电感式传感器B--差动变压器式传感器
电感式传感器的工作原理

电感式传感器的工作原理
电感式传感器的工作原理是电磁感应。
它是把被测量如位移等,转换为电感量变化的一种装置。
根据转换方式的不同,可分为自感式(包括可变磁阻式与涡流式)和互感式(差动变压器式)两种。
1.可变磁阻式传感器
可变磁阻式传感器自感
自感L与气隙δ成反比,而与气隙导磁截面积S0 成正比。
灵敏度S与气隙长度δ的平方成反比,δ愈小,灵敏度S愈高。
为了减小非线性误差,在实际应用中,一般取。
这种传感器适用于较小位移的测量,一般约为0.001~1 mm。
2.涡电流式传感器
3.互感式传感器
互感型传感器的工作原理是利用电磁感应中的互感现象,将被测位移量转换成线圈互感的变化。
由于常采纳两个次级线圈组成差动式,故又称差动变压器式传感器。
差动变压器式传感器输出的电压是沟通量,如用沟通电压表指示,则输出值只能反应铁芯位移的大小,而不能反应移动的极性;同时,沟通电压输出存在肯定的零点残余电压,使活动衔铁位于中间位置时,输出也不为零。
因此,差动变压器式传感器的后接电路应采纳既能反
应铁芯位移极性,又能补偿零点残余电压的差动直流输出电路。
电感式传感器的设计

W1 W W2
Eout
-x
x
电感式传感器的设计
差动变压器传感器产品
GA系列差动变压器位移传感器
交流差动变压器 式角位移传感器
TD-1油动机行程阀位位移传感器
电感式传感器的设计
二、差动变压器式传感器的工作原理
1.结构: 可分间隙式和螺管式两种
以螺管式为例
图中:1-一次绕组 2、3-二次绕组 4-衔铁
差动变压器的结构示意图
电感式传感器的设计
2.工作原理 把铁芯位移量转换成初级线圈及次级线圈互感
系数的变化,图中M1、M2与位移x有关。
当位移 x 很小时: Uo=k |x |
(无法判别位移方向)
差动变压器等效电路
电感式传感器的设计
差动变压器原理动画演示
电感式传感器的设计
差动变压器输出特性
1-理想特性 2-实际特性
●
(u21=u22)
Uac=Uda 可调节R1=R2
使 ImA=I1-I2=0
电感式传感器的设计
3. 谐振式测量电路 分为:谐振式调幅电路和谐振式调频电路。
C
U o
L U
T U o
(a)
O
L0
L
(b)
图3-6 谐振式调幅电路
此电路灵敏度很高, 但线性差电,感式适传用感器于的线设性计 度要求不高的场合
f
C
L
G
f
o L
(a)
(b)
图3-7 谐振式调频电路
f与L具有严重的非线性关系
目前使用最广泛的是变气隙厚度式电感传感器。
电感式传感器的设计
二、 L与δ之间是非线性关系, 特性曲线如图3-2所示。
第3章电感式传感器原理及其应用详解

变面积式自感传感器:
铁芯 衔铁
线圈
δ
L N 2S0 2
变面积式自感传感器结构
灵敏度为: k dL N20 dS 2
由于漏感等原因,其线性区范围较小,灵敏度也较低,因 此,在工业中应用得不多。
螺管式自感传感器:
传感器工作时,衔铁在线圈中伸入长度的变化将引起螺 管线圈电感量的变化。
对于长螺管线圈l>>r,当衔铁工作在螺管的中部时, 可以认为线圈内磁场强度是均匀的,线圈电感量L与衔铁的 插入深度l大致上成正比。
δ
由于 Nm LI,
Fm
NI,m
Fm Rm
可得: L N 2
Rm
磁路的总磁阻可表示为:
Rm
li 2 iSi 0S
近似计算出线圈的电感量为:
L N 2S0 2
当线圈匝数N为常数时,电感L仅仅是磁路中
磁阻的函数,只要改变 或S均可导致电感变化。
因此变磁阻式传感器又可分为变气隙 厚度的
传感器和变气隙面积S的传感器。
差动式与单线圈电感式传感器相比,具有以下优点。 (1)线性度高。 (2)灵敏度高,即衔铁位移相同时,输出信号大一倍。 (3)温度变化、电源波动、外界干扰等对传感器精度
的影响,由于能互相抵消而减小。 (4)电磁吸力对测力变化的影响也由于能相互抵消而
减小。
3.2.4电感式传感器的测量电路
➢ 自感式传感器实现了把被测量的变化为电感量的变 化。为了测出电感量的变化,就要用转换电路把电感 量的变化转换成电压(或电流)的变化,最常用的 转换电路有调幅、调频和调相电路。
通过一定的转换电路转换成电压或电流输出。 ➢ 传感器在使用时,其运动部分与动铁心(衔铁)相
连,当动铁芯移动时,铁芯与衔铁间的气隙厚度
概述差动变压器式传感器的应用范围

