中考数学应用题专题 ——深圳近中考应用题(2020年整理).pptx
2020年中考总复习—经典应用题型汇总(含答案)经典应用题

1、某农作物的生长率p与温度t(℃)有如下关系:如图1,当10≤t≤25时可近似用函数p=t﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系:①请运用已学的知识,求m关于p的函数表达式;②请用含t的代数式表示m.(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).2、某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林。
离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式(2)求第一班车从人口处到达塔林所蓄的时间。
(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聘最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)3、甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地,甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.⑴m=________,n=________;⑵求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;⑶当甲车到达B地时,求乙车距B地的路程4、某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨.据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为1500元;旺季所有的货车每天能全部租出,日租金总收入为4000元.(1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高?5、某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?6、快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.7、当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.8、襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如下表所示:(1)该超市购进甲种蔬菜10kg和乙种蔬菜5kg需要170元;购进甲种蔬菜6kg和乙种蔬菜10kg 需要200元.求m,n的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg进行销售,其中甲种蔬菜的数量不少于20kg,且不大于70kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60kg的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y(元)与购进甲种蔬菜的数量x(kg)之间的函数关系式,并写出x的取值范围;(3)在(2)的条件下,超市在获得的利润额y(元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的盈利率不低于20%,求a的最大值.9、某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围)②该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值10、在综合与实践活动中,活动小组对学校400米的跑道进行规划设计,跑道由两段直道和两端是半圆弧的跑道组成.其中400米跑道最内圈为400米,两端半圆弧的半径为36米.(π取3.14).(1)求400米跑道中一段直道的长度;(2)在活动中发现跑道周长(单位:米)随跑道宽度(距最内圈的距离,单位:米)的变化而变化.请完成下表:若设x表示跑道宽度(单位:米),y表示该跑道周长(单位:米),试写出y与x的函数关系式:(3)将446米的跑道周长作为400米跑道场地的最外沿,那么它与最内圈(跑道周长400米)形成的区域最多能铺设道宽为1.2米的跑道多少条?11、某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?12、某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50.(1)当31≤x≤50时,y与x的关系式为;(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值.13、为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?14、某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?15、如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A 运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=3时,求t的值;(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.16、甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?17、为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?18、小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y(米)与小强所用时间t(分钟)之间的函数图象如图所示.(1)求函数图象中a的值;(2)求小强的速度;(3)求线段AB的函数解析式,并写出自变量的取值范围.19、已知A.B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止。
广东省深圳市中考数学复习 应用题专题

应用题专题试卷一、单选题1、互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A、120元B、100元C、80元D、60元2、已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A、518=2(106+x)B、518﹣x=2×106C、518﹣x=2(106+x)D、518+x=2(106﹣x)3、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A、2×1000(26﹣x)=800xB、1000(13﹣x)=800xC、1000(26﹣x)=2×800xD、1000(26﹣x)=800x4、为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A、 B、C、 D、5、施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A、﹣=2B、﹣=2C、﹣=2D、﹣=26、八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A、 B、 C、 D、7、足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A、1或2B、2或3C、3或4D、4或58、某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A、103块B、104块C、105块D、106块9、一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A、 B、 C、 D、10、2016年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2018年投入将达9800万元,若每年增长率都为x,根据题意列方程()A、7200(1+x)=9800B、7200(1+x)2=9800C、7200(1+x)+7200(1+x)2=9800D、7200x2=980011、某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A、560(1+x)2=315B、560(1﹣x)2=315C、560(1﹣2x)2=315D、560(1﹣x2)=315二、解答题12、某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?13、学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克? (2)这些采摘的黄瓜和茄子可赚多少元?14、为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?15、甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度; (2)当甲到达学校时,乙同学离学校还有多远?16、某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?17、五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?18、一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.19、为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.20、青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.21、为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.22、(2016•深圳)荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.23、孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.24、为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.25、随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求y与x之间的函数表达式;(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?26、光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).27、为培养学生养成良好的“爱读书,读好书,好读书”的习惯,我市某中学举办了“汉字听写大赛”,准备为获奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)学校计划用总费用不超过900元的钱数,为获胜的40名同学颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书包?28、某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?29、早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?30、为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?31、()在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?32、为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B 型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A 型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?33、我市为全面推进“十个全覆盖”工作,绿化提质改造工程如火如荼地进行,某施工队计划购买甲、乙两种树苗共600棵对某标段道路进行绿化改造,已知甲种树苗每棵100元,乙种树苗每棵200元.(1)若购买两种树苗的总金额为70000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?34、某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?35、春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.36、2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?37、某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?38、大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:(1)为了实现每天1600元的销售利润,超市应将这种商品的售价定为多少?(2)设每件商品的售价为x元,超市所获利润为y元.①求y与x之间的函数关系式;②物价局规定该商品的售价不能超过40元/件,超市为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?39、随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?40、长沙市为了治理城市污水,需要铺设一段全长为300米的污水排放管道.铺设完120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务.(1)求原计划每天铺设管道多少米?(2)若原计划每天的支出为4000元,则现在比原计划少支出多少钱?41、为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?42、济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?43、在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?答案解析部分一、单选题1、【答案】C【考点】一元一次方程的应用【解析】【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷ =200,解得:x=80.∴该商品的进价为80元/件.故选C.【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.本题考查了一元一次方程的应用,解题的关键是列出方程(x+20)÷ =200.