数学思维导图怎么画两个步骤告诉你思维导图的简单画法
人教版小学数学四年级上册1-8单元思维导图
人教版小学数学四年级上册18单元思维导图一、第一单元:认识更大的数1. 数位顺序表2. 整数的读法和写法3. 整数的比较和大小关系4. 整数的加减法5. 乘法口诀表二、第二单元:角的初步认识1. 角的概念2. 角的分类3. 角的度量4. 角的加减法5. 角的周长三、第三单元:观察物体与几何图形1. 长方形和正方形的特征2. 三角形的特征3. 四边形的特征4. 圆的特征5. 立体图形的特征四、第四单元:分数的初步认识1. 分数的概念2. 分数的读法和写法3. 分数的比较和大小关系4. 分数的加减法5. 分数的应用五、第五单元:两位数乘两位数1. 乘法口诀表的应用2. 两位数乘两位数的计算方法3. 两位数乘两位数的进位和借位4. 两位数乘两位数的估算5. 两位数乘两位数的应用六、第六单元:小数的初步认识1. 小数的概念2. 小数的读法和写法3. 小数的比较和大小关系4. 小数的加减法5. 小数的应用七、第七单元:简易方程1. 方程的概念2. 方程的解法3. 方程的应用4. 一元一次方程5. 方程的变形八、第八单元:观察物体与几何图形(二)1. 立体图形的表面积2. 立体图形的体积3. 立体图形的切割与拼接4. 立体图形的应用5. 立体图形的拓展人教版小学数学四年级上册18单元思维导图一、第一单元:认识更大的数1. 数位顺序表:掌握数位的名称和顺序,了解数位之间的关系。
2. 整数的读法和写法:学习如何正确地读出和写出整数,掌握整数的基本表达方式。
3. 整数的比较和大小关系:通过比较整数的大小,建立数的大小概念,培养逻辑思维能力。
4. 整数的加减法:掌握整数加减法的计算方法,能够熟练地进行整数加减运算。
5. 乘法口诀表:学习乘法口诀表,掌握乘法的基本规律,提高计算速度和准确性。
二、第二单元:角的初步认识1. 角的概念:理解角的概念,掌握角的定义和特征。
2. 角的分类:学习不同类型的角,如锐角、直角、钝角等,了解它们之间的区别和联系。
二年级上册数学思维导图(共9张PPT)
二年级上册数学知识点
数与代数
空间与图形
认识时间 实践与综
合应用
数的 数的 常见 运算 认识 的量
探索 规律
图形 的认 识
测量
图形 与 变换
图形与 位置
认识整5整 10的时间
100以内 数的运算
进位加 不进位 加退位 减不退 位减
100以内的加减 法估算
厘米
米
简单的 组合思 想和逻 辑推理 方法
例2例3例4退位减
连加连减
加减混合
例3加减混合
例1连加
例2 连减
什么是角? 一个顶点两条边
例1 认识角
第三单元 角的初步认识
例2画角
先画一个顶点
从顶点出发向
不同方向画 两条射线
例3认识直角。
例4画直角
判断直角方法
和画直角方法
什么是直角 注意直角符号
例1乘法意义
例2乘法算是名称
简单的组合思想乘和法逻的辑推初理步方认法识
统计表
单式统计表
简单例的3组建合立思一想个和数逻的辑推理方例法4解决问题 二简二年单年级 的 级几上组上倍 计册合册是算数思数多 思学想学少 路思和思维逻维的导辑导图推图理方法
简单的组合思想和逻辑推理方法 二年级上册数学思维导图 简单的组合思想和逻辑推理方法 二年级上册数学思维导图 简单的组合思想和逻辑推理方法 进位加不进位加退位减不退位减
100以内的加减法估算 二年级上册数学思维导图 二年级上册数学思维导图 进位加不进位加退位减不退位减
例2 2的乘法口诀
第四单元
表内乘法(一)
2-6的乘法口诀
例3 3的乘法口诀
例4 4的乘法口诀
七年级数学知识思维导图-代数
数轴上某点标1,就是从原点到该点的线段包含1个单位长度,具体长度不 限。
如何确定一个实数在数轴上的位置:在数轴上,除了数0要用原点表示外, 要表示任何一个不为0的实数,根据这个数的正负号确定它所在原点的哪一 边,再在相应的方向上确定它与原点相距几个单位长度,然后画上相应的 点。
平面直角坐标系
平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平 面直角坐标系。
解一元一次不等式组: 1.先求出组成不等式组的不等式的解集。 2.求出这些解集的公共部分。
二元一次不等式:指含有两个未知数,并且未知数的次数是1次的不等式。单 个二元一次不等式无法求出解集。
二元一次不等式组:指由几个共含两个未知数的不等式组成的次数为一的不 等式组.