概述差动变压器式传感器的应用范围下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!差动变压器式传感器的应用范围概述1. 引言随着科技的不断进步,差动变压器式传感器在各个领域的应用越来越广泛。
差动变压器式电感传感器的静态位移性能实验实验报告

差动变压器式电感传感器的静态位移性能实验实验报告差动变压器式电感传感器的静态位移性能实验实验报告实验三电感式传感器实验传感器实验三、电感传感器实验——差动变压器性能实验(一)实验内容1.项目一、差动变压器式电感传感器性能实验2.项目二、差动螺管式电感传感器的静态位移性能实验 (二)实验目的1.了解差动变压器式电感传感器的原理和工作情况2.了解差动螺管式电感传感器测量系统的组成和工作情况 (三)实验原理螺旋测微器产生位移,经弹性梁带动衔铁在线圈中移动,交流电源激励,数字电压表显示数字,计算机自动生成示波器显示波形。
(四)实验操做步骤实验项目一、1.将音频振荡器LV输出接至数字频率计和数据采集CH1,由频率计显示频率,计算机自动生成示波器显示波形,调节音频振荡器频率为4kHz,峰峰值为5V。
2.将音频振荡器LV输出接差动变压器一次绕组,输出接CH1。
3.调螺旋测微器使衔铁处于中心位置(输出为零),向下每1mm读一个数。
实验项目二、1.按图接线2.将音频振荡器输出接至CH1,调节峰峰值为2V。
3.V/F表调至20V档。
4.接好电桥平衡网络、放大器、相敏检波器、LPF、V/F表、示波器。
5.将螺旋测微器与梁脱离,使梁处于自由状态;调节W1、W2,使输出最小(灵敏度最大)。
6.将螺旋测微器与梁相吸,调节螺旋测微器使输出最小(CH1示),再向上移2.5mm。
7.调节移相器使输出最大(CH2示);观察检波器波形,若两半波不对称,则微调放大器调零电位器。
8.向下每0.5mm读一个数。
项目一数据表第 1 页共 1 页项目二数据表篇二:传感器与检测技术实验报告准考证号:100214101370 姓名:倪帅彪院校:河南科技大学专业名称:080302机械制造及自动化(独立本科段)《传感器与检测技术》实验报告实验一常用传感器(电感式、电阻式或电容式)静态性能测试一、实验目的:1(进一步认识电阻式、电感式、电容式传感器的工作原理、基本结构、性能与应用。
电感式传感器

差动变压器输出电压和位移的关系
第3章 电感式传感器
3.2 差动变压器式传感器(互感式) • 灵敏度: 单位电压激励下,铁心移动单位距离时的 传感器输出电压。 单位:V/mm/V, 如 50mV/mm/V
提高灵敏度的方法: 增大次级匝数; 提高螺管尺寸比; 加大激励电压; 提高激励电压频率
L L0 0
L0
1
0
讨论: • 传感器测量范围与灵敏度和线性度相矛盾; • 变间隙式电感传感器用于小位移比较精确; 一般Δσ/σ= 0.1-0.2; • 为减小非线性误差,实际测量中多采用差动式。
第3章 电感式传感器
3.1变磁阻式传感器(自感式) 3.1.2 输出特性
差动式原理: 差动变隙式由两个相 同的线圈和磁路组成。 当被测量通过导杆使 衔铁上下位移时,两 个回路中磁阻发生大 小相等、方向相反的 变化,形成差动形式。
0
第3章 电感式传感器
3.1变磁阻式传感器(自感式) 3.1.2 输出特性
讨论: • 比较单线圈,差动式的灵敏度提高了一倍; • 差动式非线性项比单线圈多乘了(Δσ/σ)因子; • 不存在偶次项,因Δσ/σ<<1,线性度得到改善。 • 差动式的两个电感结构,可抵消温度、噪声干扰 的影响。
自感式传感器的常见形式
3.1变磁阻式传感器(自感式) 3.1.3 测量电路(转换电路) (1)交流电桥式 两个桥臂由相同线圈组成,另外两个为平衡电阻
交流电桥结构示意图
等效电路
第3章 电感式传感器
3.1变磁阻式传感器(自感式) 3.1.3 测量电路(转换电路) (1)交流电桥式
差动变压器式加速度传感器的工作原理