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.2、【答案】C【考点】一元一次方程的应用【解析】【解答】解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2(106+x),故选C.【分析】设从甲煤场运煤x吨到乙煤场,根据题意列出方程解答即可.考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3、【答案】C【考点】一元一次方程的应用,根据数量关系列出方程【解析】【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.4、【答案】D【考点】二元一次方程的应用【解析】【解答】解:该班男生有x人,女生有y人.根据题意得:,故选:D.【分析】根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.5、【答案】A【考点】由实际问题抽象出分式方程【解析】【解答】解:设原计划每天施工x米,则实际每天施工(x+50)米,根据题意,可列方程:﹣=2,故选:A.【分析】设原计划每天铺设x米,则实际施工时每天铺设(x+50)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.6、【答案】C【考点】由实际问题抽象出分式方程【解析】【解答】解:由题意可得,﹣= ,故选C.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.7、【答案】C【考点】二元一次方程的应用【解析】【解答】解:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据题意,得:3x+y=12,即:x= ,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.【分析】设该队胜x场,平y场,则负(6﹣x﹣y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.本题主要考查二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.8、【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设这批手表有x块,550×60+(x﹣60)×500>55000解得,x>104∴这批电话手表至少有105块,故选C.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.9、【答案】A【考点】二元一次方程组的应用【解析】【解答】解:由题意可得,,故选A.【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.10、【答案】B【考点】一元二次方程的应用【解析】【解答】解:设每年增长率都为x,根据题意得,7200(1+x)2=9800,故选B【分析】根据题意,可以列出相应的方程,本题得以解决.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.11、【答案】B【考点】一元二次方程的应用【解析】【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.二、解答题12、【答案】解:(1)设第一次购进x件文具,则第二次就购进2x件文具,由题意得:=﹣2.5解之得x=100,经检验,x=100是原方程的解,2x=2×100=200答:第二次购进200件文具.(2)(100+200)×15﹣1000﹣2500=1000(元).答:盈利1000元.【考点】分式方程的应用【解析】【分析】(1)设第一次购进x件文具,则第二次就购进2x件,根据第二次购进时发现每件文具进价比第一次上涨了2.5元,所购进文具的数量是第一次购进数量的2倍,可列方程求解.(2)利润=售价﹣进价,根据(1)算出件数,然后算出总售价减去成本即为所求.13、【答案】(1)解:设采摘黄瓜x千克,茄子y千克.根据题意,得,。
2020年深圳市中考数学试卷(含答案)

2020年深圳市中考数学试卷->选择题(毎小题3分。
共12小题■満分36分)L 2020的相反数足()3. 2020年6月30H∙深圳市总工会启动“订万职工消费扶贫采购节••活动.预计撬动扶贫泊费额约150OOoOOO元•将150000000用科学记数法表示为()A. 0∙15χl(ΓB・ L5 X IO7C∙ 15 X IO7D∙ L5 × IO R4.分别观蔡卜处丿L何体,其屮主视图.左视图和俯视图完全和直的是(5・某同学在今年的中考体冇测试中选考跳绳・考IW—周.他记录了白己五次跳绳的成线(次数/分钟),247, 253, 247, 255, 263∙这五次成绩的平均数和中位数分别足()・• • • • ♦A. 253. 253B. 255. 253C. 253. 247D. 255. 247A. 2020B.120202.下列图形既是轴对称图形又是中心刘称图形的是(6・下列运算正碗的是()A. Λ +2Λ =3Λ2B. a2∙ a3 = a5C.(砧)'=ab;C. -20202020圆性D三梭柱DA 200tan70°米 B米 C -200sin70°米D需米7.如图,将直尺与30。
角的三角尺叠放在一起,若Zl = 40\川Z2的大小是()&如图,在A45C 中,ΛB AC.在,4B ∖∕4C 上分別截取AP. AQ .使WP"Q∙再分别以点F 、Q 为圆心,以大于£尸0的长为半径作弧,两弧在ZBAC 内交丁-点&作射^AR ,交BC T 点Q .若Be=6,10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的Q 两点分別测定对岸一棵树厂的位置• 7•在P 的正北方向.Ry 在O 的北偏弭70。
方r⅛∙则河宽(P 厂的长)可以表示为()A. 40。
A. 2B. 3 D- 59.以下说法正确的是()A.平行四边形的对边和等C.分式方程一L==王二-2的解为T = 2X — 2 X - 2B.圆周仙等于圆心佯的一半D •三角形的一个外角等于两个内角的和D. 80。
2020年深圳市中考数学试卷(有答案)

2020年深圳市中考数学试卷一、选择题(每小题3分,共12小题,满分36分)1.(2020广东深圳中考,1,3分)2020的相反数是()A.2020 B.12020C.﹣2020 D.﹣12020【考点】相反数.【专题】实数;符号意识.【分析】直接利用相反数的定义得出答案.【答案】解:2020的相反数是:﹣2020.故选C.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(2020广东深圳中考,2,3分)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】轴对称图形;中心对称图形.【专题】平移、旋转与对称;几何直观.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【答案】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(2020广东深圳中考,3,3分)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×108【考点】科学记数法—表示较大的数.【专题】实数;数感.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【答案】解:将150000000用科学记数法表示为1.5×108.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2020广东深圳中考,4,3分)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体【考点】简单几何体的三视图.【专题】投影与视图;空间观念;应用意识.【分析】分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.【答案】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选D.【点评】本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.(2020广东深圳中考,5,3分)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,247【考点】算术平均数;中位数.【专题】5数据的收集与整理;统计的应用;数据分析观念;运算能力.【分析】根据中位数、众数的计算方法,分别求出结果即可.【答案】解:x=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选A.【点评】本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.(2020广东深圳中考,6,3分)下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6【考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】整式;运算能力;应用意识.【分析】利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.【答案】解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选B.【点评】本题考查合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则,掌握计算法则是正确计算的前提.7.(2020广东深圳中考,7,3分)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°【考点】平行线的性质.【专题】线段、角、相交线与平行线.【分析】根据平角的定义和平行线的性质即可得到结论.【答案】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选D.【点评】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.8.(2020广东深圳中考,8,3分)如图,在△ABC中,AB=A C.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.5 【考点】等腰三角形的性质;作图—基本作图.【专题】作图题;等腰三角形与直角三角形;推理能力.【分析】依据等腰三角形的性质,即可得到BD=12BC,进而得出结论.【答案】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=12BC=12×6=3,故选B.【点评】本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.(2020广东深圳中考,9,3分)以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程12x-=12xx--﹣2的解为x=2D.三角形的一个外角等于两个内角的和【考点】分式方程的解;平行四边形的性质;圆心角、弧、弦的关系;圆周角定理.【专题】分式方程及应用;多边形与平行四边形;圆的有关概念及性质;应用意识.【分析】根据平行四边形的性质对A进行判断;根据圆周角定理对B进行判断;利用分式方程有检验可对C进行判断;根据三角形外角性质对D进行判断.【答案】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选A.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(2020广东深圳中考,10,3分)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT 的长)可以表示为( )A .200tan70°米B .200tan70︒米C .200sin 70°米D .200sin 70︒米 【考点】解直角三角形的应用﹣方向角问题.【专题】解直角三角形及其应用;运算能力.【分析】在直角三角形PQT 中,利用PQ 的长,以及∠PQT 的度数,进而得到∠PTQ 的度数,根据三角函数即可求得PT 的长.【答案】解:在Rt △PQT 中,∵∠QPT =90°,∠PQT =90°﹣70°=20°,∴∠PTQ =70°,∴tan70°=PQ PT , ∴PT =tan70PQ ︒=200tan70︒, 即河宽200tan70︒米, 故选B .【点评】此题考查了解直角三角形的应用﹣方向角问题,掌握方向角与正切函数的定义是解题的关键.11.(2020广东深圳中考,11,3分)二次函数y =ax 2+bx +c (a ≠0)的顶点坐标为(﹣1,n ),其部分图象如图所示.以下结论错误的是( )A .abc >0B .4ac ﹣b 2<0C .3a +c >0D .关于x 的方程ax 2+bx +c =n +1无实数根【考点】根的判别式;二次函数图象与系数的关系;抛物线与x 轴的交点.【专题】二次函数图象及其性质;推理能力.【分析】根据抛物线开口方向,对称轴的位置以及与y 轴的交点可以对A 进行判断;根据抛物线与x 轴的交点情况可对B 进行判断;x =1时,y <0,可对C 进行判断;根据抛物线y =ax 2+bx +c 与直线y =n +1无交点,可对D 进行判断.【答案】解:A .∵抛物线开口向下,∴a <0,∵对称轴为直线x =﹣2b a=﹣1, ∴b =2a <0,∵抛物线与y 轴交于正半轴,∴c >0,∴abc >0,故A 正确;B .∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即4ac ﹣b 2<0,故B 正确;C .∵抛物线的对称轴为直线x =﹣1,抛物线与x 轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x 轴的另一个交点在(0,0)和(1,0)之间,∴x =1时,y <0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选C.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.12.(2020广东深圳中考,12,3分)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个【考点】三角形的面积;矩形的性质;翻折变换(折叠问题).【专题】矩形菱形正方形;平移、旋转与对称;推理能力.【分析】连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF 是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.【答案】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=ABBE=612=12,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选C.