土壤农化分析完整
【土壤农化分析】土壤农化
1第一章 土壤化学分析的基本知识 一、化学分析用水纯水制备:1、蒸馏法----蒸馏水(蒸馏器有玻璃、铜、石英等) ( 交换原理 交换性能影响因子) 高温处理,不易长霉。
但存留痕量金属离子;工厂、浴室——副产品蒸馏水,质量差,必须检查后才能使用。
2、离子交换法----去离子水(市售蒸馏水或去离子水必须经检验合格才能使用,实验室中应配备相应的提纯装置。
制备的水量大、成本低、除去离子的能力强,质量较高; 但未经高温灭菌易长霉。
中国实验室用水标准:一级水用于有严格要求的 分析测定,如液相色谱分析 用水等。
二级水用于无机痕量分析, 如原子吸收光谱分析用水 等。
三级水用于一般化学分析 实验。
速效磷: 钼锑抗试剂二、试剂标准与规格、取用及保存 (一)试剂标准试剂:市售包装的“化学试剂”或“化学药品”; 试液:用试剂配制成的各种溶液。
级别 一级水 二级水 三级水外观 无色透明液体 pH------ 5.0-7.5 电导率(μs/cm.25℃) ≤0.1 ≤1 ≤5 可氧化物质(mg/L ) ---<0.08<0.40吸光度(254nm ) ≤0.001 ≤0.01 --- SiO 2 ( mg/L )<0.01 <0.02 ---试剂标准:✌默克标准:化学家克劳赫编著,1971年出版,伊码纽尔·默克--德国伊默克公司(德文);✌罗津标准:美国化学家约瑟夫·罗津,世界最著名的学者标准;✌ ASA规格:1986年(7版),美国化学学会分析试剂委员会编撰,美国最有权威的一部试剂标准。
✌我国标准:国家标准、部颁标准、企业标准3种(二)试剂规格与选用我国试剂基本按纯度分为:高纯、光谱纯、基准、分光纯、优级纯、分析纯和化学纯7种(三)试剂的取用(1)实验室里所用的药品,很多是易燃、易爆、有腐蚀性或有毒的。
→使用时严格遵照有关规定和操作规程,保证安全。
不能手摸、嘴尝,不能把鼻孔凑到容器口闻气味(特别是气体)。
土壤农化分析完整
土壤农化分析完整土壤农化分析是农业生产管理中的重要环节,通过对土壤中有机质、养分、微生物等方面的分析,可以准确评估土壤质量和肥力水平,为农民提供科学的土壤管理措施,从而提高农作物的产量和质量。
下面将详细介绍土壤农化分析的步骤和意义。
一、土壤样品的采集在进行土壤农化分析之前,首先要采集代表性的土壤样品。
采样区域应该相对均匀,并且不同类型的土壤要分别采样。
采集土壤样品时要避开路旁、斜坡、河边等容易受到人为污染的地方。
采样工具要干净,避免带入外来污染。
采样深度一般为0-20厘米,将不同位置的样品混合均匀后取一部分作为分析样品。
二、土壤有机质的测定有机质是土壤中的重要组分,对土壤肥力和土壤结构有着重要影响。
有机质的含量可以通过测定土壤中的有机碳含量来判断。
一般可以采用干燥法、酸碱滴定法、元素分析仪等方法进行测定。
三、土壤养分的测定土壤养分是农业生产中的关键要素,包括全氮、全磷、全钾、速效氮、速效磷、速效钾等。
测定土壤养分可以采用化学分析法,如盐酸消化法、硝酸铵提取法等。
四、土壤酸碱度的测定土壤的酸碱度对植物生长和养分吸收有重要影响。
常用的测定土壤酸碱度的方法有pH值测定法和酸碱滴定法。
pH值可以通过酚酞指示剂和pH计进行测定。
五、土壤微生物的测定土壤中的微生物包括细菌、真菌、放线菌等,对土壤生态系统的稳定性和养分转化有着重要的作用。
常用的测定土壤微生物量的方法有好氧培养法、快速测定法等。
六、土壤理化性质的测定土壤的理化性质对农业生产也具有重要影响。
常用的测定土壤理化性质的方法有土壤颗粒组成的测定、土壤含水量的测定、土壤容重的测定等。
1.评估土壤质量和肥力水平,为农民提供科学的土壤管理措施。
通过分析土壤中有机质、养分、微生物等的含量和分布情况,可以了解土壤的肥力状况和潜在的问题,指导农民进行有针对性的施肥和土壤改良工作。
2.提高农作物的产量和质量。
通过合理施肥和土壤管理,提高土壤肥力和改良土壤结构,可以增加农作物对养分的吸收利用率,提高产量和品质。
土壤农化分析
土壤农化分析.3版土壤农化分析是一种重要的土壤检测方法,它可以帮助农民更好地了解土壤的质量,从而更好地管理土壤。
土壤农化分析的第三版(3.0)是一种更新的土壤检测方法,它可以更准确地测量土壤中的养分,从而更好地改善土壤质量。
土壤农化分析3.0的主要特点是采用了更新的技术,可以更准确地测量土壤中的养分,从而更好地改善土壤质量。
它采用了一种新的技术,可以更准确地测量土壤中的养分,从而更好地改善土壤质量。
它还采用了一种新的技术,可以更准确地测量土壤中的有机物,从而更好地改善土壤质量。
此外,土壤农化分析3.0还采用了一种新的技术,可以更准确地测量土壤中的水分,从而更好地改善土壤质量。
它还采用了一种新的技术,可以更准确地测量土壤中的酸碱度,从而更好地改善土壤质量。
土壤农化分析3.0还采用了一种新的技术,可以更准确地测量土壤中的微生物,从而更好地改善土壤质量。
它还采用了一种新的技术,可以更准确地测量土壤中的重金属,从而更好地改善土壤质量。
土壤农化分析3.0还采用了一种新的技术,可以更准确地测量土壤中的污染物,从而更好地改善土壤质量。
它还采用了一种新的技术,可以更准确地测量土壤中的有机物,从而更好地改善土壤质量。
土壤农化分析3.0的优势在于可以更准确地测量土壤中的养分,从而更好地改善土壤质量。
它可以更准确地测量土壤中的有机物,从而更好地改善土壤质量。
它还可以更准确地测量土壤中的水分,从而更好地改善土壤质量。
此外,它还可以更准确地测量土壤中的酸碱度,从而更好地改善土壤质量。
土壤农化分析3.0的应用非常广泛,它可以用于农业生产,可以帮助农民更好地管理土壤,从而提高农作物的产量。
它还可以用于环境保护,可以帮助监测土壤污染,从而保护环境。
总之,土壤农化分析3.0是一种更新的土壤检测方法,它可以更准确地测量土壤中的养分,从而更好地改善土壤质量。
它的应用非常广泛,可以用于农业生产和环境保护,从而提高农作物的产量和保护环境。
《土壤农化分析》课件
2、分析误差: 、分析误差:
包括系统误差和偶然误差,如仪器及试剂误差、 包括系统误差和偶然误差,如仪器及试剂误差、 方法误差以及其它不定因素造成的误差。 方法误差以及其它不定因素造成的误差。
误差、精密度和准确度
一、误差的产生 1.系统误差(systematic errors) )
具单向性、重现性,为可测误差. 具单向性、重现性,为可测误差. 方法: 溶解损失、 方法: 溶解损失、终点误差 仪器: 刻度不准、 仪器: 刻度不准、砝码磨损 试剂: 试剂: 不纯
学习意义: 学习意义:
