开孔补强计算GB150-1998等面积补强法 单孔
开口补强(GB150)

接管内侧有效补强高度h2 h2=接管实际内伸高度= 筒体多余金属面积A1 接管多余金属面积A2 焊缝截面积A3 另加补强的面积A4 补强判别
A1=(B-d)(δn-δ-C)-2(δnt-Ct)(δn-C-δ)(1-fr)= A2=2h1(δnt-δt-Ct)fr+2h2(δnt-Ct-C2t)fr= A3= A4=A-(A1+A2+A3)= A4为负值,不需另加补强补强形式:
中国石化 洛阳石油化工工程公司 遵循规范:GB150 150遵循规范:GB150-1998 开口编号: 开口编号:
计 算 书
筒体开孔补强
项目号 文表号 页 码
80800D0201 70-401/C1 第 6 页共 6 页 零件编号: 零件编号: 5
开口直径: 开口直径: 1000
设计条件
计算压力PC 设计温度t 筒体内直径Di 筒体材料 筒体材料许用应力[σ] 筒体焊接接头系数φ 筒体计算厚度δ 筒体厚度负偏差C1 筒体腐蚀裕量C2
3.00
mm mm mm mm mm×mm
mm 补强圈有效宽度B'=Min(B,D)
1600.00 -5.68 -2.74 1600×-4
当[σ]补 ≥[σ] 时,δn'=δ'+C'= 当[σ]补t<[σ]t时,δn'=δ'×[σ]t/[σ]补t+C'= 外直径×名义厚度 D×δn'=
t
筒体开孔补强简图
0.950 160.0 4000.0 16MnR 162.2 0.85 13.83 0.00 3.0 mm mm mm mm mm 接管厚度负偏差C1t MPa 接管腐蚀裕量C2t mm 接管厚度附加量Ct(=C1t+C2t) mm 接管焊接接头系数φt 0.00 3.00 3.00 0.85 mm mm mm MPa MPa °C mm
开孔补强计算GB150-2011等面积补强法_单孔

接管实际外伸长度
150.00 mm 接管有效外伸长度 h1
18.87 mm
接管实际内伸长度
0.00 mm 接管有效内伸长度 h2
0.00 mm
开孔削弱所需的补强面积 A
A=dδ+2δδt(1-f)
798.8 mm2
壳体多余金属面积 A1
A1=(B-d)(S-δ-C)-2St(S-δ)(1-f)
180.2 mm2
钢板负偏差及腐蚀裕量 C
1.0 mm
接管外径 d ’
89.0 mm
接管外径 d (最大尺寸)
89.0 mm
接 接管材料
20
[σ] 接管许用应力
[σ]t
131.00 MPa
补强圈材料
—
补 131.00 MPa
补强圈许用应力 [σ]rt
131.00 MPa
接管焊接接头系数 φ1 接管厚度 St 管 接管负偏差及腐蚀裕量 C1 接管强度削弱系数 f
551 mm2
结:
补强满足要求
0.9 4.00 mm
1.0 mm 1
强 补强圈外径 d2 补强圈厚度 S1t 补强圈负偏差及腐蚀裕量
圈 C2 补强圈强度削弱系数 fr
178 mm 12 mm 1 mm 1
开孔直径 di
89.0 mm 补强区有效宽度 B
178.00 mm
壳体计算厚度 δ
8.976 mm 接管计算厚度 δt
1.422 mm
设计条件
简图
设计压力 Pc
0
1.05 MPa
设计温度 t
200 ℃
椭圆形封头长短轴之比 过渡区半径与球面半径之 比 壳体内直径Di
开孔处焊接接头系数 φ
开孔补强计算时有效补强范围的确定

- 13 -
开孔补强计算时有效补强范围的确定
李拥军1,梁立军2,周一飞3,李业勤3
(1.江林重工(常州)机械有限公司, 江苏 常州 213032 ) (2.风凯换热器制造(常州)有限公司, 江苏 常州 213100)
(3.常州化工设备有限公司, 江苏 常州 213002)
[摘 要] 针对GB150-1998《钢制压力容器》未提及的特殊情形下有效补强范围的计算,提出了适合各种情况下有效补强范 围的计算方法,并对内侧高度的计算提出了改进建议。 [关键词] 开孔补强;有效补强范围;计算
=250.8mm
(2)强度削弱系数f r,f r=
93.8 136.8
=
0.68
(3)左侧宽度B1,B1=min{max[250.8,
153.4],163}=163mm
(4)右侧宽度B2,B2= min{max[250.8, 153.4],192}=192mm
(5)宽度B,B= B1+ B2=163+192=355mm
+
dn
+
dnt
〕时,可用无
有效补强宽度B,B= B1+ B2
一般地,实际最大可能的左侧宽度大于max{
md ,ad2x{+ ddn,+d2d+ntd}n
,实际最大可能的右侧的宽度大于 + dnt };则B= max{2d , d + 2dn + 2dnt
},与GB150-1998相同。说明GB150-1998仅适合
(11)接管可用于补强的面积A2
A2 = 2h1(dnt − dt − C' ) fr + 2h2 (dnt − C'−C2 ' ) fr = 2×59.3×(14-1.34-1.5-1.4)×0.68+2×18.5 ×(14-1.5-1.4-1.5)×0.68 ≈787+242=1029 mm2
压力容器的开孔与补强

第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中;(2) 开孔补强的原则、补强结构和补强计算;(3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax =t K (1) 压力容器设计中对于开孔问题研究的两大方向是:✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a r a r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r 应力集中系数:0.3max ==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max ==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a r a r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
精馏塔接管计算