【点评】本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.(2020广东深圳中考,13,3分)分解因式:m3﹣m=.【考点】提公因式法与公式法的综合运用.【专题】分解因式.【分析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.【答案】解:m3﹣m,=m(m2﹣1),=m(m+1)(m﹣1).【点评】本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.14.(2020广东深圳中考,14,3分)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】用袋子中编号为偶数的小球的数量除以球的总个数即可得.【答案】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为37,故填37.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.15.(2020广东深圳中考,15,3分)如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=kx(k≠0)的图象经过▱OABC的顶点C,则k=.【考点】反比例函数图象上点的坐标特征;平行四边形的性质.【专题】反比例函数及其应用;运算能力.【分析】连接OB,AC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.【答案】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标(12,1),∵A(3,1),∴C的坐标为(﹣2,1),∵反比例函数y=kx(k≠0)的图象经过点C,∴k=﹣2×1=﹣2,故填﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C点的坐标是解答此题的关键.16.(2020广东深圳中考,16,3分)如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=12,BOOD=43,则ABDBCDSS△△=.【考点】角平分线的性质;解直角三角形.【专题】三角形;图形的相似;推理能力;模型思想;应用意识.【分析】通过作辅助线,得到△ABC∽△ANM,△OBC∽△ODM,△ABC∽△DAN,进而得出对应边成比例,再根据tan∠ACB=12,BOOD=43,得出对应边之间关系,设AB=a,DN=b,表示BC,NA,MN,进而表示三角形的面积,求出三角形的面积比即可.【答案】解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,∵DM∥BC,∴△ABC∽△ANM,△OBC∽△ODM,∴ABBC=ANNM=tan∠ACB=12,BCDM=BOOD=43,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴ABBC=DNNA=12,设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,由BCDM=BOOD=43得,DM=32a,∴4b+b=32 a,即,b=310a,∴ABD BCD S S △△=1212AB DN BC NB =2(2)ab a a b +=231016210a a a =332. 故填332.【点评】本题考查相似三角形的性质和判定,根据对应边成比例,设常数表示三角形的面积是得出正确答案的关键. 三、解答题(本题共7小题,共52分)17.(2020广东深圳中考,17,5分)计算:(13)﹣1﹣2cos30°+|3﹣(4﹣π)0. 【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数;运算能力.【分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解.【答案】解:原式=3﹣2×3+3﹣1 =333 1=2.【点评】本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解决本题的关键是掌握特殊角的三角函数值.18.(2020广东深圳中考,18,6分)先化简,再求值:2121a a a +-+÷(2+31a a --),其中a =2.【考点】分式的化简求值.【专题】分式;运算能力.【分析】先将分式进行化简,然后代入值即可求解.【答案】解:原式=21(1)a a +-÷2231a a a -+--=21(1)a a +-÷11a a +- =21(1)a a +-×11a a -+ =11a - 当a =2时,原式=121-=1. 【点评】本题考查了分式的化简求值,解决本题的关键是进行分式的化简.19.(2020广东深圳中考,19,7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m 名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m = 50 ,n = 10 .(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是 72 度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有 180 名.【考点】用样本估计总体;扇形统计图;条形统计图.【专题】统计与概率;数据分析观念.【分析】(1)根据总线的人数和所占的百分比,可以求得m 的值,然后即可计算出n 的值;(2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;(4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.【答案】解:(1)m =15÷30%=50,n %=5÷50×100%=10%,故填50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×1050=72°, 故填72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故填180.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(2020广东深圳中考,20,8分)如图,AB 为⊙O 的直径,点C 在⊙O 上,AD 与过点C 的切线互相垂直,垂足为D .连接BC 并延长,交AD 的延长线于点E .(1)求证:AE =AB ;(2)若AB =10,BC =6,求CD 的长.【考点】三角形中位线定理;切线的性质.【专题】与圆有关的位置关系;几何直观.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC ∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【答案】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6810⨯=245.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.(2020广东深圳中考,21,8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?【考点】一元一次方程的应用;一元一次不等式的应用;一次函数的应用.【专题】一次函数及其应用;应用意识.【分析】(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,根据用620元购进50个肉粽和30个蜜枣粽,可得出方程,解出即可;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,根据w=蜜枣粽的利润+肉粽的利润,得一次函数,根据一次函数的增减性,可解答.【答案】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300﹣y),∴y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.【点评】本题考查了一次函数,一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.(2020广东深圳中考,22,9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A.D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG=ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.【考点】相似形综合题.【专题】几何综合题;矩形菱形正方形;平移、旋转与对称;图形的相似;运算能力;推理能力.【分析】(1)由正方形的性质得出AE=AF,∠EAG=90°,AB=AD,∠BAD=90°,得出∠EAB=∠GAD,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE=AG,AB=AD,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)证明△EAB∽△GAD,得出∠BEA=∠AGD,则A,E,G,Q四点共圆,得出∠GQP =∠P AE=90°,连接EG,BD,由勾股定理可求出答案.【答案】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:如图,设BE与DG交于Q,∵AEAG=ABAD=23,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵AEAG=ABAD,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠P AE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.【点评】本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.23.(2020广东深圳中考,23,9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A (﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=92作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=14?若存在,请求出F的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题;二次函数的应用;运算能力;推理能力.【分析】(1)将点A (﹣3,0)、B (1,0)代入抛物线的解析式得到关于a ,b 的方程组即可;(2)分三种情况:①0<t <1时,②1≤t <32时,③32≤t ≤3时,可由面积公式得出答案; (3)令F (﹣1,t ),则MF =2(1)()m n t +-,ME =92﹣n ,得出2(1)m ++2()n t -=217()4n -,可求出n =154.则得出答案. 【答案】解:(1)∵抛物线y =ax 2+bx +3过点A (﹣3,0),B (1,0),∴933030a b a b -+=⎧⎨++=⎩,解得12a b =-⎧⎨=-⎩, ∴抛物线的解析式为y =﹣x 2﹣2x +3;(2)①0<t <1时,如图1,∵OO '=t ,OB '=1﹣t ,∴OE =3OB '=3﹣3t ,∴S =12×(C 'O '+OE )×OO '=12×(3+3﹣3t )×t =﹣32t 2+3t , ②1≤t <32时,S =32; ③32≤t ≤3时,如图2,∵AO =3,O 'O =t , ∴AO '=3﹣t ,O 'O =6﹣2t ,∴C 'Q =2t ﹣3,∵QH =2HE ,C 'H =3HE ,∴HE =15C 'D =15(2t ﹣3), ∴S =32﹣12(2t ﹣3)×15(2t ﹣3), ∴S =﹣25t 2+65t +35, 综合以上可得:S =2233(01)233(1)222633(3)5552t t t t t t t ⎧-+<<⎪⎪⎪≤<⎨⎪⎪-++≤≤⎪⎩. (3)令F (﹣1,t ),则MF 2(1)()m n t +-ME =92﹣n , ∵ME ﹣MF =14, ∴MF =ME ﹣14, ∴(m +1)2+(n ﹣t )2=(174﹣n )2, ∴m 2+2m +1+t 2﹣2nt =﹣172n +28916.∵n=﹣m2﹣2m+3,∴(1+2n﹣172)m2+(2+4n﹣17)m+1+t2﹣6t+512﹣28916=0.当n=154时,上式对于任意m恒成立,∴存在F(﹣1,154).【点评】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,两点间的距离公式,平移的性质,三角形的面积等知识.熟练运用方程的思想方法,正确进行分类是解题的关键.。
2020年广东省深圳市中考数学试题及参考答案(word解析版)