1、测定土壤全量N、P、K,土壤交换性能,土壤 、测定土壤全量 、 、 ,土壤交换性能, 有机质含量可以了解土壤的肥力状况; 有机质含量可以了解土壤的肥力状况; 2、测定土壤 ,水溶性盐,交换性能,可以为土 、测定土壤pH,水溶性盐,交换性能, 壤改良及利用规划提供依据; 壤改良及利用规划提供依据; 3、土壤矿质全量 、Fe、Al的测定,交换性能, 的测定, 、土壤矿质全量Si、 、 的测定 交换性能, 若是盐碱土则应有水溶性盐的测定,能够为研 若是盐碱土则应有水溶性盐的测定, 究土壤形成过程、土壤分类、 究土壤形成过程、土壤分类、绘制土壤图而提 供依据; 供依据; 4、测定土壤速效养分可以为合理施用和分配肥料 、 提供依据,能够指导田间施肥管理, 提供依据,能够指导田间施肥管理,同时还可 以监测土壤中养分的变化, 以监测土壤中养分的变化,为培肥土壤和保护 环境提供依据。 环境提供依据。
误差的检验与减免 1、对照试验:可检验或校正分析结果的误差。 、对照试验:可检验或校正分析结果的误差。
这是检验系统误差的有效方法。 这是检验系统误差的有效方法。
2、空白试验:消除实验中用水、试剂、器皿等带 、空白试验:消除实验中用水、试剂、
土壤农化分析重点
土壤农化分析重点前言1、土壤农化分析包括:土壤分析、植物分析、肥料分析三个方面A、土壤农化分析主要是土壤的基本化学特性分析包括:化学组成、肥力特性、交换性能、酸碱度、盐分等;目的为土壤分类、土地资源开发利用、土壤改良、合理施肥等提供依据B、植物分析包括两个方面,一是植物养分含量的分析,研究在不同的土壤、气候条件和不同栽培措施条件影响下,植物体内养分含量的变化,为合理施肥提供参考数据;二是农产品品质分析为品种改良,产品品质改善提供理论依据C、肥料分析是确定肥料中某一营养成分的百分含量,矿质肥料的分析,检验矿质肥料或化学肥料符合于规定。
开展群众性的土壤普查,进行土壤和作物营养诊断,指导作物施肥,土壤农化分析工作促进了农业生产的发展2、定容:一定量的溶质溶解后,或取一整份溶液,在精密量器中准确稀释到一定的体积,塞紧并充分摇匀为止,这一整个操作过程称为“定容”不仅指准确稀释还包括充分混匀的意思。
第一章土壤农化分析的基本知识1、纯水的制备:蒸馏法和离子交换法A、蒸馏法:利用水和杂质的沸点不同,经过外加热使所产生的水蒸气经冷凝后制得。
优点:不容易长霉;缺点:蒸馏器多为铜制或锡制,因此蒸馏水中难免有少量的这些金属离子存在,而且耗电较多,出水速度小。
B、土壤农化分析的作用:1、土壤农化分析是土壤普查的手段;2、土壤农化分析可用于指导农作物的合理施肥;3、土壤农化分析是科学研究的手段土壤农化分析的内容:1、土壤分析:土壤的机械组成部分,肥力特征,养分的转化、迁移、农作物的布局2、职务分析:农产品品质分析,植物营养成分分析3、肥料分析:化学肥料分析,有机肥料分析实验室用水分为3个等级,土壤农化分析用手一般为3级水(也称蒸馏水,PH:6.5~7.5)试剂:到化学药品部门购买的原装化学药品试液:把试剂稀释到一定浓度的溶液定容:在一定体积的容器里加水稀释浓度到刻度线后摇匀的过程我国试剂的规格基本上按照纯度划分,共有高纯、光谱纯、基准、分光纯、优级纯、分析纯和化学纯7种国家和主管部门颁布质量指标的主要是优级纯,分析纯和化学纯3种GR优级纯,绿色标签,用于精密的科学研究和分析工作,(保证试剂)AR分析纯,红色,一般的科学研究和分析工作,(分析试剂)CP化学纯,蓝色,一般的分析工作,(化学纯)软质玻璃,又称普通玻璃,热膨胀系数大,易炸裂,破碎,多支撑不需要加热仪器,如试剂瓶,漏斗,量筒,玻璃管等硬质玻璃,耐腐蚀,抗击性能好,膨胀系数小,可制成加热的玻璃仪器,如烧瓶,事关蒸馏器等玻璃器皿洗涤要则:用毕立即洗刷,干净标准,内壁能均匀地被水润湿,不沾水滴滤纸分为定性和定量两种,定性滤纸灰分多,供一般定性分析用,不用于定量分析;定量滤纸用于敬慕的定量分析,土化分析用定量滤纸采样误差:采样时,由于采样点的选取不合理所带来的误差。
【土壤农化分析】第一讲 基本知识
三、常用器皿的洗涤、规范使用
(一)常用洗涤液的种类和适用范围
1、铬酸洗液:(重铬酸钾-硫酸洗液,简称为洗液),有 很强的氧化能力,对玻璃仪器又极少有侵蚀作用。所以这 种洗液在实验室内使用最广泛。
(4)吹干:用电吹风吹干。
(5)有机溶剂法:先用少量丙酮或无水乙醇使内壁均匀润湿后倒出, 再用乙醚使内壁均匀润湿后倒出。再依次用电吹风冷风和热风吹 干,此种方法又称为快干法。
三、常用器皿的洗涤、规范使用
(三)常用玻璃仪器的规范使用
1、量筒的使用(0.1 ml )
根据不同的需要,量筒的容 量有10毫升、100毫升、 1000毫升等等,分析中可根 据所需溶液的容量的不同来 选用。
二、试剂标准与规格、取用及保存
(二)试剂规格与选用
我国试剂基本按纯度分为: 高纯、光谱纯、基准、分光纯、优级纯、分析纯和化学纯7种
化学试剂规格(通用的化学试剂)
等级 名称 代号 标签
选用说明
一级 优级纯 G.R 绿色 杂质少,纯度高,基准溶液
二级 分析纯 A.R 三级 化学纯 C.P
红色 蓝色
纯度较高,准确度较高 的分析及配制标液
若发现仍转动不灵活,或活栓内的油 层出现纹路,表示涂油不够。如果有 油从活栓缝隙溢出或挤入活栓孔,表 示涂油太多。遇到这些情况。都必须 重新涂油。
三、常用器皿的洗涤、规范使用
(三)常用玻璃仪器的规范使用
(4)出口管中气泡的清除:
滴定溶液装入滴定管时,出口 管还没有充满溶液。此时将酸式 滴定管倾斜约30°,左手迅速打 开活栓使溶液冲出,就能充满全 部出口管。
土壤农化分析
土壤农化分析:
《面向21世纪课程教材·土壤农化分析(土壤农业化学资源与环境专业用)》为全国高等农业院校教材指导委员会审定教材。
再版时,我们力求反映20世纪90年代有关土壤农化分析方面的进展。
土壤分析部分内容略有增加,但变动不大;植物分析中农产品品质分析增加新的内容;由于工业“三废”排放有害重金属元素进入水体和农田,对植物、动物及人类产生日益严重的毒害,故增加“无机污染(有害)物质的分析”一章;肥料分析部分增加了无机复混肥料分析的内容,其方法均为国标法。
在本书第二版中有许多现在已不再使用的计量单位和符号,在再版时严格按照1984年颁布的《中华人民共和国法定计量单位》及有关量和单位的国家标准,相应给予全面修改,以保持全书的一致性。
目录:
第一章土壤农化分析的基本知识
第二章土壤样品的采集与制备
第三章土壤有机质的测定
第四章土壤氮和硫的分析
第五章土壤中礏的测定
第六章土壤中钾的测定
第七章土壤中微量元素的测定
第八章土壤阳离子交换隆能的分析
第九章土壤水溶性盐的分析
第十章土壤中碳酸钙的测定
第十一章土壤中硅、铁、铝等元素的分析第十二章植物样品的采集、制备与水分测定第十三章植物灰分和各种营养元素的测定第十四章农产品中蛋白质和氮基酸的分析第十五章农产品中碳水化合物的分析
第十六章籽粒中油脂肪酸的测定
第十七章有机酸和维生素的分析
第十八章无机污染(有害)物质的分析
第十九章无机肥料分析
第二十章有机肥料的分析
第二十一章分析质量的控制和数据处理