二元一次不等式(组)
解二元二次不等式组:利用不等式的性质,采取与解二元一次方程组类似的 步骤,就可以求出二元一次不等式组的解集。
近似数:指与精准数相近的一个数。 四舍五入:将精确数转化为近似数的一种方法。
四舍五入的步骤:看需要保留的位数的前一位,如果该位上的数字是“5”或 者比“5”大,向前进一,如果该位上的数字是“4”或者比“4”小,就舍去。
无理数的定义:无理数是不能用两个整数的比表示的数。无理数不能测量, 即没有度量,所以无理数只能用符号来表示,例如:圆周率π。
实数减法
实数减法法则:减去一个数,等于加这个数的相反数。a-b=a+(-b)
加减混合运算可以统一表示为加法运算:a-b=(a)+(-b),a+b=(a)+(b)
乘法:是加法的延伸,意义是计算一个数连序相加几次。
实数乘法
实数乘法法则:两实数相乘,同号得正,异号得负,并把绝对值相乘作为积 的数值。
七年级上册数学思维导图
北师大版七年级上册数学思维导图1. 第四章基本平面图形2. 第五章一元一次方程3. 第六章数据的收集与整理4. 第三章整式及其加减5. 第二章有理数及其运算6. 第一章丰富的图形世界第一章丰富的图形世界1. 一、生活中的立体图形分类1.1. 柱体1.1.1. 圆柱1.1.2. 棱柱1.2. 锥体1.2.1. 圆锥1.2.2. 棱锥1.3. 台体1.3.1. 圆台1.3.2. 棱台1.4. 球体1.4.1. 由曲面围成2. 二、展开与折叠2.1. 1.常见立体图形的展开图2.1.1. ①圆柱:两个圆,一个长方形2.1.2. ②圆锥:一个圆,一个扇形2.1.3. ③三棱锥:四个三角形2.1.4. ④三棱柱:两个三角形,三个长方形2.1.5. ⑤正方体展开图:共有11种2.1.6. ⑥要展开一个正方体,需要切开7条棱2.1.7. ⑦正方体平面展开图找对立面:相间、Z端3. 三、截一个几何体3.1. 1.常见立体图形的截面3.2. 2.用一个平面去截一个正方体,可能得到三边形、四边形、五边形、六边形4. 四、三视图4.1. 主视图4.2. 左视图4.3. 俯视图5. 五、多边形的一些规律5.1. 1.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形5.2. 2.从一个n边形的一边上的一点出发,分别连接这个点与其余各顶点,可以把这个n边形分割成(n-1)个三角形5.3. 3.从一个n边形的内部的一个点出发,分别连接这顶点与其余各顶点,可以把这个n边形分割成n个三角形5.4. 4.从一个n边形一个顶点出发,可引( n-3)条对角线,n边形共有条对角线5.4.1. 4.从一个n边形一个顶点出发,可引( n-3)条对角线,n边形共有条对角线第二章:有理数及其运算1. 1.有理数的分类1.1. 整数1.1.1. 正整数1.1.2. 01.1.3. 负整数1.2. 分数1.2.1. 正分数1.2.2. 负分数2. 2.正负数2.1. 表示相反意义的量3. 3.相反数3.1. 互为相反数两数和为04. 4.数轴4.1. 三要素4.1.1. 原点4.1.2. 正方向4.1.3. 单位长度5. 5.倒数5.1. 乘积为1的两个有理数互为倒数6. 6.绝对值6.1. 正数的绝对值是它本身6.2. 0的绝对值是06.3. 负数的绝对值是它的相反数7. 7.有理数比较大小7.1. 正数>0>负数8. 8.有理数的运算8.1. 加法法则8.2. 减法法则8.3. 乘法法则8.4. 除法法则8.5. 有理数乘方9. 9.科学计数法9.1. 的形式第三章整式及其加减1. 一、字母表示数1.1. 字母可以表示任何数2. 二、代数式2.1. 1.代数式的概念2.2. 2.代数式的书写格式3. 三、整式3.1. 1.单项式3.1.1. 概念3.1.2. 系数3.1.3. 次数3.2. 2.多项式3.2.1. 概念3.2.2. 项3.2.3. 次数3.3. 3.同类项3.3.1. 所含字母相同,相同字母的指数也相同的项3.3.2. 合并同类项3.4. 4.去括号法则3.5. 5.整式的加减3.5.1. 先去括号3.5.2. 再合并同类项第四章:基本平面图形1. 一、直线、射线、线段1.1. 1. 概念以及它们的区别1.2. 2.直线公理:经过两点有且只有一条直线(两点确定一条直线)1.3. 3.字母表示图形1.4. 4.点和直线的关系1.5. 5.线段的性质2. 二、角2.1. 1.角的概念2.2. 2.角的表示2.3. 3.角的度量2.4. 4.角的平分线3. 三、多边形4. 四、圆5. 五、弧6. 六、扇形第五章一元一次方程1. 1.方程的概念1.1. 含有未知数的等式叫做方程2. 2.一元一次方程的概念2.1. 只含有一个未知数,并且未知数的最高次数是13. 3.方程的解4. 4.等式的性质5. 5.移项5.1. 把方程的一项从一边移动到另一边5.2. 移项的过程要更改符号6. 6.解一元一次方程的步骤6.1. ①去分母6.2. ②去括号6.3. ③移项6.4. ④合并同类项6.5. ⑤将未知数的系数化为17. 7.用一元一次方程解决实际问题7.1. ①找出等量关系式7.2. ②设未知数7.3. ③列方程7.4. ④解方程7.5. ⑤检验第六章数据的收集与整理1. 数据的收集方法1.1. 直接方法1.2. 间接方法2. 抽样调查2.1. 样本2.2. 样本容量3. 普查3.1. 总体3.2. 个体4. 数据的表示4.1. 扇形统计图4.2. 条形统计图4.3. 折线统计图。
八年级上册数学思维导图第一章