深圳市2020年初中毕业生学业考试数学试卷(满分100分,考试时间90分钟)一、选择题(每小题3分,共12小题,满分36分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×1084.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,2476.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a67.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.59.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2 D.三角形的一个外角等于两个内角的和10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0 B.4ac﹣b2<0 C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:m3﹣m=.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.18.(6分)先化简,再求值:÷(2+),其中a=2.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D 在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.答案与解析一、选择题(每小题3分,共12小题,满分36分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣【知识考点】相反数.【思路分析】直接利用相反数的定义得出答案.【解答过程】解:2020的相反数是:﹣2020.故选:C.【总结归纳】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【知识考点】轴对称图形;中心对称图形.【思路分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答过程】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.【总结归纳】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【解答过程】解:将150000000用科学记数法表示为1.5×108.故选:D.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体【知识考点】简单几何体的三视图.【思路分析】分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.【解答过程】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.【总结归纳】本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,247【知识考点】算术平均数;中位数.【思路分析】根据中位数、众数的计算方法,分别求出结果即可.【解答过程】解:=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.【总结归纳】本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.【解答过程】解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.【总结归纳】本题考查合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则,掌握计算法则是正确计算的前提.7.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°【知识考点】平行线的性质.【思路分析】根据平角的定义和平行线的性质即可得到结论.【解答过程】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.【总结归纳】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.5【知识考点】等腰三角形的性质;作图—基本作图.【思路分析】依据等腰三角形的性质,即可得到BD=BC,进而得出结论.【解答过程】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=BC=×6=3,故选:B.【总结归纳】本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2 D.三角形的一个外角等于两个内角的和【知识考点】分式方程的解;平行四边形的性质;圆心角、弧、弦的关系;圆周角定理.【思路分析】根据平行四边形的性质对A进行判断;根据圆周角定理对B进行判断;利用分式方程有检验可对C进行判断;根据三角形外角性质对D进行判断.【解答过程】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.【总结归纳】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.【解答过程】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=,∴PT==,即河宽米,故选:B.【总结归纳】此题考查了解直角三角形的应用﹣方向角问题,掌握方向角与正切函数的定义是解题的关键.11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0 B.4ac﹣b2<0 C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根【知识考点】根的判别式;二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c 与直线y=n+1无交点,可对D进行判断.【解答过程】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.【总结归纳】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个【知识考点】三角形的面积;矩形的性质;翻折变换(折叠问题).【思路分析】连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.【解答过程】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB===,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.【总结归纳】本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:m3﹣m=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.【解答过程】解:m3﹣m=m(m2﹣1),=m(m+1)(m﹣1).【总结归纳】本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.【知识考点】概率公式.【思路分析】用袋子中编号为偶数的小球的数量除以球的总个数即可得.【解答过程】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为,故答案为:.【总结归纳】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=.【知识考点】反比例函数图象上点的坐标特征;平行四边形的性质.【思路分析】连接OB,AC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.【解答过程】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标(,1),∵A(3,1),∴C的坐标为(﹣2,1),∵反比例函数y=(k≠0)的图象经过点C,∴k=﹣2×1=﹣2,故答案为﹣2.【总结归纳】本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C点的坐标是解答此题的关键.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.【知识考点】角平分线的性质;解直角三角形.【思路分析】通过作辅助线,得到△ABC∽△ANM,△OBC∽△ODM,△ABC∽△DAN,进而得出对应边成比例,再根据tan∠ACB=,=,得出对应边之间关系,设AB=a,DN=b,表示BC,NA,MN,进而表示三角形的面积,求出三角形的面积比即可.【解答过程】解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,∵DM∥BC,∴△ABC∽△ANM,△OBC∽△ODM,∴==tan∠ACB=,==,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴==,设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,由==得,DM=a,∴4b+b=a,即,b=a,∴====.故答案为:.【总结归纳】本题考查相似三角形的性质和判定,根据对应边成比例,设常数表示三角形的面积是得出正确答案的关键.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.【知识考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解.【解答过程】解:原式=3﹣2×+3﹣13﹣+﹣1=2.【总结归纳】本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解决本题的关键是掌握特殊角的三角函数值.18.(6分)先化简,再求值:÷(2+),其中a=2.【知识考点】分式的化简求值.【思路分析】先将分式进行化简,然后代入值即可求解.【解答过程】解:原式=÷=÷=×=当a=2时,原式==1.【总结归纳】本题考查了分式的化简求值,解决本题的关键是进行分式的化简.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据总线的人数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;(4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.【解答过程】解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.【总结归纳】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【知识考点】三角形中位线定理;切线的性质.【思路分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解答过程】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC==8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵CD•AE=AC•CE,∴CD==.【总结归纳】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?【知识考点】一元一次方程的应用;一元一次不等式的应用;一次函数的应用.【思路分析】(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,根据用620元购进50个肉粽和30个蜜枣粽,可得出方程,解出即可;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,根据w=蜜枣粽的利润+肉粽的利润,得一次函数,根据一次函数的增减性,可解答.【解答过程】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300﹣y),∴0<y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.【总结归纳】本题考查了一次函数,一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D 在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.【知识考点】相似形综合题.【思路分析】(1)由正方形的性质得出AE=AF,∠EAG=90°,AB=AD,∠BAD=90°,得出∠EAB=∠GAD,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE=AG,AB=AD,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,求出AG=6,AD=12,证明△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,可得出答案;方法二:证明△EAB∽△GAD,得出∠BEA=∠AGD,则A,E,G,Q四点共圆,得出∠GQP =∠PAE=90°,连接EG,BD,由勾股定理可求出答案.【解答过程】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.【总结归纳】本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)将点A(﹣3,0)、B(1,0)代入抛物线的解析式得到关于a、b的方程组即可;(2)分三种情况:①0<t<1时,②1≤t<时,③≤t≤3时,可由面积公式得出答案;(3)令F(﹣1,t),则MF=,ME=﹣n,得出,可求出n=.则得出答案.【解答过程】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①0<t<1时,如图1,若B'C'与y轴交于点F,∵OO'=t,OB'=1﹣t,∴OF=3OB'=3﹣3t,∴S=×(C'O'+OF)×OO'=×(3+3﹣3t)×t=﹣+3t,②1≤t<时,S=;③≤t≤3时,如图2,C′O′与AD交于点Q,B′C′与AD交于点P,过点P作PH⊥C′O′于H,∵AO=3,O'O=t,∴AO'=3﹣t,O'Q=6﹣2t,∴C'Q=2t﹣3,∵QH=2PH,C'H=3PH,∴PH=C'Q=(2t﹣3),∴S=(2t﹣3),∴S=﹣,综合以上可得:S=.(3)令F(﹣1,t),则MF=,ME=﹣n,∵ME﹣MF=,∴MF=ME﹣,∴,∴m2+2m+1+t2﹣2nt=﹣.∵n=﹣m2﹣2m+3,∴+(2+4n﹣17)m+1+t2﹣6t+﹣=0.当t=时,上式对于任意m恒成立,∴存在F(﹣1,).【总结归纳】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,两点间的距离公式,平移的性质,三角形的面积等知识.熟练运用方程的思想方法,正确进行分类是解题的关键.。
广东省深圳市数学中考专题复习专题6 方程不等式的实际应用(中考20题或21题)

(1)求甲、乙两工程队单独完成此项工程各需要多少天?
解:设乙单独完成此项工程需要x天,则甲单独完成需要2x 天,
答:学校购进甲种口罩400盒,购进乙种口罩600盒.
(2)现已知甲,乙两种口罩的数量分别是20个/盒,25个/盒, 按照教育局要求,学校必须储备足够使用十天的口罩,该校师生 共计800人,每人每天2个口罩,问购买的口罩数量是否能满足教 育局的要求?
解:购买的口罩总数为: 400×20+600×25=23 000(个), 全校师生两周需要的用量为: 800×2×10=16 000(个). ∵23 000>16 000, ∴购买的口罩数量能满足教育局的要求.
根据题意可得:2x0+220x=1,解得:x=30, 经检验x=30是原方程的解. 故x+30=60,
答:甲、乙两工程队单独完成此项工程各需要60天,30天;
(2)若此项工程由甲工程队单独施工,再由甲、乙两工程队合 作施工完成剩下的工程,已知甲工程队每天需付施工费1万元, 乙工程队施工每天需付施工费2.5万元,要使施工费用不超过64 万元,则甲工程队至少要单独施工多少天?
训练 1.(2020秋·福田区校级期中)疫情期间,为保护学生和教师 的健康,某学校用33 000元购进甲、乙两种医用口罩共计1 000 盒,甲,乙两种口罩的售价分别是30元/盒,35元/盒. (1)求甲、乙两种口罩各购进了多少盒?
解:设学校购进甲种口罩x盒,购进乙种口罩y盒, 依题意,得:3x0+x+y=315y0=0033 000,解得:xy==640000.