附表。
土壤农化分析方法总结.wps
土壤农化分析方法总结1土壤酸碱度(pH)的测定:电位测定法1.1原理:用水或中性盐可以提取出土壤中水溶性或交换性氢离子。
用PH玻璃电极做指示电极,甘汞电极为参比电极,测定浸出液的电位差。
因参比电极电位是固定的,因而电位差的大小决定于试液中的氢离子浓度。
用PH计直接读出PH值。
1.2主要仪器:pH酸度计、小烧杯、搅拌器。
1.3试剂配制:(1)pH4.01标准缓冲液。
称取经105℃烘干的苯二甲酸氢钾(KHC8H4O4) 10.21g,用蒸馏水溶解后稀释至1000ml。
(2)pH6.87标准缓冲液。
称取在45℃烘干的磷酸二氢钾(KH2PO4)3.39g和无水磷酸氢二钠(Na2HPO4)3.53g,溶解在蒸馏水中,定容至1000ml。
(3)pH9.18标准缓冲液。
称3.80g硼砂(Na2B4O7·10H2O)溶于蒸馏水中,定容至1000ml。
此溶液的pH值容易变化,应注意保存。
1.4操作步骤:称过1 mm筛风干土样10.0 g 于50 ml 高型小烧杯中,加入25 ml 无CO2水或1.0 M KCl溶液,搅动2分钟,使土体充分散开,放置半小时,用PH计测定。
既将电极球部插入土壤悬液中轻轻转动,待电极电位达到平衡,按下读数开关,测读PH值。
每测一个样液,用水冲洗电极球部,并用滤纸轻轻吸干水分,再进行第二个样液测定。
测5—6个样品,用PH标准缓冲液校正一次。
2土壤有机质的测定2.1土壤有机碳不同测定方法的比较和选用关于土壤有机碳的测定,有关文献中介绍很多,根据目的要求和实验室条件可选用不同方法。
经典测定的方法有干烧法(高温电炉灼烧)或湿烧法(重铬酸钾氧化),放出的CO2,一般用苏打石灰吸收称重,或用标准氢氧化钡溶液吸收,再用标准酸滴定。
用该方法测定土壤有机碳时,也包括土壤中各元素态碳及无机碳酸盐。
因此,在测定石灰性土壤有机碳时,必须先除去CaCO3。
除去CaCO3的方法,可以在测定前用亚硫酸处理去除之,或另外测定无机碳和总碳的含量,从全碳结果中减去无机碳。
土壤农化分析实验
土壤农化分析实验目录实验一土壤有机质测定(外加热法)实验二土壤全氮量测定实验三水解氮的测定(碱解扩散法)实验四土壤铵态氮的测定(一)蒸馏滴定法(二)奈氏比色法实验五土壤硝态氮的测定(一)硝酸银电极法(二)酚二磺酸比色法实验六土壤有效硫的测定实验七土壤全磷的测定(一)NaOH碱熔—钼锑抗比色法(二)HCl十H2S04酸溶—钼锑抗比色法实验八土壤速效磷的测定(一)中性和石灰性土壤速效磷测定(二)酸性土壤速效磷的测定实验九土壤全钾测定实验十土壤速效钾的测定(一)火焰光度法(二)1molNaN03提取——四苯硼钠比浊法实验十一土壤阳离子交换量测定(一)1mol中性NH40Ac法(二)BaCl2—H2S04快速法实验十二土壤交换性盐基测定(一)交换性盐基总量测定(二)交换性钙、镁的测定(EDTA容量法)(三)交换性钾钠的测定(火焰光度法)实验十三活性酸和交换性酸的测定(一)活性酸(pH)测定(二)交换性酸的测定(总量测定)实验十四土壤水溶性盐总量测定(电导率测定)实验十五植物样品消化(一)H2S04—H202法(二)混合加速剂消煮法实验十六植物样品中氮的测定(一)奈氏比色法(二)半微量蒸馏法实验十七植物样品中全磷测定(钡钼黄比色法)实验十八植物样品中全钾测定(火焰光度法)实验十九植物钙镁的测定(EDTA络合滴定法)实验二十土壤和植物中硼的测定(一)姜黄素比色法(二)甲亚胺—H比色法(三)植物样品干灰化及硼测定实验二十一土壤和植物锰的测定(KMn04比色法)(一)土壤有效锰测定(二)植物中锰的测定实验二十二土壤和植物中铜、锌的测定(原子吸收分光光度法)(一)土壤中有效铜、锌测定(二)植物中铜、锌测定实验二十三土壤和植物中钼的测定硫氰酸盐比色法实验二十四土壤和植物中铁的测定(邻菲罗啉比色法)(一)土壤有效铁测定(二)植物中铁的测定实验二十五纯蛋白质的测定(一)沉淀分离后消化测定(二)染料结合法实验二十六氨基酸总量的测定(茚三酮比色法)实验二十七水溶性糖的测定(葸酮法)实验二十八淀粉的测定(HCl水解一菲啉碘量法)实验二十九粗脂肪的测定(残余法)实验三十果蔬总酸度的测定实验三十一维生素C的测定(一)2,6—二氯靛酚滴定法(三)荧光测定法实验三十二氮肥的测定(一)甲醛法(铵态氮肥中氮的测定)(二)蒸馏法(尿素含氮量测定)实验三十三磷肥的测定(一)喹啉钼酸重量法(过磷酸钙有效磷测定)(二)喹啉钼酸容量法(三)过磷酸钙中游离—酸测定(四)钒钼黄法(磷矿粉中有效磷测定)实验三十四钾肥测定(一)火焰光度法(二)四苯硼钠重量法实验一土壤有机质测定(外加热法)一、方法原理:在恒加热条件下(175—180℃,5分钟),用定量K2Cr2O7—H2S04溶液氧化有机质,剩余的K2Cr207用标准FeS04滴定,由氧化有机质消耗的K2Cr2O7的量计算有机质含量。
土壤农化分析报告(完整)
土壤农化分析实验前言为了适应教学、科研和生产的需要,我们编写了这本包括土壤、肥料、植物及农产品分析的《土壤农化分析实验》,作为广大农业科技工作者和高等院校、中等专业学校有关专业师生的实验教材或工具书。
考虑到分析条件等原因,书中有时在同一分析项目中并列了几个容。
土壤分析主要为土壤水分、土壤物理性质、土壤化学性质及土壤酸碱度的分析。
肥料分析主要为有机肥料、单质化学肥料及复合肥有效成分的分析。
植物分析主要为植物营养诊断、植物体常量元素及微量元素分析。
农产品分析主要为农产品中碳水化合物、糖分、淀粉、粗纤维、粗脂肪、Vc及氨基酸等的分析。
由于编者水平所限,书中疏漏,错误之处在所难免,敬请提出宝贵意见,以便进一步修改目录第一篇土壤分析 (8)1—1土壤样品的采集与处理 (8)1—1.1土壤样品的采集 (8)1—1.2土壤样品的处理 (9)1—2土壤水分的测定 (10)1—2.1土壤吸湿水的测定 (10)1—2.2土壤田间持水量的测定 (10)1—3土壤有机质的测定 (11)1—4土壤中氮的测定 (13)1— 4.1 土壤全氮量的测定............................................... . (13)1— 4.2 土壤水解性氮的测定 (14)1— 5 土壤中磷的测定.................................................................................. .15 1— 5.1 土壤全磷的测定 (15)1— 5.2 土壤速效磷的测定 (17)1— 6 土壤钾素的测定 (18)1— 6.1 土壤速效钾的测定 (18)1— 6.2 土壤全钾量的测定 (18)1—7 土壤阳离子交换量的测定 (19)1—8 土壤可溶性盐分的测定 (21)1—8.1 待测液的制备 (21)1—8.2 水溶性盐分总量的测定 (21)1—8.3 