船舶电力推进系统
船舶电力推进系统

船舶电力推进系统船舶电力推进系统是现代船舶设计中的重要部分,它的作用是为船舶提供高效、可靠的动力,以满足船舶的各种需求。
本文将详细介绍船舶电力推进系统的构成、特点、应用场景及其发展趋势。
一、系统构成船舶电力推进系统主要由发电机、变压器、配电板、变频器、推进器等组成。
其中,发电机负责将机械能转化为电能,变压器则将发电机输出的电压和电流进行调节,配电板负责对电能进行分配和控制,变频器则将电源频率转换为推进器所需的频率,推进器则最终将电能转化为机械能,推动船舶前行。
二、系统特点船舶电力推进系统具有以下优点:1、能量利用率高:电力推进系统中的电动机能量转换效率高达90%以上,相比传统燃油发动机,能量利用率更高。
2、航行平稳:由于电力推进系统可以通过调节电动机的转速和转向来控制推进器,因此可以实现船舶的平稳航行,减少震动和噪音。
3、维护方便:电力推进系统的机械部件相对较少,因此维护相对简单,寿命也更长。
4、环保:由于电力推进系统使用的燃料是电力,因此不会产生废气和噪音,对环境更加友好。
三、应用场景电力推进系统在船舶中的应用非常广泛,尤其是在大型船舶、高速船和军舰中,电力推进系统的优势更加明显。
例如,在大型油轮中,电力推进系统可以更好地满足油轮的平稳航行和货物运输需求;在高速船中,电力推进系统可以实现更高的航速和更好的舒适性;在军舰中,电力推进系统可以提高舰船的隐蔽性和作战能力。
四、发展趋势随着科技的不断进步,船舶电力推进系统也在不断发展。
未来,电力推进系统将更加智能化、高效化和环保化。
具体来说,以下是一些发展趋势:1、智能控制:未来的电力推进系统将更加智能化,可以通过传感器和人工智能技术实现自动化控制和优化,提高系统的效率和可靠性。
2、高效能源:未来的电力推进系统将更加注重能源的高效利用,例如采用更高效的发电机和电动机,以及更先进的能量储存技术,以提高系统的能量利用率。
3、环保技术:未来的电力推进系统将更加注重环保,例如采用更环保的燃料电池或太阳能等可再生能源技术,以减少对环境的影响。
船舶推进系统电力电子电控

基于信号的故障诊断
通过对船舶推进系统各种信号进行采集、处理和 分析,提取故障特征并进行诊断,具有实时性和 灵敏性。
基于知识的故障诊断
利用专家系统、模糊逻辑等人工智能技术,对船 舶推进系统故障进行智能诊断,具有自学习和自 适应能力。
06 船舶推进系统安全管理 和法规要求
安全管理体系建设
01
建立完善的安全管理制 度和流程,明确各级职 责和权限。
02
设立安全管理机构,配 备专业安全管理人员。
03
定期开展安全风险评估 和隐患排查,制定并落 实整改措施。
04
建立安全奖惩机制,激 励员工积极参与安全管 理工作。
法规要求和标准解读
01
定义
船舶推进系统是船舶动力装置的 核心部分,负责将动力装置产生 的能量转化为船舶前进的推力。
功能
船舶推进系统的主要功能包括提 供船舶航行所需推力、控制船舶 航速和航向,以及实现船舶的倒 车、停泊等操作。
船舶推进方式分类
01
机械推进
通过机械传动装置将主机动力传递至螺旋桨,推动船舶前进。机械推进
具有结构简单、可靠性高等优点,但传动效率较低,且难以实现灵活控
包括船舶航速、加速度、推力等,反映推进 系统的动力输出能力。
可靠性指标
考虑推进系统的故障率、维修性等因素,评 估其可靠运行的能力。
经济性指标
如燃油消耗率、能效比等,衡量推进系统在 经济性方面的表现。
环保性指标
针对推进系统排放的废气、噪音等污染物, 制定相应的环保性评估指标。
仿真模拟与实验验证方法
仿真模拟方法
组织开展各类安全培训活动,提高员 工安全意识和技能水平。
船舶电力推进技术pdf

船舶电力推进技术
船舶电力推进技术是指使用电力驱动船舶推进系统的技术。
