第三章 GIS空间分析的数据模型

合集下载

地理信息系统下的空间分析——第三章_空间分析的理论问题

地理信息系统下的空间分析——第三章_空间分析的理论问题

4、顺序关系描述 顺序关系中的一类重要关系是方向关系,如东、西、 南、北等。 (1)方向关系的定量描述 方向关系的定量描述主要是使用方位角来进行
(2)方向关系的定性描述 方向关系的定性描述主要有投影法(projection)和锥形 法(cone)。 1)投影法:是将空间目标投影到特定的坐标轴上,通 过各目标投影间的关系去描述与定义方向关系。其中的投 影可以是正射投影,也可以是斜率投影。 2)锥形法:是将空间目标及其周围的区域分成带有方 向性的几个区域,通过各目标本身及方向区域之间的交的 结果来描述空间关系。
7)西南关系
South_West(Pi,Qj)=X(Pi)<X(Qj) And Y(Pi)<Y(Qj) 示意图如下:
8)东南关系
South_East(Pi,Qj)=X(Pi)>X(Qj) And Y(Pi)<Y(Qj) 示意图如下:
以上8种关系通过点的投影可以精确判断。对于任意两点, 上述8种关系必有一种满足。 这些关系具有传递性。 另外,一些关系可进行相互转换,如North_East(Pi,Qj)和 South_West(Qj,Pi)。
课堂练习: 请大家分别算 出8种面面关系 的4元组矩阵
8种面/面关系
………………….
三种点/线拓扑关系。 课堂练习:请大家分别算出3 种点线关系的4元组矩阵。
两种点/点拓扑关系。
课堂练习:请大家分别算出2种点 点关系的4元组矩阵。
三种点/面拓扑关系,请 写出4元组矩阵。
2、空间关系描述结果的评价: 完备性是指空间关系描述结果能包含目标间所有可能的定 性关系; 严密性是要求所推出的一组关系是实际存在的或正确的; 唯一性要求所有关系是互斥的; 通用性指描述方法应能处理各种形状的目标和各类关系。

第三章4-空间分析2013

第三章4-空间分析2013

2
2
X Z01 Z11 Z00 Z10

tan
Y

2
2
Y
tan X

PO RO

PO QO QO RO
tan sin 1
tan Y

PO SO

PO QO QO SO

tan
sin 2

tan
cos1
tan 2 X tan 2 Y tan 2
⑵不规则三角网(TIN)表示法,能根据区域的有限个点集将区域划分为三角面网络, 数字高程由连续的三角面组成,三角面的形状和大小取决于不规则分布的测点的密度和 位置,能够避免地形平坦时的数据冗余,同时还能按地形特征点如山脊、山谷及其它重 要地形特征获得DEM数据。但其结构复杂。
DEM数据网格化 插值计算
1、DEM的数据源采集方法:
(1)航空或航天遥感图像为数据源。 (2)以地形图为数据源。 (3)以地面实测记录为数据源。 (4)其它数据源。
2、数字地面模型的表示方法
主要有规则格网(GRID)表示法和不规则三角网(TIN)表示法,此外还有离散点表示 法和数学分块曲面表示法。
⑴规则格网(GRID)表示法结构简单、计算方便,但: a.地形简单的地区存在大量冗余数据; b.如不改变格网大小,则无法适用于起伏程度不同的地区; c.对于某些特殊计算如视线计算时,格网的轴线方向被夸大; d.由于栅格过于粗略,不能精确表示地形的关键特征。
第四节 GIS空间分析
空间分析是GIS系统的重要功能之一,是基于地理对象的位置和形态特 征的空间数据分析技术,其目的在于提取和传输空间信息。
空间分析是GIS系统区别于计算机辅助绘图系统的重要方面,空间分 析的对象是一系列跟空间位置有关的数据,这些数据包括空间坐标和专业 属性两部分。

第3章 空间数据模型

第3章 空间数据模型

*通过描述小面块的几何形态、相邻关系及面块内属性 特征的变化来建立空间数据的逻辑模型;
*小面块之间不重叠且能完整铺满整个地理空间; *根据面块的形状,镶嵌数据模型可分为 规则镶嵌数据模型 不规则镶嵌数据模型
规则镶嵌数据模型
不规则镶嵌数据模型
TIN和Voronoi多边形数据模型
Voronoi 图又称为Dirichlet ( tessellation) ,其概念由 Dirichlet 于1850 年首先提出; 1907 后俄国数学家 Voronoi 对此作了进一步阐述,并提出高次方程化简; 1911 年荷兰气候学Thiessen为提高大面积气象预报 的准确度,应用Voronoi 图对气象观测站进行了有效 区域划分。因此在二维空间中,Voronoi 图也称为泰 森多边形。
2 作为两个面域之间的一个边界。
3 作为一个面域特征,精确表达河流的堤岸、辫 状河道以及河流上的运河。
4 作为一条曲线以构成表面模型上的沟槽。根据 地表上河流的路径,可以算出其横截面、落差度、 排水流域以及在预测降雨下的洪水爆发可能性。
针对真实的世界,每一个人都在创建他 自己的主观模型。GIS的观点是为真实世 界建立一个通用的模型。
泰森(Thiessen)多边形的特点: 1 组成多边形的边总是与两相邻样点的连线垂直; 2 多边形内的任意位置总是离该多边形内样点的距 离最近,离相邻多边形内样点距离远; 3 每个多边形内包含且仅包含一个样点。
(五)面向对象数据模型
为了有效地描述复杂的事物或现象,需要 在更高层次上综合利用和管理多种数据结构 和数据模型,并用面向对象的方法进行统一 的抽象。
空间逻辑数据模型作为概念模型向 物理模型转换的桥梁,是根据概念模型 确定的空间信息内容,以计算机能理解 和处理的形式,具体地表达空间实体及 其关系。