2020年深圳市中考数学试题及详解(WORD版)

2020年深圳市中考数学试题及详解(WORD版)1.2020的相反数是(-2020)。
2.图形C既是轴对称图形,也是中心对称图形。
3.150 000 000用科学记数法表示为1.5×10^8.4.正方体的主视图、左视图和俯视图相同。
5.平均数为253,中位数为253.6.运算(2/3)×(-9/10)的结果为(-3/5)。
7.三角形的一个外角等于两个内角的和。
8.BD的长度为4.9.平行四边形的对边相等,圆周角等于圆心角的一半,分式方程的解为x=2.10.河宽(PT的长)可以表示为200sin70°米。
11.3a+c>0是错误的结论。
12.点H、K分别是线段CD上的中点。
二、填空题13.m^3-m=(m-1)m(m+1)14.B.2个15.k=2x-516.∠XXX∠XXX,∠XXX∠DCA,∠ABC+∠ADC=180°三、解答题17.5/818.3/419.(1) m=100.n=30 (2) 人数/名:软件 30,硬件 40,总线15,测试 15 (3) 108° (4) 90人20.(1) 连接OB,∠XXX°,∠XXX∠OAD=90°,∴四边形OBCD是矩形,BC=OD=6,∵∠OAB=90°,∴AB=OA=OB=10,∵∠OAE=∠OAB+∠BAE=90°+∠BAE,∠OEA=∠OED+∠DEA=90°+∠BAE,∴∠OAE=∠OEA,AE=AB (2) ∵BC=6,CD=BD-BC=AB-BC=4,∴AD=√(AB^2-BD^2)=√(100-36)=8,∴CE=CD+DE=CD+AD=12,∵BE=2AB=20,∴AE=BE-AB=10,∵∠AEC=∠ABC=90°,∴三角形AEC与三角形ABC全等,∴AC=BC=6,∴CD/AC=4/6=2/321.(1) 设肉粽的进货单价为x元,蜜枣粽的进货单价为y 元,则50x+30y=620,且x=y+6,解得x=14,y=8 (2) 设肉粽的单价为p元,则p+6为蜜枣粽的单价,50p+30(p+6)=620,解得p=8,∴肉粽的单价为8元,蜜枣粽的单价为14元,进货总价为400元,∴肉粽的数量为50个,蜜枣粽的数量为20个,剩下的200元可以买16个肉粽或10个蜜枣粽,所以最终可以买到66个肉粽和30个蜜枣粽。
2020广东省中考数学第一轮复习课件 1.题型九 实际应用题

题型九 实际应用题
解:(1)设小明原计划购买文具袋x个,根据题意,得
题型九 实际应用题
类型三 增长率问题 (2013.21,2012.16)
1. 2017年某地在“精准扶贫”工作中投入资金1200万元用于异地安置,并规划投入异地 安置资金的年平均增长率在三年内保持不变,已知2019年在2017年的基础上增加了投 入异地安置资金1500万元. (1)2018年该地投入异地安置资金为多少元? (2)在2018年异地安置的具体实施中,该地要求投入用于优先搬迁租房奖励的资金不低 于2018年该地投入异地安置资金的25%.规定前1000户(含第1000户)每户每天奖励8元, 1000户以后每户每天奖励5元,按租房400天计算.求2018年该地至少有多少户享受到 优先搬迁租房奖励.
(2)假设安排乙队来绿化y天,则甲队需要安排的天数是 3600-50 y ,
根据题意,得 0.5y+ 3600-50 y 1.2 40 ,
100
100
解得y≥3应用题
2. (2018桂林)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进 场施工,计划用40天时间完成整个工程.当一号施工队工作5天后,承包单位接到通 知,有一大型活动要在该校田径场举行,要求比原计划提前14天完成整个工程,于 是承包单位派遣二号施工队与一号施工队共同完成剩余工程,结果按通知要求如期 完成整个工程. (1)若由二号施工队单独施工,完成整个工程需要多少天? (2)若此项工程由一号、二号施工队同时进场施工,完成整个工程需要多少天?
2020年深圳市中考数学试题及详解(WORD版)

第一部分:2020年深圳市中考数学试卷(1-6) 第二部分:2020年深圳市中考数学试题详解(7-13)一、选择题(每小题3分,共12小题,满分36分) 1. 2020的相反数是( )A.2020C.-2020D.2. 下列图形中既是轴对称图形,也是中心对称图形的是( )A. B. C. D.3. 2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约 150 000 000元。
将150 000 000用科学记数法表示为( )4.下列哪个图形,主视图、左视图和俯视图相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5. 某同学在今年的中考体育测试中选考跳绳。
考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数...和中位数...分别是()( ) A.253,253 B.255,253C.253,247D.255,2476. 下列运算正确的是( B.C.D.7. 一把直尺与30°的直角三角板如图所示,∠1=40°,则∠2=( ) A.50° B.60°C.70°D.80°300218. 如图,已知AB =AC ,BC =6,山尺规作图痕迹可求出BD =( ) A.2 B.3C.4D.59. 以下说法正确的是( )A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程的解为x =2 D.三角形的一个外角等于两个内角的和10. 如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为() ( ) A.200tan70°米 B.米C.200sin70°米D.米11. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误的是( ) A.B.4ac -b 2<0C.3a +c >0D.ax 2+bx +c =n +1无实数根12. 如图,矩形纸片ABCD 中,AB =6,BC =12.将纸片折叠,使点B 落在边AD的延长线上的点G 处,折痕为EF ,点E 、F 分别在边AD 和边BC 上。
最新2020年广东深圳市中考数学二轮复习宝典 专项3 统计图表(中考19题)(共30张PPT)教育课

(1)若成绩不少于 60 分为及格,该班有一名学生的成绩为 60 分,
则 50 分以下的学生数为 66人人 ,学生成绩的及格率为 848%4% ;
(2)若该班超过 82 分的学生有 20 人,则学生成绩的中位数可能
是 8822、、8811.5.5、、8811、、8800.5.5 分.
3.(2019·天心区期中)为了绿化环境,某中学八年级(3 班)同学都积 极参加了植树活动,下面是今年 3 月份该班同学植树情况的扇 形统计图和不完整的条形统计图:
词大会》这个节目的学生约有 126 人.
5.(2019 ·花都区期末)某学校七年级举行“每天锻炼一小时,健康 生活一辈子”为主题的一分钟跳绳大赛,校团委组织了全年级 1000 名学生参加.为了解本次大赛的成绩,校团委随机抽取了 其中 100 名学生的成绩作为样本进行统计,制成如下不完整的 统计图表.根据所给信息,解答下列问题;
补全图表如下:
组别 捐款额(x)元 户数
A 1≤x<50 a
B 100≤x<200 10
C 200≤x<300 20
D 300≤x<400 14
E
x≥400
4
(3)若该社区共有 1000 户住户参与捐款,请根据以上信息估计,
全社区捐款不少于 300 元的户数是 336600 户.