1
过 程 设 备 强 度 计 算 书
开孔补强计算
接 管: 计算单位 条 件 MPa ℃
SW6-98
压力容器专用计算软件 ?
计 算 方 法 : GB150-1998 等 面 积 补 强 法, 单 孔 简 图
A1, pc 设计温度 壳体型式 壳体材料 名称及类型 壳体内直径 Di
1.31 100 圆形筒体 16MnR(热轧) 板材 2800 13 2
t
壳体开孔处焊接接头系数φ 壳体开孔处名义厚度δ 壳体厚度负偏差 C1 壳体腐蚀裕量 C2 壳体材料许用应力[σ ] 接管实际外伸长度 接管实际内伸长度 接管焊接接头系数 接管腐蚀裕量 Q 接管厚度负偏差 C1t 接管材料许用应力[σ ] 开 壳体计算厚度δ 补强圈强度削弱系数 开孔直径 d 接管有效外伸长度 h1 开孔削弱所需的补强面积A 接管多余金属面积 A2 A1+A2+A3= mm2 补强圈面积 A4 frr
t
孔
补 mm mm mm mm mm
2 2
计
接管材料强度削弱系数 补强区有效宽度 B 接管有效内伸长度 h2 壳体多余金属面积 A1 补强区内的焊缝面积 A3 A-(A1+A2+A3)
mm2
结论: 根据GB150第8.3节的规定,本开孔可不另行补强。
全 国 化 工 设 备 设 计 技 术 中 心 站
t
085
mm mm mm mm MPa
n
80 0 1 0
mm mm mm mm mm MPa 接管材料 名称及类型 补强圈材料名称 补强圈外径 补强圈厚度
16Mn(热轧) 管材 Q235-B 225 5
mm mm mm MPa 算 mm fr mm mm mm2 mm2 mm2
压力容器等面积法补强面积计算范围的探讨

nt 接管名义厚度;
C 腐蚀余量。
参考文献
1 GB 150 1998 钢制压力容器. 1998: 74~ 78 2 王志 文. 化 工容 器 及 设 备. 北 京: 化 学 工业 出 版 社,
1990: 103~ 105 3 刁玉玮, 王立业. 化工设备机械基础. 大连: 大连理 工
大学出版社, 1989: 190~ 195 ( 本文编辑 朱必兰)
主题词 压力容器 补强面积 计算
等面积补强法是压力容器常规设计中开孔补强 设计的主要方法之一, 由于该方法对开小孔计算安 全可靠而被广泛采用。目前大学化工机械专业也主 要介绍这种补强法, 但不同的资料介绍的补强面积 计算法 及补强范 围的确 定方法 不同[ 1~ 3] 。笔者 就 GB 150 1998 钢制压力容器!及现行大学教材中的 补强面积计算及补强范围试谈自己的看法。
人孔计算

mm
接管计算厚度δt
0.243
mm
补强圈强度削弱系数frr
0
接管材料强度削弱系数fr
1
开孔直径d
624.2
mm
补强区有效宽度B
1248
mm
接管有效外伸长度h1
61.2
mm
接管有效内伸长度h2
0
mm
开孔削弱所需的补强面积A
1443
mm2
壳体多余金属面积A1
1490
mm2
接管多余金属面积A2
325.2
354.3
补强区内的焊缝面积A3(mm2)
36
36
补强圈面积A4(mm2)
0
0
A1+A2+A3+A4(mm2)
5490
3299
计算截面的校核结果
合格
合格
结论:补强满足要求。
开孔补强计算
计算单位
全国化工设备设计技术中心站
接管:M2,φ630×6
计算方法: GB150-1998等面积补强法,单孔
设计条件
mm2
补强区内的焊缝面积A3
36
mm2
A1+A2+A3=1852mm2,大于A,不需另加补强。
补强圈面积A4
mm2
A-(A1+A2+A3)
mm2
结论:补强满足要求,不需另加补强。
0
mm
接管材料
Q235-B
接管焊接接头系数
1
名称及类型
板材
接管腐蚀裕量
2.5
mm
补强圈材料名称
凸形封头开孔中心至
封头轴线的距离
mm
补强圈外径
蜂窝夹套开孔补强计算GB150-1998等面积补强法 单孔

补强圈面积 A4 结论:
-74.32 mm2
[σ] 接管焊接接头系数 φ1 接管厚度 St 管 接管负偏差及腐蚀裕量 C1 接管强度削弱系数 f 开孔直径 di 壳体计算厚度 δ 接管实际外伸长度 接管实际内伸长度 开孔削弱所需的补强面积 A 壳体多余金属面积 A1 接管多余金属面积 A2 角焊缝金属面积 A3 A1+A2+A3 补强校核 A<A1+A2+A3
过程设备设计计算
孔补强计算 接管:N10,N11(φ57×3.5) 设计条件 计算压力 Pc 设计温度 t 壳体形式 壳 椭圆形封头长短轴之比 蜂窝 — 0 0.35 MPa 148 ℃ 计算单位 上海日泰医药设备工程有限公司 计算方法:GB150-1998 等面积补强法 单孔 简图
过渡区半径与球面半径之比 _
壳体内直径Di 开孔处焊接接头系数 φ 壳体材料 [σ] 壳体许用应力 [σ]t 体 开孔处名义厚度 S 钢板负偏差及腐蚀裕量 C 接管外径 d ’ 接管外径 d (最大尺寸) 接 接管材料 [σ] 接管许用应力
t
1130 mm 1.00 S30408 135.00 MPa 134.00 MPa 3.00 mm 0.5 mm 57.0 mm 57.0 mm S30408 135.00 MPa 补
t
补强圈材料 补强圈许用应力 [σ]r 补强圈外径 d2 强 补强圈厚度 S1t
补强圈负偏差及腐蚀裕量 C2
— — MPa 0 mm 0 mm 0 mm 1 100.00 mm 0.08 mm 14.12 mm 0.00 mm 66.7 mm2 66.5 mm2 68.4 mm2 6.13 mm2 141.01 mm2
126.00 MPa 1.0 3.50 mm 1.0 mm 圈 1 50.0 mm 1.17 mm 80.00 mm 0.00 mm
D类压力容器设计知识填空题