差动变压器式加速度传感器的工作原理1. 引言说到加速度传感器,很多人可能会皱眉头,觉得这玩意儿离我们太远。
但其实,咱们日常生活中随处可见这位“隐形小助手”。
无论是手机里那种“摇一摇”就能换歌曲的功能,还是汽车里的安全气囊,背后都有加速度传感器的功劳。
而今天,咱们就来聊聊其中一种特别有趣的——差动变压器式加速度传感器。
2. 差动变压器的基础2.1 什么是差动变压器?先来了解一下,差动变压器听上去复杂,其实就像个小家伙,能感知运动的变化。
它的结构其实很简单,里面有两个线圈和一个移动的铁心。
想象一下,就像两个人在拔河,铁心在中间,如果一边力量大,铁心就会往那边移动。
这样一来,两个线圈产生的电压就会不一样。
这就是它的“秘诀”!2.2 工作原理那么,它是如何工作的呢?当传感器受到加速度影响,铁心就会在两个线圈之间移动。
比如,车子加速了,铁心往后移动,线圈A的电压就会减少,而线圈B的电压就会增加。
通过这两个电压的差值,咱们就能计算出加速度。
这就像咱们量体温一样,有了两个不同的温度,算算差值,就能知道身体的状况。
这一过程,真是简单得让人觉得不可思议。
3. 应用领域3.1 日常生活中的应用这玩意儿不仅在科研上有用,咱们生活中也能找到它的身影。
比如,智能手机里的游戏控制,就是靠着加速度传感器来识别你手机的倾斜度。
你轻轻晃一晃,角色就动了,是不是觉得很酷?还有汽车安全气囊,这家伙可不能大意,它们能迅速检测碰撞的加速度,及时弹出气囊,保护我们的安全。
可见,这个小家伙可真是大显身手,居然可以拯救生命,真是“英雄出少年”啊!3.2 工业与科研中的应用在工业和科研领域,差动变压器式加速度传感器也扮演着重要的角色。
比如,在桥梁的检测中,工程师可以通过它来监测桥梁的震动情况,确保安全。
再比如,在航空航天领域,它帮助飞行器监测加速度变化,确保飞行的稳定性。
想象一下,飞行员操控着飞机,差动变压器就在一旁默默工作,确保万无一失,这种默默奉献的精神,真是让人感动。
传感器原理及应用-第4章 - 4.2 差动变压器式电感传感器

§4.2 差动变压器式电感传感器
二、变隙式差动变压器
2、变隙式差动变压器输出特性
在忽略铁损(即涡流与磁滞损耗 忽略不计)、漏感以及变压器次级开 路(或负载阻抗足够大)的条件下的 等效电路。 不考虑铁芯与衔铁中的磁阻影响 时,变隙式差动变压器输出电压为
b a W2 U U 2 b a W1 1
M
基本种类
有变隙式、变面积式和螺线管式等。 应用最多的是螺线管式差动变压器。
初1 级 线 圈
3
次 级 线 圈
2
4
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
二、变隙式差动变压器
三、差动变压器式传感器测量电路
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
1、螺线管式差动变压器结构与原理
U2 r1 L1
2 2
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
2、螺线管式差动变压器输出特性
U2
M a M b U 1
r1 L1
2 2
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
二、变隙式差动变压器
三、差动变压器式传感器测量电路
根据电磁感应原理有
E E 2a 2b
变压器两次级绕组反 向串联,则差动变压器输 出电压为零。
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
2、螺线管式差动变压器输出特性
当次级两绕组反向串 联、次级开路时差动变压 器输出电压为 差动变压器输出电动势的大小和相 位可知道衔铁位移的大小和方向。
二、变隙式差动变压器
2、变隙式差动变压器输出特性
差动式电感传感器与差动变压器传感器的工作原理

差动式电感传感器与差动变压器传感器的工作原理1.差动式电感传感器的工作原理:差动式电感传感器是基于法拉第电感定律工作的。
法拉第电感定律指出,一个导体中的电流变化会产生磁场,而磁场的变化则会引起相邻导体中的电流发生变化。
差动式电感传感器利用这一原理,通过测量两个相邻导体中的电流差异来确定被测电流的大小。
差动式电感传感器由两个平行的线圈组成。
当被测电流通过这两个线圈时,它们产生的磁场会相互耦合。
当电流变化时,这种耦合会引起相邻线圈中的电流发生变化。
通过测量这两个线圈中的电流差异,可以确定被测电流的大小。
2.差动变压器传感器的工作原理:差动变压器传感器是基于变压器原理工作的。
变压器是由一个或多个线圈组成的。
当通过一个线圈的电流发生变化时,它所产生的磁场会耦合到相邻线圈中。
这个耦合现象可以用变压器的转比来描述。
差动变压器传感器利用变压器的这一特性,通过测量两个相邻线圈中的电压差异来确定被测电流的大小。
它由两个平行的线圈组成,当被测电流通过这两个线圈时,它们产生的磁场会相互耦合。
由于磁场的变化会引起电压的变化,因此线圈中的电压也会发生变化。
通过测量这两个线圈中的电压差异,可以确定被测电流的大小。
总结:差动式电感传感器和差动变压器传感器都是通过测量相邻线圈中的电流或电压差异来确定被测电流的大小。
差动式电感传感器基于法拉第电感定律,利用线圈间的磁场耦合来实现测量。
差动变压器传感器则利用变压器的原理,通过线圈中的电压变化来测量。
两种传感器都具有测量精度高、抗干扰能力强等优点,常用于电力系统和工业控制中。
电大《传感器与测试技术》考题汇总