2.(2019·长春模拟)某班 50 名学生进行了一次数学考试,根据部分 学生的考试成绩(得分为整数,满分为 100 分),绘制了频数分 布直方图,根据频数分布直方图解答下列问题:
组别 捐款额(x)元 户数
A 1≤x<50 a
B 100≤x<200 10
C 200≤x<300
D 300≤x<400
E
x≥400
2020年深圳市初中毕业升学考试数学训练题

2020年深圳市初中毕业升学考试数学训练题一、选择题〔本大题10个小题,每题3分,共30分〕1 .—2的倒数是〔 〕 1 B .—— 2C . -22 .如图,笑脸盖住的点坐标可能为〔 A . (5 , 2) B . (— 2, 3) 3.以下几何体的正视图与众不同的是 (-4,— 6)D . (3, - 4)〕①抛物线与y 轴的交点为(0, 6); ③抛物线一定通过点(3, 0); 从表可知,以下讲法正确的个数有〔 A . 1个B . 2个9.初三年级某班十名男同学中考体育”俯卧撑〃 7, 9, 16, 10, 11, 9,这组数据的众数、 ②抛物线的对称轴是在 y 轴的右侧; ④在对称轴左侧, 〕C . 3个的测试成绩〔单位:中位数依次是〔y 随x 增大而减小。
次数〕分不是 9, 14, 10, 15,A . 9, 10B . 10.在△ ABC 中,AB=AC , 那么/ B 等于〔 〕A . 36 °10, 11/ A=36°以点A 为位似中心,把△ C . 9, 11D . 10, 9ABC 放大2倍后得△ AB ‘C ,aD 日在南非九大都市举行, B. 54°C. 72 °D. 144 °A 4 .第十九届南非世界杯足球赛将于 在国家的国旗,其中,既是轴对称图形,又是中心对称图形的是〔 C 2018 年 6 月 11 、填空题〔本大题共10题,每题3分,共21分.把答案填在答题卡中对应的横线上〕以下是部分参赛球队所 〕 11•数学小组要制作一个圆锥模型,其侧面是由一个半径为9cm ,圆心角为240 °勺扇形纸板制成的,中国香港国旗 A . 0个5•用数学的方式明白得 其中包蕴的图形运动是 A .平移和旋转 6 .小燕子要在鱼缸里饲养 韩国国旗 B . 1个英国国旗 C . 2个 南非国旗 D . 3个 当窗理云鬓,对镜贴花黄 和”坐地日行八万里〔只考虑地球的自转〕, 还需要一块圆形纸板做底面,那么这块圆形纸板的半径为cm。
2016-2020 深圳中考数学应用题合集及解析

2016-2020 深圳中考应用题合集及解析(2016)21.荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.【考点分析】(2018)21.(8.00 分)某超市预测某饮料有发展前途,用 1600 元购进一批饮料,面市后果然供不应求,又用 6000 元购进这批饮料,第二批饮料的数量是第一批的3 倍,但单价比第一批贵2 元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于 1200 元,那么销售单价至少为多少元?【考点分析】(2019)21.有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度点,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发多少度电?(2)A、B两个发电厂共焚烧90吨垃圾,A焚烧的垃圾不多于B焚烧的垃圾的两倍,求A厂和B厂总发电量的最大值.【考点分析】(2020)21.端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?【考点分析】答案及解析(2016)21.荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.【分析】(1)设桂味的售价为每千克x元,糯米糍的售价为每千克y元;根据单价和费用关系列出方程组,解方程组即可;(2)设购买桂味t千克,总费用为W元,则购买糯米糍(12﹣t)千克,根据题意得出12﹣t≥2t,得出t≤4,由题意得出W=﹣5t+240,由一次函数的性质得出W随t的增大而减小,得出当t=4时,W的最小值=220(元),求出12﹣4=8即可.【解答】解:(1)设桂味的售价为每千克x元,糯米糍的售价为每千克y元;根据题意得:,解得:;答:桂味的售价为每千克15元,糯米糍的售价为每千克20元;(2)设购买桂味t千克,总费用为W元,则购买糯米糍(12﹣t)千克,根据题意得:12﹣t≥2t,∴t≤4,∵W=15t+20(12﹣t)=﹣5t+240,k=﹣5<0,∴W随t的增大而减小,∴当t=4时,W的最小值=220(元),此时12﹣4=8;答:购买桂味4千克,糯米糍8千克时,所需总费用最低.【点评】本题考查了一次函数的应用、二元一次方程组的应用;根据题意方程方程组和得出一次函数解析式是解决问题的关键.(2018)21.(8.00 分)某超市预测某饮料有发展前途,用1600 元购进一批饮料,面市后果然供不应求,又用6000 元购进这批饮料,第二批饮料的数量是第一批的3 倍,但单价比第一批贵 2 元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200 元,那么销售单价至少为多少元?【分析】(1)设第一批饮料进货单价为x 元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的 3 倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设销售单价为m 元,根据获利不少于1200 元,即可得出关于m 的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x 元,则第二批饮料进货单价为(x+2)元,根据题意得:3• = ,解得:x=8,经检验,x=8 是分式方程的解.答:第一批饮料进货单价为8 元.(2)设销售单价为m 元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11 元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m 的一元一次不等式.【点评】本题考查了一次函数的应用、二元一次方程组的应用;根据题意方程方程组和得出一次函数解析式是解决问题的关键.(2020)21.端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?【考点】方程(组)与不等式【解析】解:(1)设肉粽和蜜枣粽的进货单价分别为x,y元,则根据题意可得:解此方程组得:答:肉粽得进货单价为10元,蜜枣粽得进货单价为4元(2)设第二批购进肉粽t个,第二批粽子得利润为W,则∵k=2>0∴W随t的增大而增大。
2020年广东深圳市中考数学二轮复习宝典课件 专题8 圆的综合题(共54张PPT)

(3)求 tan∠ABC 的值.
解:∵BF=4,∠C=90°,∠BFC=45° ∴CF=CB=2 2 ∵∠EHF=90°,EF=2,∠EFH=45° ∴EH=HF= 2
∴AH= AE2-EH2= 10
∴AC=AH+HF+CF= 10+3 2
∴tan∠ABC=BACC=
10+3 22
2=
5+3 2
∴CADD=BCDD ∴CD2=AD·BD ∴(2DM)2=2OM·BD ∴2DM2=BD·OM
(3)若 sin∠A=23,BM=3,求 AB 的长.
解:∵∠DBC=90°,点 M 是 CD 的中点 ∴CD=2BM=6 ∵sin∠A=23=CADD,
∴AD=9 ∵CD2=AD·BD ∴BD=4 ∴AB=AD-BD=5
∴四边形 ODEH 是矩形 ∴OH=DE=2 3 ∵AB=8, ∴OA=4 ∴AH= OA2-OH2= 42-(2 3)2=2 ∴AC=2×2=4.
(3)在(2)的条件下,点 Q 是线段 DF 上的一动点(不与 D,F 重 合),点 M 为 OQ 的中点,过点 Q 作 QG⊥OF,垂足为点 G, 连接 MD、MG,请问:当点 Q 在线段 DF 上运动时,∠DMG 的大小是否变化?若不变,请求出∠DMG 的度数;若变化, 请说明理由.
预测 圆的综合题
例 (2019·东莞市二模)如图 1,在直角△ABC 中,∠ACB=90°, AO 是△ABC 的角平分线,以 O 为圆心,OC 为半径作⊙O.