八年级上册数学思维导图第一章一、数学思维导图的概念与作用1.1 数学思维导图的定义数学思维导图是一种以图形的形式来表达数学概念和思维关系的工具。
它通过将各个概念以节点的形式表示,并用连线表示概念之间的关系,帮助学生理清数学知识的结构框架,并促进理解和记忆。
1.2 数学思维导图的作用•帮助学生理解和记忆数学知识的结构关系,促进知识的整体性理解。
•帮助学生发现数学知识之间的联系和规律,培养抽象思维和逻辑推理能力。
•帮助学生发展创造性思维,拓展解题思路和方法。
•培养学生形象思维,提高数学思维的直观性和准确性。
•培养学生的自主学习能力,让学生学会制作和运用思维导图。
二、数学思维导图的制作方法2.1 选择适当的绘图工具常见的数学思维导图制作工具有手绘、纸笔、黑板、电脑绘图软件等。
根据自己的喜好和制作要求选择合适的工具。
2.2 组织结构首先确定要表达的主题,并将主题放在导图中央,作为核心概念。
然后根据核心概念,逐步展开各个相关的分支,用连线将它们与核心概念相连。
2.3 标题和关键词每个节点旁边都应标明标题和关键词,以方便概念的理解和记忆。
标题应简洁明了,关键词要准确概括该节点的内容。
2.4 层次关系和连接方式节点之间的层次关系可以用数字或字母标号表示,也可以用不同的线型或颜色表示。
连接方式可以使用直线、曲线或箭头等,以准确表达节点之间的关系。
三、数学思维导图的应用实例3.1 整式的展开公式整式的展开公式是初中数学中的重要知识点之一。
我们可以使用思维导图的方式来帮助理解整式的展开公式的结构和演绎过程。
3.1.1 一次方差式的展开以(a+b)2为例,展开公式为a2+2ab+b2。
我们可以用思维导图将展开公式的各个项和系数以图形的形式展示出来,帮助学生直观地理解展开公式的含义。
3.1.2 二次方差式的展开以(a+b)(a−b)为例,展开公式为a2−b2。
同样地,我们可以用思维导图的方式将展开公式的各个项和系数以图形的形式展示出来,便于学生理解和记忆。
思维导图数学篇
知识点思维导图
知识点思维导图
知识点思维导图
知识点思维导图
课堂练习
做出函数单调性的知识点思维导图
习题课
案例:
ห้องสมุดไป่ตู้
以下两个函数中:
(1)
f
(x)
1 1
x x
2 2
;
(2) f (x) (1 x) 1 x . 1 x
非奇非偶的函数是______________.
解题思维导图
四 开发右脑
思维导图极大地激发我们的右脑。因为我们在创 作导图的时候还使用颜色、形状和想象力。根据科 学研究发现人的大脑是由两部分组成的。左大脑负 责逻辑、词汇、数字,而右大脑负责抽象思维、直 觉、创造力和想象力。巴赞说:“传统的记笔记方 法是使用了大脑的一小部分,因为它主要使用的是 逻辑和直线型的模式。”所以,图像的使用加深了 我们的记忆,因为使用者可以把关键字和颜色、图 案联系起来,这样就使用了我们的视觉感官。
三 同化记忆
思维导图具有极大的可伸缩性,它顺应了我们大脑 的自然思维模式。从而,可以使我们的主观意图自 然地在图上表达出来。它能够将新旧知识结合起来。 学习的过程是一个由浅入深的过程,在这个过程中, 将新旧知识结合起来是一件很重要的事情,因为人 总是在已有知识的基础上学习新的知识,在学习新 知识时,要把新知识与原有认知结构相结合,改变 原有认知结构,把新知识同化到自己的知识结构中, 能否具有建立新旧知识之间的联系是学习的关键。
二、思维导图在复习中的应用
课后复习是巩固知识、提高运用知识解决问题的能力的重要环节。学生对运用思维导图这 种方式进行复习总结都表现出一定的兴趣。在复习中,首先,学生独立对整章知识进行总 结,根据自己的理解,理清数学概念、规律及其区别、联系,区分重点难点,画出思维导 图。其次,教师批阅学生交上来的作品,把握学生对整个章节知识的掌握情况,同时对其 在思维导图中体现的思维错误进行一定程度的修改。第三,在复习课堂上抽取部分典型的 作品,先由大家讨论该思维导图的优劣,进行补充与深化,最后教师进行总结与提升,由 于初中生的思维水平有限,教师的提高主要是将本章知识与已有知识进行联系,将新知识 融入已有的知识体系中,形成知识网络,便于提取。各章、各单元间不是孤立的,而是互 相联系的,让学生自己找出联系,把所有的思维导图编织成自己的知识网,整个过程也是 其乐无穷的。图2为学生学完直角三角形全等后,将直角三角形的知识与已有的三角形全 等的知识相结合绘制的思维导图,加强了对课程内容的整体认识,形成了一个清晰的知识 框架。 除了按章节复习之外,还可以按照知识分类复习,如函数知识,分一次函数、反比例 函数、二次函数三个主要分支,每个主要分支再细分为函数概念、函数图像、函数性质及 应用等,这样当思维导图完成时,学生也有了一个十分清晰的函数知识框架。
(完整版)小学数学思维导图(全)
小学数学思维导图(全)一、数的概念1. 自然数自然数是无限的,可以一直往上数。
自然数是离散的,相邻的自然数之间没有其他数。
自然数是可数的,可以一个一个地数出来。
2. 整数整数是可加的,可以相加得到新的整数。
整数是可减的,可以相减得到新的整数。
整数是可乘的,可以相乘得到新的整数。
整数是可除的,可以相除得到新的整数。
3. 分数分数有分子和分母两部分,分子表示被等分的部分,分母表示等分的总份数。
分数可以相加、相减、相乘、相除。
分数可以化简,即分子和分母同时除以它们的最大公约数。
4. 小数小数有整数部分和小数部分两部分,整数部分表示整体中的整数部分,小数部分表示整体中的小数部分。