一、单项选择题(每小题4分,共40分)1.差动变压器属于(C )。
A. 电容式传感器 B. 压电式传感器 C. 电感式传感器2. 利用(A )制成的光电器件有真空光电管、充气光电管和光电倍增管等。
A. 外光电效应 B.压电效应 C. 声光效应3. 压电传感器的测量电路中前置放大器的作用有(C )A.消除电缆电容对灵敏度的影响B. 减小测量误差C. 把传感器的高输入阻抗变换成低输入阻抗4. 以下(B )是影响CMOS 传感器性能的首要问题。
A. 暗电流 B. 噪声 c.像素的饱和5. 超声波换能器是超声波传感器中的一个核心部件,并以(B )的应用最为广泛。
A. 电动式换能器B. 压电式换能器C. 电磁式换能器6. ( B)被广泛应用在各种检测仪表中,特别是需要辐射和穿透力强的情况,如金属探伤、测厚以及测量物体的密度等。
A.α射线B.y 射线 c. x 射线7. 首先对红外辐射进行(A ) ,使恒定辐射变成交变辐射,不断地引起铁电体的温度变化,才能导致热释电红外传感器产生,并输出交变信号。
A. 调制 B.滤波 c.补偿8. 以下(C)不属于虚拟仪器技术所具有的特点。
A. 集成性强 B. 扩展性强 c.开发时间长9. 超声波的频率高,因而(A ) ,绕射现象小,方向性好,能够形成射线而定向传播。
A. 波长短 B. 波长长 c.速度慢10. 金属应变片的灵敏系数比应变电阻材料本身的灵敏系数(B )。
A. 大 B. 小 c.相等11.应变片绝缘电阻Rm 是指已粘贴的应变片的引线与被测试件之间的电阻值,通常要求Rm 的恰当范围是(C )以上。
A. 70-100MΩB. 60-100MΩC. 50-100MΩ12. 磁头的作用是读取磁栅上记录信号,按读取信号方式的不同,磁头可分为(A )磁头和(B )磁头。
A. 静态B.动态C. 鉴幅D.鉴相13.应变片绝缘电阻是指己粘贴的应变片的( C)之间的电阻值。
为什么电感式传感器一般都采用差动形式

名词解释探知的信息传递给其他装置。
能直接得到被测量值的测量方法。
通过电流的半导体在垂直电流方向的磁场作用下,在与电流和磁场垂直的方向上形成电荷积累和出现电势差的现象。
是光电效应的一种,主要由于光量子作用,引发物质电化学性质变化。
在热电偶回路中接入中间导体(第三导体),只要中间导体两端温度相同,中间导体的引入对热电偶回路总电势没有影响,这就是中间导体定律。
在缺少对称中心的晶态物质中,由电极化强度产生与电场强度成线性关系的机械变形和反之由机械变形产生电极化强度的现象。
与压电效应同时还能发生电致伸缩。
测量方法是指人们认识自然界事物的一种手段。
半导体压阻效应就是压力使半导体电阻发生改变的现象。
在一根导体外面绕上线圈,并让线圈通入交变电流,那么线圈就产生交变磁场。
由于线圈中间的导体在圆周方向是可以等效成一圈圈的闭合电路,闭合电路中的磁通量在不断发生改变,所以在导体的圆周方向会产生感应电动势和感应电流,电流的方向沿导体的圆周方向转圈,就像一圈圈的漩涡,所以这种在整块导体内部发生电磁感应而产生感应电流的现象称为涡流现象。
将被测量变化转换成电容量变化的传感器。
热电偶回路两接点(温度为T、T0)间的热电势,等于热电偶在温度为T、Tn时的热电势与在温度为Tn、T0时的热电势的代数和。
Tn称中间温度。
某些材料在入射光子的能量足够大时有电子逸出材料表面的现象。
仪表、传感器等装置与系统的输出量的增量与输入量增量的比。
选择题2.属于传感器动态特性指标的是( d )A.重复性B.线性度C.灵敏度D.固有频率5.利用相邻双臂桥检测的应变式传感器,为使其灵敏度高、非线性误差小( c )A.两个桥臂都应当用大电阻值工作应变片B.两个桥臂都应当用两个工作应变片串联C.两个桥臂应当分别用应变量变化相反的工作应变片D.两个桥臂应当分别用应变量变化相同的工作应变片2.( b )传感器可用于医疗上-50℃~150℃之间的温度测量。
A.金属辐射式B.热电偶C.半导体三极管D.比色计12.将电阻应变片贴在( c )上,就可以分别做成测力、位移、加速度等参数的传感器。
第2-3章 电感式传感器