相比于传统的机械推进技术,电力推进技术具有更高的效率、更低的噪音和更少的污染排放,因此在现代船舶设计中得到了越来越广泛的应用。
船舶电力推进系统通常由以下几个部分组成:
1. 发电机:将机械能转换成电能,产生所需的电力。
2. 电动机:将电能转换成机械能,驱动船舶的螺旋桨旋转,产生推进力。
3. 电池组:作为备用电源,提供紧急电力供应或在需要时提供额外的电力。
4. 控制系统:负责监测和调节电力系统的运行,确保系统的稳定和安全。
船舶电力推进技术的优点包括:
1. 高效节能:电力推进系统可以实现高效节能,降低船舶的燃料消耗和排放。
2. 噪音低:电力推进系统的运转噪音较低,减少了对周围环境的噪音污染。
3. 灵活性高:电力推进系统可以根据需要调节输出功率,提高船舶的操纵灵活性。
4. 维护方便:电力推进系统的维护相对简单,可以减少
船舶的维护成本和停机时间。
船舶电力推进技术的缺点包括:
1. 初始成本高:电力推进系统的建设成本相对较高,需要投入大量资金。
2. 技术要求高:电力推进系统的设计和维护需要具备较高的技术水平。
3. 受电网限制:电力推进系统的运行需要依赖电网供电,受到电网供电的限制。
船舶电力推进系统的技术创新

船舶电力推进系统的技术创新在现代船舶工业中,船舶电力推进系统作为一项关键技术,正经历着日新月异的创新与变革。
这一技术的发展不仅提升了船舶的性能和效率,还为航运业带来了诸多新的机遇和挑战。
船舶电力推进系统,简单来说,就是将船舶的动力来源从传统的机械传动转变为电力驱动。
其核心组成部分包括发电装置、电力变换装置、推进电机以及控制与监测系统等。
这种系统的优势在于能够实现更加灵活的动力分配、精确的速度控制以及更低的噪音和振动水平。
过去,船舶电力推进系统在一些特殊用途的船舶上应用较为广泛,如破冰船、海洋工程船等。
然而,随着技术的不断进步,其应用范围正在逐渐扩大,包括商船、客船甚至军舰。
在技术创新方面,首先值得一提的是发电装置的改进。
传统的船舶发电通常依赖于内燃机,如柴油机。
如今,随着新能源技术的发展,燃料电池、太阳能电池板以及风能发电装置等逐渐崭露头角。
燃料电池具有高效、清洁的特点,能够为船舶提供稳定的电力来源。
太阳能电池板和风能发电装置则能够在特定条件下补充能源,进一步提高船舶的能源利用效率,减少对传统燃油的依赖,降低对环境的影响。
电力变换装置的性能提升也是一个重要的创新点。
高效的电力变换装置能够将发电装置产生的电能进行精确的调节和转换,以满足推进电机的不同需求。
同时,新型的电力变换装置还具备更好的电能质量控制能力,减少谐波和电压波动,提高整个电力系统的稳定性和可靠性。
推进电机的技术发展同样令人瞩目。
永磁同步电机由于其高效率、高功率密度和良好的调速性能,逐渐成为船舶电力推进系统中的主流选择。
与传统的异步电机相比,永磁同步电机能够在更小的体积和重量下输出更大的功率,从而为船舶节省宝贵的空间和重量。
此外,超导电机的研究也在不断推进。
虽然目前超导电机在实际应用中还面临一些技术和成本的挑战,但一旦取得突破,将为船舶电力推进带来革命性的变化。
控制与监测系统的智能化是船舶电力推进系统技术创新的另一个重要方向。
通过先进的传感器和数据分析技术,控制与监测系统能够实时获取船舶的运行状态、电力系统的参数以及外界环境信息,并据此进行智能决策和优化控制。
船舶电力推进系统综述报告

船舶电力推进系统综述报告张文超201221024017一、船舶电力推进系统的发展船舶电力推进系统已有近百年历史,但是由于受各种因素制约,发展缓慢,且大多数只应用在特种船舶上。
从20世纪80年代起,供电系统、推进电机和微电子及信息技术的迅猛发展,使船舶电力推进装置打破了长期徘徊局面,得到了大力的发展。