碳酸根和重碳酸根的测定 (21)1—8.4 氯离子的测定 (22)1—8.5 硫酸根离子的测定 (22)1—8.6 钙和镁离子的测定 (23)1—8.7 钠和钾离子的测定 (24)1—9 土壤微量元素的测定 (25)1—9.1 土壤有效硼的测定 (25)1—9.2 土壤有效钼的测定 (25)1—9.3 土壤中铜、锌、锰、铁的测定 (27)1—10 土壤酸碱度的测定 (27)1—10.1 混合指示剂比色法 (27)1—10.2 电位测定法 (28)1—11 土壤容重和孔度的测定(环刀法) (28)1—11.1 土壤容重的测定(环刀法) (28)1—11.2 土壤孔度的测定 (29)第二篇肥料分析 (31)2— 1 肥料样品的采集与制备 (31)2— 1.1 化学肥料样品的采集与制备 (31)2— 1.2 有机肥料样品的采集与制备 (31)2— 2 肥料含水量的测定 (31)2— 2.1 常见化肥中含水量的测定 (31)2— 2.2 有机肥料中含水量的测定 (29)2— 3 氮素化肥分析 (32)2— 3.1 氮素化肥总氮量的测定 (32)2— 3.2 氮素化肥中铵态氮的测定 (33)2— 3.3 氮素化肥中硝态氮的测定 (33)2— 3.4 尿素中氮的测定 (34)2— 4 磷素化肥分析 (34)2— 4.1 磷素化肥全磷量的测定 (34)2— 4.2 过磷酸钙中游离酸的测定 (35)2— 4.3 过磷酸钙中有效磷的测定 (36)2— 4.4 碱性热制磷肥有效磷的测定 (36)2— 4.5 磷矿粉中全磷量的测定 (37)2— 4.6 磷矿粉中有效磷的测定 (37)2— 5 钾素化学肥料全钾量分析 (37)2— 6 复合肥料的分析 (38)2—7有机肥料的分析 (38)2-7.1 有机肥料全氮量的测定(铁锌粉还原法) (38)第三篇植物分析 (40)3— 1 植物样品的采集、制备与保存 (40)3— 1.1 植物样品的采集 (40)3— 1.2 植物组织样品的制备与保存 (41)3— 1.3 植物微量元素分析样品的制备与保存 (41)3— 2 植物营养诊断 (41)3— 2.1 植株汁液和浸提液的制备 (41)3— 2.2 试剂配制 (42)3— 2.3 植物组织中硝态氮的测定 (42)3— 2.4 植物组织中磷的测定 (43)3— 2.5 植物组织中钾的测定 (44)3— 3 植物水分的测定 (45)3— 3.1 风干植物样品水分的测定 (45)3— 3.2 新鲜植物样品水分的测定 (45)3— 4 植物粗灰分的测定 (46)3— 5 植物常量元素的分析 (47)3— 5.1 植物全氮、磷、钾的测定 (47)3— 5.1.1 植物样品的消煮 (47)3— 5.1.2 植物全氮的测定 (48)3— 5.1.3 植物全磷的测定 (48)3— 5.1.4 植物全钾的测定 (49)3— 5.2 植物全钙、镁的测定 (50)3— 6 植物微量元素分析 (51)3— 6.1 植物硼的测定 (52)3— 6.2 植物钼的测定 (53)3— 6.3 植物铁、锰、铜、锌的测定 (53)3—7 植物全碳的测定 (54)第四篇农产品分析 (55)4— 1 农产品样品的采取制备与保存 (55)4—1.1 籽粒样品的采集、制备与贮存 (55)4—1.2 水果蔬菜样品的采集、制备与贮存 (55)4— 2 水分的测定(植物产品) (56)4— 3 蛋白质的分析 (58)4—3.1 开氏法测定粗蛋白质 (58)4—3.2 铜盐沉淀法测纯蛋白质 (59)4— 4 农产品中碳水化合物的分析 (60)4— 4.1 糖分的分析 (60)4— 4.1.1 果蔬含糖量的测定 (61)4— 4.1.2 作物可溶性糖的测定(蒽酮比色法) (62)4— 4.2 淀粉的测定 (64)4— 4.2.1 谷物中淀粉的测定(酸水解法) (64)4— 4.2.2 酶水解法 (65)4— 4.3 植物中粗纤维的测定(酸碱洗涤重量法) (66)4— 5 植物中粗脂肪的测定 (67)4— 5.1 油重法 (67)4— 5.2 残余法 (68)4—6 植物中维生素C(2%草酸浸提—2,6—二氯靛酚滴定法) (70)4—7 农产品酸度测定(滴定法) (72)4—7.1 总酸度测定(滴定法) (73)4—8 农产品氨基酸的测定 (74)4—8.1 单指示剂甲醛滴定法 (75)4—8.2 双指示剂甲醛滴定法 (75)4—8.3 茚三酮比色法 (76)4—9 果品硬度的测定 (77)4—10 果品中可溶性固形物的测定(折射仪法) (77)附录A (79)第一篇土壤分析1—1 土壤样品的采集与处理土壤样品的采集是土壤分析工作中的一个重要环节,是直接影响着分析结果和结论是否正确的一个先决条件。
农化分析实验报告(3篇)
第1篇一、实验目的本次实验旨在通过土壤农化分析,掌握土壤中有机质、氮、磷、钾等养分的测定方法,了解土壤肥力的基本状况,为农业生产提供科学依据。
二、实验原理土壤农化分析主要包括土壤有机质、全氮、全磷、全钾等养分的测定。
以下是各指标的测定原理:1. 土壤有机质测定:采用重铬酸钾氧化法,在高温条件下,用一定浓度的K2Cr2O7-H2SO4溶液氧化土壤中的有机质,剩余的K2Cr2O7用FeSO4滴定,根据消耗的K2Cr2O7量计算出有机碳量,再乘以常数1.724,即为土壤有机质含量。
2. 全氮测定:采用凯氏定氮法,将土壤样品中的有机氮转化为氨,然后用硼酸吸收氨,最后通过滴定法测定氨的含量,从而计算出土壤中全氮含量。
3. 全磷测定:采用过硫酸钠消煮法,将土壤样品中的有机磷和无机磷转化为可溶性磷,然后用钒钼黄比色法测定磷的含量,从而计算出土壤中全磷含量。
4. 全钾测定:采用原子吸收分光光度法,将土壤样品中的钾转化为可溶性钾,然后用原子吸收分光光度计测定钾的含量,从而计算出土壤中全钾含量。
三、实验材料与试剂1. 实验材料:土壤样品(风干、磨细、过筛)、蒸馏水、浓硫酸、K2Cr2O7、FeSO4、邻菲啰啉指示剂、过硫酸钠、钒钼黄试剂、硝酸、硼酸、氢氧化钠、盐酸等。
2. 实验仪器:电热板、干燥箱、分析天平、滴定管、锥形瓶、烧杯、蒸发皿、原子吸收分光光度计等。
四、实验步骤1. 土壤有机质测定a. 称取0.25g风干土于干燥试管中,加入少量水润湿样品。
b. 准确沿壁缓慢加入10.0ml K2Cr2O7-H2SO4溶液,摇分散土样,盖上小漏斗。
c. 将试管置于170-180℃的电热板上加热2小时。
d. 取下试管,待冷却后,加入FeSO4溶液和邻菲啰啉指示剂,用0.2mol/L FeSO4溶液滴定至溶液由橙黄色经蓝绿色至棕红色为终点。
2. 全氮测定a. 称取0.5g风干土于锥形瓶中,加入10ml浓硫酸。
b. 将锥形瓶置于电热板上加热,使土壤样品充分消煮。
土壤农化分析
⼟壤农化分析1、混合⼟样采集的原则和要求?(1)采样原则:具有⾼度的代表性、统⼀性。