W2b 的互感Mb 相等,致使两个次级绕组的互感电势相等,即
e2a=e2b 。由于次级绕组反相串联,因此,差动变压器输出电压 . Uo=e2a-e2b=0。 当被测体有位移时,与被测体相连的衔铁的位置将发生相 应 的 变 化 , 使 δa≠δb , 互 感 Ma≠Mb , 两 次 级 绕 组 的 互 感 电 势 . e2a≠e2b,输出电压Uo=e2a-e2b≠0,即差动变压器有电压输出, 此 电压的大小与极性反映被测体位移的大小和方向。
则式(2-3-3)可写为
(2-3-4)
2 Rm 0 A0
(2-3-5)
联立式(2-3-1)、 式(2-3-2)及式(2-3-5), 可得
W 2 W 2 0 A0 L Rm 2
(2-3-6)
W 2 W 2 0 A0 L Rm 2
上式表明:当线圈匝数为常数时,电感L仅仅是磁 路中磁阻Rm 的函数,改变δ或A0 均可导致电感变化,
1
差动变隙式电感传感器
衔铁上移Δδ:两个线圈的电感变化量ΔL1 、ΔL2 分别由
式(2-3-10)及式(2-3-12)表示, 差动传感器电感的
总变化量ΔL=ΔL1+ΔL2, 具体表达式为
L L1 L2 2 L0 1 0 0
对上式进行线性处理, 即忽略高次项得
当衔铁下移时:
U0 U
0
2. 变压器式交流电桥
C + U 2 - + U -2 D
U
Z1 + U - A
Z2
o
B
变压器式交流电桥
电桥两臂Z1、Z2为传感器线圈阻抗,另外两桥臂为交流
变压器次级线圈的1/2阻抗。 当负载阻抗为无穷大时, 桥
差动变压器式传感器的工作原理

差动变压器式传感器的工作原理传感器是一种可以将物理量转换为电信号的设备,广泛应用于各行各业。
差动变压器式传感器是一种广泛应用的传感器,它的基本原理是利用差动变压器的电磁感应性质,将物理量转换为电信号,并通过电信号的变化来反映物理量的变化。
下面将分别从差动变压器和传感器的角度介绍差动变压器式传感器的工作原理。
差动变压器的工作原理差动变压器是一种能够将电压或电流转换为另一种电压或电流的装置。
它由两个或多个线圈组成,其中一个线圈作为主线圈,另一个或多个线圈作为副线圈。
当主线圈中有电流或通有电压时,将会在主线圈中产生一个磁场。
这个磁场会穿透到副线圈中,从而诱发出在副线圈中的电势差。
正是利用了这种诱发电势差的特性,差动变压器才成为传感器中重要的组成部分。
传感器的工作原理传感器是将物理量转换为电信号的装置。
传感器常常包括检测元件、信号处理电路等组成部分。
通过检测元件对物理量的测量,传感器将物理量转换成电信号输出。
同时,传感器可以进行信号转换和信号放大处理,提高电信号的精度和稳定性。
传感器的输出信号通常为模拟量和数字量。
其中,模拟量输出通常为电压信号或电流信号,而数字量输出通常为二进制代码。
差动变压器式传感器结合了差动变压器和传感器两种技术的特点,利用了差动变压器的电磁感应性质,将物理量转换为电信号,并进行放大和处理,输出一个模拟量或数字量的信号。
具体的工作原理如下:差动变压器式传感器由两个或多个副线圈组成,其中一个副线圈负责将物理量转换为电信号,另一个副线圈负责对输出信号进行放大和处理。
通常,在测量过程中,被测物理量通过某种形式的机械变形作用于传感器的检测元件上,将物理量转换为机械位移。
而检测元件的运动将会影响传感器内部的副线圈之间的电磁感应关系,从而在副线圈中产生电势差。
这个电势差随着物理量的变化而变化,并按比例于输入的物理量变化。
差动变压器式传感器一般适用于工业生产中的大型设备机械部分的测量,如机床的钻孔、铣削和车削等。
第3章 电感式传感器-11.26

传 感 器 技 术 • 及 应 用 • 第 3 章 电 感 式 传 感 器
当传感器的衔铁处于中间位置,即 Z1=Z2=Z时,有U0=0,电桥平衡。 当传感器衔铁上移时,即Z1=Z+Δ Z, Z2=Z−Δ Z,此时
Z U L U Uo Z 2 L 2
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
感 器
传 感 器 技 术 及 应 用
• 在实际使用中,常采用两个相同的传感器线圈
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
(b) (c) 图3-4 差动式电感传感器 (a)变气隙型;(b)变面积型;(c)螺管型 1—线圈;2—铁芯;3—衔铁;4—导杆 (a)
传 感 器 技 术 及 应 用 • 第 3 章
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
图3-7 滚柱直径自动分选装置图 1—气缸 2—活塞 3—推杆 4—被测滚柱 5—落料管 6—电感测微器 7—钨钢测头 8—限位挡板 9—电磁翻板 10—容器(料斗)
传 感 电感式滚柱直径分选装置(外形) 器 技 (参考中原量仪股份有限公司资料) 术 及 滑道 应 用 第 3 章 电 感 式 传 感 器
线圈中电感量为:
W L I I
• 式中:ψ ——线圈总磁链;I ——通过线圈 的电流;W——线圈的匝数; ——穿过线圈 电 的磁通。 感
式 传 感 器
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
IW Rm
l1 l2 2 Rm 1S1 2 S2 0 S0
分选仓位
轴承滚子外形
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
差动变压器式传感器