小数可以相加、相减、相乘、相除。
小数可以化简,即去掉末尾的0。
二、数的运算1. 加法加法是可交换的,即加数的位置可以交换。
加法是可结合的,即加数可以按照任意顺序相加。
加法的结果是唯一的。
2. 减法减法的结果是唯一的。
减法的结果可以是正数、负数或0。
3. 乘法乘法是可交换的,即乘数的位置可以交换。
乘法是可结合的,即乘数可以按照任意顺序相乘。
乘法的结果是唯一的。
4. 除法除法的结果可以是正数、负数或分数。
除法的结果是唯一的。
三、几何图形1. 线段线段有长度。
线段可以测量。
线段可以比较长度。
2. 角角有大小。
角可以测量。
角可以比较大小。
3. 三角形三角形有面积。
三角形的面积可以用公式计算。
三角形的面积可以比较大小。
4. 四边形四边形有面积。
四边形的面积可以用公式计算。
四边形的面积可以比较大小。
四、数学应用1. 解决实际问题数学可以应用于解决实际问题,例如:计算购物时的找零。
计算路程和时间的关系。
计算物体的面积和体积。
2. 数学游戏数学游戏可以帮助学生提高数学思维能力和兴趣,例如:猜数字游戏。
24点游戏。
数独游戏。
3. 数学竞赛数学竞赛可以激发学生的学习兴趣和竞争意识,例如:数学奥林匹克竞赛。
华罗庚金杯赛。
小学生数学竞赛。
五、数学思维方法1. 归纳法归纳法是一种从具体事例出发,得出一般结论的思维方式。
七年级数学上册思维导图
思维导图第一章 有理数相反数— —只有符号不同的两个数,叫做互为相反数一般地,数轴上表示数a 的点与原点的距离,绝对值— —叫做数a 的绝对值乘方——求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂相同的因数叫做底数,相同因数的个数叫做指数把一个数表示乘 a 10n 的形式(其中1 a 10,科学记数法— — n 是正整数),这种记数方法叫做科学记数法运算 法则 有理数的加法法则有理数的减法法则有理数的乘法法则有理数的除法法则乘方的运算符号法则 运算律 加法交换律 乘法交换律 加法结合律乘法结合律 分配律 交换律 结合律 按定义分 分类 按性质符号分整数 分数正有理数 0 负有理数 相关概念 倒数— —乘积是1的两个数互为倒数思维导图第二章 整式的加减用字母表示数定义— —由数或字母的积组成的式子 单项式系数— —单项式中的数字因数次数— —单项式中所有字母的指数的和 定义— —几个单项式的和 整 式的 项— —组成多项式的每个单项式 多项式 常数项— —不含字母的项 次数— —多项式中次数最高项的次数 同类项— —所含字母相同并且相同字母的指数也相同把同类项的系数相加,所得的结果 合并同类项— —作为合并后项的系数 整式的加减 括号外因数为正— — 去括号后原括号内各项的符号与原来的符号相同 去括号 括号外因数为负 — — 去括号后原括号内各项的符号与原来的符号相反 去括号 步骤 合并同类项思维导图第三章 一元一次方程方程:含有未知数的等式 一元一次方程:只含有一个未知数(元),未知数的次数都是1, 元一次方程等号两边都是整式方程的解:使方程中等号左右两边相等的未知数的值解方程:求方程的解的过程性质1:等式两边加(或减)同一个数(或式子),结果仍相等 等式的性质 性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等去分母去括号 解一元一次方程的步骤移项 合并同类项系数化为1审:弄清题意,分清已知量和未知量,明确各数量间的关系设:设未知数,并且用含未知数的代数式表示与所列方程有关的数量 列:根据题目中的数量关系、相等关系、倍数关系以及若干倍多或少 一个数字列方程解:解所列的方程,求出未知数的值以及题目中所要求的相关数量的值验:检验所求的解是否符合题意,是否符合实际意义元次 方程 列一元 一次方程 解应用题思维导图 第四章 几何图形初步常见的立体图形从正面看 立体图形从不同的方向看立体图形从左面看 从上面看 立体图形的平面展示图表示方法 直线特点基本事实:两点确定一条直线表示方法特点比较方法 基本事实:两点之间线段最短两点之间的距离线段的中点线段的和、差与画法定义表示方法比较大小的方法 互余 两角的特殊关系互余 互补 角的度量 表示方法 特点 几何图形初步 平面图形。
七年级数学上册思维导图
七年级数学上册思维导图思维导图整数按定义分为正整数、0和负整数。
分数是指整数间的有理数,可以表示为分子与分母的比值。
正有理数、0和负有理数按性质和符号分类。
相反数是指只有符号不同的两个数,绝对值是指数在数轴上表示数a的点与原点的距离。
倒数是指乘积是1的两个数互为倒数有理数。
乘方是指求n个相同因数的积的运算,乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数。
科学记数法是一种记数方法,可以把一个数表示乘a10n的形式(其中1a10,n是正整数)。
有理数的加法、减法、乘法、除法和乘方的运算符号法则是必须掌握的。
运算律包括加法和乘法的交换律、结合律和分配律。
多项式是由单项式相加得到的式子,单项式包括系数和指数,次数是指多项式中次数最高项的次数。
合并同类项是将所含字母相同并且相减的同类项的系数相加,所得的结果作为合并后项的系数。
一元一次方程是只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程。
解一元一次方程的步骤包括去括号、合并同类项和移项,最后得到未知数的值。
方程的解是指使方程中等号左右两边相等的未知数的值。