D类压力容器设计知识填空题D类压力容器设计知识填空题一、设计总论1、按无力矩理论求得的应力为薄膜应力,薄膜应力是沿壁厚均匀分布的。
2、容器计算中所用的弹性名义应力是指材料进入塑性后,假定应力与应变关系仍服从虎克定律。
3、内压筒体壁厚计算公式适用于单层、多层、热套筒体的计算。
4、在GB150中,是以Do/δe≥20 为界线区分薄壁圆筒和厚壁圆筒的。
5、压力容器的常见破坏型式有:塑性破坏、脆性破坏、疲劳破坏、蠕变破坏、腐蚀破坏等。
6、压力容器的失效形式有三种:强度失效、刚度失效和稳定性失效。
7、压力容器的失效准则有三种:弹性失效、塑性失效和爆破失效。
8、GB150采用的是弹性失效准则,以壳体的基本薄膜应力不超过材料的许用应力值,而由于总体结构不连续的附加应力,则以应力增强系数引入壁厚计算。
9、GB150在总体上采用的是常规设计方法,但在某些局部处也体现了应力分析的设计方法。
10、内压圆筒计算方法虽有所不同,但大体都是以中径公式为基础导出的。
11、内压圆筒壁厚计算公式的理论依据是第一强度理论;公式的适用范围是计算压力P c≤0.4[σ]tφ,这也是GB150适用于厚壁圆筒的限制条件。
12、任何情况下,容器壳体的名义厚度不得小于最小厚度与腐蚀裕量之和。
13、容器筒体的最小壁厚是由强度、刚度、稳定性确定的。
壳体加工成形后的最小厚度是为满足制造、运输、安装过程中刚度要求而规定的。
14、计算压力是指在相应设计温度下,用以确定容器各个受压元件厚度的压力,它包括液柱静压力。
15、对于同时承受两个室压力作用的受压元件,其设计参数中的计算压力应考虑两室间可能出现的最大压力差。
16、压力容器的设计压力用来确定容器的试验压力和类别;设计温度是容器选材和确定材料许用应力的基本设计参数。
17、最大允许工作压力是根据容器壳体的有效厚度计算所得,且取各受压元件的最小值。
18、压力容器的设计寿命是从腐蚀欲量中体现出来的。
19、内压锥壳的壁厚计算是将锥壳作为当量圆筒处理,其中圆筒内径D i以D c COSα代替,D c为锥壳大端直径。
液氯储罐设计说明书

中北大学信息商务学院课程设计说明书学生姓名:王米雪学号: X07系别:机械工程系专业:进程装备与操纵工程题目:(35)M3液氯储罐设计指导教师:陆辉山职称: 副教授2021年06月29日中北大学信息商务学院课程设计任务书2021/2021 学年第二学期系别:机械工程专业:进程装备与操纵工程学生姓名:王米雪学号:X07课程设计题目:(35)M3液氯储罐设计起迄日期:06 月29日~07月10日课程设计地址:校内指导教师:陆辉山系主任:暴建刚下达任务书日期: 2021年06月29日目录一工艺设计1. 存储量2. 设备的选型及轮廓尺寸二机械设计1. 材料选择2. 设计压力3. 厚度设计4. 接管及接管法兰、人孔设计5. 鞍座的设计6. 焊接7. 校核8. 内压圆筒校核 9. 内压椭圆形封头校核 10. 法兰的校核 11. 开孔补强计算 12. 卧式容器(双鞍座)三 参考文献 四 终止语一 工艺设计1. 存储量盛装液化气体的压力容器设计存储量t V W ρφ=式中:W ——贮存量,t ; φ——装载系数;t ρ——设计温度下的饱和溶液的密度,3m t;依照设计条件t V W ρφ==×35×= 2. 设备选型及轮廓尺寸筒体直径一样由工艺条件决定,可是要符合压力容器的公称直径。
标准椭圆 型封头是中低压容器常常采纳的封头形式。
封头公称直径必需与筒体的公称直径相一致。
依照公式 : 4π2i D L =35L/D=4得D i =2233mm,圆整得D i =2200mm.可选用标准椭圆封头的公称直径DN =2200mm ,总深度H =590mm ,内表面积 =2mm ,容积V =3m现在封头现在封头体积为1V ,筒体所占容积为2V354221==+V LD V π L=8394mm 可取L=8400mm L/D=>3 符合要求那么储罐实际体积为V =21V 2V +=4221LD V π+=³ 误差分析%0657.0%1003535023.35=⨯-<5% 符合要求 因此可确信筒体公称直径为DN =2200 mm ,筒体长度为L=8400mm ;二 机械设计1. 材料选择依照液氯的特性,选择16MnR 。
20121225考题-D类

20121225考题-D类D压力容器设计单位考试题(jsk1)-2010 -7-16姓名________ 得分___一、判断题(每题1分,计30分)1、按GB150-1998《钢制压力容器》中规定:需要焊后热处理的容器,一般应在热处理前进行返修。
如在热处理后返修时,补焊后应作必要的热处理。
()2、内压圆筒强度计算公式的理论依据是第一强度理论。
()3、GB150-1998规定设计厚度系指计算厚度与腐蚀裕量之和,有效厚度系指名义厚度减去厚度附加量。
()4、《固定式容规》规定,使用境外进口压力容器用材料,压力容器制造单位应当对材料的化学成分和力学性能进行验证性复验。
()5、《固定式容规》规定:制造单位对原设计文件的修改,应当取得原设计单位同意修改的书面证明文件,并且对改动部位作详细记载,如果本单位有相应的设计资格,可以自己进行设计更改,并做好记录。
()6、在耐压试验,圆筒薄膜应力不得超过试验温度下抗拉强度的90%。
()7、GB151-1999《管壳式换热器》中规定:隔板槽封面应与环形密封面平齐,或略高于环形密封面(控制在0.3mm内)。
()8、按GB150-1998《钢制压力容器》中规定:对于有防腐要求的不锈钢以及复合钢板制压力容器可在防腐面采用硬印作为焊工的识别标记。
()9、《固定式容规》2009,产品铭牌上增加规定:必须打设备代码。
()10.外压容器因开孔削弱,所需补强面积比内压容器开孔削弱所需的补强面积大。
()11.外压容器圆筒体的不圆度是造成其失稳的原因之一。
()12.管壳式换热器当设计温度高于300℃时,换热管与管板的连接允许采用强度胀接的连接形式。
()13.如果固定管板换热器的管板和法兰全部采用纯不锈钢,且设备的管程和壳程的工作温度都大于320度,则管板处的连接螺栓应采用35CrMoA的螺栓。
()14.JB/T4745-2002 《钛制焊接容器》规定:钛复合钢板应尽量采用热成形。
()15.压力容器筒体上开设长圆孔,当长轴与短轴之比≤2,且短轴平行于筒体轴线时,开孔补强应按长圆形孔的长轴计算。
150m3储罐强度计算书要点