GIS第三章空间数据模型

GIS第三章空间数据模型

图元素独 立存储
点坐标文件 线坐标文件
通过FID连接
点属性表文件 线属性表文件
面坐标文件
面属性表文件
不包含拓扑数据
101 202
203
301
201 302
102
(b)拓扑模型
图元素非 独立存储
点坐标文件 线坐标文件
通过FID连接
点属性表文件 线属性表文件
几类?
3.要素模型
2)离散欧氏平面上的空间对象
离散一维对象 B 样条曲线
多边线 线段
3.要素模型
3)要素模型和场模型的比较
要素模型
现实世界
场模型
选择要素
选择一个位置
它在哪里
那里怎么样
数据
3.要素模型
• 2. 矢量数据模型
空间图形
空间数据
属性数据
101 202
203
301
201 302
102
(a)Spaghetti模型
• 常用的嵌入式空间类型: – 欧式空间(距离、方位) – 量度空间(距离) – 拓扑空间(拓扑关系) – 面向集合的空间(只采用一般的基于集合的关系)
3.要素模型
1)欧氏平面上的空间对象类型
空间对象
零维对象点
延伸对象
一维对象
二维对象


面对象
简单弧
简单环
面域对象
域单位对象
要素(对象) 的类型有哪
– 欧氏平面:把空间特性转换成实数的元组特性,而形成 的二维模型即欧氏平面
– 地理实体:分布于地球表面的人文和自然现象的总称 实体必须符合三个条件:
• 可被识别 • 重要(与问题有关) • 可被描述(有特征)

3 空间数据模型

3 空间数据模型

00090770
06907777
09007770
09007770
90000000
(a)点、线、面数据
(b)栅格表示
点、线、面数据的栅格结构表示
• 栅格数据类型
– 常用的栅格数据类型包括卫星影像、数字高程 数据、数字正射影像、数字扫描地图和数字栅 格图形。
• 栅格数据编码
– 直接栅格编码、链式编码、游程长度编码、四 叉树编码
– “橡皮板几何学”:可以设想一块高质量的橡皮板, 它的表面是欧式平面,这块橡皮可以任意弯曲、拉伸 、压缩,但不能扭转和折叠,表面上有点、线、多边 形等组成的几何图形。
• 拓扑元素:
– 点:
• 孤立点、线的端点、面的首尾点、链的连接点
– 线:
• 两结点之间的有序弧段,包括链、弧段和线段
– 面:
• 若干弧段组成的多边形
➢ 特征 无拓扑关系,主要用于显示、输出及一般查询 公共边重复存储,存在数据冗余,难以保证数据独立性 和一致性 多边形分解和合并不易进行,邻域处理较复杂; 处理嵌套多边形比较麻烦
➢ 适用范围: 制图及一般查询,不适合复杂的空间分析
3.4.2.2 拓扑数据结构
• 不仅表达几何位置和属性,还表示空间关 系
– 拓扑关系:描述空间对象的邻接、关联、连通和包含 等
– 空间方位关系:描述空间对象在空间上的排列次序, 如前后、左右、东、西、南、北等。
– 空间度量关系:描述空间对象之间的距离等。
• 拓扑关系
– 拓扑(Topology)一词来自于希腊文,意思是形状的研究 。
– 拓扑学是几何学的一个分支,研究在拓扑变换下能够 保持不变的几何属性—拓扑属性。
• 属性特征
– 属性特征也称为专题特征或功能特征,通过属性数据 表达空间实体内在的性质和相关关系。