(1)求证:AB 是⊙O 的切线;
证明:如图 1,过点 O 作 OF⊥AB 于点 F, ∵AO 平分∠CAB, OC⊥AC,OF⊥AB, ∴OC=OF, ∴AB 是⊙O 的切线;
∵CE⊥DE,∴∠E=90° ∴∠BDC=∠E=90° ∵由(1)知∠ECD=∠DCB ∴△BDC∽△DEC, ∴CBDC=CEDC,即B5C=54,∴BC=245, 即⊙O 的半径为285;
中考数学应用题专题最后冲刺卷,深圳中考(つд

一次函数,二元一次方程组,不等式,二次函数综合应用题1.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元 B.800元 C.720元 D.1080元2.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣= D.﹣=3.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=24.青山村种的水稻2010年平均每公顷产7200kg,2012年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率,设水稻每公顷产量的年平均增长率为x,则所列方程正确的为()A.7200(1+x)=8450 B.7200(1+x)2=8450C.7200+x2=8450 D.8450(1﹣x)2=72005.甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ②乙车用了3h到达B城③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km.A.1个 B.2个 C.3个 D.4个6.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.1007.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.= B.= C.= D.=8.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.49.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元 B.100元 C.80元 D.60元10.某乡镇决定对一段长6 000米的公路进行修建改造.根据需要,该工程在实际施工时增加了施工人员,每天修健的公路比原计划增加了50%,结果提前4天完成任务.设原计划每天修建x米,那么下面所列方程中正确的是()A.+4= B.=﹣4C.﹣4= D.=+411.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6 B.x(5﹣x)=6 C.x(10﹣x)=6 D.x(10﹣2x)=612.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是()A.160元 B.180元 C.200元 D.220元13.小亮从家出发去距离9千米的姥姥家,他骑自行车前往比乘汽车多用20分钟,乘汽车的平均速度是骑自行车的3倍,设骑自行车的平均速度为x千米/时,根据题意列方程得()A. B. C. D.14.某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为()A.8 B.20 C.36 D.18二元一次方程组+一次函数+不等式组应用题1.【二元一次方程组+一次函数最值+不等式】(8分)(2021•南山区一模)今年新型冠状病毒肺炎(COVID﹣19,简称为新冠肺炎)疫情在全球蔓延,我们国家坚决打赢这场无硝烟的人民战争,我市各单位为同学们的返校复学采取了一系列前所未有的举措.复课返校后,为了拉大学生锻炼的间距,某学校决定增购适合独立训练的两种体育器材:跳绳和毽子,原来购进5根跳绳和6个毽子共需196元;购进2根跳绳和5个键子共需120元.(1)求跳绳和毽子的售价原来分别是多少元?(2)学校计划购买跳绳和毽子两种器材共400个,由于受疫情影响,商场决定对这两种器材打折销售,其中跳绳以八折出售,毽子以七五折出售,学校要求跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于310根,请你求出学校花钱最少的购买方案.2.【二元一次方程组+一次函数最值】端午节前夕,某超市用16800元购进A,B两种规格的粽子共600件,其中A种规格的进价为每件24元,B种规格的进价为每件36元.(1)求购买的A,B两种规格的粽子各有多少件;(2)已知1件A种规格的粽子和1件B种规格的粽子的利润和为20元,且A种规格的粽子利润率不超过50%.设此次销售活动完成后的总利润为w(元),1件A种规格的粽子的利润为a(元)(其中a>0).①求w与a的关系式;②求w的最大值.3.【二元一次方程组+一次型不等式】在抗击新冠肺炎疫情期间,某社区购买酒精和消毒液两种消毒物资,供居民使用.第一次分别购买酒精和消毒液若干瓶,已知酒精每瓶10元,消毒液每瓶5元,共花费了3500元;第二次又分别购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了2600元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金2000元,则最多能购买消毒液多少瓶?4.【二元一次方程组+一次函数最值+不等式】2020年以来,新冠肺炎疫情肆虐全球,我市某厂接到订单任务,7天时间生产A、B两种型号的口罩不少于5.8万只,该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只:(1)试求出该厂每天能生产A型口罩或B型口罩多少万只?(2)生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元,且A型口罩只数不少于B型口罩.在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?5.【二元一次方程组+一次函数最值+不等式】深圳百事可乐有限公司为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B 型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.6.【二元一次方程组+打折销售】某商场从厂家批发电视机进行零售,批发价格与零售价格如下表:电视机型号甲乙批发价(元/台)15002500零售价(元/台)20253640若商场购进甲、乙两种型号的电视机共50台,用去9万元.(1)求商场购进甲、乙型号的电视机各多少台?(2)迎“国庆”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利8.5%,求甲种型号电视机打几折销售?7.【二元一次方程组+一次函数最值+不等式】小李是某服装厂的一名工人,负责加工A,B两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A型服装1件可得20元,加工B型服装1件可得12元.已知小李每天可加工A型服装4件或B型服装8件,设他每月加工A型服装的时间为x天,月收入为y元.(1)求y与x的函数关系式;(2)根据服装厂要求,小李每月加工A型服装数量应不少于B型服装数量的,那么他的月收入最高能达到多少元?二次函数应用题——最润最大问题1.【二次函数涨价利润最大】(8分)(2021•福田区一模)某新型高科技商品,每件的售价比进价多6元,5件的进价相当于4件的售价,每天可售出200件,经市场调查发现,如果每件商品涨价1元,每天就会少卖5件.(1)该商品的售价和进价分别是多少元?(2)设每天的销售利润为w元,每件商品涨价a元,则当售价为多少元时,该商品每天的销售利润最大,最大利润为多少元?2.【二次函数涨价面积最大+取值范围】(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.3.【二次函数增长率+涨价利润最大】深圳市某商场销售某女款上衣,刚上市时每件可盈利100元,销售一段时间后开始滞销,经过连续两次降价后,每件盈利为81元,平均每天可售出20件.(1)求平均每次降价的百分率;(2)为扩大销售量,尽快减少库存,在“双十一”期间该商场决定再次采取适当的降价措施,经调查发现,一件女款上衣每降价1元,每天可多售出2件.若商场每天要盈利2940元,每件应降价多少元?4.【二次函数涨价利润最大】(9分)“武汉加油!中国加油!”疫情牵动万人心,每个人都在为抗击疫情而努力.某厂改造了10条口罩生产线,每条生产线每天可生产口罩500个.如果每增加一条生产线,每条生产线就会比原来少生产20个口罩.设增加x条生产线后,每条生产线每天可生产口罩y个.(1)直接写出y与x之间的函数关系式;(2)若每天共生产口罩6000个,在投入人力物力尽可能少的情况下,应该增加几条生产线?(3)设该厂每天可以生产的口罩w个,请求出w与x的函数关系式,并求出增加多少条生产线时,每天生产的口罩数量最多,最多为多少个?5.【二次函数涨价利润最大+二元一次方程组】(8分)某软件开发公司开发了A、B两种软件,每种软件成本均为1400元,售价分别为2000元、1800元,这两种软件每天的销售额共为112000元,总利润为28000元.(1)该店每天销售这两种软件共多少个?(2)根据市场行情,公司拟对A种软件降价销售,同时提高B种软件价格,此时发现,A种软件每降50元可多卖1件,B种软件每提高50元就少卖1件.如果这两种软件每天销售总件数不变,那么这两种软件一天的总利润最多是多少?6.【一次函数+二次函数利润最大+对称轴讨论】(10分)(2021•黄岛区一模)某公司销售一种商品,成本为每件20元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)406080日销售量y(件)806040(1)求y与x的关系式;(2)若物价部门规定每件商品的利润率不得超过100%,求公司销售该商品获得的最大日利润;(3)若物价部门规定该商品销售单价不能超过a元,并且由于某种原因,该商品每件成本变成了之前的2倍,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.7.【病毒传染问题】(8分)为了研究高致病传染病传播的数学模型,某医疗科研机构利用小球进行模拟试验.在一个方框中,先放入足够多的白球模拟健康人,后在其中同时放入若干红球模拟最初感染人;程序设定,每经过一分钟,每个红球恰能使方框中x个白球同时变成红球(x为程序设定的常数,红球颜色保持不变).若最初放入的红球数为6,从此刻开始,恰2分钟后,红球总数变为了96个.