数学思维导图怎么画,两个步骤告诉你思维导图的简单画法
解题的思维导图:让数学变得简单易懂
解题的思维导图:让数学变得简单易懂引言数学作为一门学科,往往在学生中引起了许多困惑和恐惧。
对于许多人来说,解决数学问题可能是一项挑战性的任务。
然而,使用思维导图作为解题工具,可以帮助我们更轻松地理解和解决数学问题。
本文将介绍什么是思维导图以及如何运用思维导图来简化数学问题。
什么是思维导图H2思维导图的定义思维导图是一种图形化的思维工具,用于组织和表达思维过程。
它通过创建一个中心主题并将相关的思想和概念连接到中心主题上,以可视化的方式展示信息之间的关系。
H2思维导图的结构思维导图通常由一个中心主题、主题分支和子主题组成。
中心主题在思维导图的中心位置,其他主题分支和子主题则通过线条或箭头与中心主题相连接。
H2思维导图的优势思维导图具有许多优势,适用于各种学科和问题解决情境。
它可以帮助我们整理思维,构建关联,提高记忆力,并提供一种简洁而清晰的方式来呈现信息。
怎样用思维导图解决数学问题H2思维导图适用于数学问题数学问题通常包含了许多复杂的概念和步骤,而这些在纸上写下的公式往往难以理解。
然而,将这些信息以思维导图的形式呈现,可以让数学问题变得简单易懂。
H2步骤一:理解问题在解决数学问题之前,我们首先需要理解问题的要求和限制。
这一步骤可以通过思维导图来完成。
将问题的关键信息写在中心主题下,并通过主题分支和子主题将相关的概念和条件连接到中心主题上。
通过这样的方式,我们可以更清楚地理解问题的要求和限制。
H2步骤二:分析问题一旦我们理解了问题,接下来的一步是分析问题。
将问题分解为更小的部分,以便更好地理解每个步骤和概念。
这可以通过在思维导图中创建子主题和主题分支来实现。
用线条或箭头将每个步骤和概念连接起来,以显示它们之间的联系。
通过这样的分析,我们可以更清楚地看到问题的结构和解决方案的方法。
H2步骤三:解决问题一旦我们完成了问题的理解和分析,接下来的一步是解决问题。
根据思维导图中的信息,我们可以逐步地解决问题。
将每个步骤和概念转化为具体的数学公式或方法,并应用它们来解决问题。
人教版小学数学四年级上册1-8单元思维导图
人教版小学数学四年级上册18单元思维导图一、第一单元:认识更大的数1. 数位顺序表2. 整数的读法和写法3. 整数的比较和大小关系4. 整数的加减法5. 乘法口诀表二、第二单元:角的初步认识1. 角的概念2. 角的分类3. 角的度量4. 角的加减法5. 角的周长三、第三单元:观察物体与几何图形1. 长方形和正方形的特征2. 三角形的特征3. 四边形的特征4. 圆的特征5. 立体图形的特征四、第四单元:分数的初步认识1. 分数的概念2. 分数的读法和写法3. 分数的比较和大小关系4. 分数的加减法5. 分数的应用五、第五单元:两位数乘两位数1. 乘法口诀表的应用2. 两位数乘两位数的计算方法3. 两位数乘两位数的进位和借位4. 两位数乘两位数的估算5. 两位数乘两位数的应用六、第六单元:小数的初步认识1. 小数的概念2. 小数的读法和写法3. 小数的比较和大小关系4. 小数的加减法5. 小数的应用七、第七单元:简易方程1. 方程的概念2. 方程的解法3. 方程的应用4. 一元一次方程5. 方程的变形八、第八单元:观察物体与几何图形(二)1. 立体图形的表面积2. 立体图形的体积3. 立体图形的切割与拼接4. 立体图形的应用5. 立体图形的拓展人教版小学数学四年级上册18单元思维导图一、第一单元:认识更大的数1. 数位顺序表:掌握数位的名称和顺序,了解数位之间的关系。
2. 整数的读法和写法:学习如何正确地读出和写出整数,掌握整数的基本表达方式。
3. 整数的比较和大小关系:通过比较整数的大小,建立数的大小概念,培养逻辑思维能力。
4. 整数的加减法:掌握整数加减法的计算方法,能够熟练地进行整数加减运算。
5. 乘法口诀表:学习乘法口诀表,掌握乘法的基本规律,提高计算速度和准确性。
二、第二单元:角的初步认识1. 角的概念:理解角的概念,掌握角的定义和特征。
2. 角的分类:学习不同类型的角,如锐角、直角、钝角等,了解它们之间的区别和联系。
初中数学思维导图
初中数学(1)有理数(2)代数式与整式(3)一元一次方程(4)实数(5)平面直角坐标系(6)二元一次方程(7)不等式(组)(8)整式的乘除与因式分解(9)分式与分式方程(10)二次根式(11)一次函数(12)一元二次方程(13)二次函数(14)反比例函数(15)图形的初步认识(16)相交线与平行线(17 )三角形与多边形(18)全等三角形及其性质(19)轴对称与等腰三角形(20)勾股定理(21)平行四边形(22)图形的旋转(24)相似型(25)锐角三角函数(26)视图与投影(27)尺规作图与命题的证明(28)数据的收集,整理与描述(29)数据的分析(30)概率有理数有关概念有理数的四则运算有理数的乘方科学记数法近似数有理数定义分类性质分类整数分数正整数零负整数正分数负分数正有理数零负有理数负整数负分数正整数正分数绝对值数轴相反数原点正方向单位长度符号不同的两个数互为相反数,数字要一样0的相反数是零0数a的绝对值记作lal,读作a的绝对值,任何数都有绝对值0的绝对值是零0,一个正数的绝对值是它本身一个负数的绝对值,是它的相反数有理数的加减法加上一个数或减去一个数有理数的加法运算律加法交换律加法结合律两个数相加交换加数的位置和不变a+b=b+a三个数相加,先把前两个数相加,或者先把后两个数相加和不变(a+b)+c=a+(b+c)有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘任何数与零相乘都得零倒数一个正数的倒数仍是负数,一个负数的倒数仍是负数0没有倒数有理数的乘法运算律乘法交换律乘法结合律乘法分配律两个数相乘交换因数位置积相等ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等(ab)c=a(bc)一个数同两个数的和相乘同于把这个数分别同这两个数相乘,再把积相加a(b+c)=ab+ac有理数的除法除以一个不等于零的数,等于乘以这个数的倒数两数相除,同号得正异号得负,并把绝对值相除0,除以任何一个数不等于 0的数,都是01 零不能做除数2有理数的除法与乘法是互逆运算3在做除法运算时,根据同号得正,异号得负的法则,先确定符号,再把绝对值相除,若在算式中有带分数,则一般化成假分数进行计算,若不能整除除法运算,转化为乘法运算:有理数的乘方及表示方法求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在a的n次方中,a叫做底数,n叫做指数an读作a的n次方有理数乘方的计算步骤一,先将乘方运算转化为乘法运算二,根据乘方的符号法则,确定幂的符号三,计算幂的绝对值有理数的混合运算顺序含有有理数的加减乘除乘方五种基本运算的多种运算叫做有理数的混合运算先乘方,再乘除,最后加减科学计数法把一个数表示成a×10的N次方的形式近似数近似数就是与准确数很接近的数代数式整式整式的加减有理式(只有加减乘除乘方包括数字开方运算的代数式叫做有理式)无理式(还有关于字母开方运算的代数式,叫做无理式)整式分式多项式单项式代数式的书写要求1字母与字母相乘,数字与字母相乘,数字应写在字母前,乘号通常写作(.)或者省略不写2当代数式中出现除法律算式一般按照分数的写法来写3带分数与字母相乘,省略乘号时应把带分数化成假分数(分子等于分母或大于分母的叫假分数)4实际问题中需弄单位时,若代数式的最后结果含有加、减运算,则要将整个式子用括号括起来再写单位,否则可直接写单位单项式定义多项式定义几个单项式的和叫做多项式如X的2次方+二xy+y的二次方,a的二次方减去b的二次方在多项式中,每个单项是叫做多项式的项,只含十一像一a,二分之一平方米,一ab,2兀r,都是数或字母的积,这样的事实叫做单项式,特别的单独的一个数或一个字母也是单项式,单项式中只含乘除,不含加减同类项合并同类项去括号化简求值所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项?把多项式中的同类项合并成一项叫做合并同类项,一2a与5a合并同类项后为3a ,1/2x的二次方y与5x的二次方y合并为同类项后为11/2x的二次方y多项式的项合并同类项的步骤1准确找出同类项2利用法则把同类项的系数相加,字母和字母的指数不变3写出合并后的结果如3x的2次方y+4x的2次方y=(3+4)X的二次方y=7 X2次方y如果括号外的因数是正数去括号后原括号内各项的符号与原来的符号相同如果括号外的因数是负数去括号后原括号内各项的符号与原来的符号相反,如+(a+b一c,一(a+b一c)=一a一b+C化:通过去括号合并同将整式化简代::把已知的字母或某个整式的取值代入化简后的式子算:一句有理数的混合运算法则进行计算方程的有关概念解一元一次方程列一元一次方程解应用题用等号表示相等关系的式子叫做等式等式两边同时乘同一个数,或除以同一个数不为零的数,结果仍相等,等式两边同时加或减同一个数或40,结果仍相等只含有一个未知数,未知数的次数都是一等号,两边都是整数,这样的方程叫做一元一次方程一去分母,二去括号,三移项,四合并同类项,五系数化为一等积变形问题行程问题年龄问题工程问题利润率问题素质问题包括阅历中的数字规律储蓄问题配套问题长方体的体积等于长乘宽乘高圆柱体的体积等于兀R的二次方hH为高,r为底面圆半径变形前后体积相等相遇问题追及问题航行问题路程等于速度乘时间,时间等于路程除速度,速度整个路程除时间和上面一样快车行驶路程一去慢车行驶路程=原距离快车行驶距离十慢车行驶路程=远距离顺水速度=静水速度+上水流速度逆水速度=静水速度一水流速度路程=速度X时间大小两个年龄差不会变由题可知年龄增长一年为一岁工作量=工作效率x工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率两个或几个工作效率不同的对象所完成的工作量和等于总工作量商品的利润率=商品进阶除以商品利率乘以100%商品利率=商品售价一商品进价(成本价)找出利润或利润率与其他量之间的关系设a,b分别为一个两位数的个位,十位上的数字,则这个两位数可表示为10b+1 