差动变压器式传感器的应用
Hale Waihona Puke 差动变压器式电感测微仪2019/2/28
45
3.3 电涡流传感器
根据法拉第电磁感应原理,块状金属导体置于变 化的磁场中或在磁场中作切割磁力线运动时,导 体内将产生呈涡旋状的感应电流,此电流叫电涡 流,这种现象称为电涡流效应。 根据电涡流效应制成的传感器称为电涡流式传感 器。按照电涡流在导体内的贯穿情况, 此传感器 可分为高频反射式和低频透射式两类,但从基本 工作原理上来说仍是相似的。电涡流式传感器最 大的特点是能对位移、厚度、表面温度、速度、 应力、材料损伤等进行非接触式连续测量,另外 还具有体积小、灵敏度高、频率响应宽等特点, 应用极其广泛。
当差动式传感器的 活动铁芯处于中间 位置时,传感器两 个差动线圈的阻抗 Z1=Z2=Z0,其 等效电路如图所示。
铁芯处于初始平衡位置时的等效电路
2019/2/28
21
(2)活动铁芯向一边移动时
当活动铁芯向 线圈的一个方 向移动时,传 感器两个差动 线圈的阻抗发 生变化,等效 电路如图4-9 所示。
36
2019/2/28
典型电路
差动整流电路
2019/2/28 37
2.差动检波电路
差动相敏检波电路
等效电路
2019/2/28
38
(2)工作原理
传感器衔铁上移
RL u2 uL n1 ( R 2 RL )
传感器衔铁下移
RL u2 uL n1 ( R 2 RL )
2019/2/28
1、2—L1、L2的特性 3—差动特性
2019/2/28
13
电感式传感器(3)知识课件

结构特点:电涡流式传感器的主体是激磁线圈。由此:线圈的性能和 几何尺寸、形状对整个测量系统的性能将产生重要的影响。
线圈的选择:一般情 况下,线圈的导线采 用高强度漆包线;要 求较高的场合,可以 用银或银合金线;在 较高温度条件下,需 要用高温漆包线。
一般说来,被测体的电导率越高,灵敏度也越高;磁导率则 相反,被测体的磁导率越高,灵敏度越低,而且被测导体有剩磁, 将影响测量结果,应予消磁。 (2)被测导体表面镀层对测量精度的影响:
若镀层性质和厚度不均匀,在测量转动或移动的被测物体时, 这种不均匀将形成干扰信号,影响测量精度,尤其是激励频率较 高时,电涡流的贯穿深度减小,这种干扰影响更大。
检波
高频反射式涡流测厚 仪测试系统原理图
为了克服带材不够平整或运行过程中上下波动的影响, 在带材的 上、下两侧对称地设置了两个特性完全相同的涡流传感器S1、S2 。
S1、 S2与被测带材表面之间的距离分别为x1和x2。
§3.4 电涡流式传感器
线圈
铁芯
★ 气隙厚度变化型差动型传感器
x/2
结构:见图
x/2
工作原理:两个传感器构成差动工作方式,衔衔铁
铁最初居中,两侧初始电感为L0,当衔铁有
位移△x时,两个线圈的间隙分别为 x x 和 x x ,表明一个线圈自感增加,2 另一个
2
线圈自感减小,把两线圈接人电桥的相邻臂
时,输出灵敏度比单个的提高一倍,并且可
§3.4 电涡流式传感器
二、高频反射式电涡流传感器的基本结构
(3)被测导体形状对测量精度的影响: •若被测物体为平面,在涡流环的直径为线圈直径的1.8 倍处,电 涡流的密度衰减为最大值的5%,因而希望被测物体的直径不小 于线圈直径的1.8倍。 •当被测物体的直径为线圈直径的一半时,灵敏度将减小一半, 更小时,灵敏度则显著下降。
传感器知识第3章