(1)求x的值;(2)若方框中,最初共有500个白球,每个球都能在方框中随机自由运动,且每个白球“被感染”(即变为红球)的可能性都相同,则从放入红球开始,恰好3分钟后,白球的个数为个;每个白球“被感染”(变为红球)的概率是.8.【一次函数+二次函数利润最大】某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?9.【一次函数+二次函数利润最大】某宾馆有客房50间,当每间客房每天的定价为220元时,客房会全部住满;当每间客房每天的定价增加10元时,就会有一间客房空闲,设每间客房每天的定价增加x元时,客房入住数为y间.(1)求y与x的函数关系式(不要求写出x的取值范围);(2)如果每间客房入住后每天的各种支出为40元,不考虑其他因素,则该宾馆每间客房每天的定价为多少时利润最大?10.【一次函数+二次函数利润最大】2021年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?11.【一次函数+二次函数利润最大】某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增.种.果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?分式方程+不等式应用题1.【分式方程+整式求解】新冠肺炎疫情期间,爱联社区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?2.【分式方程+不等式】(8分)(2021•盐田区模拟)某超市用4000元购进某种牛奶,面市后供不应求,超市又用1万元购进第二批这种牛奶,所购数量是第一批的2倍,但单价贵了2元.(1)第一批牛奶进货单价为多少元?(2)超市销售两批牛奶售价相同,两批全部售完后要求获利不少于4000元,则售价至少为多少元?3.【分式方程+不等式】某段公路施工,甲工程队单独施工完成的天数是乙工程队单独施工完天数的2倍,由甲、乙两工程队合作20天可完成.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若此项过程由甲工程队单独施工,再由甲、乙两工程队合作施工完成剩下的工程,已知甲工程队每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,要使施工费用不超过64万元,则甲工程队至少要单独施工多少天?4.【分式方程+不等式】(8分)在我市雨污分流工程中,甲、乙两个工程队共同承担茅洲河某段720米河道的清淤任务,已知甲队每天能完成的长度是乙队每天能完成长度的2倍,且甲工程队清理300米河道所用的时间比乙工程队清理200米河道所用的时间少5天.(4分)求甲、乙两工程队每天各能完成多少米的清淤任务;(2)(4分)若甲队每天清淤费用为2万元,乙队每天清淤费用为0.8万元,要使这次清淤的总费用不超过60万元,则至少应安排乙工程队清淤多少天?5.【分式方程+不等式】东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?6.【分式方程+不等式】某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?7.【分式方程+一次函数】(8分)疫情期间,某学校需购买A,B两种消毒剂,负责人小李调查发现:购买数量:购买数量少于100瓶购买数量不少于100瓶种类:A原价销售全部以原价的8折销售B原价销售全部以原价的9折销售若A种消毒剂每瓶原价比B种消毒剂每瓶原价少10元,用1200元以原价购买A种消毒剂与用1500元以原价购买B种消毒剂的数量相同.(1)求A,B两种消毒剂每瓶原价各为多少元?(2)该学校预计购买A,B两种消毒剂共200瓶,且B种消毒剂不少于A种消毒剂数量的,如何购买使所需费用最少,最少费用为多少元?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
8.(8 分)(2016•深圳)荔枝是深圳的特色水果,小明的妈妈先购买了 2 千克桂味和 3 千克 糯米糍,共花费 90 元;后又购买了 1 千克桂味和 2 千克糯米糍,共花费 55 元.(每次两种 荔枝的售价都不变) 1 求桂味和糯米糍的售价分别是每千克多少元; 2如果还需购买两种荔枝共 12 千克,要求糯米糍的数量不少于桂味数量的 2 倍,请设计 一 种购买方案,使所需总费用最低.
12.(8 分)(2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3).
用水量
单价
x≤22
a
剩余部分
a+1.1
1 某用户用水 10 立方米,共交水费 23 元,求 a 的值;
2 在(1)的前提下,该用户 5 月份交水费 71 元,请问该用户用水多少立方米?
7
13.(8 分)(2007•深圳)A,B 两地相距 18 公里,甲工程队要在A,B 两地间铺设一条输 送天然气管道,乙工程队要在A,B 两地间铺设一条输油管道.已知甲工程队每周比乙工程 队少铺设 1 公里,甲工程队提前 3 周开工,结果两队同时完成任务,求甲、乙两工程队每 周 各铺设多少公里管道?
部售出,商家预估最多送出多少张?
2
7.(8 分)(2011•深圳)深圳某科技公司在甲地、乙地分别生产了 17 台、15 台同一种型号 的检测设备,全部运往大运赛场 A、B 两馆,其中运往 A 馆 18 台、运往 B 馆 14 台;运往 A、 B 两馆的运费如表 1:
表1 出发地
甲地
乙地
目的地
A馆
800 元/台 700 元/台
B馆
500 元/台 600 元/台
表2
出发地
甲地
乙地
目的地
A馆
x台
(台)
B馆
(台)
(台)
1 设甲地运往A 馆的设备有 x 台,请填写表 2,并求出总运费元y(元)与 x (台) 的
函数关系式;
2 要使总运费不高于 20200 元,请你帮助该公司设计调配方案,并写出有哪几种方案; 3 当 x 为多少时,总运费最小,最小值是多少?
电视机
5000
5500
洗衣机
2000
2160
空调
2400
2700
1 在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量 不
超过电视机的数量的 3 倍.请问商场有哪几种进货方案?
2 在“2012 年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金每购 1000 元送 50 元家电消费券一张、多买多送”的活动.在(1)的条件下,若三种电器在活动期间全
6
11.(8 分)(2014•深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于 乙进货价 10 元,90 元买乙的数量与 150 元买甲的数量相同. 1 求甲、乙进货价; 2 甲、乙共 100 件,将进价提高 20%进行销售,进货价少于 2080 元,销售额要大于 2460 元,求有几种方案?
4
9.(8 分)(2009•深圳)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装 240 辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他 们经过培训后上岗,也能独立进行电动汽车的安装,生产开始后,调研部分发现:1 名熟练 工和 2 名新工人每月可安装 8 辆电动汽车;2 名熟练工和 3 名新工人每月可安装 14 辆电动汽 车. 1 每名熟练工和新工人每月分别可以安装多少辆电动汽车? 2每名熟练工招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能 完成 一年的安装任务,那么工厂有哪几种新工人的招聘方案? 3 在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发 2000 元的工资,给每名新 工人每月发 1200 元的工资,那么工厂应招聘多少名新工人,使新工人的数量多余熟练工,同 时工厂每月支出的工资总额W(元)尽可能的少?
中考数学应用题专题
——深圳近 10 年中考应用题
版块一:打折销售 1.(4 分)(2011•深圳)一件服装标价 200 元,若以 6 折销售,仍可获利 20%,则这件服 装的进价是( )
A.100 元
B.105 元
C.108 元
D.118 元
2.(4 分)(2015•深圳)某商品的标价为 200 元,8 折销售仍赚 40 元,则商品进价为( )
5
10.(8 分)(2008•深圳)“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打 包成件,其中帐篷和食品共 320 件,帐篷比食品多 80 件. 1 求打包成件的帐篷和食品各多少件? 2 现计划租用甲、乙两种货车共 8 辆,一次性将这批帐篷和食品全部运往受灾地区.已知 甲种货车最多可装帐篷 40 件和食品 10 件,乙种货车最多可装帐篷和食品各 20 件.则民政 局 安排甲、乙两种货车时有几种方案?请你帮助设计出来. 3 在第(2)问的条件下,如果甲种货车每辆需付运输费 4000 元,乙种货车每辆需付运输 费 3600 元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?
A. ﹣ =2
B. ﹣ =2
C. ﹣ =2
D. ﹣ =2
1
版块三:方案设计问题
6.(8 分)(2012•深圳)“节能环保,低碳生活”是我们倡导的一种生活方式,某家电商场计
划用 11.8 万元购进节能型电视机、洗衣机和空调共 40 台,三种家电的进价和售价如表所示:
价格
进价
售价
种类
(元/台)
(元/台)
元.
A.140
B.120
C.160
D.100
3.(4 分)(2017•深圳)一球鞋厂,现打折促销卖出 330 双球鞋,比上个月多卖 10%,设
上个月卖出x 双,列出方程( )
A.10%x=330
B.(1﹣10%)x=330
C.(1﹣10%)2x=330
D.(1+10%)x=330
版块二:分式方程的应用 4.(4 分)(2010•深圳)某单位向一所希望小学赠送 1080 件文具,现用 A,B 两种不同的 包装箱进行包装,已知每个 B 型包装箱比A 型包装箱多装 15 件文具,单独使用 B 型包装箱 比单独使用A 型包装箱可少用 12 个.设 B 型包装箱每个可以装x 件文具,根据题意列方程 式为( )
A. = +12
B. = ﹣12
C. = ﹣12
D. = +12
5.(4 分)(2016•深圳)施工队要铺设一段全长 2000 米的管道,因在中考期间需停工两天, 实际每天施工需比原计划多 50 米,才能按时完成任务,求原计划每天施工多少米.设原计划 每天施工x 米,则根据题意所列方程正确的是( )