解方程的过程就是求方程的解的过程。
等式有以下几个性质:1.等式两边加(或减)同一个数(或式子),结果仍相等;2.等式两边乘同一个数或除以同一个不为零的数,结果仍相等。
解一元一次方程的步骤包括:1.审题:弄清题意,分清已知量和未知量,明确各数量间的关系;2.设未知数,并且用含未知数的代数式表示与所列方程有关的数量;3.列一元一次方程:根据题目中的数量关系、相等关系、倍数关系以及若干倍多或少一个数字列方程;4.移项,合并同类项,系数化为1;5.解应用题:求出未知数的值以及题目中所要求的相关数量的值;6.验算:检验所求的解是否符合题意,是否符合实际意义。
立体图形可以从不同的方向看,包括从正面看、从左面看、从上面看。
平面展示图是立体图形在平面上的展示。
直线和射线都是由一个点和一个方向确定的,直线是无限延伸的,而射线只有一个端点。
小学数学1-6年级思维导图
简单应用题的解题思路
缩小、缩小了、缩小到 综合法
求比一个 数多几的 数是多少
解答应用题 的 一般方法
已知一个数比另 一 个数少几,求 另一 个数是多少
弄清题意,分清已知条件和问题; 分析 题中的数量关系,把应用题 反映的实 际问题抽象为数学问题; 列出算式或方 程,进行计算或解 方程;检验,并写 出答语
_______________ ___J
1元亳
从制作材料上看,人 民币 分为纸币和硬币 人民币的基本单位是元
50元
小学数学思维导图03
小学数学第四章式与方程
使方程左右两边相等的未知数 的值, 叫做方程的解。求方程 的解的过程叫 做解方程
等式的左右两边同时加上或减 去同一 个数,等式仍然成立 等式的左右两边同时乘或者除以同 一个不 为0的数,等式仍然成立
一般应用题的意义;一般复合应用题的解题步骤
分数、 百分数 应甬题
整数、小 一般 数的复合 应用题 应甬题
简单 应角题
数量 关系
基本的数
典型应用题
量关系 部分量与总量;大数、小数与相差数
常见的数
每份数、份数与总数;倍数
量关系 单价、数量与总价;单产量、数量与总产量
应用题中 常见的一 些术语
工作效率、工作时间与工作总量 速度、时间与路程
整数的
数位与位值制 数位顺序表
负整数的读
因数 和 倍数
正整数的改写及求近似数 偶数
倍数的特征
奇数
整数的 大 小比较
最大公因数 小公倍数
分数的意义
分数的分 类及读写
分数的各部分名 称 及分数单位
分数与除法的关系
真分数 假分数
带分数
小学数学思维导图01
初中数学七年级上册思维导图
初中数学七年级上册思维导图一、数与代数1. 实数有理数整数正整数、负整数、0分数正分数、负分数无理数不能表示为两个整数比的数无理数的近似值2. 代数式代数式的概念代数式的化简代数式的求值3. 方程与不等式一元一次方程方程的解法方程的应用一元一次不等式不等式的解法不等式的应用二、几何1. 平面几何点、线、面角锐角、直角、钝角角的度量多边形三角形等腰三角形、等边三角形、直角三角形四边形矩形、正方形、平行四边形、梯形圆圆的性质圆的周长、面积2. 空间几何立体图形长方体、正方体、圆柱、圆锥、球立体图形的表面积、体积三、统计与概率1. 统计数据的收集与整理数据的表示表格、条形图、折线图、扇形图数据的分析平均数、中位数、众数2. 概率概率的概念概率的计算概率的应用四、数学思维方法1. 分类讨论法2. 类比法3. 归纳法4. 反证法五、数学应用与建模1. 数学在实际生活中的应用金融领域利息计算、复利计算工程领域测量、绘图、计算科学研究数据分析、实验设计2. 数学建模建模的基本步骤提出问题、建立模型、求解模型、验证模型常见的数学模型线性模型、非线性模型、概率模型六、数学思维导图的制作与应用1. 思维导图的制作方法确定中心主题画出分支填充内容修饰美化2. 思维导图的应用场景学习规划项目管理决策分析七、数学与科技的发展1. 数学在科技领域的重要性计算机科学算法设计、数据结构机器学习、深度学习物理学量子力学、相对论2. 数学与其他学科的交叉融合数学与生物学遗传算法、神经网络数学与经济学博弈论、优化理论八、数学教育的创新与改革1. 数学教育的现状与问题教学方法单一学生兴趣不高创新能力培养不足2. 数学教育的创新策略案例教学法项目式学习翻转课堂在线教育3. 数学教育的改革方向注重学生个性化发展培养学生的数学思维提高学生的数学应用能力初中数学七年级上册思维导图一、数的认识1. 整数自然数:0, 1, 2, 3,正整数:1, 2, 3,负整数:1, 2, 3,整数:自然数和负整数的统称2. 分数真分数:分子小于分母的分数假分数:分子大于或等于分母的分数分数的基本性质:分子分母同时乘以或除以同一个非零整数,分数的值不变3. 小数小数的表示方法:整数部分和小数部分小数的性质:小数点向右移动一位,相当于乘以10;小数点向左移动一位,相当于除以10二、数的运算1. 整数的运算加法:将两个整数相加减法:将一个整数从另一个整数中减去乘法:将两个整数相乘除法:将一个整数除以另一个非零整数2. 分数的运算加法:将两个分数的分子相加,分母保持不变减法:将一个分数的分子从另一个分数的分子中减去,分母保持不变乘法:将两个分数的分子相乘,分母相乘除法:将一个分数的分子乘以另一个分数的分母,分母乘以另一个分数的分子3. 小数的运算加法:将两个小数的小数部分相加,整数部分相加减法:将一个小数的小数部分从另一个小数的小数部分中减去,整数部分相减乘法:将两个小数相乘除法:将一个小数除以另一个非零小数三、方程与不等式1. 