筒体简图
计算压力Pc
0.60
MPa
设计温度t
65.00
C
内径Di
5000.00
mm
材料
Q345R(板材)
试验温度许用应力
189.00
MPa
设计温度许用应力t
189.00
MPa
试验温度下屈服点s
345.00
MPa
钢板负偏差C1
0.30
mm
腐蚀裕量C2
1.00
mm
焊接接头系数
0.85
厚度及重量计算
d=
mm
加强圈数量,n=
个
组合总截面积,A0=
mm2
组合截面总惯性矩,I0=
mm4
设计温度下许用应力
MPa
加强圈位于
鞍座平面上
在鞍座边角处圆筒的周向应力:
MPa
在鞍座边角处,加强圈内缘或外缘表面的周向应力:
MPa
有加强圈圆筒
加强圈靠近鞍座
横截面最低点的周向应力
无垫板时,(或垫板不起加强作用)
采用垫板时,(垫板起加强作用)
65
℃
圆筒材料
Q345R
鞍座材料
Q345
圆筒材料常温许用应力[]
189
MPa
圆筒材料设计温度下许用应力[]t
189
MPa
圆筒材料常温屈服点
345
MPa
鞍座材料许用应力[]sa
170
MPa
工作时物料密度
1000
kg/m3
液压试验介质密度
1000
kg/m3
圆筒内直径 Di
5000
mm
圆筒名义厚度
16
压力容器计算书示例

DATA SHEET OF PROCESSEQUIPMENT DESIGN工程名:PROJECT设备位号:ITEM设备名称:EQUIPMENT图号:DWG NO。
设计单位:DESIGNER内筒体内压计算计算单位计算条件筒体简图计算压力 P c 2.20MPa 设计温度 t 80.00︒ C 内径 D i 313.00mm 材料20(GB8163) ( 管材 )试验温度许用应力 [σ]152.00MPa 设计温度许用应力 [σ]t148.25MPa 试验温度下屈服点 σs 245.00MPa 钢板负偏差 C 1 0.75mm 腐蚀裕量 C 2 2.00mm 焊接接头系数 φ1.00厚度及重量计算 计算厚度 δ = P D P c it c 2[]σφ- = 2.34mm 有效厚度 δe =δn - C 1- C 2= 3.25 mm 名义厚度 δn = 6.00mm 重量56.64Kg压力试验时应力校核压力试验类型 液压试验试验压力值 P T = 1.25P [][]σσt = 2.7640 (或由用户输入)MPa 压力试验允许通过 的应力水平 [σ]T [σ]T ≤ 0.90 σs = 220.50MPa试验压力下 圆筒的应力 σT = p D T i e e .().+δδφ2 = 134.48 MPa校核条件 σT ≤ [σ]T校核结果合格压力及应力计算最大允许工作压力 [P w ]=2δσφδe t i e []()D += 3.04704MPa 设计温度下计算应力 σt= P D c i e e()+δδ2= 107.04 MPa [σ]tφ 148.25 MPa校核条件 [σ]t φ ≥σt 结论 合格内筒上封头内压计算计算单位计算条件椭圆封头简图计算压力P c 2.20 MPa设计温度 t 80.00 ︒ C内径D i 313.00 mm曲面高度h i 75.00 mm材料 Q245R (板材)设计温度许用应力[σ]t 147.25 MPa试验温度许用应力[σ] 148.00 MPa钢板负偏差C1 0.30 mm腐蚀裕量C2 2.00 mm焊接接头系数φ 1.00厚度及重量计算形状系数 K = 16222+⎛⎝⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥Dhii= 1.0590计算厚度δ =KP DPc itc205[].σφ- = 2.49mm有效厚度δe =δn - C1- C2= 3.70mm最小厚度δmin = 3.00mm名义厚度δn =6.00mm结论满足最小厚度要求重量 6.14 Kg压力计算最大允许工作压力[P w]=205[].σφδδtei eKD+= 3.26902MPa结论合格内筒下封头内压计算计算单位计算条件椭圆封头简图计算压力P c 2.20 MPa设计温度 t 80.00 ︒ C内径D i 313.00 mm曲面高度h i 75.00 mm材料 Q245R (板材)设计温度许用应力[σ]t 147.25 MPa试验温度许用应力[σ] 148.00 MPa钢板负偏差C1 0.30 mm腐蚀裕量C2 2.00 mm焊接接头系数φ 1.00厚度及重量计算形状系数 K = 16222+⎛⎝⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥Dhii= 1.0590计算厚度δ =KP DPc itc205[].σφ- = 2.49mm有效厚度δe =δn - C1- C2= 3.70mm最小厚度δmin = 3.00mm名义厚度δn =6.00mm结论满足最小厚度要求重量 6.14 Kg压力计算最大允许工作压力[P w]=205[].σφδδtei eKD+= 3.26902MPa结论合格。
sw6换热器全部校核数据校核