抓住数字之间的新数原数之间的关系的关系利息=本金x利率x期数本息和=本金+利息=本金x(1+利率x期数)有题可知M件a产品与n件b产品配套a产品的数量xn= b产品的数量xm平方根的有关概念立方根的有关概念实数算术平方根平方根开平方平方根与算术平方根的区别与联系一般的,如果一个正数X的平方根等于a,即X的二次方等于a,那么这个正数x叫做a的算术平方根 0的算术平方根0非负数a的算术平方根记作根号a,读作根号a,其中a叫做被开方数如五的二次方等于25,那么五叫做25的算术平方根或者说25的算术平方根是5如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,如果x的二次方=a,那么x叫做a的平方根一个正数a有两个平方根,它们互为相反数,记住正负根号a0的平方根是零0负数没有平方根求一个数a(a≥0)的平方根的运算叫做开平方,用符号±根号a表示(±9)的二次方=81 ±根号81 =±9算术平方根平方根如果一个数x的平方根等于a,即x的二次方=a,那么这个数x叫做a的平方根或二次方根,即x=±根号a一个正数有两个平方根,它们互为相反数,0的平方根是0 负数没有平方根如果一个正数x的平方根等于a,即x=a,那么这个正数x叫做a的算术平方根,即x=根号a 正数只有一个算数平方根,且恒正,根号0=0 负数没有算数平方根立方根开立方立方根与平方根的区别无理数实数及其分类一般的,如果一个算数x的立方=a,即x的三次方=a,那么x叫做a的立方根或者三次方根数a的立方根数a的立方根记住三次根号a,其中a叫做被开方数如5三次方=125.5叫做125的立方根负数没有平方根,但有立方根求一个数a的立方根的运算叫做开立方,八的立方根为三次根号8=2平方根的指数2可以省略,立方根的指数3不能省略无限不循环的小数叫做无理数有理数和无理数统称为实数平面直角坐标系的有关概念点的坐标的有关性质有序数对有顺序的两个数a与b组成数对教有序数对记作(a,b)前列后排平面直角坐标系在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系,横坐标x,纵坐标y象限平面直角坐标系上的x轴和y轴把坐标平面分成四个部分,每个部分称为象限,按逆时针依次叫做第一象限,第二象限,第三象限,第四象限,从右上方开始各象限内点的坐标的符号特征第一象限十十,第二象限一十,第三象限一一,第四象限十一二元一次方程组的有关概念解二元一次方程组列二元一次方程组解应用题二元一次方程二元一次方程组含有两个未知数,并且含有未知数的项次数都是一像这样的方程,叫做二元一次方程方程组中有两个未知数,每个含有未知数的项的次数都是1二元一次方程的解二元一次方程的解都是成对的,两个数一般要用大括号联系表示如x=1 y=2是二元一次方程x+y=3的一组解二元一次方程组的解二元一次方程组的两个方程的共同点叫做二元一次方程组的解解二元一次方程组的解一般情况下是唯一的,但有的方程组有无数多个解或者无解消元思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为熟悉的一元一次方程,即可先解出一个未知数,然后求另一个未知数,这种将未知数的个数由多化少逐一解决的思想,叫做消元思想代入消元法打二元一次方程组中的一个方程的一个未知数,用含另一个未知数的式子表示出来,再代入另一个方程加减消元法当二元一次方程组的两个方程中,同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数整体消元法将方程组中的一个方程或方程的一部分看成一整体带入另一个方程中解二元一次方程组的步骤二元一次方程组(消元)一元一次方程(求解)求出一个未知数的值(回代)求出另一个未知数的值(联立)写出方程组的解列二元一次方程组解应用题的常见类型(1)和,差,倍,分,问题较大量=较小量+多余量,总量=倍数x一份的量(2)产品配套问题这类问题的基本等量关系是配套比相等(3)行程问题路程=速度x时间(4)航速问题 1顺流(风)速度=静水(无风)中的速度+水(风)速 2逆流(风)速度=静水(无风)中的速度一水(风)速(5)工程问题工作量=工作效率x工作时间(6)增长率问题原量x(1+增长率)=增长后的量,原量x(1一减少率)=减少后的量(7)银行利率问题免税利息=本金x利息x期数,税后利息=本金x利率x期数一本金乘利率x期数x税率不等式的有关概念及性质解一元一次不等式解一元一次不等式组列一元一次不等式组解应用题不等式不等式的解与解集用符号<或>表示大小关系的式子叫做不等式使不等式成立的未知数的值叫做不等式的解,不等式的解是一个具体的解,如x=1是x+2>1的解不等式的性质不等式两边加或减同一个数或式子不等号的式方向不变,不等式两边乘或除同一个正数不等式号方向不变,不等式两边同乘或除同一个负数不等式号方向改变一元一次不等式只含有一个未知数不等式的两边都是整式,这样的不等式叫做一元一次不等式,不等式中只含一个未知数,未知数的次数是1一元一次,不等式的解集与表示方法用数轴表示解一元一次不等式的一般步骤去分母去括号移项合并同类项系数化为1一元一次不等式组类似于方程组把两个含有相同未知数的一元一次不等式合起来,组成一个一元一次不等式组一元一次,不等式组的解集用数轴来表示几个不等式的解集的公共部分,通常利用数轴来确定列一元一次不等式组解应用题的关键语句至少,最多,超过,不低于,不大于,不高于,大于,多等幂的有关计算整式的乘除因式分解同底数幂的乘法,底数不变,指数相加如a的m次方xa的n次方=a的m+a次方幂的乘方底数不变,指数相乘,如(a的m次方)n次方=a的mn次方积的乘方把每一个因式分别乘方,再把所得的幂相乘如(ab)的N次方=a的N次方b的N次方(N为正整数),(xy)的三次方=X的三次方y的三次方同底数幂的除法同底数幂相除底数不变指数相减,如A的m次方÷a的N次方=a的m-n次方零指数幂任何不等于零的数的零次幂都等于1单项式与单项式的相乘把它们的系数同底数幂分别相乘,对于只在一个单项式里含的字母,连同它的指数作为积的一个因式,如(2ab的二次方)x(一3a的三次方bc的二次方)=〈2x(一3)〉(axa的三次方)x(b的二次方xb)xc的二次方=6a的四次方b的三次方c的二次方单项式与多项式相乘单项式去乘多项式的每一项,再把所有得的积相加,如m(a+b+c)=ma+mb+mc乘法公式平方差公式完全平方差公式(a+b)(a一b)=a的二次方一b二次方两个数的和与这两个数的差的积,等于这两个数的平方差两个数的和或差的平方等于它们的平方和加上或减去它们积的2倍,即(a+b)的二次方=a的二次方+2ab+b的二次方,(a一b)的二次方=a二次方一2ab+b的二次方这两个都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式添括号括号前面是+,括到括号里的各项都不变号,括号前面是一括号到括号里面的各项都变号单项式除以单项式把系数与同底数幂分别相除作为商的因式,对于只在被除数里出现了字母,连同它的指数作为商的一个因式,如4x的二次方y÷(2x)=(4÷2)(x的二次方÷x)xy=2xy多项式除以单项式多项式的每一项除以单项式如(ma+mb+mc)÷m=ma÷m+mb÷m十mc÷m=a+b+c整式的混合运算先乘方,再乘除,后加减,有括号时先算括号里的因式分解公因式多项式的各项都有一个公共的因式我们把这个因式叫做这个多项式,各项的公因式,如pa+pb+pc,p叫做这个多项式各项的公因式提公因式法公式法把一个多项式化成几个整式的积的形式,像这样的式子变形,叫做这个多项式的因式分解,这也叫做把这个多项式分解因式a的二次方一b的二次方→(因式分解)→(a+b)(a-b)→(整式乘法)→a的二次方一B的二次方6a的三次方b的二次方一4ab的二次方一2a的二次方b的三次方公因式是2ab第二次方平方差公式完全平方差公式两数的平方和加上或减去它们的积的2倍,等于两数和(差)的平方两个数的平方差等于这两个数的和与这两个数的差的积公式 a的二次方一b的二次方=(a+b)(a一b),其中a,b可以是单项式,也可以是多项式公式 a的二次方±2ab+b的二次方=(a±b)的二次方,其中ab可以是单项式或多项式因式分解的一般步骤1先看多项式的各项是否有公因式,若有则应先提公因式2根据多项式的项数判断是否能套用公式,若是二项式,看是否符合平方差公式的特征,若是三项式,则看是否符合完全平方公式的特征3多项式的项数多于三项时,可考虑先分组再进行因式分解4因式分解的结果一定要彻底分解到每个因式都不能再分解为止分式的有关概念分式的运算分式方程列分式方程解应用题分式的基本性质分式的分子与分母乘或除以同一个不等于零的整数,分式的值不变约分集约分法则把一个分式的分子与分母的公因式约去叫做分式的约分最简分式分子与分母没有公因式的分式叫做最简分式最简公分母取个分数系数的最小公倍数,与所有字母公式数的最高次幂的积作为公分母,这样的分母叫做最简公分母通分局通分法则根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式叫做分式的通分先求个各分式的最简公分母及各分母系数的最小公倍数相同,因数的最高次幂与所有不同因式积约分与通分的联系与区别区别;约分的分式个数是一个,通分的分式个数是两个或两个以上,约分的目的将分式化为最简的分式或整通分的目的十几个一分母的分式化为同分母的分式联系;依据是分式的基本性质,分式的值不变分式的乘方分式方程要把分子,分母分别乘方,如(A/b)的N次方=B的N次方/a的N次方分式的加减先通分变为同分母分式再加减分式的混合运算先算乘方,再算乘除,最后算加减,有括号的先算括号里的负整数指数幂任何不等于零的数的负N次方(n为正整数)次幂,等于这个数的n次幂的倒数,即a的负N次方=A的N次方/1(a≠0,n为正整数)科学计数法用ax10几次方?