它的再生补充能力是由地壳构造所控制,由于资源状态差异性大,再加利用方式有很大区别,所以要做到可持续开发是一个非常复杂的问题。地热开采在地下热储层形成了水力和热力漏斗导致重新建立压力和温度梯度状态,热温差加大会引起相应热储层导热再生能力增强出现“增量”,而后达到一个新的稳定状态,经过一定时间后产生一个相对稳定的水温,产量进一步持续下去,只要科学适度的利用好这“增量” 就能是可持续的。当占有资料、技术能力和经验条件不太充分时,应当只能从小规模少量起步,拟订相应水位的开采限量指标,不能超采。
1.3 利用对井回灌技术增加地热开发强度。
完全依靠自然补给常常不能满足使用和经营的要求,要增加产量又要保持可持续性,可以和应当利用对井回灌技术合理地增加地热开发强度,国内外的实践经验表明利用对井回灌技术合理地增加地热开发强度是可行的。
抽取深层地热水通过换热器把热送到区域供热管网,被冷却的地热水通过在地下有足够距离的另一口井回灌到地下。由于地热循环热流体逐渐不断被回灌的冷水置换,导致热量下降,回灌井范围向生产井扩展。一直到回灌水温度波影响到生产井使生产井水温开始下降形成热突破时,这段时间间隔取决于生产井的开采量、井间距和热储层的物理、几何特性。回灌除了可获得较多的热量以外,还有几个重要的好处,据水文地质专家测算,我国塘沽沉积盆地可采热水资源量平均为积存资源量的1.1%,即只能取出地下热储层中1%左右的热量,采取回灌后就可能多得到几倍到20倍的热量。多处试验和实际工程观测证明,回灌将使热储层压力有较快的回升,能减小由开采地热可能引起的地面沉降。有了回灌避免了地热水用后地面排放,由于地热水较高的矿化度和高于环境的排放温度将造成的对环境的污染。
天津为了缓解基岩地热水过快的下降趋势,截至2002年采用同层回灌、异层回灌和两抽一回灌三种方式已建成对井11组,取得了一定的经验。为了确定回灌井位置,要在生产井打成后进行非稳定流抽水实验,利用压降曲线的形状来判定边界条件,再结合地质构造分析选定回灌井位,避免在将来回灌时在生产井和回灌井之间出现管道流。为了防止地下水被污染、防止较快的被结垢堵塞,对不同的热储层回灌水质都有不同的的要求。经验表明通常孔隙热水储层回灌问题较多;基岩裂隙岩溶型热储层当地压下降后自流回灌大多是可行的。
上一世纪70年代的世界石油危机促使在法国巴黎地区提出采用深层地热水供热方案,由于深层地热水含盐量高达每升30克,地热用后热后无法排放,想到了回灌。到2001年巴黎地区有33对地热井在运行,井深范围从1165米到1980米,井口平均水温大约是70度,采暖利用后水温大约在35~40℃。据地热研究部门用热储模型计算分析推测,生产井和回灌井间距1000m,回灌冷水温度波传播影响生产井水温30年下降1度。
我国目前多数是只开采无回灌,南方不采暖地区目的就是为了取热水,用后大多无冷水可回灌;北方地热采暖后用不了的地热水,因为没有回灌井谈不上回灌。这些地区只能依靠严格限量开采才能可持续。否则除了资源天然补给能力远大于抽取的水量和热量的罕见情况外,地热储水层的压力只会出现迅速下降,我国有的地方地热井出现过平均年水位下降10m左右甚至更多的状况,长期利用难以为继是掠夺破坏性开采。
2. 防腐问题