电力推进系统基本由机械原动机(柴油机、燃气轮机或核动力)构成,用以驱动交流发电机,发电机再为推进电动机提供动力。
电动机可能是直流、交流同步电动机或交流感应电动机。
同传统的机械推进方式相比,采用电力推进系统的船舶在经济性、振动噪声、船舶操纵、布置和安全可靠性等方面具有明显优点。
船舶综合全电力推进系统包括:发电、输电、配电、变电、拖动、推进、储能、监控和电力管理,是现行船舶平台的电力和动力两大系统发展的综合;它不是电力推进加自动电站的简单组合,而是从概念到方案、组成、配置、技术等均发生重大变化,给未来的船舶带来一场革命。
二、电力推进系统的组成船舶电力推进装置一般由原动机﹑发电机﹑电动机﹑螺旋桨以及控制单元组成。
原动机带动发电机,发电机带动推进电机,电机驱动螺旋桨,推动船舶航行。
因螺旋桨所需功率很大,一般需要设置两个单独的电站:推进电机电站和辅机电站,分别给推进电机和辅机供电。
目前的原动机一般使用高速或中高速的柴油机,推进装置一般有直流电力推进和交流电力推进两种。
目前世界上使用电力推进的船舶,主要可分为两类:一类是电力推进与其他发动机推进结合的混合推进;另一类是全电力推进,即使用一个电站供电给推进装置和其他辅助装置。
三、船舶电力推进方式的优缺点1.电力推进方式的优点(1)操纵灵活,机动性能好,靠离码头时可不需拖轮协助,有更好的经济性;(2)电力推进装置的操纵由驾驶台直接控制,应付紧急状态能力强,有利于提高安全。
(3)有很好的低速特性,恒功率特性,恒电流特性和陡转特性;(4)因省去了主机与螺旋桨之间的轴系以及舵,节省了大量的空间,可以增加船舶有效空间和有效载荷;(5)可采用中高速的非反转原动机,主机的选择有很大的灵活性;(6)原动机和螺旋桨系柔性连接,使得螺旋桨的转速不受原动机转速的限制,彼此都可以工作在最佳状态;(7)噪声小,震动小,废气NOx排放减少;(8)若采用吊舱式电力推进系统,省去了长轴系,操舵装置和舵,可不设舵机房,也省去了bow throuster,减轻了设备的重量,增加了有效载荷。
舰船电力推进系统优势及发展现状

舰船电力推进系统优势及发展现状一、舰船电力推进系统行业优势船船推进方式是指船船从原动机到螺旋桨的功率传输方式,可分为机械推进和电力推进两大类.电力推进系统的主要优点在于占用空间小、操作灵活、推进功率和服务功率可自山转换,因此在海军舰船、豪华邮轮、海工船等特种船型应用较广,但由于其经济性较差,并没有在大型船舶上广泛应用.值得注意的是,不论机械推进还是电力推进,其原动机没有改变,还是以柴油机、燃气轮机或者蒸汽轮机作为船舶的主功率源.船舶推进方式分类和优劣势电力推进根据不同维度可分为多种类型.根据电力推进占比可分为混合电力推进和全电力推进,根据电动机的布局位置可分为吊舱式和非吊舱式,根据推进负载与非推进负载的电力管理和分配方式可分为综合电力推进等.电力推进方式分类由于电力推进技术具备明显优势,广泛适用于各类军船,也适用于各种大型客轮(豪华邮轮、渡轮)、特殊货轮(特别是LNG船、化学品船等)、海洋工程船(破冰船、铺缆船、挖泥船、测量船等)、海洋石油、天然气开采装备以及油气运输船等.对于民船和军船而言,电力推进技术的共同优越性有十点:1)增加有效载荷;2)降低振动;3)提高灵活性;4)增强可靠性;5)提高机动性; 6)减少维护保养量;7)节省燃油;8)提高自动化程度;9)延长设备寿命;10)技术升级.电力推进技术的主要优势U前电力推进方式中最有发展前景的是综合电力推进系统,综合电力推进系统所需功率范围为50-100W,主要系统包括供电系统、推进系统和监控系统三个分系统,主要的装置包括原动机,发电机,推进功率分配系统,推进电动机驱动装置,推进电动机,螺旋桨,非推进功率分配系统.从价值量来看,不含原动机的船舶价值量约为全船的15%左右,整套系统套价值量在千万到亿不等.