来表示分式方程分母中含有未知数的方程,叫做分式方程解分式方程的一般步骤1去分母2解整式方程3验算可化为一元一次方程的分式方程方程两边同乘一个数去分母列分式方程解应用题的常见题型行程问题有路程,时间和速度三个量,其关系是路程=速度x时间工程问题有工作效率,工作时间和工作总量三个量,其关系是工作总量=工作效率x工作时间增长率问题其等量关系式原谅乘(1+增长率)=增长率后的量,原量x(1一降低率)=降低后的量利润问题商品利率=商品售价一商品进价商品利率=商品利润÷商品进价x100% 售价=进价x(1+利润率),售价=标价x打折价二次根式的有关概念和性质二次根式的运算二次根式;形如根号a(a≥0)的式子叫做二次根式,其中符号根号叫做二次根号,二次根号下的数叫做被开方数使二次根式有意义的条件;当二次根式根号a中要求字母a必须满足条件a≥零0,给被开方数是非负的,所以当a≥ 0时,二次根式根号a有意义当a<0时,二次根式根号a无意义二次根式的性质;(根号a)的二次方= a(a≥0)根号a的二次方=|a|=a(a>0)0(a=)一a(a<)二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变积的算数平方根积的算术平方根等于积中各各因式的算数平方根的乘积商的算术平方根商的算术平方根等于被除数的算术平方根除以除数的算术平方根,即根号a/b=根号b分之根号a(a≥0,b>0)最简二次根式1被开方数的因数是整数,字母因式是整式2被开方数不含能开的,尽方的因数或因式二次根式的加减先将二次根式化成最简,二次根式再将被开方数相同的二次根式进行合并二次根式的混合运算二次根式的混合运算是指二次根式的加减乘除,乘方的混合运算(23)圆变量与函数一次函数的图像与性质一次函数与方程组不等式一次函数的实践与探索常量与变量常量在一个变化过程中,数值始终不变的量称为常量变量在某一变化过程中数值发生变化的量称为变量变量可以变化,而常量是已知数函数一般的一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值y都有一个唯一确定的值与其对应,那么我们说x是自变量y是x的函数函数自变量的取值范围函数自变量的取值范围是指函数有意义的自变量的全体函数值如果在自变量取值范围内给定一个值a函数,对应的值为b,那么b叫做当自变量取值为a时的函数值函数的解析式像y=50一0.1Ix这样,用关于自变量的数学式子表示,函数与自变量之间的关系是描述函数的常用方法,这种式子叫做函数的解析式函数的图像列表,描点,连线函数的表示方法列表法;打字变量x的一个系列值和函数y的对应值列成一个表解析式法;用含有自变量的代数式表示函数的方法叫做解析式法图像法正比例函数与一次函数待定系数法正比例函数的图像特征与性质一次函数的图像特征与性质k,b的符号与直线y=kx+b(k≠0)的关系如y=kx(K是常数,k≠0)的函数,叫做正比例函数,如y=1/3x,y=一3x等都是正比例函数如y=kx+b(K,b是常数k≠零)的函数叫做一次函数,如Y=2 x- 1,y=1 /2 x+1等都是一次函数一次函数一般形式(1)K不等于(2)x的次数是1(3)常数b可以为任何实数先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法叫做待定系数法丨当k>0时,函数y=kx的图像从左向右呈上升趋势,当k<0时,函数y=kx的图像从左向右呈向下降趋势正比例函数y=kx(k≠0)中丨k丨越大直线y=kx越靠近y轴,丨k丨越小直线y=kx越靠近x轴用图像来表示图像过第123象限,图像过134象限Y随x的增大而增大图像过124象限图像过234象限y随x增大而减小直线y=kx+b(k不等于零),令y=0,得x=-b/k,即直线y=kx+b与x轴交于(减b0/k)一次函数与一元一次方程当某个一次函数的值为零时,求自变量的值一次函数与二元一次方程组如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标一次函数与一元一次不等式从函数角度看解一元一次不等式,就是寻求使一元一次函数y=ax+b(a≠0)的值大于或(或小于)0的自变量x的取值范围从函数图像的角度看就是确定直线y=ax+b(a≠0)的在x轴上或下方部分的点的横坐标满足的条件函数值的大小问题转化为解方程或解不等式的问题加以解决一元二次方程的一般形式一元二次方程的根一元二次方程的有关概念一元二次方程的根解一元二次方程解一元二次方程应用题含一个未知数并且未知数的最高次数是二的整式方程,叫做一元二次方程等号左边是一个关于未知数的二次多项式等号,右边是0将此数带入这个一元二次方程的左右,两边看是否相等直接开平方解一元二次方程如X的二次方等于p或(MX+n)的二次方等于p (p≥0)配方法解,一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法一元二次方程根的判别式公式法解一元二次方程一般的四肢b的二次方一4AC叫做方程ax的次方加bx+c=0(a≠0)的根的判别式通常用希腊字母△表示,即△=b的二次方一4 acax的二次方+bx+c=0(a≠0)因式分解法解一元二次方程子主题使方程化为两个一次因式的乘积等于零的形式一元二次方程根与系数关系方程解应用题的一般步骤审设找列检验答列一元二次方程解应用题的常见类型数字问题若一个两位数,十位个位上的数字分别为a,b,则这个两位数表示为十a+b 若一个三位数百位,十位个位上的数字分别为ABC,则这三个数表示为100 a+10 b+c平均增长(降低)率问题设a为起始量,b为终止量,n为增长(降低)的次数,均增长率公式为a(1+x)的n次方=b(x为平均增长率)为,平均降低率公式为a(1 -x)的n次方=、b(x为平均降低率)面积体积问题将不规则图形分割或组合成规则图形,找出未知量与已知量在内再联系,根据面积(体积)公式列出一元二次方程传染问题传染源加第一轮被感染数+第二轮被感染数=第二轮被感染后的总数子主题销售利润问题利润=售价一进价利润率=进价/利润X100%=进价/售价一进价X100%售价=进价X(1加利润率)总利润等于总售价一总成本=单个利润X总销售量二次函数的有关概念二次函数的图像与性质二次函数的实践与探索二次函数如y=aX的二次方+bx+c(a,b,c是常数a≠0)的函数叫做二次函数,其中x是自变量ABC分别是函数表达式的二次项系数一次项系数和常数项二次函数的一般形式函数的关系是整式,自变量的最高次数是二,二次项系数不等于零二次函数的常见表达式式子表达二次函数的顶点坐标及其意义抛物线二次函数y=ax的二次方+bx+c(a不等于)的图像是以(- 2a/b,4a/4ac一b的二次方)为顶点,直线x=一2a/b为对称轴的抛物线二次函数的图像特征与性质轴对称的抛物线顶点坐标为原点(0,0)子主题反比例函数的有关概念比例函数的图像与性质反比例函数一般的弄y=x/k(K是常数,k≠0)的函数叫做反比例函数反比例函数的一般形式y=K/x(其中,k为常数x≠0),以分式形式呈现在分母中,x,指数为1待定系数法求反比例函数解析式的一般步骤1求反比例函数的解析式2求y的值3求x的值反比例关系与反比例函数的区别与联系反比例关系不一定是反比例函数双曲线他的两个分支分别位于第一,第三或第二,第四限反比例函数的图像特征与性质k>0;函数的图像在第一,第三象限在每个象限内y随x的增大而减小 k<0函数的图像在第二,第四象限在每个象限内y随x增大而增大反比例函数y=K/x (k≠0)中比例系数k的几何意义矩形的面积三角形的面积子主题子主题反比例函数图像的对称性其对称轴为直线y=x和y=一x,对称中心为原点反比例函数与正比例函数的联系与区别区别反比例函数正比例函数联系子主题空间图形直线射线线段直线及其表示方法直线没有尽头,是向两方无限延伸的,直线AB和直线BA ,字母无序射线及其表示方法o是这条线的端点,把线段oA,向一方无限延伸,端点的字母必须写在前面线段及其表示方法直线上两个点和它们之间的部分叫做线段角角的定义具有公共端点的两条射线组成角的表示方法角的度量用字母,大写字母,数字,希腊字母,表示度,分,秒角的和差角AOC是角aob与角BOC的和,角aob是角AOC与角COD的差角的平分线一个角从顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线余角和补角如果两个角的和等于90度,则这两个角互为余角,如果两个角的和等于180度,则这两个角互为补角方向角与方位角(1)方向角正北或正南方向线与目标方向线所成的小于90度的角叫做方向角(2)方位角从正北方向逆时针转到目标方向线的水平角,这叫做方位角,取0到360度,比如正东方向就是方位角为90度,正西方向就是方位角为270度相交线相交线中的角平行线图形的平移直线的位置关系在同一平面内不重合的两条直线的位置关系只有两种相交或平行垂线当两条直线相交所成的四个角中,有一个角是直角时说明这两条直线互相垂直,其中一条直线叫做另外一条直线的垂线,它们的交点叫做垂足垂线的性质在同一平面内过一点,有且只有一条直线与已知直线的垂直,垂线段最短对顶角有一个公共的顶点且一个角两边分别是另一个角的两边的反向延长线,对顶角相等邻补角两个角有一条公共边,且它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角,两个角只有数量关系,没有位置关系和等于180度同位角内错角与同旁内角同位角在截线的同一侧,F形内错角在截线的两侧,z字形同旁内角在截线同一侧,c字形平行线的画法平行公理平行线的判定平行线的性质平行线的判定与性质的区别和联系一落二靠三移四画经过直线外一点有且只有一条直线与这条直线平行两条直线平行同位角相等两脚间的数量关系一一判定一一两直线间的位置关系一一性质一一两脚间的数量关系连接各组对应点的线段平移,或在同一直线上且相等三角形的性质多边形的有关概念和性质三角形的三边关系三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边,判断三条线是否能组成三角形,已知三角形的两边,求第三边的取值范围三角形的内角和定理角的和等于180度三角形的外角三角形的一个外角等于它不相邻的两个内角的和,三角形的一个外角大于与它不相邻的任何一个内角三角形的外角和三角形的外角和是360度三角形的稳定性除三角形外其他图形都不具备稳定性多边形及其组成要素边顶点内角外角对角线正多边形各边都相等,各角都相等组成多边形的各条线段叫做多边形的边每相邻两边的公共端点叫做多边形的顶点多边形相邻,两边所组成的多边形的内部的角叫做多边形的内角简称,多边形的角多边形的,一边和它的邻边的延长线组成的角角,多边形的外角连接多边形不相邻的两个顶点的线段叫做多边形的对角线凸多变形多边形分为凸多边形和凹多边形,整个图形都在这条直线的同一侧,这样的多边形称为凸多边形,整个多边形都不在这条直线的同一侧,我们称它为凹多边形多边形内角和定理N边形的内角和等于(n- 2〉×180%多边形外角和定理多边形的外角和内角和等于360度与边数无关四边形的不稳定性三角形的三边确定后,他们的大小形状就确定了,这是三角形的稳定性,但是四边形的四边确定后,它的形状不能确定,这就是四边形的不稳定性全等三角形及其性质全等三角形的判断角平分线的性质全等图形能够完全我的两个图形叫全等图形全等三角形能完全重合的两个三角形叫做全等三角形,用符号≌表示,读作全等于全等变换全等变换是指改变图形的位置,而不改变图形的形状和大小的变换全等三角形的性质全等三角形的对应,边相等全等三角形的对应角相等如△ABC≌A'B'C'边边边定理三遍对应相等的两个三角形全等(简写成边边边或sss)边角边定理两边及其夹角分别等于的两个三角形全等(简写成边角边或sas)角边角定理两个角及其夹边分别相等的两个三角形全等,(简写成角边角或asa)角角边定理两个及其中一个角的对边对应相等的两个三角形全等(简写成角角边或aas)斜边直角边定理斜边和一条直角边分别相等的两个直角三角形全等(简写成斜边直角边或HL)角平分线的性质定理望着点到角的两边的距离相等点在角平分线上的判定角的内部到角的两边的距离相等的点在角的平分线上三角形中角平分的性质三条边的距离相等图形的轴对称线段的垂直平分等腰三角形轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么这两个图形关于这条直线对称,也叫轴对称,折叠后重叠的河叫对应点叫做对称点,这条直线叫做对称轴轴对称图形如果一个平面图形沿着一条直线折叠直线两旁的部分,能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴对称轴图形和轴对称的区别与联系轴对称图形轴对称轴对称的性质如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线作轴对称图形的一般步骤1在原图形上找特殊点2做个个特殊点,关于已知直线的对称轴3按原图对应连接个对称点平面直角坐标系中的轴对画图表示射线的垂直平分线垂直于一条线段,并平分这条线段的直线,叫做这条线段的垂直平分线线段的垂直平分线的性质线上的点与这条线段两个端点的距离相等线段的垂直平分线的判定与线段两个端点距离相等的点,在这条线段的垂直平分线上三角形三边的垂直平分线的性质三边三角形的垂直平分线相交于一点,这个点到三个顶点的距离相等垂直平分线与角平分线的区别与联系角平分线垂直平分线等腰三角形等腰三角形的判断定理等边三角形的判定定理等边三角形及其性质有两条边相等的三角形就是等腰三角形等腰三角形的两个底角相等(简称等边对等角)如果一个三角形有两个角相等,那么这两个角所对的边也相等,(简写成等角对等边()三条边都相等的三角形叫做等边三角形,两边三角形的三边都相等,三个内角都相等,并且每一个内角都等于60度等边三角形的判定123直角三角形与勾股定理勾股定理的逆定理直角三角形的性质123勾股定理直角三角形两条直角边的平方和等于斜边的平方 a二次方=c的二次方一b的二次方,B二次方=c的二次方一a的二次方勾股数勾股定理的逆定理勾股定理与勾股定理的逆定理的区别与联系能构成直角三角形,,三条边长的三个正整数,称为勾股数如果三角形两边的平方和等于第三边的平方,那么该三角形是直角三角形勾股定理勾股定理的逆定理平行四边形中位线矩形菱形正方形平行四边形的性质定理子主题平行线间的距离两条平行线间的距离处处相等平行四边形的判定定理子主题平行四边形的对称性三角形的中位线连接三角形的两边中点的线段叫做三角形的中位线三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半平行线等分线段定理如果一组平行线在一条直线上截得线段相等,那么在其他直线上截的线段也相等矩形有一个角是直角的平行四边形叫做矩形矩形的性质定理四个角都是直角,对角线相等矩形的判定定理矩形的对称性矩形是轴,对称图形有两条对称轴,且对称轴都是过对边中心的直线菱形有一组邻边相等的平行四边形叫做菱形菱形的性质定理子主题子主题菱形的判定定理1平行四边形加一组邻边相等,加一个角为直角2矩形加一组邻边相等2矩形加对角线互相垂直4菱形加一个角为直角5菱形加对角线相等图形的旋转中心对称绕着某一点旋转180度中心对称图形把一个图形绕着某一点旋转,180度,如果旋转后的图形能够与原来的图形重合,那么这个图形称为中心对称图形,这个点就是它的对称中心,中心对称图形是一种特殊的旋转对称图形中心对称图形的基本性质1中心对称的两个图形是全等图形2对称点所连线段都经过对称中心,而且被对称中心所平分3对应线段平行(或在同一直线上)且相等作已知图形成中心对称的图形的一般步骤1连接原图形上的所有关键点与对称中心2再将以上连线延长找对称点,使得关键点与其对称点到对称中心的距离相等3将对称点按原图形的形状顺次连接起来,即可得出与原图形成中心对称的图形关于原点对称的点的坐标在平面直角坐标系中,如果两个点关于原点对称,那么它们的坐标符号相反与圆的有关概念圆的基本性质与圆的位置关系与圆有关的基本概念弦直径弧半圆劣弧优弧同心圆和等圆同心圆:圆心相同半径不相等的两个圆叫做同心圆等圆:能够完全重合的两个圆叫做等圆半径相等的两个圆是等圆同圆或等圆的半径相等圆心圆和圆周角圆心角:顶点在圆心的角叫做圆心角圆周角:顶点在圆上,且两边都和圆相交的角叫做圆周角三角形的外接圆与外心1经过三角形三个顶点的圆,叫做三角形的外接圆,这个三角形叫做圆的内接三角形2三角形外接圆的圆心叫做三角形的外心,三角形的外心是三角形,三边垂直平分线的交点弓形,扇形弓形:由弦及其所对的弧组成的图形叫做弓形扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形圆的对称性圆的中心对称性圆的轴对称性垂经定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧圆心角,孤,弦,之间的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等圆周角定理及其推论在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半圆内接四边形及其性质定理圆内接四边形的对角互补,并且任何一个外角都等于它的内对角点与圆的位置关系1点在圆内2点在圆上3点在圆外过己知点的圆直线与圆的位置关系直线与圆的位置关系的性质与判定切线的性质定理切线的判定定理切线长定理三角形的内切圆与内心相交相切相离直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线直线和圆有唯一公共点时叫做直线和圆相切,这时直线叫做圆的切线为一的公共点叫做切点直线和圆没有公共点时,叫做直线和圆相离子主题圆的切线垂直于过切的半径经过半径的外端,并且垂直于这条半径的直线是圆的切线在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长与三角形各边都相切的圆叫做三角形的内切圆正多边形与圆的有关计算正多边形与圆的关系都有一个外地人和一个内切圆,这两个圆是同心圆正多边形的中心与中心角子主题正多边形的半径与边心距正多边形的有关计算子主题正多边形的对称性子主题弧长公式扇形面积公式圆柱侧面展开图圆锥侧面展开图比例线段及有关性质相似三角形相似多边形与位似图形两条线段的比比例线段比例的基本性质平行线分线段成比例定理如果选中同一长度单位的两条线段A,B的长分别是m和n,就说这两条线段的比是a:b=m:n,或写成a/b=m/n,合数的比一样,两条线段的比A:B中a角比的前列必较比的后列在四条线段中,如果其中两条线段比等于另外两条线段的比,那么这四条线段叫做成比例线段简称比例线段如A/b=c/d,那么AD=BC如果AD=BC,那么a/b=c/d(b,d≠0两条直线被一组平行线所截所得的对应线段成比例平行于三角形一边的直线与其他两边相交,截得的对应线段成比例相似图形把形状相同的图形叫做相似图形相似图形之间的互相变换,称为相似变换相似三角形角对应相等,边对应成比例的两个三角形叫做相似三角形相似比三相似三角形对应边的比叫做相似比相似三角形的判定三个角分别相等三条边成比例的两个三角形相似相似三角形的性质对应边成比例对应角相等相似多边形及其性质两个边数相同的多边形,如果他们的角分别相等边成比例,那么这两个多边形叫做相似多边形相似多边形的性质:12345相似多边形的判定如果两个边数相同的多边形的角对应相等边对应成比例,那么这两个多边形相似位似图形位似图形的性质图形不仅是相似图形,而且对应顶点的连线所在直线相交于一点,那么这两个图形叫做位似图形1234画位似图形的一般步骤1234位似变换的坐标特征一般的在平面直角坐标系中,如果以原点为位,似中心画出一个与原图形位似的图形,使它与原图形的相比为k,那么与原图形上的点xk对应的位似图形上的点的坐标为(Kx, ky)或(负kx,负ky)解直角三角形锐角三角函数解直角三角形已知元素求出所有未知元素的过程叫做解直角三角形解直角三角形的常见类型子主题解直角三角形应用题中的常见概念仰角,俯角方向角坡角,坡度解直角三角形应用题的一般步骤123正弦和余弦正切三角函数特殊角的三角函数值锐角三角函数的关系锐角三角函数的性质子主题投影三视图尺规作图命题证明收集数据与整理数据的描述数据的代表数据的波动概率的有关概念概率的计算方法投影用光线照射物体,在某个平面上得到的影子叫做物体的投影,其中,照射光线叫做投影线,投影所在的平面叫做投影面平行投影太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影平行投影的变化规律同一时刻,所有物体的影子与其高度成正比,一天之中影子的方向变化为正西,西北,正北,东北,正东,一天之中,影子的长度变化为长短长中心投影若一束光线是从一点发出的,这样的光线形成的投影称为中心投影,这个点就是中心,相当于物理上学习的点,光源生活中的点光源主要有探照灯,手电筒,路灯,台灯平行投影与中心投影的区别与联系正投影在平行投影中,如果投影线与投影面互相垂直,就称为正投影几何体的三视图行常见几何体的三视图行几何体三视图形的画法组合体的三视图当我们从某一个角度观察一个物体时,所看到的图形叫做物体的一个视图正方形长方形圆柱圆锥球123判断组合体的组成部分,然后按照画几何体三视图的方法正确画出它的三视图尺规作图把限定用无刻度的直尺和圆规的画图称作尺规作图基本作图123命题判断一件事的语句叫做命题真命题,假命题子主题逆命题把原命题的结论作为命题的条件,把原命题的条件作为命题的结论公理定理子主题互逆定理证明的含义通过推理来判断命题的结论是否成立的过程叫做证明证明的一般步骤辅助线综合与分析法反证法12345子主题子主题子主题数据的收集与整理全面调查和抽样调查总体个体样本与样本容量全面调查与抽样调查全面调查与抽样调查的区别与联系全面调查可直接精确地获得总体的情况,抽样调查的优点是调查范围小,节省时间,人力,物力,财力频数与频率组数与组距频数分布表条形统计图,扇形统计图与折线统计图条形统计图,扇形统计图与折线统计图的区别与联系频数分布直方图频数折线图算数平均数加权平均数算数平均数与加权平均数的区别与联系中位数众数平均数中位数众数的优缺点方差极差方差的应用方法利用样本方差估计总体方差的方法利润方差进行决策的方法方差与平均数,众数,中位数的综合应用确定性事件随机事件概率的定义几何概型列举法画树状图法列表法用频率估计概率公平的游戏模拟实验省略加号的和的形式在一个合适中,通常把各个加数的括号及前面的+号省略不写,写成省略加号和括号的和的形式如(一3)+(+2.5)+(一0.5)+(一6)=一3+2.5一0.5-6代数式用运算符号如加减乘除等将数或数的字母连接起来,所得的式子叫做代数式单独的一个数或者一个字母也叫做代数式t如3+2c,2 x-y ,AB, 2( 3+3 b),3a,8j/单项式的系数单项式中的数字因数五叫做这个单项式的系数(1)一个单项式只含有字母因数它的系数就是1或一1(2)一个单项式是一个常数。
四年级上册数学思维导图总结
四年级上册数学思维导图总结总体导图第1单元知识点1.大数的认识1、计数单位:一(个)、十、百、千、万……亿等等,都是计数单位。
相邻两个计数单位之间的进率是十。
2、数位:个位、十位、百位、……亿位等等,都是数位。
数位名称就是在相应的计数单位后添一个“位”字,如:万--万位。
3、数级:个级、万级、亿级……都是数级,一个数级包括四个数位。
4、数位顺序表:含有数级、数位和相应的计数单位的表格叫做数位顺序表,如下。
5、数字表示:某个数位上的数字表示几个这个数位的计数单位。
如:12367 中的2在千位上,表示“2个千”某个数级上的数字表示几个这个数级的计数单位。
如:36472845中的3647在万级上,表示“3647个万”6、大数的读法:①从高位数读起,一级一级往下读。
②万级的数要按照个级的数的读法来读,再在后面加一个万字。
③每级末尾不管有几个零都不读,其他数位有一个“零”或连续几个“零”,都只读一个“零”。
读数注意事项:“2”读作“二”;如果是大数的最高位是十位、十万位、十亿位……且最高位上的数字是“1”时,这个“1”不读,如125046读作“十二万五千零四十六”7、读写数检验方法:读数和写数可以互相检验,即读数后再写出来和原数比对,而写数后可以自己读出。
②当这两个数位数相同的时候,我们就应该从左起的第一位比起,也就是从最高位开始比,哪个数最高位上的数大,这个数就大。
③如果碰到最高位上的数相同的时候,就再比下一位,以此类推,直到我们比较出相同的数位上的那个数,哪个数大的时候,我们就可以断定这个数比较大。
8、四舍五入法:求“近似数”的一种方法,首先确定需要精确到的数位,将其后面的数作为“尾数”,对尾数最高位上的数字进行取舍。
0~4为“舍”,尾数清零且精确数位的数字不变,5~9为“入”,尾数清零且精确数位上的数字加1。
如:12,5933 (精确到万位)≈13,000012,5933 (精确到千位)≈12,600012,5933 (精确到百位)≈12,590012,5933 (精确到十位)≈12,5930注意:四舍五入后的结果是近似数,所以符号一定要用“≈”!9、改写成不同计数单位的数:(1)整万数:将个级的4个0改写成“万”,整亿数:将万级、个级共8个0改写成“亿”如,15,0000 = 15万24,0000,0000 = 24,0000万= 24亿370,0000 = 370万注意:整万、整亿的数的改写属于准确数,要用“=”连接!(2)非整万的数改写成以“万”为单位的数:将万位以后的数作为尾数,对尾数的最高位(千位)四舍五入,再改写成以“万”为单位的数如14,7283 ,因为千位上的数字是7,属于“入”的情况,所以14,7283 ≈ 15,0000 = 15万或者直接写成14,7283 ≈ 15万(3)非整亿的数改写成以“亿”为单位的数:将亿位以后的数作为尾数,对尾数的最高位(千万位)四舍五入,再改写成以“亿”为单位的数如56,0384,9182 ,因为千万位上的数字是0,属于“舍”的情况,所以56,0384,9182 ≈ 56,0000,0000= 56 亿或者直接写成56,0384,9182≈ 56亿10、按要求组数:(1)组成最大、最小的数:“用2、4、5、6、0、9组成最大的六位数和最小的六位数”最大的数:把给定的数字按照从大到小的顺序排列即可,得965420最小的数:把给定的数字按照从小到大的顺序排列即可,若最高位上的数字是0,将第一个非0数字提前作为最高位,得024569 –》204569(2)组成特定读法的数:“用2、4、5、0、0组成读出1个0的数”按照读数规则,先把0的位置确定,只读1个0,则这个0不能在每级末尾,又已知这个数是五位数,所以单个0可以出现的数位有十位、百位、千位,连续两个0可以出现的位置有千位和百位、百位和十位。
小学数学六年级上册各单元思维导图