固定管板换热器设计计算计算单位太原理工大学化学化工学院设计计算条件壳程管程设计压力p s 1.0992 MPa设计压力p t 2.9678 MPa 设计温度t s150 ︒C设计温度t t160 ︒C 壳程圆筒内径D i1200 mm 管箱圆筒内径D i1200 mm 材料名称Q345R 材料名称Q345R简图计算内容壳程圆筒校核计算前端管箱圆筒校核计算前端管箱封头(平盖)校核计算后端管箱圆筒校核计算后端管箱封头(平盖)校核计算管箱法兰校核计算开孔补强设计计算管板校核计算前端管箱筒体计算计算单位太原理工大学化学化工学院计算条件筒体简图计算压力 P c 2.97MPa 设计温度 t 160.00︒ C 内径 D i 1200.00mm 材料Q345R ( 板材 )试验温度许用应力 [σ] 189.00MPa 设计温度许用应力 [σ]t 187.80MPa 试验温度下屈服点 σs 345.00MPa 钢板负偏差 C 1 0.30mm 腐蚀裕量 C 2 1.00mm 焊接接头系数 φ1.00厚度及重量计算 计算厚度 δ = P D Pc it c 2[]σφ- = 9.56mm 有效厚度 δe =δn - C 1- C 2= 13.40mm 名义厚度 δn =14.70mm 重量264.21Kg压力试验时应力校核压力试验类型 液压试验试验压力值 P T = 1.25P [][]σσt =3.7335 (或由用户输入)MPa 压力试验允许通过 的应力水平 [σ]T [σ]T ≤ 0.90 σs = 310.50 MPa试验压力下 圆筒的应力 σT = p D T i e e .().+δδφ2 = 169.04MPa 校核条件 σT ≤ [σ]T校核结果合格压力及应力计算最大允许工作压力 [P w ]= 2δσφδe t i e []()D += 4.14788MPa 设计温度下计算应力σt =P D c i e e()+δδ2= 134.37 MPa[σ]t φ 187.80MPa 校核条件 [σ]t φ ≥σt结论 筒体名义厚度大于或等于GB151中规定的最小厚度10.00mm,合格前端管箱封头计算计算单位太原理工大学化学化工学院计算条件椭圆封头简图计算压力P c 2.98 MPa设计温度t160.00 ︒ C内径D i1200.00 mm曲面高度h i300.00 mm材料Q345R (板材)设计温度许用应力[σ]t187.80 MPa试验温度许用应力[σ]189.00 MPa钢板负偏差C10.60 mm腐蚀裕量C2 1.00 mm焊接接头系数φ 1.00厚度及重量计算形状系数K = 16222+⎛⎝⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥Dhii= 1.0000计算厚度δ =KP DPc itc205[].σφ-= 9.55mm有效厚度δe =δn - C1- C2=14.40mm最小厚度δmin = 3.00mm名义厚度δn =15.00mm 结论满足最小厚度要求重量163.84Kg压力计算最大允许工作压力[P w]=205[].σφδδtei eKD+= 3.55133MPa结论合格后端管箱筒体计算计算单位太原理工大学化学化工学院计算条件筒体简图计算压力 P c 2.97MPa 设计温度 t 160.00︒ C 内径 D i 1200.00mm 材料Q345R ( 板材 )试验温度许用应力 [σ] 189.00MPa 设计温度许用应力 [σ]t 187.80MPa 试验温度下屈服点 σs 345.00MPa 钢板负偏差 C 1 0.60mm 腐蚀裕量 C 2 1.00mm 焊接接头系数 φ1.00厚度及重量计算 计算厚度 δ = P D Pc it c 2[]σφ- = 9.56mm 有效厚度 δe =δn - C 1- C 2= 13.40mm 名义厚度 δn =14.70mm 重量264.21Kg压力试验时应力校核压力试验类型 液压试验试验压力值 P T = 1.25P [][]σσt =3.7335 (或由用户输入)MPa 压力试验允许通过 的应力水平 [σ]T [σ]T ≤ 0.90 σs = 310.50 MPa试验压力下 圆筒的应力 σT = p D T i e e .().+δδφ2 = 169.04MPa 校核条件 σT ≤ [σ]T校核结果合格压力及应力计算最大允许工作压力 [P w ]= 2δσφδe t i e []()D += 4.14788MPa 设计温度下计算应力σt =P D c i e e()+δδ2= 134.37 MPa[σ]t φ 187.80MPa 校核条件 [σ]t φ ≥σt结论 筒体名义厚度大于或等于GB151中规定的最小厚度10.00mm,合格后端管箱封头计算计算单位太原理工大学化学化工学院计算条件椭圆封头简图计算压力P c 2.97 MPa设计温度t160.00 ︒ C内径D i1200.00 mm曲面高度h i300.00 mm材料Q345R (板材)设计温度许用应力[σ]t187.80 MPa试验温度许用应力[σ]189.00 MPa钢板负偏差C10.30 mm腐蚀裕量C2 1.00 mm焊接接头系数φ 1.00厚度及重量计算形状系数K = 16222+⎛⎝⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥Dhii= 1.0000计算厚度δ =KP DPc itc205[].σφ-= 9.52mm有效厚度δe =δn - C1- C2=11.40mm最小厚度δmin = 3.00mm名义厚度δn =14.70mm 结论满足最小厚度要求重量163.84Kg压力计算最大允许工作压力[P w]=205[].σφδδtei eKD+= 3.55133MPa结论合格壳程圆筒计算计算单位太原理工大学化学化工学院计算条件筒体简图计算压力 P c 1.11MPa 设计温度 t 150.00︒ C 内径 D i 1200.00mm 材料Q345R ( 板材 )试验温度许用应力 [σ] 189.00MPa 设计温度许用应力 [σ]t 189.00MPa 试验温度下屈服点 σs 345.00MPa 钢板负偏差 C 1 0.30mm 腐蚀裕量 C 2 1.00mm 焊接接头系数 φ1.00厚度及重量计算 计算厚度 δ = P D Pc it c 2[]σφ- = 3.53mm 有效厚度 δe =δn - C 1- C 2= 9.40mm 名义厚度 δn =10.70mm 重量2236.28Kg压力试验时应力校核压力试验类型 液压试验试验压力值 P T = 1.25P [][]σσt =3.7100 (或由用户输入)MPa 压力试验允许通过 的应力水平 [σ]T [σ]T ≤ 0.90 σs = 310.50 MPa试验压力下 圆筒的应力 σT = p D T i e e .().+δδφ2 = 238.66MPa 校核条件 σT ≤ [σ]T校核结果合格压力及应力计算最大允许工作压力 [P w ]= 2δσφδe t i e []()D += 2.93799MPa 设计温度下计算应力σt =P D c i e e()+δδ2= 71.34 MPa[σ]t φ 189.00MPa 校核条件 [σ]t φ ≥σt结论 筒体名义厚度大于或等于GB151中规定的最小厚度10.00mm,合格延长部分兼作法兰固定式管板设计单位太原理工大学化学化工学院设计计算条件简图设计压力p s 1.099 MPa设计温度T s150 C︒平均金属温度t s 93.5 ︒C装配温度t o15 ︒C壳材料名称Q345R设计温度下许用应力[σ]t189 Mpa程平均金属温度下弹性模量E s 2.032e+05Mpa平均金属温度下热膨胀系数αs 1.148e-05 mm/mm ︒C圆壳程圆筒内径D i1200 mm壳程圆筒名义厚度δs10.7 mm 壳程圆筒有效厚度δse9.4 mm 筒壳体法兰设计温度下弹性模量E f’2e+05 MPa 壳程圆筒内直径横截面积A=0.25πD i2 1.131e+06 mm2 壳程圆筒金属横截面积A s=πδs(D i+δs) 3.571e+04 mm2管设计压力p t 2.968 MPa 箱设计温度T t 160 ︒C圆材料名称Q345R筒设计温度下弹性模量E h 1.992e+05 MPa 管箱圆筒名义厚度(管箱为高颈法兰取法兰颈部大小端平均值)δh 35 mm管箱圆筒有效厚度δhe 34 mm 管箱法兰设计温度下弹性模量E t” 1.992e+05 MPa 材料名称20(GB8163)换管子平均温度t t 127.4 ︒C设计温度下管子材料许用应力[σ]t t 138.2 MPa 设计温度下管子材料屈服应力σs t207.2 MPa 热设计温度下管子材料弹性模量E t t 1.884e+05 MPa 平均金属温度下管子材料弹性模量E t 1.899e+05 MPa 平均金属温度下管子材料热膨胀系数αt 1.172e-05 mm/mm︒C管管子外径d25 mm 管子壁厚δt 2.5 mm管箱法兰计算计算单位太原理工大学化学化工学院设 计 条 件简 图设计压力 p 2.978 MPa 计算压力 p c 2.978 MPa 设计温度 t 160.0 ︒ C 轴向外载荷 F 0.0 N 外力矩 M 0.0 N .mm壳 材料名称 Q345R 体 许用应力 nt[]σ 187.8 MPa 法 材料名称 16Mn 许用 [σ]f 170.0 MPa 兰 应力 [σ]t f 144.2 MPa 材料名称30CrMoA 螺 许用 [σ]b 167.0 MPa 应力[σ]t b144.4 MPa 栓 公称直径 d B 36.0 mm 螺栓根径 d 1 31.7 mm 数量 n 44个D i 1200.0 D o 1450.0垫 结构尺寸 D b 1380.0 D 外 1308.0 D 内 1238.0 δ0 28.0 mm L e35.0 L A 48.0 h 48.0 δ142.0 材料类型 软垫片N 35.0 m 2.00 y (MPa) 11.0压紧面形状1a,1bb10.58D G1286.8片 b 0≤6.4mm b = b 0b 0≤6.4mm D G = ( D 外+D 内 )/2b 0 > 6.4mm b =2.530bb 0 > 6.4mm D G = D 外 - 2b螺 栓 受 力 计 算 预紧状态下需要的最小螺栓载荷W a W a = πbD G y = 470656.2 N 操作状态下需要的最小螺栓载荷W p W p = F p + F = 4382185.0N 所需螺栓总截面积 A m A m = max (A p ,A a ) = 30347.5 mm 2 实际使用螺栓总截面积 A bA b = 214d nπ= 34660.8 mm 2力 矩 计 算 操 F D = 0.785i 2D p c = 3365879.0 N L D = L A + 0.5δ1 = 69.0mm M D = F D L D= 232245648.0 N .mm 作 F G = F p= 509351.4 N L G = 0.5 ( D b - D G ) = 46.6mmM G = F G L G= 23727496.0 N .mm M pF T = F -F D = 504736.6NL T =0.5(L A + δ1 + L G )= 68.3mmM T = F T L T = 34469408.0N .mm外压: M p = F D (L D - L G )+F T (L T -L G ); 内压: M p = M D +M G +M T M p = 290442560.0N .mm 预紧M aW = 5428195.0 NL G = 46.6mmM a =W L G = 252865616.0N .mm 计算力矩 M o = M p 与M a [σ]f t /[σ]f 中大者 M o = 290442560.0N .mm。
过滤分离器设计方案