(2)两点要求:①避免⼀切主观因素的影响,做到随机、多点取样;②⼏个相互⽐较的样品组应由同⼀时间(早春或晚秋)、同等数量(同样取样⼯具,取同样深度、宽度和厚度)的⼟样组成。
2、混合样品的采集⽬的、缺点、过程?(1)⽬的:把⼟壤不均⼀性的影响减⼩到最低限度,以减⼩采样误差,提⾼分析数据的可靠性,并且⼤⼤减轻了⼯作量。
(2)缺点:是多点样品混合后的测定值,从分析结果看不出该地块⼟壤的细微变化。
(3)过程:①采样区的划分及采样点的布置;②采样路线;③采样⼯具;④采样⽅法。
3⼟样过筛的注意事项?在橡⽪垫上⽤⽊棍磨碎,或粉碎机。
*注意事项:(1)⽯跞不能碎;⼟样要逐次全部过筛,不能半途弃去。
(2)过筛孔径的⼤⼩,主要根据①分析项⽬的要求;②称样量的多少⽽定。
4、那些测定项⽬需要⽤20⽬的⼟样,那些需要100⽬的⼟样?说明原因?(分别列举三个)(1)100⽬(0.15mm或0.25mm):⼟壤全N、有机质、矿质全量、Si、Fe、Al等(2)20⽬:测定速效N、P、K。
(3)它们(全量)的测定不受磨碎程度的影响,且⼟粒愈细与试剂反应愈充分。
(减少样误差和氧化完全)5、何为⼟壤有机质?⼟壤有机质是⼟壤中各种形态有机化合物的总称,它包括⼟壤中各种动植物残体、微⽣物及其分解与合成的各种有机形态。
6、⼟壤有机质的测定原理?(见实验报告)重铬酸钾—硫酸溶液与有机质作⽤:2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2↑+8H2OK2Cr2O7-在H2SO4存在下,⼟壤有机C氧化成CO2,释放出的CO2可以按照上述⼲烧法测定;也可把CO2导⼊过量Ba(OH)2溶液中使成BaCO3,然后⽤已知的标准酸(HCl)滴定剩余的Ba(OH)2,由净消耗的酸量求OM含量。
(⽤过量的,⼀定量的K2Cr2O7-H2SO4溶液氧化⼟壤有机C,使Org-C氧化成剩余的K2Cr2O7,⽤标准FeSO4回滴,根据净⽤氧化剂(K2Cr2O7)量来计算有机C量,反应式为:氧化:3C+2CrO2-7 +16H+→ 3CO2+4Cr23++8H2O滴定CrO2-7+6Fe2-+14H+ →2Cr3+ +6Fe3++7H2O终点指⽰剂有邻菲罗啉,⼆苯胺等。
土壤农化分析(完整)
土壤农化分析实验前言为了适应教学、科研和生产的需要,我们编写了这本包括土壤、肥料、植物及农产品分析的《土壤农化分析实验》,作为广大农业科技工作者和高等院校、中等专业学校有关专业师生的实验教材或工具书。
考虑到分析条件等原因,书中有时在同一分析项目中并列了几个方法,可根据分析项目和要求等选择应用。
本书包括四个方面的内容。
土壤分析主要为土壤水分、土壤物理性质、土壤化学性质及土壤酸碱度的分析。
肥料分析主要为有机肥料、单质化学肥料及复合肥有效成分的分析。
植物分析主要为植物营养诊断、植物体常量元素及微量元素分析。
农产品分析主要为农产品中碳水化合物、糖分、淀粉、粗纤维、粗脂肪、Vc及氨基酸等的分析。
由于编者水平所限,书中疏漏,错误之处在所难免,敬请提出宝贵意见,以便进一步修改目录第一篇土壤分析 (8)1—1土壤样品的采集与处理 (8)1—1.1土壤样品的采集 (8)1—1.2土壤样品的处理 (9)1—2土壤水分的测定................................................ (10)1—2.1土壤吸湿水的测定.................................... . (10)1—2.2土壤田间持水量的测定.................................... . (10)1—3土壤有机质的测定................................................... (11)1—4土壤中氮的测定......................................................... (13)1—4.1 土壤全氮量的测定............................................... . (13)1—4.2 土壤水解性氮的测定 (14)1—5 土壤中磷的测定.................................................................................. .15 1—5.1 土壤全磷的测定 (15)1—5.2 土壤速效磷的测定 (17)1—6 土壤钾素的测定 (18)1—6.1 土壤速效钾的测定 (18)1—6.2 土壤全钾量的测定 (18)1—7 土壤阳离子交换量的测定 (19)1—8 土壤可溶性盐分的测定 (21)1—8.1 待测液的制备 (21)1—8.2 水溶性盐分总量的测定 (21)1—8.3 碳酸根和重碳酸根的测定 (21)1—8.4 氯离子的测定 (22)1—8.5 硫酸根离子的测定 (22)1—8.6 钙和镁离子的测定 (23)1—8.7 钠和钾离子的测定 (24)1—9 土壤微量元素的测定 (25)1—9.1 土壤有效硼的测定 (25)1—9.2 土壤有效钼的测定 (25)1—9.3 土壤中铜、锌、锰、铁的测定 (27)1—10 土壤酸碱度的测定 (27)1—10.1 混合指示剂比色法 (27)1—10.2 电位测定法 (28)1—11 土壤容重和孔度的测定(环刀法) (28)1—11.1 土壤容重的测定(环刀法) (28)1—11.2 土壤孔度的测定 (29)第二篇肥料分析 (31)2—1 肥料样品的采集与制备 (31)2—1.1 化学肥料样品的采集与制备 (31)2—1.2 有机肥料样品的采集与制备 (31)2—2 肥料含水量的测定 (31)2—2.1 常见化肥中含水量的测定 (31)2—2.2 有机肥料中含水量的测定 (29)2—3 氮素化肥分析 (32)2—3.1 氮素化肥总氮量的测定 (32)2—3.2 氮素化肥中铵态氮的测定 (33)2—3.3 氮素化肥中硝态氮的测定 (33)2—3.4 尿素中氮的测定 (34)2—4 磷素化肥分析 (34)2—4.1 磷素化肥全磷量的测定 (34)2—4.2 过磷酸钙中游离酸的测定 (35)2—4.3 过磷酸钙中有效磷的测定 (36)2—4.4 碱性热制磷肥有效磷的测定 (36)2—4.5 磷矿粉中全磷量的测定 (37)2—4.6 磷矿粉中有效磷的测定 (37)2—5 钾素化学肥料全钾量分析 (37)2—6 复合肥料的分析 (38)2—7有机肥料的分析 (38)2-7.1 有机肥料全氮量的测定(铁锌粉还原法) (38)第三篇植物分析 (40)3—1 植物样品的采集、制备与保存 (40)3—1.1 植物样品的采集 (40)3—1.2 植物组织样品的制备与保存 (41)3—1.3 植物微量元素分析样品的制备与保存 (41)3—2 植物营养诊断 (41)3—2.1 植株汁液和浸提液的制备 (41)3—2.2 试剂配制 (42)3—2.3 植物组织中硝态氮的测定 (42)3—2.4 植物组织中磷的测定 (43)3—2.5 植物组织中钾的测定 (44)3—3 植物水分的测定 (45)3—3.1 风干植物样品水分的测定 (45)3—3.2 新鲜植物样品水分的测定 (45)3—4 植物粗灰分的测定 (46)3—5 植物常量元素的分析 (47)3—5.1 植物全氮、磷、钾的测定 (47)3—5.1.1 植物样品的消煮 (47)3—5.1.2 植物全氮的测定 (48)3—5.1.3 植物全磷的测定 (48)3—5.1.4 植物全钾的测定 (49)3—5.2 植物全钙、镁的测定 (50)3—6 植物微量元素分析 (51)3—6.1 植物硼的测定 (52)3—6.2 植物钼的测定 (53)3—6.3 植物铁、锰、铜、锌的测定 (53)3—7 植物全碳的测定 (54)第四篇农产品分析 (55)4—1 农产品样品的采取制备与保存 (55)4—1.1 籽粒样品的采集、制备与贮存 (55)4—1.2 水果蔬菜样品的采集、制备与贮存 (55)4—2 水分的测定(植物产品) (56)4—3 蛋白质的分析 (58)4—3.1 开氏法测定粗蛋白质 (58)4—3.2 铜盐沉淀法测纯蛋白质 (59)4—4 农产品中碳水化合物的分析 (60)4—4.1 糖分的分析 (60)4—4.1.1 果蔬含糖量的测定 (61)4—4.1.2 作物可溶性糖的测定(蒽酮比色法) (62)4—4.2 淀粉的测定 (64)4—4.2.1 谷物中淀粉的测定(酸水解法) (64)4—4.2.2 酶水解法 (65)4—4.3 植物中粗纤维的测定(酸碱洗涤重量法) (66)4—5 植物中粗脂肪的测定 (67)4—5.1 油重法 (67)4—5.2 残余法 (68)4—6 植物中维生素C的测定(2%草酸浸提—2,6—二氯靛酚滴定法) (70)4—7 农产品酸度测定(滴定法) (72)4—7.1 总酸度测定(滴定法) (73)4—8 农产品氨基酸的测定 (74)4—8.1 单指示剂甲醛滴定法 (75)4—8.2 双指示剂甲醛滴定法 (75)4—8.3 茚三酮比色法 (76)4—9 果品硬度的测定 (77)4—10 果品中可溶性固形物的测定(折射仪法) (77)附录A (79)第一篇土壤分析1—1 土壤样品的采集与处理土壤样品的采集是土壤分析工作中的一个重要环节,是直接影响着分析结果和结论是否正确的一个先决条件。
土壤农化分析
土壤农化分析第1章土壤农化分析的基本知识1、实验室用纯水如何得到?应该符合哪些要求,如何检验?2、试剂有哪些规格?如何选用和保存?3、常用器皿特点如何?如何采用?如何冲洗?玻璃器皿冲洗应当遵从什么原则?4、常用滤纸的类别?各有何特点?如何采用?5、稀酸、稀碱如何酿制?如何标定?第2章土壤样品的采集与制备1、如何并使收集样品最具备代表性?2、土壤样品制备过程应该注意哪些事项?3、采集混合土壤样品的原则是什么?第3章土壤样品的收集与制取1、重铬酸钾外加热容量法测定土壤有机质的原理是什么?2、铬酸、磷酸湿烧法测定有机质与重铬酸钾另加热容量法在原理上有何相同?3、列出常用土壤有机质测定方法,并比较其方法的优缺点。
4、长期迳水的水稻土使用哪种方法分析其有机质含量?为什么?5、重铬酸钾外加热容量法测定有机质含量的误差来源有哪些?如何消除?第4章土壤n和s分析1、土壤氮素形态有哪些?相互关系如何?测定时应注意什么问题?2、土壤有效n有哪些形态,为什么测定土壤有效n特别困难?3、酚二磺酸比色法测定硝态氮时应注意什么问题?4、化学方法抽取土壤硝态氮、氨态氮常用的金属粉末剂存有哪些?5、简述半微量凯氏法测定土壤全氮的原理、步骤及注意事项?常用的催化剂有哪些?6、详述碱求解蔓延法测定土壤有效率n的原理及步骤?第5章土壤p分析1、如何挑选最合适的土壤有效率磷金属粉末剂?为什么0.5mnahco3就是石灰性土壤有效率磷较好的金属粉末剂?2、钼锑抗比色法测定p的原理及显色条件如何?干扰因素有哪些?如何消除?3、影响有效p浸提的因素有哪些?4、钼蓝比色法测量p时用的还原剂存有抗坏血酸和sncl2,采用二者对比色过程的影响如何?5、详述酸性土壤有效率p测量的0.03mnh4f-0.025molhcl抽取-钼蓝法测定的磷素形态,测量原理、步骤及注意事项。
6、土壤无机p形态有哪些?如何采用化学方法分级测定?第6章土壤k分析1、土壤钾素的存在形态及相互关系。
土壤农化分析(完整)(两篇)
引言概述:土壤农化分析是一项重要的农业技术,通过对土壤样品进行检测和分析,可以了解到土壤的理化性质和营养状况,为农业生产提供科学依据和指导。
本文将从土壤采样方法、土壤理化性质分析、土壤养分分析、土壤酸碱度分析和土壤肥力评价等五个大点阐述土壤农化分析的相关内容。
正文内容:一、土壤采样方法1.确定采样地点:在农业生产中,应根据不同土地利用方式和作物需求,选择具有代表性且有代表性的采样地点。
2.采样工具选择:采样工具包括土壤钻孔器、铁锹、塑料袋等,应根据采样目的和土壤类型选择合适的采样工具。
3.采样深度:根据不同作物根系分布深度及养分分布情况,制定合理的采样深度。
4.采样数量:根据采样地块总面积和不同土壤类型的覆盖情况,确定合适的采样点数量。
5.采样方法:采用“Z”字形或螺旋形采样法,保证土壤样品的代表性。
二、土壤理化性质分析1.土壤质地分析:通过测定土壤颗粒组成比例,确定土壤质地类型,包括砂壤土、壤土和粘土等。
2.土壤含水量分析:通过测定土壤湿度和水分的含量,了解土壤水分的分布和利用情况,为合理施肥和灌溉提供依据。
3.土壤含气量分析:通过测定土壤孔隙度和空气含量,了解土壤通气情况,为根系呼吸和微生物活动提供充足的氧气。
4.土壤有机质分析:通过测定土壤中有机质含量,了解土壤的肥力水平和有机质的分解速度,为有机肥的施用提供依据。
5.土壤酸碱度分析:通过测定土壤的pH值,了解土壤的酸碱性,为土壤调理和肥料选择提供指导。
三、土壤养分分析1.全量养分分析:通过测定土壤中总氮、有效磷、速效钾等主要养分的含量,了解土壤的整体养分状况,为合理施肥提供依据。
2.速效养分分析:通过测定土壤中速效态氮、磷、钾等养分的含量,了解土壤养分供应能力和及时调控的需要。
3.微量元素分析:通过测定土壤中微量元素如铁、锌、铜等的含量,了解土壤的微量元素状况,为微量元素肥料的施用提供依据。
4.养分比例分析:通过计算土壤中主要养分的比例,了解土壤养分平衡性,为优化施肥方案和调整土壤肥力提供依据。
土壤农化分析
《土壤农化分析》是2000年1月中国农业出版社出版的图书,作者是鲍士旦。
该书适用于资源与环境学院有关土壤、农业化学、植物营养等专业本科生和研究生。