小学数学六年级上册各单元思维导图第一部分:数的认识一、整数1. 自然数:0、1、2、3、4、5、6、7、8、9、10……2. 整数:自然数和它们的相反数3. 整数的分类:正整数、0、负整数二、分数1. 分数的意义:表示一个整体被平均分成若干份,其中的一份或几份2. 分数的表示:分子/分母3. 分数的分类:真分数、假分数、带分数三、小数1. 小数的意义:表示一个整体被平均分成若干份,其中的一份或几份,用小数点表示2. 小数的表示:整数部分和小数部分3. 小数的分类:有限小数、无限小数第二部分:数的运算一、加法1. 整数加法:相同符号的整数相加,异号整数相加2. 分数加法:同分母分数相加,异分母分数相加3. 小数加法:小数点对齐,逐位相加二、减法1. 整数减法:相同符号的整数相减,异号整数相减2. 分数减法:同分母分数相减,异分母分数相减3. 小数减法:小数点对齐,逐位相减三、乘法1. 整数乘法:相同符号的整数相乘,异号整数相乘2. 分数乘法:分子相乘,分母相乘3. 小数乘法:小数点对齐,逐位相乘四、除法1. 整数除法:相同符号的整数相除,异号整数相除2. 分数除法:分子相除,分母相除3. 小数除法:小数点对齐,逐位相除第三部分:数的性质一、数的性质1. 整数的性质:奇数、偶数、质数、合数2. 分数的性质:分子分母同乘(除)一个数,分数的值不变3. 小数的性质:小数点向左(右)移动一位,小数的值缩小(扩大)10倍二、数的运算定律1. 加法交换律:a + b = b + a2. 加法结合律:(a + b) + c = a + (b + c)3. 乘法交换律:a × b = b × a4. 乘法结合律:(a × b) × c = a × (b × c)5. 乘法分配律:a × (b + c) = a × b + a × c三、数的运算顺序1. 先算乘除,后算加减2. 同级运算,从左到右依次计算3. 括号内的运算优先级最高第四部分:数的应用一、整数应用1. 计算长度、面积、体积等2. 解决实际问题,如购物、分配、比较等二、分数应用1. 计算比例、比率等2. 解决实际问题,如分物品、分配资源等三、小数应用1. 计算长度、面积、体积等2. 解决实际问题,如购物、分配、比较等第五部分:几何图形一、平面图形1. 线段、射线、直线:线段是有限长的直线,射线有一个端点,直线无限长2. 角:由两条射线共同确定的图形,有一个顶点和两条边3. 三角形:由三条线段围成的图形,有三个角和三个边4. 四边形:由四条线段围成的图形,有四个角和四个边5. 圆:平面内到一个固定点距离相等的所有点组成的图形二、立体图形1. 长方体:由六个长方形围成的立体图形,有六个面、十二条边和八个顶点2. 正方体:由六个正方形围成的立体图形,有六个面、十二条边和八个顶点3. 圆柱:由两个底面和一个侧面围成的立体图形,底面是圆形4. 圆锥:由一个底面和一个侧面围成的立体图形,底面是圆形5. 球:由一个点向外无限延伸,到该点的距离相等的所有点组成的立体图形第六部分:几何图形的性质一、平面图形的性质1. 线段的性质:线段有长度,线段之间可以比较大小2. 角的性质:角有度数,角之间可以比较大小3. 三角形的性质:三角形的内角和为180度,等腰三角形的底角相等,直角三角形的勾股定理4. 四边形的性质:四边形的内角和为360度,矩形、正方形的对角线互相平分5. 圆的性质:圆的周长与直径的比例是圆周率,圆的面积与半径的平方成正比二、立体图形的性质1. 长方体的性质:长方体的体积等于长、宽、高的乘积2. 正方体的性质:正方体的体积等于边长的立方3. 圆柱的性质:圆柱的体积等于底面积乘以高4. 圆锥的性质:圆锥的体积等于底面积乘以高除以35. 球的性质:球的体积等于半径的立方乘以4/3π第七部分:几何图形的测量一、长度测量1. 线段长度:使用直尺或卷尺进行测量2. 角度测量:使用量角器进行测量二、面积测量1. 平面图形面积:根据公式计算,如长方形面积=长×宽,圆面积=πr²2. 立体图形表面积:根据公式计算,如长方体表面积=2(长×宽+长×高+宽×高)三、体积测量1. 立体图形体积:根据公式计算,如长方体体积=长×宽×高,圆柱体积=底面积×高2. 容器体积:使用量筒或量杯进行测量第八部分:数学应用与拓展一、数学在生活中的应用1. 购物:计算价格、找零等2. 测量:计算长度、面积、体积等3. 分配:分配物品、资源等二、数学在科学中的应用1. 物理学:计算速度、加速度、力等2. 化学:计算物质的量、浓度等3. 生物:计算种群数量、增长率等三、数学在艺术中的应用1. 音乐:计算音高、节奏等2. 绘画:计算比例、透视等3. 建筑设计:计算结构、空间等第九部分:数学问题解决策略一、问题解决步骤1. 理解问题:仔细阅读题目,明确已知条件和求解目标2. 制定计划:根据问题类型和条件,选择合适的解决方法3. 执行计划:按照计划进行计算和推导4. 检查结果:验证计算过程和结果的正确性二、常见问题解决方法1. 图形法:通过绘制图形,直观地表示问题条件,便于理解和解决2. 列表法:将问题条件列成表格,便于分析和比较3. 代数法:使用代数表达式和方程,进行符号运算和推导4. 逻辑推理法:根据已知条件和数学规律,进行逻辑推理和证明第十部分:数学思维培养一、培养逻辑思维能力1. 通过解决数学问题,锻炼逻辑推理和证明能力2. 学习数学定义、定理和公式,理解其背后的逻辑关系二、培养空间想象能力1. 学习几何知识,通过绘制图形和想象空间关系,培养空间想象力2. 参与数学建模活动,将实际问题转化为数学模型,提高空间想象能力三、培养数学建模能力1. 学习数学建模方法,将实际问题转化为数学问题2. 参与数学建模竞赛和活动,提高数学建模能力第十一部分:数学学习资源一、教材和辅导书1. 选择适合自己水平的教材和辅导书,进行系统学习2. 利用辅导书中的例题和习题,巩固所学知识二、在线资源和应用程序1. 利用在线教育平台和数学学习网站,获取丰富的学习资源2. 数学学习应用程序,进行互动式学习和练习三、数学竞赛和活动1. 参与数学竞赛,提高数学水平和竞争意识2. 参加数学讲座、研讨会等活动,拓宽数学视野。
小学数学思维导图:分数运算与应用
小学数学思维导图:分数运算与应用引言你是否曾困惑过小学数学中的分数运算和应用?在日常生活中,我们经常会遇到需要使用分数的场景,比如比较物品的价格、计算食物的配方等等。
因此,掌握分数运算和应用是非常重要的。
本文将通过思维导图的方式,帮助你理清分数运算的逻辑,掌握常见的分数应用。
一、分数的基本概念H1: 什么是分数?•分数由分子和分母组成,分子表示被分出的份数,分母表示总份数。
•例如,1/2中,1是分子,2是分母。
H2:真分数和假分数1.如果分子小于分母,那么这个分数就是真分数。
•例如,1/2、3/4都是真分数。
2.如果分子大于等于分母,那么这个分数就是假分数。
•例如,5/4、7/3都是假分数。
H3:分数的大小比较•想要比较两个分数的大小,我们可以将它们转化为相同的分母再进行比较。
•例如,比较1/2和3/4的大小,可以将两个分数都转化为相同的分母,比如8,然后比较分子的大小。
二、分数的四则运算H1:分数的加法•分数的加法就是将两个分数的部分合并在一起。
•添加两个分数的步骤:1.找到两个分数的共同分母。
2.将两个分数的分子相加。
3.分子的和就是新分数的分子,共同分母不变。
H2:分数的减法•分数的减法就是将一个分数的部分从另一个分数中减去。
•减去一个分数的步骤:1.找到两个分数的共同分母。
2.将减去的分数的分子从被减数的分子中减去。
3.结果的分子就是新分数的分子,共同分母不变。
H3:分数的乘法•分数的乘法就是将两个分数的部分相乘。
•乘法的步骤:1.将两个分数的分子相乘。
2.将两个分数的分母相乘。
3.新分数的分子为相乘的结果,分母为相乘的结果。
H4:分数的除法•分数的除法就是将一个分数的部分除以另一个分数。
•除法的步骤:1.将被除数的分子乘以除数的分母。
2.将被除数的分母乘以除数的分子。
3.新分数的分子为乘积的结果,分母为乘积的结果。
三、分数运算的应用H1:比较分数大小的实际应用•在购物时,我们经常需要比较物品的价格,而价格也可以用分数表示。
思维导图数学篇
知识点思维导图
知识点思维导图
知识点思维导图
知识点思维导图
课堂练习
做出函数单调性的知识点思维导图
习题课
案例:
ห้องสมุดไป่ตู้
以下两个函数中:
(1)
f
(x)
1 1
x x
2 2
;
(2) f (x) (1 x) 1 x . 1 x
非奇非偶的函数是______________.
解题思维导图
四 开发右脑
思维导图极大地激发我们的右脑。因为我们在创 作导图的时候还使用颜色、形状和想象力。根据科 学研究发现人的大脑是由两部分组成的。左大脑负 责逻辑、词汇、数字,而右大脑负责抽象思维、直 觉、创造力和想象力。巴赞说:“传统的记笔记方 法是使用了大脑的一小部分,因为它主要使用的是 逻辑和直线型的模式。”所以,图像的使用加深了 我们的记忆,因为使用者可以把关键字和颜色、图 案联系起来,这样就使用了我们的视觉感官。
三 同化记忆
思维导图具有极大的可伸缩性,它顺应了我们大脑 的自然思维模式。从而,可以使我们的主观意图自 然地在图上表达出来。它能够将新旧知识结合起来。 学习的过程是一个由浅入深的过程,在这个过程中, 将新旧知识结合起来是一件很重要的事情,因为人 总是在已有知识的基础上学习新的知识,在学习新 知识时,要把新知识与原有认知结构相结合,改变 原有认知结构,把新知识同化到自己的知识结构中, 能否具有建立新旧知识之间的联系是学习的关键。
二、思维导图在复习中的应用
课后复习是巩固知识、提高运用知识解决问题的能力的重要环节。学生对运用思维导图这 种方式进行复习总结都表现出一定的兴趣。在复习中,首先,学生独立对整章知识进行总 结,根据自己的理解,理清数学概念、规律及其区别、联系,区分重点难点,画出思维导 图。其次,教师批阅学生交上来的作品,把握学生对整个章节知识的掌握情况,同时对其 在思维导图中体现的思维错误进行一定程度的修改。第三,在复习课堂上抽取部分典型的 作品,先由大家讨论该思维导图的优劣,进行补充与深化,最后教师进行总结与提升,由 于初中生的思维水平有限,教师的提高主要是将本章知识与已有知识进行联系,将新知识 融入已有的知识体系中,形成知识网络,便于提取。各章、各单元间不是孤立的,而是互 相联系的,让学生自己找出联系,把所有的思维导图编织成自己的知识网,整个过程也是 其乐无穷的。图2为学生学完直角三角形全等后,将直角三角形的知识与已有的三角形全 等的知识相结合绘制的思维导图,加强了对课程内容的整体认识,形成了一个清晰的知识 框架。 除了按章节复习之外,还可以按照知识分类复习,如函数知识,分一次函数、反比例 函数、二次函数三个主要分支,每个主要分支再细分为函数概念、函数图像、函数性质及 应用等,这样当思维导图完成时,学生也有了一个十分清晰的函数知识框架。
清华状元总结:高中数学最全的思维导图,只发一次!