方程一元一次方程:ax + b = 0(a, b为常数,x为未知数)方程的解:使方程成立的未知数的值2. 不等式一元一次不等式:ax + b > 0 或 ax + b < 0(a, b为常数,x 为未知数)不等式的解集:满足不等式的未知数的值的集合四、函数与图形1. 函数定义:函数是一种特殊的关系,每个输入值对应唯一的输出值表示方法:函数关系可以用函数表达式、函数图像、函数表格等方式表示2. 图形直线:一次函数的图像抛物线:二次函数的图像双曲线:反比例函数的图像五、统计与概率1. 统计数据的收集与整理:收集数据、整理数据、制作统计图表数据的分析与解释:分析数据、得出结论、解释结论2. 概率概率的定义:某个事件发生的可能性概率的计算:根据事件发生的次数和总次数计算概率初中数学七年级上册思维导图六、几何图形的认识1. 点、线、面点:没有长度、宽度和高度的几何元素线:只有长度没有宽度和高度的几何元素面:具有长度和宽度的几何元素2. 平面图形三角形:由三条线段组成的闭合图形四边形:由四条线段组成的闭合图形圆:由一个点到平面上所有点的距离相等的点的集合3. 空间图形立方体:由六个正方形面组成的立体图形圆柱:由两个平行圆面和一个侧面组成的立体图形圆锥:由一个圆面和一个侧面组成的立体图形七、几何图形的性质1. 三角形的性质内角和定理:三角形的内角和等于180度等腰三角形的性质:底角相等,底边上的高、中线、角平分线互相重合直角三角形的性质:直角边上的高、中线、角平分线互相重合2. 四边形的性质平行四边形的性质:对边平行且相等,对角相等,对角线互相平分矩形的性质:四个角都是直角,对边平行且相等,对角线互相平分且相等菱形的性质:四个角都是直角,对边平行且相等,对角线互相垂直平分3. 圆的性质圆的周长公式:C = 2πr(r为圆的半径)圆的面积公式:A = πr²圆的性质:圆心到圆上任意一点的距离都相等八、几何图形的计算1. 三角形的计算三角形的周长:三条边的长度之和三角形的面积:底乘以高除以22. 四边形的计算四边形的周长:四条边的长度之和四边形的面积:根据不同类型的四边形使用相应的公式计算3. 圆的计算圆的周长:2πr圆的面积:πr²九、综合应用1. 实际问题运用所学的数学知识解决实际问题,如计算面积、周长、体积等培养学生的应用意识和解决问题的能力2. 数学建模将实际问题抽象成数学模型,运用数学知识解决问题培养学生的建模能力和创新能力3. 数学探究通过探究活动,让学生发现数学规律,提高学生的探究能力和思维能力初中数学七年级上册思维导图十、数学思维与方法1. 逻辑推理通过观察、分析、归纳等方法,培养学生的逻辑思维能力帮助学生理解数学概念、性质、定理之间的关系2. 数学建模将实际问题抽象成数学模型,运用数学知识解决问题培养学生的建模能力和创新能力3. 数学探究通过探究活动,让学生发现数学规律,提高学生的探究能力和思维能力十一、数学素养与能力1. 数感培养学生对数的敏感性,能够快速、准确地理解和处理数学信息2. 空间观念培养学生对几何图形的认识和空间想象能力,提高学生的空间思维能力3. 解决问题的能力培养学生运用数学知识解决实际问题的能力,提高学生的应用意识和实践能力4. 创新能力培养学生的创新思维,鼓励学生尝试不同的解题方法和思路5. 合作与交流能力培养学生与他人合作交流的能力,提高学生的团队协作能力和沟通能力初中数学七年级上册思维导图一、数与代数1. 实数有理数整数正整数、负整数、0分数正分数、负分数无理数不能表示为两个整数比的数无理数的近似值2. 代数式代数式的概念代数式的化简代数式的求值3. 方程与不等式一元一次方程方程的解法方程的应用一元一次不等式不等式的解法不等式的应用二、几何1. 平面几何点、线、面角锐角、直角、钝角角的度量多边形三角形等腰三角形、等边三角形、直角三角形四边形矩形、正方形、平行四边形、梯形多边形的内角和定理2. 空间几何立体图形正方体、长方体、圆柱、圆锥、球立体图形的表面积与体积三、统计与概率1. 数据的收集与整理数据的收集方法数据的整理方法2. 数据的描述平均数、中位数、众数极差、方差、标准差3. 概率概率的基本概念概率的计算方法概率的应用四、数学思维方法1. 归纳法从具体到一般从特殊到一般2. 类比法通过相似性进行推理3. 反证法假设结论不成立,推出矛盾,从而证明结论成立4. 构造法通过构造实例来解决问题五、数学建模1. 建模的基本步骤确定问题建立模型求解模型验证模型2. 常见的数学模型线性模型二次模型指数模型3. 数学建模的应用在实际生活中的应用在科学研究中的应用初中数学七年级上册思维导图六、数学实验与探究1. 实验的设计与实施确定实验目的设计实验方案实施实验并记录数据分析实验结果2. 探究的方法与技巧观察法实验法归纳法类比法3. 数学实验与探究的应用解决实际问题深化数学理解培养创新思维七、数学文化1. 数学发展史古代数学近现代数学2. 数学家的故事中国数学家外国数学家3. 数学与生活的关系数学在科技发展中的作用数学在日常生活中的应用八、数学学习方法1. 课堂学习专心听讲积极思考勇于提问2. 自主学习制定学习计划完成课后作业复习巩固3. 合作学习与同学交流讨论分享学习资源相互帮助、共同进步九、数学素养的培养1. 数学思维逻辑思维抽象思维空间思维2. 数学能力计算能力推理能力解决问题的能力3. 数学品质耐心细心持之以恒初中数学七年级上册思维导图十、数学竞赛与拓展1. 数学竞赛简介数学竞赛的类型数学竞赛的级别数学竞赛的报名时间及方式2. 数学竞赛的备考策略基础知识的巩固解题技巧的提升模拟试题的训练3. 数学竞赛的意义激发学习兴趣培养竞争意识提高数学能力十一、数学与科技1. 数学在科技领域的作用计算机科学数据分析2. 数学在工程技术中的应用建筑设计机械制造通信技术3. 数学在生活中的创新数学与艺术数学与体育数学与游戏十二、数学教育改革与发展1. 新课程标准的实施课程目标的调整教学内容的更新教学方法的改革2. 数学教育技术的发展信息技术与数学教育的融合在线教育平台的建设虚拟现实技术在数学教学中的应用3. 数学教育的国际交流与合作国际数学竞赛的参与数学教育研究的合作数学教师培训的国际交流。