综合电推系统的主要子系统舰船采用综合电力推进系统能够降低燃料消耗、节省舰船运行成本.舰船采用综合电力推进系统能够降低燃料消耗、节省舰船运行成本.在舰船的不同工作模式下,仅当舰船发动机接近满功率运行时采用机械推进的效率稍高,其余模式下采用电力推进的效率均高于机械推进.不同推进方式的推进效率比较不同推进方式的推进效率比较与乩大村堆切準比值<*)隈血极电力加遗g"幼枫》枫从曲it二、舰船电力推进系统发展现状民品领域,电力推进应用率逐步提高,整个市场呈扩张趋势.从2010-2019年完工船舶各类推进方式占比来看,采用电力推进的完工船舶占比从2010年的3. 74%上升到2019年的4.96%,其中,2017、2018年船舶电力推进占比均超过7%, 2019年有所下降主要因为整体船舶市场处于低谷,特别是油价持续低迷,海工船船等主要应用电力推进船型订单量较少.采用电力混合推进方式的船舶占比也有较大提升,从2010年的0. 33%提高到2019年的0. 73%.2010-2019年完工船舶各类推进方式占比2010-2019年2010-2019年采用电力推进和混合艘数100.00% 90.00% 80.00% 70.00% 60.00% 50.00% 40.00% 30.00% 20.00% 10.00%2010-201^年采川电力推进和混合艘数■全电0.00%从应用船型来看,船船电力推进系统主要应用的船型为海工船、特殊船型和豪华邮轮• 111于造价较高、全功率效率较低等原因,电力推进系统在油船、散货船、集装箱船这三大主流船型应用较少,但山于其突出的操作性优势,故在海工船、特殊船型和豪华邮轮等船舶上应用率极高.从具体船型来看,2019年完丄的海工船中钻井船、地震探测船、科考船、R0V潜水支持船等船型100%都是采用了电力推进系统,在其他的海工船型中应用占比也基本达到50%以上;在特殊船型中,LNG再气化船、燃料船等船型100% 采用了电力推进系统,LNG船舶中电力推进系统占比也达到了67%;豪华邮轮是另一个电力推进系统应用的主要船型,2019年完工的豪华邮轮中,电力推进系统占比达到了85. 7%.2019年完工船舶中电力推进系统主要应用船型2010-2019年完工豪华邮轮数量(艘)2010-2019年完工g华邮轮数応(艘〉2010-2019年完工豪华邮轮推进方式占比2010-2019年完工豪华邮轮推进方式占比■全电推进•小型鏗轮(2万吨以下)■全电推进冲型蜉轮(2-5万吨)全电推进•大型哒(5~7万吨)■全电推迸•巨型密轮(7万从建造国家来看,欧洲完工的船舶采用电力推进的比例较高.一方面山于欧洲生产的船型主要为豪华邮轮、海工船以及特殊船型,这些船型较为适合应用电力推进系统,另一方面也因为全球主要的电力推进系统生产厂商均在欧洲,技术和产业链较为成熟.2019年中国完工的船舶电力推进占比仅为3. 94%,但从绝对量来讲,由于基数较大,中国完丄的电力推进船舶数量全球最高,占全球完工电力推进船舶的23. 36%.2019年中国完工船舶中电力推进船舶数量及占比2019年中国完工船舶中电力推进船船数量及占比2010 2011 2012 20132014 2015 2016 2017 2018 20192019年各国完工电力推进船舶占比2019年各国完工电力推进船舶占比■中国■挪威■韩国■意坤■韩国■具他从完工船型来看,中国完工船舶中采用电力推进的主要为海工船和特殊船型.2019年中国完工的海工船中有25艘采用了电力推进方式,特殊船型中有19艘采用了电力推进方式,3艘采用了混合动力推进方式.2019年中国完工船舶电力推进船型船型分类具体船型电力推进混合动力推进机械推进总计电力及混合动力占比海工船三用工作船1—7812. 50%潜水支持船2—2450. 