0 忽略掉二次项以上的高次项,
L2 L0 0
1 时,同样展开成级数为
L2 L0 0 0
0
2
3
ΔL2与Δδ成线性关系。
由此可见,高次项是造成非线性的主要原因,且ΔL1 和ΔL2 是不相等的。 当Δδ/δ0 越小时,则高次项迅速减小,非线性得到改善。这说明了输出特性 和测量范围之间存在矛盾,所以,变气隙厚度式电感传感器用于测量微小位 移量是比较精确的(测量范围:0.001~1mm)。一般实际应用中,取 Δδ/δ0≤0.1。 忽略二次以上项后,传感器灵敏度为
ll——磁通通过铁芯的长度(m);
Sl——铁芯横截面积(m2); μ1——铁芯材料的导磁率(H/m)
l2——磁通通过衔铁的长度(m);
S2——衔铁横截面积(m2); μ2——衔铁材料的导磁率(H/m)
δ——气隙厚度(m);S——气隙横截面积(m2);
μ0——空气的导磁率(4π×10-7H/m)。 由于RF《Rδ,(μ1,μ2 》μ0 ),常常忽略RF ,因此,可得线圈电感为
第3章 电感式传感器
2. 输出特性
线圈 电感
气隙 电感
线圈
0 SW 2 L1 2 0
0 SW 2 L2 2 0
5
3 L L2 L1 2 L0 0 0 0
螺管插铁型电感传感器结构简单、便于制作、量程大,但灵敏度低。
第3章 电感式传感器
六、差动自感传感器
上述三种单一式的传感器,由于线圈电流的存在,它们的衔铁都受单 向电磁力作用,而且易受电源电压和频率的波动及温度变化等外界干扰的 影响,因此不适合精密测量。在不少场合,它们的非线性(即使是变面积 式传感器,由于磁通边缘效应,实际上也存在非线性)限制了使用。因此 绝大多数自感式传感器都采用差动式结构。 利用两只完全对称的单个电感传感器合用一个活动衔铁,这样可构成 差动式电感传感器。其结构特点是上、下两个磁体的几何尺寸、材料、电 气参数均完全一致。传感器的两只电感线圈接成交流电桥的相邻桥臂,另 外两只桥臂由电阻组成,它们构成四臂交流电桥,供桥电源为交流,桥路 输出为交流电压。
传感器感测技术第2章