目录第一章土壤农化分析的基本知识第二章土壤样品的采集与制备第三章土壤有机质的测定第四章土壤氮和硫的分析第五章土壤中礏的测定第六章土壤中钾的测定第七章土壤中微量元素的测定第八章土壤阳离子交换隆能的分析第九章土壤水溶性盐的分析第十章土壤中碳酸钙的测定第十一章土壤中硅、铁、铝等元素的分析第十二章植物样品的采集、制备与水分测定第十三章植物灰分和各种营养元素的测定第十四章农产品中蛋白质和氮基酸的分析第十五章农产品中碳水化合物的分析第十六章籽粒中油脂肪酸的测定第十七章有机酸和维生素的分析第十八章无机污染(有害)物质的分析第十九章无机肥料分析第二十章有机肥料的分析第二十一章分析质量的控制和数据处理附表前言为了适应教学、科研和生产的需要,我们编写了这本包括土壤、肥料、植物及农产品分析的《土壤农化分析实验》,作为广大农业科技工作者和高等院校、中等专业学校有关专业师生的实验教材或工具书。
考虑到分析条件等原因,书中有时在同一分析项目中并了几个方法,可根据分析项目和要求等选择应用。
本书包括四方面的内容。
土壤分析主要为土壤水分、土壤物理性质、土壤化学性质及土壤酸碱度的分析。
肥料分析主要为有机肥料、单质化学肥料及复合肥有效成分的分析。
植物分析主要为植物营养诊断、植物体常量元素及微量元素分析。
农产品分析主要为农产品中碳水化合物、糖分、淀粉、粗纤维、粗脂肪、Vc及氨基酸等的分析。
由于编者水平所限,书中疏漏,错误之处在所难免,敬请提出宝贵意见,以便进一-步修改。
《土壤农化分析》知识点归纳
《土壤农化分析》知识点归纳一、土壤农化分析基础土壤农化分析是农业科学研究和生产实践中的重要环节,它涉及到土壤、植物和肥料等多个方面的分析工作。
以下将详细介绍土壤农化分析的基础内容。
1. 实验室纯水制备方法及分类实验室纯水的制备方法主要有蒸馏法和离子交换法。
•蒸馏法是利用水与杂质的沸点不同,经过外加热使所产生的水蒸气经冷凝后制得蒸馏水。
这种方法制得的蒸馏水不易长霉,但蒸馏器多为铜制或锡制,蒸馏水中难免有少量的金属离子存在,而且耗电较多,出水速度小。
•离子交换法是让水流通过阴、阳离子交换树脂,去除杂质后制得去离子水。
离子交换法制得的去离子水质量较高,但未经高温灭菌,往往容易长霉。
2. 农化分析用纯水的pH 要求及电导率要求农化分析用纯水的pH 要求为 6.5 - 7.5,电导率要求不高于 2 - 1μS・cm⁻¹。
常量分析可用电导率5μS・cm⁻¹左右的纯水,某些微量元素分析和精密分析需要用1μS・cm⁻¹以下的优质纯水。
3. 我国化学试剂按纯度分级及在农化分析中的应用我国化学试剂按纯度分为优级纯、分析纯、化学纯三级。
•农化分析常规项目一般用化学纯试剂配制溶液,因为化学纯试剂的纯度能够满足常规分析的要求,且价格相对较为经济。
•标准溶液和标定剂常用分析纯或优级纯试剂,这是因为标准溶液和标定剂需要更高的纯度,以确保分析结果的准确性。
•微量元素分析需用优级纯或更高纯度试剂配制标准溶液,因为微量元素的含量通常很低,对试剂的纯度要求极高,以避免杂质对分析结果的干扰。
4. 使用硼砂作为基准试剂时的处理方法使用硼砂作为基准试剂时,需在称重前置于盛有蔗糖和食盐饱和水溶液的干燥器内平衡一周。
硼砂作为基准物质使用前的这种处理方法,可以确保其性质稳定,从而提高分析结果的准确性。
例如,在标定盐酸溶液的浓度时,若硼砂事先置于干燥器中保存,会对所标定盐酸溶液浓度的结果产生影响,一般会使结果偏低。
5. 玻璃器皿的洗涤要则玻璃器皿的洗涤要则是用毕立即洗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤农化分析实验前??? 言为了适应教学、科研和生产的需要,我们编写了这本包括土壤、肥料、植物及农产品分析的《土壤农化分析实验》,作为广大农业科技工作者和高等院校、中等专业学校有关专业师生的实验教材或工具书。
考虑到分析条件等原因,书中有时在同一分析项目中并列了几个方法,可根据分析项目和要求等选择应用。
本书包括四个方面的内容。
土壤分析主要为土壤水分、土壤物理性质、土壤化学性质及土壤酸碱度的分析。
肥料分析主要为有机肥料、单质化学肥料及复合肥有效成分的分析。
植物分析主要为植物营养诊断、植物体常量元素及微量元素分析。
农产品分析主要为农产品中碳水化合物、糖分、淀粉、粗纤维、粗脂肪、Vc及氨基酸等的分析。
由于编者水平所限,书中疏漏,错误之处在所难免,敬请提出宝贵意见,以便进一步修改目? 录第一篇土壤分析 (8)1—1土壤样品的采集与处理 (8)1—土壤样品的采集 (8)1—土壤样品的处理 (9)1—2土壤水分的测定................................................ (10)1—土壤吸湿水的测定.................................... . (10)1—土壤田间持水量的测定.................................... . (10)1—3土壤有机质的测定................................................... (11)1—4土壤中氮的测定......................................................... (13)1—? 土壤全氮量的测定............................................... . (13)1—? 土壤水解性氮的测定 (14)1—5? 土壤中磷的测定.................................................................................. .15 1—? 土壤全磷的测定 (15)1—? 土壤速效磷的测定 (17)? 1—6? 土壤钾素的测定 (18)1—? 土壤速效钾的测定 (18)1—? 土壤全钾量的测定 (18)? 1—7? 土壤阳离子交换量的测定 (19)? 1—8? 土壤可溶性盐分的测定 (21)1—? 待测液的制备 (21)1—? 水溶性盐分总量的测定 (21)1—? 碳酸根和重碳酸根的测定 (21)1—? 氯离子的测定 (22)1—? 硫酸根离子的测定 (22)1—? 钙和镁离子的测定 (23)1—? 钠和钾离子的测定 (24)? 1—9? 土壤微量元素的测定 (25)1—? 土壤有效硼的测定 (25)1—? 土壤有效钼的测定 (25)1—? 土壤中铜、锌、锰、铁的测定 (27)? 1—10? 土壤酸碱度的测定 (27)1—? 混合指示剂比色法 (27)1—? 电位测定法 (28)? 1—11? 土壤容重和孔度的测定(环刀法) (28)1—? 土壤容重的测定(环刀法) (28)1—? 土壤孔度的测定 (29)第二篇? 肥料分析 (31)? 2—1? 肥料样品的采集与制备 (31)2—? 化学肥料样品的采集与制备 (31)2—? 有机肥料样品的采集与制备 (31)? 