一次函数思维导图
一次函数函数
正⽐例函数
一次函数
与⽅程、不等式关系
定义
图像
⽅程:已知函数的值,求⾃变量的值。
不等式:已知函数的取值范围,求⾃变量的取值范围。
描点画法函数图像的一般步骤
列表
描点
连线
定义
图像
一般地,形如y=kx+b(k、b是常数,k≠0)的函数做一次函
数。
在一个变化过程中,我们称数值变化的量为变量,数值始终不变
的量为常量。
一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的
每一个确定的值,y都有唯一确定值与其对应,
那么我们就说x是⾃变量,y是x的函数。
如果当x=a时y=b,那么b
叫做当⾃变量的值为a时的函数值。
⽤关于⾃变量的数学式⼦表⽰函数与⾃变量之间的关系,这种式
⼦叫做函数的解析式。
当k>0,b>0时,直线y=kx+b经过一、⼆、三象限,y随x的增⼤
⽽增⼤。
当k>0,b<0时,直线y=kx+b经过一、三、四象限,y随x的增⼤
⽽增⼤。
当k<0,b>0时,直线y=kx+b经过一、⼆、四象限,y随x的增⼤
⽽减⼩。
当k<0,b<0时,直线y=kx+b经过⼆、三、四象限,y随x的增⼤
⽽减⼩。
定义
图像/性质
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正⽐例函
数,其中k叫做⽐例系数。
当k>0时,直线y=kx经过一三象限,y随x的增⼤⽽增⼤。
当k<0时,直线y=kx经过⼆四象限,y随x的增⼤⽽减⼩。
初一上册二三单元数学思维导图
初一上册二三单元数学思维导图2.1整式1、单项式:由数字和字母乘积组成的式子。
判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。
2、多项式:几个单项式的和。
判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。
每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。
3、单项式和多项式统称为整式。
2.2整式的加减1、同类项:所含字母相同,并且相同字母的指数也相同的项。
与字母前面的系数(≠0)无关。
2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关3、合并同类项:把多项式中的同类项合并成一项。
可以运用交换律,结合律和分配律。
4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
6、整式加减的一般步骤:一去、二找、三合(1)如果遇到括号按去括号法则先去括号.(2)结合同类项.(3)合并同类项3.1一元一次方程1、方程是含有未知数的等式。
2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
注意:判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;3)经整理后方程中未知数的次数是1.3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
4、等式的性质:1)等式两边同时加(或减)同一个数(或式子),结果仍相等;2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.3.2、3.3解一元一次方程在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用.因此在解方程时还要注意以下几点:①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号)移项要变号;④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;⑤系数化为1::字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。
(完整版)七年级数学上册思维导图
第一章有理数思维导图分配律乘法结合律加法结合律结合律乘法交换律加法交换律交换律运算律乘方的运算符号法则有理数的除法法则有理数的乘法法则有理数的减法法则有理数的加法法则法则运算方法叫做科学记数法是正整数),这种记数,的形式(其中把一个数表示乘——科学记数法数相同因数的个数叫做指相同的因数叫做底数,叫做幂叫做乘方,乘方的结果个相同因数的积的运算求——乘方的两个数互为倒数—乘积是—倒数的绝对值叫做数的点与原点的距离,一般地,数轴上表示数——绝对值数,叫做互为相反数—只有符号不同的两个—相反数相关概念负有理数正有理数按性质符号分分数整数按定义分分类有理数n 10a 110a n 1a a 