清华状元总结:高中数学最全的思维导图,只发一次!
很多同学一轮复习已经过半,但还不知道该怎么总结,老师给大家提个建议,要想总结,主要还是首先梳理出脉络来,提到某个知识点,那么关于这个知识点相关的所有知识你都要弄明白,这样你就成功了一半!下面是8张思维导图,先研究下看看吧!
数学的学习需要思维的同时也离不开总结,很多同学往往一个知识点会学的很透彻但是很多知识点加在一起就不知如何是好了。
今天老师为大家带来的这份思维导图帮你总结高中最全的知识点。
希望大家收藏。
老师希望大家能够在自己的薄弱学科上下手,争取做到没有短板,把自己的成绩提高上来!
•文末附有免费完整领取方法。
(完整版)小学数学思维导图(全)
小学数学思维导图(全)一、数的概念1. 自然数自然数是无限的,可以一直往上数。
自然数是离散的,相邻的自然数之间没有其他数。
自然数是可数的,可以一个一个地数出来。
2. 整数整数是可加的,可以相加得到新的整数。
整数是可减的,可以相减得到新的整数。
整数是可乘的,可以相乘得到新的整数。
整数是可除的,可以相除得到新的整数。
3. 分数分数有分子和分母两部分,分子表示被等分的部分,分母表示等分的总份数。
分数可以相加、相减、相乘、相除。
分数可以化简,即分子和分母同时除以它们的最大公约数。
4. 小数小数有整数部分和小数部分两部分,整数部分表示整体中的整数部分,小数部分表示整体中的小数部分。
小数可以相加、相减、相乘、相除。
小数可以化简,即去掉末尾的0。
二、数的运算1. 加法加法是可交换的,即加数的位置可以交换。
加法是可结合的,即加数可以按照任意顺序相加。
加法的结果是唯一的。
2. 减法减法的结果是唯一的。
减法的结果可以是正数、负数或0。
3. 乘法乘法是可交换的,即乘数的位置可以交换。
乘法是可结合的,即乘数可以按照任意顺序相乘。
乘法的结果是唯一的。
4. 除法除法的结果可以是正数、负数或分数。
除法的结果是唯一的。
三、几何图形1. 线段线段有长度。
线段可以测量。
线段可以比较长度。
2. 角角有大小。
角可以测量。
角可以比较大小。
3. 三角形三角形有面积。
三角形的面积可以用公式计算。
三角形的面积可以比较大小。
4. 四边形四边形有面积。
四边形的面积可以用公式计算。
四边形的面积可以比较大小。
四、数学应用1. 解决实际问题数学可以应用于解决实际问题,例如:计算购物时的找零。
计算路程和时间的关系。
计算物体的面积和体积。
2. 数学游戏数学游戏可以帮助学生提高数学思维能力和兴趣,例如:猜数字游戏。
24点游戏。
数独游戏。
3. 数学竞赛数学竞赛可以激发学生的学习兴趣和竞争意识,例如:数学奥林匹克竞赛。
华罗庚金杯赛。
小学生数学竞赛。
五、数学思维方法1. 归纳法归纳法是一种从具体事例出发,得出一般结论的思维方式。
七年级数学上册思维导图
思维导图第一章 有理数相反数— —只有符号不同的两个数,叫做互为相反数一般地,数轴上表示数a 的点与原点的距离,绝对值— —叫做数a 的绝对值乘方——求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂相同的因数叫做底数,相同因数的个数叫做指数把一个数表示乘 a 10n 的形式(其中1 a 10,科学记数法— — n 是正整数),这种记数方法叫做科学记数法运算 法则 有理数的加法法则有理数的减法法则有理数的乘法法则有理数的除法法则乘方的运算符号法则 运算律 加法交换律 乘法交换律 加法结合律乘法结合律 分配律 交换律 结合律 按定义分 分类 按性质符号分整数 分数正有理数 0 负有理数 相关概念 倒数— —乘积是1的两个数互为倒数思维导图第二章 整式的加减用字母表示数定义— —由数或字母的积组成的式子 单项式系数— —单项式中的数字因数次数— —单项式中所有字母的指数的和 定义— —几个单项式的和 整 式的 项— —组成多项式的每个单项式 多项式 常数项— —不含字母的项 次数— —多项式中次数最高项的次数 同类项— —所含字母相同并且相同字母的指数也相同把同类项的系数相加,所得的结果 合并同类项— —作为合并后项的系数 整式的加减 括号外因数为正— — 去括号后原括号内各项的符号与原来的符号相同 去括号 括号外因数为负 — — 去括号后原括号内各项的符号与原来的符号相反 去括号 步骤 合并同类项思维导图第三章 一元一次方程方程:含有未知数的等式 一元一次方程:只含有一个未知数(元),未知数的次数都是1, 元一次方程等号两边都是整式方程的解:使方程中等号左右两边相等的未知数的值解方程:求方程的解的过程性质1:等式两边加(或减)同一个数(或式子),结果仍相等 等式的性质 性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等去分母去括号 解一元一次方程的步骤移项 合并同类项系数化为1审:弄清题意,分清已知量和未知量,明确各数量间的关系设:设未知数,并且用含未知数的代数式表示与所列方程有关的数量 列:根据题目中的数量关系、相等关系、倍数关系以及若干倍多或少 一个数字列方程解:解所列的方程,求出未知数的值以及题目中所要求的相关数量的值验:检验所求的解是否符合题意,是否符合实际意义元次 方程 列一元 一次方程 解应用题思维导图 第四章 几何图形初步常见的立体图形从正面看 立体图形从不同的方向看立体图形从左面看 从上面看 立体图形的平面展示图表示方法 直线特点基本事实:两点确定一条直线表示方法特点比较方法 基本事实:两点之间线段最短两点之间的距离线段的中点线段的和、差与画法定义表示方法比较大小的方法 互余 两角的特殊关系互余 互补 角的度量 表示方法 特点 几何图形初步 平面图形。
思维导图要怎么绘制基本绘画步骤是什么
思维导图要怎么绘制基本绘画步骤是什么思维导图又叫心智图,是表达发射性思维的有效的图形思维工具,它简单却又极其有效,是一种革命性的思维工具。
你想知道怎么绘制你的思维导图吗?下面是店铺为大家介绍的关于思维导图的基本画法步骤,欢迎大家参考和学习。
1、思维导图绘制过程绘制思维导图并不像你想象的那样复杂,正如成功并不像你想象的那样困难一样。
思维导图绘制工具:你只需准备好下面提到的东西,就可以开始画了。
1、A4白纸一张;2、彩色水笔和铅笔;3、你的大脑;4、你的想象!思维导图步骤:1、从白纸的中心开始画,周围要留出空白。
从中心开始,会让你大脑的思维能够向任意方向发散出去,自由地、以自然的方式表达自己。
2、用一幅图像或图画表达你的中心思想。
“一幅图画抵得上上千个词汇”。
它可以让你充分发挥想象力。
一幅代表中心思想的图画越生动有趣,就越能使你集中注意力,集中思想,让你的大脑更加兴奋!3、绘图时尽可能地使用多种颜色。
颜色和图像一样能让你的大脑兴奋。
它能让你的思维导图增添跳跃感和生命力,为你的创造性思维增添巨大的能量,此外,自由地使用颜色绘画本身也非常有趣!4、连接中心图像和主要分枝,然后再连接主要分枝和二级分枝,接着再连二级分枝和三级分枝,依次类推。
所有大脑都是通过联想来工作的。
把分枝连接起来,你会很容易地理解和记住更多的东西。
这就像一棵茁壮生长的大树,树杈从主干生出,向四面八方发散。
假如主干和主要分枝、或是主要分枝和更小的分枝以及分枝末梢之间有断裂,那么整幅图就无法气韵流畅!记住,连接起来非常重要!5、用美丽的曲线连接,永远不要使用直线连接。
你的大脑会对直线感到厌烦。
曲线和分枝,就像大树的枝杈一样,更能吸引你的眼球。
要知道,曲线更符合自然,具有更多的美的因素。
6、每条线上注明一个关键词。
思维导图并不完全排斥文字,它更多地是强调融图像与文字的功能于一体。
一个关键词会使你的思维导图更加醒目,更为清晰。
每一个词汇和图形都像一个母体,繁殖出与它自己相关的、互相联系的一系列“子代”。
数学思维导图怎么画?送你思维导图入门篇教程
数学思维导图怎么画?送你思维导图入门
篇教程
导语:
思维导图怎么画?其实绘制过程并不困难,最重要的是选择一款好用的思维导图软件!究竟有什么软件可以画图呢?其实国产的思维导图软件,就可以满足新手的绘制要求。
本文推荐的软件,它操作极其简单,没有复杂的界面,让人很容易上手。
什么软件制作思维导图简单?