过滤分离器设计方案用户:沙雅燃气长输管道有限公司型号: XFS28A-19 任务书编号: SR11003 工作令: SWA11088-1~2 图号: SW03-011-00编制:日期:1、设计标准本设计中过滤分离器器属于中压容器,应以安全为前提,综合考虑质量保证的各个环节,尽可能做到经济合理,可靠的密封性,足够的安全寿命。
设计标准如下:a. TSG R0004-2009《固定式压力容器安全技术监察规程》b. GB150-1998《钢制压力容器》c. HG20584-1998《钢制化工容器制造技术要求》d. JB4712.1-2007《容器支座》2、工作原理过滤分离器是用来清除气体中的固体、液态颗粒状杂质的设备,适用于各种燃气及其他非腐蚀性气体。
该型设备内部有两种过滤分离元件,第一种:滤芯支撑组件,主要用来过滤;第二种:叶片束组件,主要用来分离。
滤芯支撑组件可完全过滤0.5μ以上的固定颗粒,过滤效率达到99.98%;滤芯型号:PPEF-336(图一),气体通过过滤器的最大压降不超过0.05MPa,通过清洁滤芯的最大压降不超过0.014MPa,密封结构无泄漏。
图一、PPEF-336滤芯叶片束组件(图二)是分离夹杂在燃气或水蒸气中液滴的最好系统,因为它功效高、压降低、价格便宜,而且只需要很少的维护费用。
当气体进入分离器时,气体被叶片分割成许多垂直带状流,每一束气流都经过多次改变流向,这样便在叶片壁上产生了半紊流和旋流,夹杂在气体中的液滴被迫撞到叶片壁上并粘附在上面,液滴进去叶片的沟槽中并因重力作用而下落到液体收集器中,当液滴在收集器中积累到一定量时被排除或最终利用。
图二、叶片束组件3、设计步骤其设计的主要步骤如下:①根据介质特性,选择合适的壳体材料、接管、法兰等部件材料;②设计参数的确定;③根据用户提供的设计条件及参数,根据GB150公式,预设壳体壁厚;④从连接的密封性、强度等出发,按标准选用法兰、垫片及紧固件;⑤使用化工设备中心站开发的正版软件,SW6校核设备强度,确定壳体厚度及接管壁厚;⑥焊接接头型式的选择;⑦根据以上的容器设计计算,画出设计总设备图及零件图。
开孔补强计算GB150-1998等面积补强法 单孔