0n第二章整式的加减思维导图合并同类项去括号步骤反的符号与原来的符号相去括号后原括号内各项——括号外因数为负同的符号与原来的符号相去括号后原括号内各项——括号外因数为正去括号作为合并后项的系数所得的结果把同类项的系数相加,——合并同类项同字母的指数也相同—所含字母相同并且相—同类项整式的加减的次数—多项式中次数最高项—次数—不含字母的项—常数项项式—组成多项式的每个单—项—几个单项式的和—定义多项式指数的和—单项式中所有字母的—次数—单项式中的数字因数—系数的式子—由数或字母的积组成—定义单项式用字母表示数减加的式整第三章一元一次方程思维导图际意义符合题意,是否符合实验:检验所求的解是否值中所要求的相关数量的出未知数的值以及题目解:解所列的方程,求一个数字列方程关系以及若干倍多或少关系、相等关系、倍数列:根据题目中的数量与所列方程有关的数量含未知数的代数式表示设:设未知数,并且用数量间的关系知量和未知量,明确各审:弄清题意,分清已解应用题一次方程列一元系数化为合并同类项移项去括号去分母解一元一次方程的步骤的数,结果仍相等,或除以同一个不为:等式两边乘同一个数性质,结果仍相等或式子同一个数或减:等式两边加性质等式的性质过程解方程:求方程的解的数的值号左右两边相等的未知方程的解:使方程中等等号两边都是整式,,未知数的次数都是元一个未知数一元一次方程:只含有式方程:含有未知数的等一元一次方程程方次一元一102)()(11)(第四章几何图形初步思维导图角的度量互补互余两角的特殊关系比较大小的方法表示方法定义角线段的和、差与画法线段的中点两点之间的距离段最短基本事实:两点之间线比较方法特点表示方法线段特点表示方法射线条直线基本事实:两点确定一特点表示方法直线线平面图形立体图形的平面展示图从上面看从左面看从正面看形从不同的方向看立体图常见的立体图形立体图形几何图形初步。
数学七下第二章思维导图浙教版
数学七下第二章思维导图浙教版二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
苏教版六年级数学下册一至六单元思维导图
圆柱从上到下一样粗解决问题的策略转化策略列举策略假设策略先假设再调整策略画图策略方程策略分数转化为比推导图形公式有序列举总量不变的情况下,依次调整两部分量的大小假设小的,先算出来的是大的经典问题:鸡兔同笼“假想构成法”:假设大的,先算出来的是小的先假设两种量同样多或差不多再根据计算结果对比调整结果相等停止调整直观清楚费时费力分析题意找等量关系式设未知数列出方程分数转化为份数不重复不遗漏主要类型具体问题具体分析主要步骤优缺点主要步骤结果相等停止调整计算每一次调整的结果并对比先进行假想的构成,然后在假想的条件下,探索解决问题的对策(1)已知总头数和总腿数,求鸡、兔各多少:(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,求鸡、兔 各多少:(3)已知总头数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,求鸡、兔各多少:方法一:假设全是鸡,兔数 =(总腿数-总头数×2)÷(4-2);鸡数 = 总头数-兔数方法二: 假设全是兔,鸡数 =(总头数×4-总腿数)÷(4-2);兔数 = 总头数-鸡数方法一: 假设全是鸡,兔数 =(总头数×2-鸡兔脚数之差)÷(2+4);鸡数 = 总头数-兔数方法二: 假设全是兔,鸡数 =(总头数×4+鸡兔脚数之差)÷(2+4);兔数 = 总头数-鸡数方法一: 假设全是鸡,兔数 =(总头数×2+鸡兔脚数之差)÷(2+4);鸡数 = 总头数-兔数方法二: 假设全是兔,鸡数 =(总头数×4-鸡兔脚数之差)÷(2+4);兔数 = 总头数-鸡数依据:E表示东两种相关联的量,一种量变化,另一种量也随着变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学思维导图怎么画,两个步骤告诉你思维导图的简单画法思维导图是作为目前最流行的思维工具,能帮我们扩散思维、理清事件全程逻辑关系,对问题进行全方位描述与分析,从而找到解决问题的关键点。
所以掌握数学思维导图的画法,就十分有必要了,接下来,小编将通过下面7个步骤,告诉大家应该如何绘制思维导图!这方法需要借助迅捷流程图制作软件,它有软件版和在线版,小编用的是在线版。
步骤如下:
1、从软件界面左侧选择一个文本框,并将其放置在中间位置,在周围留出空白,接着在文本框中填入中心思想。
这里有几个要点需要注意:
①可以使用右侧的【样式】工具栏中对文本框进行外观设置,颜色上可以丰富些,这样你的思维导图会更加充满跳跃感和生命力,你的创造性思维也会被增加更多能量;
②文本框里的中心思想也可以用图片代替,这样画面会更加生动,更容易激发你的想象力,让你的大脑保持兴奋,这个操作可以在在右侧【文本】工具栏中找到。
2、选择连接文本框的支干,在左侧工具栏有各类连接线条或者箭头,选择一种并将其移动到两个文本框之间
选择支干同样不容小视,这几点也需要注意:
①各个层级间的连接箭头可以不一样,给不同的箭头赋予不同意义;
②箭头/连接线的颜色也可以丰富些,让整体画面丰富起来;
③为每个箭头都附上注释,明确显示两文本框之间的关系。
接着以此类推将二级分枝三级分枝地绘制,让大脑不断处于联想工作的状态,很快,你的思维导图就会向四面八方发散出来了。
在这过程中,你会不断萌生新想法,为你的思维导图“添砖加瓦”。
三、也是最后一步,依次点击【文件】-【导出】,选择一种格式将它导出来就OK了。
另外,如果不想自己绘制,迅捷流程图也提供了海量模板供你使用,你可以直接拿来修改编辑。
如此简单的思维导图绘制方法,错过就真是太可惜了。