00%12%中国2049年询将建造10艘航母,LI前中国已造航母型号为002,后续2020-2049年将建造8艘航母,若对标美航母作战群水面舰艇价格,则造价为2592亿美元,平均每年129.6亿美元对应900. 72亿人民币(按照6. 93中美汇率计算).按照20%船舶动力系统造价占比计算,则未来中国航母作战群军用舰船动力系统总采购规模约为180. 14亿元,若中国也建造非航母作战配套舰艇,则此为军用电力综合推进系统采购额的保守估计.未来中国航母作战群军用舰船综合电力推进系统投入预佔未来市场空间方面,军品方面,预计未来十年军船市场电力推进市场空间为31.35亿美元,约合人民币220亿元。
船舶电力推进系统

船舶电力推进系统Edited by 阳光的cxf 第一章1. 电力推进系统的优缺点P10优点:(1)机动性能好(2)机舱小,布置灵活可增加船舶的载货载客能力(3)推进效率高(4)节能,有利于环保(5)适合于特种船舶的应用P47优点:(1)通过减少燃料消耗和维护费用减少生命周期成本,尤其是在负载变化大的地方(2)增强了系统对单一故障的抵抗性,使优化原动机负载分配成为可能(3)中高速柴油机重量轻(4)占用空间少,甲板空间利用更加灵活(5)推进器位置布置更加灵活(6)更好的机动性(7)更小的推进噪声和震动缺点:(1)初始投资增加(2)原动机和推进器之间有额外的器件,增加了满负荷运行时的损耗(3)新型设备需要不同的操作,维护策略2. 不同推进方式船舶操纵性能对比项目机械推进常规电力推进POD推进回转直径120% 100% 75%零航速回转180 度所需时间118% 100% 41%全速回转180 度所需时间145% 100% 42%全速到停止所需时间280% 100% 42%零航速至全速所需时间210% 100% 90%第二章3. 电力推进系统类型(1)可控硅整流器+直流电动机。
应用:船舶推进所应用的直流推进电机的容量,在2~3MW 之间。
优点:1)启动电流和启动转矩接近零2)动态响应快缺点:1)转矩控制不精准2)换向器易发生故障3)谐波污染较大4)直流电动机结构复杂,成本高,体积大,维护困难,效率低(2)交流异步电动机+可调螺距螺旋桨模式。
应用:这种推进方式只适合于中、小功率船舶,或1000kW 以下的侧推装置,因为微软起动器目前还只有中、小功率的低压产品。
优点1)几乎没有谐波污染2)转矩稳定没有脉动3)设计点运行效率高缺点:1)启动电流大2)启动瞬间机械轴承受转矩大3)功率因数低4)功率及转矩动态响应慢5)反转慢,制动距离长6)变矩桨结构复杂,价格贵,可靠性差7)变距桨液压控制系统复杂(3)电流型变频器CSI (Current Source Inverter) + 交流同步电动机。
科技成果——船舶综合电力推进系统

科技成果——船舶综合电力推进系统技术开发单位中国船舶重工集团公司第七一二研究所技术简介船舶综合电力推进系统是近年来在船舶行业兴起的一种新的推进技术,具有节能降耗、低噪音振动、提升舱室有效空间、操作灵活方便等诸多优点,在工程、游船、海洋工程船、现代渔船等多种船型上非常适用,目前正在被越来越多的国内外船东接受并实际应用。
其系统包括了柴油发电机组、变压器、变频器、推进电动机等核心设备,之前只有国外少数几家企业具备其技术开发和产品供货能力。
技术开发单位是目前国内唯一具备船舶电力推进系统集成和自主核心设备供货的单位,形成了具有完全自主知识产权的电力推进系统及变频器、推进电机、功率管理系统等核心设备系列化产品研制生产能力,并建立了产业化生产基地,是国内唯一通过CCS系列化产品型式认可的产品;同时还具备20MW以下核心设备的定制供货能力。