MindMaster思维导图软件,这是一款新出的优秀国产软件,操作十分符合国人的习惯,对新手也十分友好。
相比传统的手绘模式,用它制作思维导图堪称光速,节省的时间不止一点点。
重点是软件内有一百多套实例模板,可以让你直接套用,十分便捷,还有大量的素材可供添加,让你不仅能快速制作一张思维导图,还能快速的制作一张精致的思维导图。
免费获取MindMaster思维导图软件:/mindmaster/
零基础如何使用MindMaster快速绘制思维导图
1、首先从亿图官网将MindMaster下载到电脑上。
2、然后打开MindMaster,点击“新建”,选择任意模板进入绘图界面。
3、接着选择主题后用鼠标双击即可进行编辑修改内容,如果要添加子主题可以通过上方的菜单栏进行添加或者使用快捷键进行添加。
4、当然,你还可以在思维导图中插入一些可爱的表情、剪贴画、超链接、图片、注释、评论等等。
5、在右边也可以一键更换思维导图的主题风格样式,共有上百种风格可以自由选择,十分便捷。
6、最后要将画好的思维导图保存起来,点击“文件”----“导出和发送”即可将思维导图保存为想要的格式了。
获取更多思维导图软件图文教程:/mindmaster/tutorial/。
小学四年级数学知识思维导图
右边起第五个数位是万位,单位是10000,读作:万,右边起第六个数位是十万位,单位是100000,读
作:十万,右边起第七个数位是百万位,单位是1000000,读作:百万,右边起第八个数位是千万位,
单位是10000000,读作:千万,右边起第九个数位是亿位,单位是100000000,读作:亿,右边起第
十个数位是十亿位,单位是1000000000,读作十亿,右边起第十一个数位是百亿位,单位是
10000000000,读作百亿,右边起第十二个数位是千亿位,单位是100000000000,读作:千亿
先将数字相乘,按照整数乘法计算,再确定积的小数点的位置
两角有一个公共顶点,而且两个角的两边是另一个角两边的反向延长线,具有这样关系的两个
两个角有一条公共边,它们的另一边互为反向延长线,具有这样关系的两个角,互为邻补角,
两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样
边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形
度的平行四边形,正方形是四条边相等的长方形
时间单。
数学七下第二章思维导图浙教版
数学七下第二章思维导图浙教版二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
四年级数学思维导图怎么画
四年级数学思维导图怎么画数学思维导图模板:
怎样绘制思维导图:
第一步:选择工具,新建思维导图
这里选择的是迅捷画图网站进行编辑使用,选择首页面立即体验之后进入新建文件页面,在新建页面点击思维导图选择新建空白模板即可完成新建。
第二步:搭建思维导框架,填充内容
进入在线编辑页面之后,围绕页面中心主题对思维导图框架进行搭建,根据内容多少进行选择。
双击思维导图节点可以对添加需要的内容。
在编辑面板的上方选择布局操作。
第三步:丰富思维导图
1.字体大小及样式:全选添加的内容,在面板上方选择字体以及字号操作,在里面选择自己喜欢的字体进行编辑使用。
2.背景颜色填充:同样在编辑面板上方进行操作,选中需要添加背景颜色的节点,之后选择背景颜色操作点击喜欢的颜色进行添加即可。
3.思维导图框架:常见思维导图为逻辑图,但是思维导图样式是有很多种的,并且根据思维导图内容来选择思维导图样式,在编辑页面中的布局操作中进行设置。
第四步:保存导出思维导图
1.绘制好的思维导图可以导出使用,先点击右上角的保存按钮,可以防止数据丢失。
2.我们绘制思维导图是要储存使用的,这时就需要对绘制成功的思维导图进行导出编辑使用,在编辑面板的右上方选择导出操作之后选择需要的样式即可。
以上就是分享的四年级数学思维导图简单漂亮画法,不仅使用方便还可以对知识点有条理的进行归纳,帮助我们快速提升学习效率。
用A3素描纸做一份思维导图五年级数学第三单元的
用A3素描纸做一份思维导图五年级数学第三单元的思维导图技巧方法画出一张好的思维导图,你不得不知的六个技巧关于思维导图,我们首先需要知道的是如何绘制以及绘制的步骤。
具体可戳☞一个准备五大步骤,开始绘制你的思维导图。
其实,按部就班地去画思维导图,固然不会出什么大的差错。
但正如画画需要技巧一样,绘制思维导图也有一些自己独特的技巧要求。
下面我们就来看一下,思维导图的绘制都有哪些技巧吧1.先把纸张横过来放,这样宽度比较大一些在纸的中心,首先画出能够代表你心目中主体形象的中心图像。
中心图不宜太大,以免影响了周围分支的分布范围;但中心图也不宜太小,因为这样会比较难吸引你的注意力。
因此,中心图大致是纸张的九分之一大小。
重申一下,这个中心图在色彩的运用上要灵活、多样,一般要大于或等于三种,且一定要与主题相关。
2.绘制时,应先从图形中心开始,画一些向四周放射出来的粗线条每一条线都使用不同的颜色,然后在每一个分支上,用大号的字清楚地标上关键词,这样当你想到这个概念时,这些关键词立刻就会从大脑里跳出来。
值得注意的是,大脑短期记忆的信息量是7±2,所以,一张思维导图中主要分支的数目在7个左右。
如果内容太多,建议把内容分成两张或是多张思维导图。
另外,要善于总结和提炼,可以把某些比较接近的内容合并到一个分支中。
同样,如果分支数目比较少,也可以把内容过多的主要分支拆分成几个分支。
这样可以达成整体的平衡,整个布局看起来也比较美观。
3、用背景可以使得导图更加有趣在思维导图中,每个分支的颜色可以把它想象成对应的背景,比如蓝色分支可以想象成在蓝色的大海上;比如红色分支可以想象成在红色地毯上。
这样,不但对导图更加有兴趣,也极大的加强了记忆。
还有就是整副思维导图也是有背景的,我们在归类知识体系时,可以运用整副思维导图的大背景去进行归类。
4.学会提取关键词,切忌把整行甚至是整段文字放在分支上面关键词是什么?关键词就是表达某个重点意思(内容)的最简洁的词语。
苏教版六年级数学下册一至六单元思维导图
圆柱从上到下一样粗解决问题的策略转化策略列举策略假设策略先假设再调整策略画图策略方程策略分数转化为比推导图形公式有序列举总量不变的情况下,依次调整两部分量的大小假设小的,先算出来的是大的经典问题:鸡兔同笼“假想构成法”:假设大的,先算出来的是小的先假设两种量同样多或差不多再根据计算结果对比调整结果相等停止调整直观清楚费时费力分析题意找等量关系式设未知数列出方程分数转化为份数不重复不遗漏主要类型具体问题具体分析主要步骤优缺点主要步骤结果相等停止调整计算每一次调整的结果并对比先进行假想的构成,然后在假想的条件下,探索解决问题的对策(1)已知总头数和总腿数,求鸡、兔各多少:(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,求鸡、兔 各多少:(3)已知总头数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,求鸡、兔各多少:方法一:假设全是鸡,兔数 =(总腿数-总头数×2)÷(4-2);鸡数 = 总头数-兔数方法二: 假设全是兔,鸡数 =(总头数×4-总腿数)÷(4-2);兔数 = 总头数-鸡数方法一: 假设全是鸡,兔数 =(总头数×2-鸡兔脚数之差)÷(2+4);鸡数 = 总头数-兔数方法二: 假设全是兔,鸡数 =(总头数×4+鸡兔脚数之差)÷(2+4);兔数 = 总头数-鸡数方法一: 假设全是鸡,兔数 =(总头数×2+鸡兔脚数之差)÷(2+4);鸡数 = 总头数-兔数方法二: 假设全是兔,鸡数 =(总头数×4-鸡兔脚数之差)÷(2+4);兔数 = 总头数-鸡数依据:E表示东两种相关联的量,一种量变化,另一种量也随着变化。
二年级下课二四六单元思维导图
二年级下课二四六单元思维导图
数学思维导图的构建模式,都抄是先确定一个中心主题,引出子主题,对子主题再分层次即可。
具体操作步骤如下。
用最简洁的语言确袭定要画的数学主题。
以“角的度量”为例。
如下图所示。
角是从一点引出两条射线所组成的图形。
所以先了解射线。
如下图所示。
由射线引出线段和直线,比较三者之间的异同。
如下图所示。
扩展资料:
思维导图的手绘方法:
1,使用彩笔,在空白画纸中央绘制主题内容;
2,依回次向中心主题四周发散延伸二级主题;
3,在二级主题节点处,根据内容可以答继续延伸下级主题;
4,使用不同颜色的彩笔,完善各个分支内容。
将内容进行完善
5,对整体绘制的思维导图进行检查使用确保绘制思维导图的正确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学思维导图怎么画,两个步骤告诉你思维导图的简单画法思维导图是作为目前最流行的思维工具,能帮我们扩散思维、理清事件全程逻辑关系,对问题进行全方位描述与分析,从而找到解决问题的关键点。
所以掌握数学思维导图的画法,就十分有必要了,接下来,小编将通过下面7个步骤,告诉大家应该如何绘制思维导图!这方法需要借助迅捷流程图制作软件,它有软件版和在线版,小编用的是在线版。
步骤如下:
1、从软件界面左侧选择一个文本框,并将其放置在中间位置,在周围留出空白,接着在文本框中填入中心思想。
这里有几个要点需要注意:
①可以使用右侧的【样式】工具栏中对文本框进行外观设置,颜色上可以丰富些,这样你的思维导图会更加充满跳跃感和生命力,你的创造性思维也会被增加更多能量;
②文本框里的中心思想也可以用图片代替,这样画面会更加生动,更容易激发你的想象力,让你的大脑保持兴奋,这个操作可以在在右侧【文本】工具栏中找到。
2、选择连接文本框的支干,在左侧工具栏有各类连接线条或者箭头,选择一种并将其移动到两个文本框之间
选择支干同样不容小视,这几点也需要注意:
①各个层级间的连接箭头可以不一样,给不同的箭头赋予不同意义;
②箭头/连接线的颜色也可以丰富些,让整体画面丰富起来;
③为每个箭头都附上注释,明确显示两文本框之间的关系。
接着以此类推将二级分枝三级分枝地绘制,让大脑不断处于联想工作的状态,很快,你的思维导图就会向四面八方发散出来了。
在这过程中,你会不断萌生新想法,为你的思维导图“添砖加瓦”。
三、也是最后一步,依次点击【文件】-【导出】,选择一种格式将它导出来就OK 了。
另外,如果不想自己绘制,迅捷流程图也提供了海量模板供你使用,你可以直接拿来修改编辑。
如此简单的思维导图绘制方法,错过就真是太可惜了。