Z1 Z3= R
& = D Z1 + D Z 2 U & Uo 2 ( Z 1+ Z 2 ) & U o ( DL1 + DL2 ) = DL = 2
& U
Z2
Dd
Z4= R
d0
L0
& Uo
2. 电感式传感器
b、变压器式交流电桥测量电路(无法判断方向) 输出电压为:
& = U
2. 电感式传感器
涡流磁场使得原线圈等效阻抗发生变化。变化的
程度与间距δ相关。
影响阻抗的相关因素:间距,电阻率,磁导率,
激磁角频率等。
用于位移、振动测量;材质鉴别或探伤。
2. 电感式传感器
五、涡流式传感器的特性
1、电涡流强度与距离的关系
电涡流强度随距离的变化而变化,且呈非线性关
系,随距离的增加而减小。 2、被测导体对传感器灵敏度的影响 被测导体的电阻率和相对磁导率越小,灵敏度越 高,且被测导体的形状和尺寸大小对灵敏度也有影响。 一般要求被测导体的厚度大于两倍的涡流穿透 深度。
属导体置于变化的磁场中或切割磁力线运动时,导 体内产生呈涡旋状的感应电流的现象。 3、按电涡流在导体内的贯穿情况划分: 高频反射式涡流式传感器 低频透射式涡流式传感器
2. 电感式传感器
4、基本结构和工作原理 1)基本结构 主要由探头和检测 电路构成。 探头由线圈和骨架组成。
检测 电路
骨架 线圈
金属板
L I =
式中, W——线圈匝数;
L——自感。
W f
根据磁路欧姆定理有: 其中,Fm ——磁动势;
Rm ——磁路总磁阻。
f =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
③ 以上分析的结果是在忽略铁损和线圈中的分布电容等条 件下得到的,如果考虑这些影响,将会使传感器性能变差(灵 敏度降低,非线性加大等)。但是,在一般工程应用中是可以 忽略的。
b b
a a
W2 W1
U. 1
6
如果被测体带动衔铁移动
U 2
W2 W1
U 1
0
K U 2 W2 U1
W1 0
图3-13 变隙式差动变压器输出特性
1 理想特性;2 实际特性
7
综合以上分析, 可得到如下结论:
① 首先,供电电源Ui要稳定,以便使传感器具有稳定的输 出特性;其次,电源幅值的适当提高可以提高灵敏度K值,但要 以变压器铁芯不饱和以及允许温升为条件。
9
3.2.2 螺线管式差动变压器 1. 工作原理 1-活动衔铁;2-导磁外壳; 3-骨架;4-匝数为W1初级绕组; 5-匝数为W2a的次级绕组; 6-匝数为W2b的次级绕组
10
螺线管式差动变压器按线圈绕组排列方式不同可分为一节、 二节、三节、四节和五节式等类型,如图3-15所示。一节式灵 敏度高,三节式零点残余电压较小,通常采用的是二节式和三 节式两类。
2
3.2.1 变隙式差动变压器 1. 工作原理 假设闭磁路变隙式差动变压器的结构如图3-11(a)所示,
在 A 、 B 两 个 铁 芯 上 绕 有 W1a=W1b=W1 的 两 个 初 级 绕 组 和
W2a=W2b=W2两个次级绕组。两个初级绕组的同名端顺向串联, 而两个次级绕组的同名端则反相串联。
②高次谐波。高次谐波分量主要由导磁材料磁化曲线的 非线性引起。由于磁滞损耗和铁磁饱和的影响,使得激 励电流与磁通波形不一致产生了非正弦(主要是三次谐 波)磁通,从而在次级绕组感应出非正弦电势。另外, 激励电流波形失真,因其内含高次谐波分量,这样也将 导致零点残余电压中有高次谐波成分。
14
消除零点残余电压方法:
实际特性曲线。由图 3-17可以看出,当衔铁位于中心位置时,差
动变压器输出电压并不等于零,我们把差动变压器在零位移时的
输出电压称为零点残余电压,记作ΔUo,它的存在使传感器的输 出特性不经过零点,造成实际特性与理论特性不完13全一致。
零点残余电压产生原因:
①基波分量。由于差动变压器两个次级绕组不可能完全 一致,因此它的等效电路参数(互感M、自感L及损耗 电阻R)不可能相同,从而使两个次级绕组的感应电势 数值不等。又因初级线圈中铜损电阻及导磁材料的铁损 和材质的不均匀,线圈匝间电容的存在等因素,使激励 电流与所产生的磁通相位不同。
的重要表示之. 一。. .
..
当活动衔铁向上移动时,由于磁阻的影响,W2a中磁通将. 大于
W2b,使M1>M2,因而E2a增加,而E2b减小。反之,E2b增加,E2a减
小。因为Uo=E2a-E2b,所以当E2a、E2b 随着衔铁位移x变化时, Uo
也必将随x而变化。图3- 17给出了差动变压器输出电压Uo与活动 衔铁位移Δx的关系曲线。图中实线为理论特性曲线. ,虚线曲线为
1.从设计和工艺上保证结构对称性
为保证线圈和磁路的对称性,首先,要求提高加工精
度,线圈选配成对,采用磁路可调节结构。其次,应选
高磁导率、低矫顽力、低剩磁感应的导磁材料。并应经
过热处理,消除残余应力,以提高磁性能的均匀性和稳
定性。由高次谐波产生的因素可知,磁路工作点应选在
磁化曲线的线性段。
当被测体有位移时,与被测体相连的衔铁的位置将发生相 应的变化,使δa≠δb,互感Ma≠Mb,两次级绕组的互感电势e2a≠e2b, 输出电压Uo=e2a-e2b≠0. ,即差动变压器有电压输出, 此电压的大 小与极性反映被测体位移的大小和方向。
5
2.输出特性
图3-12 变隙式差动变压器等效电路
U. 2
3
A Ii
1
U1
1
2U ia来自bW1aW2a
C
e2a
U o
W1b
W2b
e2b
2
U 2
B
(a)
(b)
图 3-11 差动变压器式传感器的结构示意图 (a)、 (b) 变隙式差动变压器; (c)、 (d) 螺线管式差动变压器
4
当没有位移时,衔铁C处于初始平衡位置,它与两个铁芯的 间隙有δa0=δb0=δ0,则绕组W1a和W2a间的互感Ma与绕组W1b和W2b 的互感Mb相等,致使两个次级绕组的互感电势相等,即e2a=e2b。 由 于 次 级 绕 组 反 相 串 联 , 因 此 , 差 动 变 压 器 输 出 电 压 Uo=e2a. e2b=0。
④ 以上结果是在假定工艺上严格对称的前提下得到的,而 实际上很难做到这一点,因此传感器实际输出特性如图3-13中曲 线2所示,存在零点残余电压ΔUo。
⑤ 进行上述推导的另一个条件是变压器副边开路,对由电 子线路构成的测量电路来讲,这个要求很容易满足,但如果直 接配接低输入阻抗电路, 就必须考虑变压器副边电流对输出特 性的影响。
第3章 电感式传感器
3.1 变磁阻式传感器 3.2 差动变压器式传感器 3.7 电涡流式传感器
1
3.2 差动变压器式传感器
把被测的非电量变化转换为线圈互感变化的传感器称为互 感式传感器。这种传感器是根据变压器的基本原理制成的,并 且次级绕组用差动形式连接,故称差动变压器式传感器。
差动变压器结构形式较多,有变隙式、变面积式和螺线管 式等,图3-11为差动变压器的结构示意图。在非电量测量中, 应用最多的是螺线管式差动变压器, 它可以测量1~100mm机械 位移,并具有测量精度高、灵敏度高、 结构简单、性能可靠等 优点。
(a)
(b)
(c)
(d)
(e)
图3-15 线圈排列方式
(a) 一节式; (b) 二节式; (c) 三节式; (d) 四节式11; (e) 五节式
图3-17 差动变压器输出电压的特性曲线
12
零点残余电压:
在零点总是有一个最小的输出电压。一般把这个最小的输出
电压称为零点残余电压。. 零点残余电. 压的大小是判别传. 感器质量.