主要技术指标低压690V/中压3300V,20MW及以下各类船舶电力推进系统集成能力,包括DFE、AFE、直流、混合等多种模式;低压690V、功率3MW以下,中压3300V、功率10MW以下船用变频器系列化产品;低压690V、功率3MW以下,中压3300V、功率10MW以下高、低速船用推进电动机系列化产品。
技术特点具有为船舶提供电力推进系统提供完整解决方案的能力;船用水冷变频器具有效率高、模块化、调速能力强等优点;推进电机具有功率因数高、效率高等优点;功率管理系统具有良好的人机互动、系统兼容型强等优点。
技术水平国际先进适用范围挖泥船、游船、豪华邮轮、海洋工程船、科考船、渔船等多种电力推进船舶;海洋工程平台、生活平台等各类海工平台变频驱动领域。
专利状态授权专利10余项。
技术状态批量生产、成熟应用阶段合作方式市场合作:与有行业资源或资金实力的相关单位开展市场合作,拓展自主知识产权电力推进系统的市场,为用户提供性价比高的电力推进系统及核心设备。
预期效益在船舶电力推进领域,目前国内越来越多船东接受和使用电力推进系统,电力推进系统属于典型的高技术含量装备,一般一船套系统价值都在千万元人民币左右,年产值可达数亿元,毛利润率在30%以上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.中压变压器
(1)推进移相变压器:常用厶/△+Y接线
(2)作业机械移相变压器/降压变压器:
(3) 日用负载降压变压器:一般采用厶/△接线;
(4)有些变压器的容量可能很大,甚至接近或超过单台发电机的容量;
(5)大容量变压器接通时的冲击电流会造成发电机过流脱扣或过大的电压跌落,一般用预充磁的 方式来降低其冲击电流;
2.不同推进方式船舶操纵性能对比
项目
机械推进
常规电力推进
POD推进
回转直径
120%
100%
75%
零航速回转180度所需时间
118%
100%
41%
全速回转180度所需时间
145%
100%
42%
全速到停止所需时间
280%
100%
42%
零航速至全速所需时间
210%
100%
90%
第二章
3.电力推进系统类型
(1)可控硅整流器+直流电动机。应用:船舶推进所应用的直流推进电机的容量,在2〜3MW之间。
第五章
8.表格分析
(1)所用推进器类型五花八门
(2)大部分采用FPR少部分采用CPP
(3)最大单机功率小于等于5Fra bibliotek00kW(4)驱动形式多样,以虚拟24P最多
9.中压电力系统
当电站超过10MW,采用中压发电机
一般可按所有发电机电流之和乘上8倍估得在不同电压等级下的短路容量
中压电力系统绝大多数采用中性点高电阻接地方式
(2)增强了系统对单一故障的抵抗性,使优化原动机负载分配成为可能
(3)中高速柴油机重量轻
(4)占用空间少,甲板空间利用更加灵活
(5)推进器位置布置更加灵活
(6)更好的机动性
(7)更小的推进噪声和震动
缺点:
(1)初始投资增加
(2)原动机和推进器之间有额外的器件,增加了满负荷运行时的损耗
(3)新型设备需要不同的操作,维护策略
优点:
1)功率和转矩动态响应快
2)系统电源输出频率范围宽
3)启动平稳
4)功率因数高
5)低速功率损耗小
6)推进效率高
缺点:
1)价格贵
(5)交交变频器+交流同步电动机。单个电力驱动系统的功率范围在2〜30MW之间。
优点:
1)启动平稳,启动电流逐渐增大
2)功率和转矩动态响应快
3)满负荷时效率高
4)不需要减速齿轮,直接驱动螺旋桨
(2)配电系统
(3)变频系统
(4)推进器单元
5.电力推进系统的组件
(1)电站组件
(2)配电板组件
(3)变压器组件
(4)谐波抑制器
(5)变频器组件
(6)检测控制组件
(7)电动机组件
(8)螺旋桨
第四章
6.变频器性能比较
间接变频器(交-直-交)
直接变频器(交-交)
换能形式
两次换能,效率略低
一次换能,效率较咼
优点:
1)启动电流小