孔补强计算 接管:N14(φ42×8.5) 设计条件 设计压力 Pc 设计温度 t 壳体形式 壳 椭圆形封头长短轴之比
过渡区半径与球面半径之比
计算单位
上海日泰医药设备工程有限公司 计算方法:GB150-1998 等面积补强法 单孔 简图
0
0.25 MPa 138 ℃ 封头 — 0.1 1100 mm 1.00 S31603
t
补强圈材料 补强圈许用应力 [σ]r 补强圈外径 d2 强 补强圈厚度 S1t
补强圈负偏差及腐蚀裕量 C2
— — MPa 0 mm 0 mm 0 mm 1 66.00 mm 0.05 mm 18.89 mm 0.00 mm 58.8 mm2 93.2 mm2 300.3 mm2 36.13 mm2 429.61 mm2
[σ] 接管焊接接头系数 φ1 接管厚度 St 管 接管负偏差及腐蚀裕量 C1 接管强度削弱系数 f 开孔直径 di 壳体计算厚度 δ 接管实际外伸长度 接管实际内伸长度 开孔削弱所需的补强面积 A 壳体多余金属面积 A1 接管多余金属面积 A2 角焊缝金属面积 A3 A1+A2+A3 补强校核 A<A1+A2+A3
补强圈面积 A4 结论:
(371) mm2
壳体内直径Di 开孔处焊接接头系数 φ 壳体材料 [σ] 壳体许用应力 [σ]t 体 开孔处名义厚度 S 钢板负偏差及腐蚀裕量 C 接管外径 d ’ 接管外径 d (最大尺寸) 接 接管材料 [σ] 接管许用应力
t
120.00 MPa 117.00 MPa 5.00 mm 1.0 mm 42.0 mm 50.0 mm S31603 120.00 MPa 补
117.00 MPa 1.0 8.50 mm 0.5 mm 圈 1 33.0 mm 1.18 mm 30.00 mm 0.00 mm
浅谈压力容器开孔补强的方法及计算

浅谈压力容器开孔补强的方法及计算发布时间:2021-08-13T10:44:23.333Z 来源:《科学与技术》2021年4月10期作者:韩秋菊[导读] 本文论述了在压力容器的设计中,采用开孔补强的设计方法,由于开孔补强有很多种,本文对其中几种进行深入的分析比较。
浅谈压力容器开孔补强的方法及计算韩秋菊中石化上海工程有限公司上海 ?200120摘要:本文论述了在压力容器的设计中,采用开孔补强的设计方法,由于开孔补强有很多种,本文对其中几种进行深入的分析比较。
关键词:压力容器,开孔补强,计算1.引言随着工业化的发展,压力容器在化工行业越来越普遍,其安全性也越来越受到重视。
开孔补强计是压力容器设计中必不可少的一部分,压力容器开孔后,不仅整体强度削弱,而且还因为开孔造成的应力集中造成开孔边缘局部的高应力,在制造过程中,开孔部分不可避免的形成缺陷与残余应力,于是,开孔附近就往往成为容器的破坏源,因此,在压力容器设计中必须充分考虑开孔补强问题。
2.开孔补强常用的方法2.1等面积补强法等面积补强法是我国压力容器标准GB150中介绍的一种补强方法。
等面积补强法的原则是:在容器和接管连接处周围补强的截面积等于壳体因开孔所减少的截面积。
这种补强的方法是以双向受拉伸的无限大平板上开有小孔时孔边的应力集中作为理论基础的,即仅考虑壳体中存在的拉伸薄膜应力,且以补强壳体的一次应力强度作为设计准则,故对小直径的开孔安全可靠。
同时该方法比较安全可靠,使用简便,在中低压容器设计中较多采用,这也是我们平时设计中最为常见的一种补强方法。
2.2压力面积补强法压力面积补强法是西德AD压力容器规范中采用的补强方法,它的设计原理和等面积法补强方法相同,不同的是对于壳体补强有效范围规定不同。
压力面积补强法开孔率可达0.8,所以当开孔率超过等面积补强时,可以采用压力面积补强。
经过许多实例考证,由于此法计算结果与实际应力相差较大,所以在设计中此种补强方法并不常见。
开孔补强计算

mm
壳体厚度负偏差C1
0
mm
壳体腐蚀裕量C2
1
mm
壳体材料许用应力[σ]t
170
MPa
接管实际外伸长度
250
mm
接管实际内伸长度
0
mm
接管材料
16MnR(热轧)
接管焊接接头系数
1
名称及类型
板材
接管腐蚀裕量
1
mm
补强圈材料名称
凸形封头开孔中心至
封头轴线的距离
mm
补强圈外径
mm
补强圈厚度
mm
接管厚度负偏差C1t
150
mm
接管实际内伸长度
0
mm
接管材料
20(GB8163)
接管焊接接头系数
1
名称及类型
管材
接管腐蚀裕量
1
mm
补强圈材料名称
凸形封头开孔中心至
封头轴线的距离
mm
补强圈外径
mm
补强圈厚度
mm
接管厚度负偏差C1t
mm
补强圈厚度负偏差C1r
mm
接管材料许用应力[σ]t
MPa
补强圈许用应力[σ]t
MPa
开孔补强计算
0
mm
补强圈厚度负偏差C1r
mm
接管材料许用应力[σ]t
170
MPa
补强圈许用应力[σ]t
MPa
开孔补强计算
壳体计算厚度δ
8.333
mm
接管计算厚度δt
1.481
mm
补强圈强度削弱系数frr
0
接管材料强度削弱系数fr
1
开孔直径d
504
mm
浅析压力容器常规设计规范中的开孔补强设计