2—2? 肥料含水量的测定 (31)2—? 常见化肥中含水量的测定 (31)2—? 有机肥料中含水量的测定 (29)? 2—3? 氮素化肥分析 (32)2—? 氮素化肥总氮量的测定 (32)2—? 氮素化肥中铵态氮的测定 (33)2—? 氮素化肥中硝态氮的测定 (33)2—? 尿素中氮的测定 (34)? 2—4? 磷素化肥分析 (34)2—? 磷素化肥全磷量的测定 (34)2—? 过磷酸钙中游离酸的测定 (35)2—? 过磷酸钙中有效磷的测定 (36)2—? 碱性热制磷肥有效磷的测定 (36)2—? 磷矿粉中全磷量的测定 (37)2—? 磷矿粉中有效磷的测定 (37)? 2—5? 钾素化学肥料全钾量分析 (37)? 2—6? 复合肥料的分析 (38)2—7????????? 有机肥料的分析 (38)2-有机肥料全氮量的测定(铁锌粉还原法) (38)第三篇? 植物分析 (40)? 3—1? 植物样品的采集、制备与保存 (40)3—? 植物样品的采集 (40)3—? 植物组织样品的制备与保存 (41)3—? 植物微量元素分析样品的制备与保存 (41)? 3—2? 植物营养诊断 (41)3—? 植株汁液和浸提液的制备 (41)3—? 试剂配制 (42)3—? 植物组织中硝态氮的测定 (42)3—? 植物组织中磷的测定 (43)3—? 植物组织中钾的测定 (44)? 3—3? 植物水分的测定 (45)3—? 风干植物样品水分的测定 (45)3—? 新鲜植物样品水分的测定 (45)? 3—4? 植物粗灰分的测定 (46)? 3—5? 植物常量元素的分析 (47)3—? 植物全氮、磷、钾的测定 (47)??? 3—植物样品的消煮 (47)??? 3—植物全氮的测定 (48)? 3—植物全磷的测定 (48)??? 3—植物全钾的测定 (49)3—? 植物全钙、镁的测定 (50)? 3—6? 植物微量元素分析 (51)3—? 植物硼的测定 (52)3—? 植物钼的测定 (53)3—? 植物铁、锰、铜、锌的测定 (53)? 3—7? 植物全碳的测定 (54)第四篇? 农产品分析 (55)? 4—1? 农产品样品的采取制备与保存 (55)4—? 籽粒样品的采集、制备与贮存 (55)4—? 水果蔬菜样品的采集、制备与贮存 (55)? 4—2? 水分的测定(植物产品) (56)? 4—3? 蛋白质的分析 (58)??? 4—开氏法测定粗蛋白质 (58)??? 4—铜盐沉淀法测纯蛋白质 (59)? 4—4? 农产品中碳水化合物的分析 (60)4—? 糖分的分析 (60)??? 4—果蔬含糖量的测定 (61)??? 4—作物可溶性糖的测定(蒽酮比色法) (62)4—? 淀粉的测定 (64)??? 4—谷物中淀粉的测定(酸水解法) (64)??? 4—酶水解法 (65)4—? 植物中粗纤维的测定(酸碱洗涤重量法) (66)? 4—5? 植物中粗脂肪的测定 (67)4—? 油重法 (67)4—? 残余法 (68)? 4—6? 植物中维生素C的测定??? (2%草酸浸提—2,6—二氯靛酚滴定法) (70)? 4—7? 农产品酸度测定(滴定法) (72)4—? 总酸度测定(滴定法) (73)? 4—8? 农产品氨基酸的测定 (74)4—? 单指示剂甲醛滴定法 (75)4—? 双指示剂甲醛滴定法 (75)4—? 茚三酮比色法 (76)4—9? 果品硬度的测定 (77)? 4—10 ?果品中可溶性固形物的测定(折射仪法) (77)? 附录A (79)第一篇?????????? 土壤分析1—1? 土壤样品的采集与处理土壤样品的采集是土壤分析工作中的一个重要环节,是直接影响着分析结果和结论是否正确的一个先决条件。
由于土壤特别是农业土壤本身的差异很大,采样误差要比分析误差大得多,因此必须重视采集有代表性的样品。
另外,要根据分析目的不同而采用不同的采样和处理方法。
1—? 土壤样品的采集1???????? 土样的采集时间和工具土壤中有效养分的含量因季节的不同而有很大的差异。
分析土壤养分供应的情况时,一般都在晚秋或早春采样。
采样时要特别注意时间因素,同一时间内采取的土样分析结果才能相互比较。
常用的采样工具有铁锨、管形土钻和螺旋土钻。
2? 土壤样品采集的方法采样的方法因分析目的不同而不同。
(1)土壤剖面样品。
研究土壤基本理化性质,必须按土壤发生层次采样。
一般每层采样1kg,分别装入袋中并做好标记。
(2)土壤物理性质样品。
如果是进行土壤物理性质的测定,必须采集原状土壤样品。
在取样过程中,须保持土块不受挤压,样品不变形,并要剥去土块外面直接与土铲接触而变形部分。
(3)土壤盐分动态样品。
研究盐分在土壤剖面中的分布和变动时,不必按发生层次采样,可从地表起每10cm或20cm采集一个样品。
(4)耕作层土壤混合样品。
为了评定土壤耕层肥力或研究植物生长期内土壤耕层中养分供求情况,采用只取耕作层20cm深度的土样,对作物根系较深的或熟土层较厚的土壤,可适当增加采样深度。
采样点的选择一般可根据土壤、作物、地形、灌溉条件等划分采样单位。
在同一采样单位里地形、土壤、生产条件应基本相同。
土壤的混合样品是由多点混合而成。
一般采样区的面积小于10亩时,可取5个点的土壤混合;面积为10—40亩时,可取5—15个点的土壤混合;面积大于40亩时,可取15—20个点的土壤混合。
在丘陵山区,一般5—10亩可采一个混合样品。
在平原地区,一般30—50亩可采一个混合样品。
采样点的分布方式主要有:对角线取样法(图1):适用于面积不大,地势平坦,肥力均匀的地块。
棋盘式取样法(图2):适用于中等面积,地势平坦、地形完整,但地力不均匀的地块。
之字形取样法(图3):适用于面积较大,地势不平坦地形多变的地块。
如果采来的土壤样品数量太多,可用四分法将多余的土壤弃去,一般保留1kg左右的土壤即可。
四分法的方法是:将采集的土壤样品弄碎混合并铺成四方形,然后划对角线分成四等份,取其对角的两份,其余两份弃去。
如果所得的样品仍然很多,可再用四分法处理,直到所需数量为止。
取土样1kg装袋,袋内外各放一标签,上面用铅笔写明编号、采集地点、地形、土壤名称、时间、深度、作物、采集人等,采完后将坑或钻眼填平。
图1图2?×??????????????? ××???????????????? ××?×??????????? ×??? ×??????????? ×????? ××??????? ×??????? ×??????? ×????????? ××?? ×???????????? ×??? ×????????????? ×××??????????????? ××????????????????? ×1—? 土壤样品的处理土壤样品的处理包括风干、去杂、磨细、过筛、混匀、装瓶保存和登记等操作过程。
1? 风干和去杂从田间采回的土样,除特殊要求鲜样外,一般要及时风干。