2)价格便宜
3)控制方便,操作灵活
4)能匹配特大功率电机
缺点:
1)时间常数大,动态响应慢
2)电感重量和体积大
3)低速运行时,电流变频器将电流控制在零附近脉动,,输出转矩也脉动,给轴系带来震动
(4)电压型变频器VSI (Voltage Source Inverter)+交流异步电动机。在中小功率范围,包括部分大功 率的电压型变频器中
动力定位船舶是指该船舶或装置可以自动保持自己的位置,也就是通过推进器施加的力。 保持固定的
位置或沿着预先设定的移动轨线移动。
动力定位系统是指对动力定位一条船舶所必须的全部装置•包括动力源系统、推进器系统、DP控制
系统。
14.缩写汇总
UPS: Uninterruptible Power Supply不间断电源
5)性价比高
直流推进和交流推进对比
(1)直流电动机
优点:直流电机调速范围宽广平滑,过载启动和制动转矩大,逆转运行特性好,调速简单。 缺点:结构复杂,维护困难,存在功率极限和转速极限
(2)交流电动机
优点:输出功率大,极限转速高,结构简单,成本低,体积小,运行可靠。 第三章
4.电力推进系统的组成
(1)发电系统
优点
1)几乎没有谐波污染
2)转矩稳定没有脉动
3)设计点运行效率高
缺点:
1)启动电流大
2)启动瞬间机械轴承受转矩大
3)功率因数低
4)功率及转矩动态响应慢
5)反转慢,制动距离长
6)变矩桨结构复杂,价格贵,可靠性差
7)变距桨液压控制系统复杂
(3)电流型变频器CSI (Current Source Inverter)+交流同步电动机。应用:10MW以上容量的电力推 进装置
换流形式
强迫换流或负载换流
电源电压换流
元件数量
较少,利用效率较咼
较多,利用效率较低
调频范围
宽广、0-几倍电源频率
较小、0-1/3或1/2电源频率
功率因数
较咼、>0.94
较低、<0.7
7.电压型/电流型变频器共同点,不同点 共同点是都由整流和逆变两部分组成
不同点是电压型用电容缓冲无功功率,电流型用电感
优点:
1)启动电流和启动转矩接近零
2)动态响应快 缺点:
1)转矩控制不精准
2)换向器易发生故障
3)谐波污染较大
4)直流电动机结构复杂,成本高,体积大,维护困难,效率低
(2)交流异步电动机+可调螺距螺旋桨模式。 应用:这种推进方式只适合于中、 小功率船舶,或1000kW以下的侧推装置,因为微软起动器目前还只有中、小功率的低压产品。
11.电力系统图分析
第七章
12.中压配电板 (1)以分割封闭的结构组成断路器室、母线室、电缆室和低压室而构成标准的每屏结构; (2)每屏只装一台断路器馈电一个用户
13.动力定位/动力定位船舶/动力定位系统
动力定位(Dynamic Positioning,简称DP)是船舶或海上平台不借助于锚泊系统的作用,禾U用计算机进 行复杂的实时计算, 对船舶各主副推力器的推力进行分配, 控制船舶推进螺旋桨和推力器产生适当的 推力与力矩,以抵消海洋扰动力和力矩, 减少船舶的横荡、纵荡和艏向角, 保持船舶在海面某一位置 的控制技术。
DP: Dynamic Positioning动力定位
IMO: International Maritime Organization国际海事组织
DNV: DET NORSKE VERITAS挪威船级社
NMD: Norwegian Maritime Directorate挪威海事局
船舶电力推进系统
Edited by阳光的cxf
第一章
1.电力推进系统的优缺点
P10
优点:
(1)机动性能好
(2)机舱小,布置灵活可增加船舶的载货载客能力
(3)推进效率高
(4)节能,有利于环保
(5)适合于特种船舶的应用
P47
优点:
(1)通过减少燃料消耗和维护费用减少生命周期成本,尤其是在负载变化大的地方