浅析压力容器常规设计规范中的开孔补强设计压力容器的开孔补强设计是压力容器设计的重要环节.目前,国内压力容器按常规规范设计开孔补强时的常用标准主要有GB150-1998《钢制压力容器》(以下简称GB150)、HG2058—1998《钢制化工容器强度计算规定》(以下简称HG20582)及ASME 锅炉及压力容器规范第Ⅷ卷第一册《压力容器建造规则》(以下简称ASME). GB150是强制性国家标准,是设计的最低要求,超出GB150开孔范围时,可以采用HG20582计算并遵循HG20583-1998《钢制化工容器结构设计规定》(以下简称HG20583)规定结构进行设计。
压力容器开孔补强设计的方法有很多,如等面积法、压力面积法、安定性分析法、极限分析法、PVRC法、增量塑性理论方法及实验屈服法等等。
鉴于软硬件条件的限制和从设计成本考虑,国内一般采用等面积法和压力面积法进行开孔补强设计,上面提及的设计规范就是采用这两种方法设计开孔补强的。
1。
各规范开孔补强方法的理论基础GB150和ASME规范均采用等面积法进行开孔补强设计,而HG20582中的补强计算采用的是压力面积补强法。
压力面积法与等面积法的实质是一致的,都是从确保容器受载截面的一次平均应力(平均强度)在一倍许用应力水平的计算方法,都未计及开孔边缘的局部应力和峰值应力对开孔的作用,只是两种方法对壳体有效补强范围的确定上有所不同;在补强金属面积的配置上,压力面积法比等面积法更具有密集补强的特点,对缓和接管根部应力集中的作用较大。
2各规范开孔补强方法的适用范围比较GB150和ASME规范均适用于壳体上开圆形、椭圆形(或类似形状)或长圆形孔。
GB150规定孔的短径与长径之比应不大于0。
5;而ASME规定当短径与长径之比小于0。
5时,应增强短径方向的补强.各规范对开孔直径的相对大小均有限制: GB150适用于d /D t ≤0。
5;HG20582适用于d /Dt ≤0.8;而ASME适用于d /D t ≤0.7.2。
压力容器的开孔与补强

压力容器的开孔与补强本章重点内容及对学生的要求:回转壳体上开小孔造成的应力集中;开孔补强的原则、补强结构和补强运算;不另行补强的要求;GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔邻近的应力集中1、 有关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列阻碍:开孔破坏了原有的应力分布并引起应力集中。
接管处容器壳体与接管形成结构不连续应力。
壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法运算出的最大应力为σmax ,则弹性应力集中系数为: σσmax =t K (1) 压力容器设计中关于开孔咨询题研究的两大方向是:研究开孔应力集中程度,估算Kt 值;在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and su bjected to uniform tension设有一个尺寸专门大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中咨询题能够利用弹性力学的方法进行求解。
承担单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔邻近的应力重量为: ⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a ra r a r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处: σσστπθθθ3,0max 2===±=r 应力集中系数:0.3max ==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向平均拉伸应力作用时,孔边邻近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max ==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边邻近任意点的受力为: ⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a r a r r (3) Fig. 3 Variation in stress in a cylindrical shell containing a circular h ole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接管焊接接头系数 φ 接管厚度 St
管 接管负偏差及腐蚀裕量 C1 接管强度削弱系数 f 开孔直径 di 壳体计算厚度 δ 接管实际外伸长度 接管实际内伸长度 开孔削弱所需的补强面积 A 壳体多余金属面积 A1 接管多余金属面积 A2 角焊缝金属面积 A3 A1+A2+A3 补强校核 结论: A<A1+A2+A3 补强圈面积 A4
1
上海日泰医药设备工程有限公司 计算方法:GB150-1998 等面积补强法 单孔
壳体内直径Di 开孔处焊接接头系数 φ 壳体材料 壳体许用应力
体 开孔处名义厚度 S 钢板负偏差及腐蚀裕量 C 接管外径 d ’ 接管外径 d (最大尺寸) 接 接管材料 接管许用0 9.00 mm 0.0 mm 1 14.0 mm 3.37 mm 40.00 mm 15.00 mm
补强圈强度削弱系数 fr
补强区有效宽度 B 接管计算厚度 δ
t
接管有效外伸长度 h1 接管有效内伸长度 h2
A=dδ +2δ δ t(1-f) A1=(B-d)(S-δ -C)-2St(S-δ )(1-f) A2=2h1(St-C1-δ t)f+2h2(St-C1)f A3=St2/2 A1+A2+A3 满足,可不加补强圈 0.00 mm2 补强满足要求 A-(A1+A2+A3)
过程设备设计计算
孔补强计算 接管:N9(φ 28×9) 设计条件 设计压力 Pc 设计温度 t 壳体形式 壳 椭圆形封头长短轴之比
过渡区半径与球面半径之比
计算单位 简图 0 0.40 MPa 120 ℃ 封头 — 0.1 2000 mm 1.00 S31603 [σ ] [σ ]t 120.00 MPa 118.80 MPa 10.00 mm 1.0 mm 28.0 mm 32.0 mm S31603 [σ ] [σ ]t
(566) mm2
补 强 圈
补强圈材料 补强圈许用应力 [σ ]rt 补强圈外径 d2 补强圈厚度 S1t
补强圈负偏差及腐蚀裕量 C2
— — MPa 0 mm 0 mm 0 mm 1 28.00 mm 0.05 mm 15.87 mm 15.00 mm 107.8 mm2 78.8 mm2 554.0 mm2 40.50 mm2 673.35 mm2