p03第三章 空间数据模型-第六-八节1

p03第三章 空间数据模型-第六-八节1

第六节、 ArcGIS介绍
1. 厂家:ARCGIS是美国环境系统研究所(Environmental System Research Institute, Co.,简称ESRI)于20世纪80年 代初推出的一个通用GIS软件 。
2. 运行平台:uninx-NT(96年)(2000)-pc
Ar析
2、ArcCatalog
• 空间数据管理:
– ESRI coverage、 shape file
– CADData – 遥感图像 – 栅格 – TINS – Geodatabase – 属性表格
• 察看空间数据、源 数据等
3、ArcToolbox
• 超过140个工具,用 于进行geoprocessing 处理;
六、ARCGIS的开发环境
在Windows环境下以可编程控件(OCX)的形式为用户提 供在其应用中增加制图和GIS功能的可能性(MapObjects);
在ArcView和MapObjects中提供Internet网上的GIS和制图 功能;
ArcObject和ArcEngineer面向组件的开发技术。 Arcsever开发工具
三、ArcGIS Workstation 的功能模块(1)
1. ARC是ARCGIS Workstartion的其他功能模块的运行环境;
① ARC主要完成对工作空间和数据单元的操作和管理; ② 进行空间数据操作; ③ 建立拓扑关系,进行数据格式和投影转换; ④ 进行某些基于矢量的空间分析。
2. INFO是一个完整的关系型数据库管理系统,用于完成对属 性数据库的管理和维护;
第三章 空间数据模型
空间数据模型是GIS的基础;
空间数据模型:指利用特定的数据结构来表达空间对 象的空间位置、空间关系和属性信息;是对空间对象 的数据描述。

GIS课件第3章 空间数据模型

GIS课件第3章 空间数据模型

第3章空间数据模型为了能够利用地理信息系统工具解决现实世界中的问题,首先必需将复杂的地理事物和现象简化和抽象到计算机中进行表示、处理和分析。

本章从空间认知的角度讲述了对现实世界进行抽象建模的过程,其结果就是空间数据模型;空间数据模型可以归纳为空间概念模型、逻辑数据模型和物理数据模型三个层次。

空间概念数据模型包括:场模型:用于描述空间中连续分布的现象;对象模型:用于描述各种空间地物;网络模型:可以模拟现实世界中的各种网络。

常用的空间逻辑数据模型有矢量数据模型、栅格数据模型和面向对象模型等。

在讲述空间数据模型的同时,又介绍了空间实体和空间关系等相关概念。

3.1地理空间与空间抽象3.1.1地理空间与空间实体在地理学上,地理空间(Geographic Space)是指地球表面及近地表空间,是地球上大气圈、水圈、生物圈、岩石圈和土壤圈交互作用的区域,地球上最复杂的物理过程、化学过程、生物过程和生物地球化学过程就发生在该区域。

在地理空间中存在着复杂的空间事物或地理现象,它们可能是物质的,也可能是非物质的,如山脉、水系、土地类型、城市分布、资源分布、道路网系、环境变迁等。

地理空间中的这些空间事物或地理现象就代表了现实世界;而地理信息系统即是人们通过对各种各样的地理现象的观察抽象、综合取舍,编码和简化,以数据形式存入计算机内进行操作处理,从而达到对现实世界规律进行再认识和分析决策的目的。

地理空间实体就是对复杂地理事物和现象进行简化抽象得到的结果,简称空间实体,它们的一个典型特征是与一定的地理空间位置有关,都具有一定的几何形态,分布状况以及彼此之间的相互关系。

空间实体具有4个基本特征:空间位置特征、属性特征、时间特征和空间关系。

1.空间位置特征表示空间实体在一定的坐标系中的空间位置或几何定位,通常采用地理坐标的经纬度、空间直角坐标、平面直角坐标和极坐标等来表示。

空间位置特征也称为几何特征,包括空间实体的位置、大小、形状和分布状况等。

第3章地理信息系统的数据结构和空间数据库

第3章地理信息系统的数据结构和空间数据库

第3章地理信息系统的数据结构和空间数据库地理信息系统(GIS)的数据结构是指用于存储、管理和分析地理空间数据的组织方式和模型。

GIS系统的数据结构可以分为两种类型:栅格数据结构和矢量数据结构。

此外,GIS系统还需要一个空间数据库来管理和存储数据。

栅格数据结构是将地理空间数据按照网格或像素的形式进行表示和存储的。

在栅格数据结构中,地理空间被划分为规则的方格或像元,每个像元上都有一个数值来表示特定的属性或特征。

栅格数据结构适用于连续的、均匀分布的数据,如卫星图像和遥感数据。

栅格数据结构的优点是可以进行方便的数值计算和分析,但其缺点是空间精度有限,无法捕捉到细小的地理特征。

矢量数据结构则是通过节点、线和面等几何要素来表示地理空间数据的。

矢量数据结构可以更准确地描述地理特征的形状、位置和属性等信息。

矢量数据结构适用于离散的、不规则分布的数据,如河流、道路和建筑物等。

矢量数据结构的优点是能够捕捉到地理特征的细节,但其缺点是对于复杂的地理现象,数据量较大且分析计算较为复杂。

为了存储和管理这些地理空间数据,GIS系统需要一个空间数据库。

空间数据库是一种专门用于存储和管理地理空间数据的数据库系统。

空间数据库使用了一些地理索引和查询技术,使得用户能够方便地对地理空间数据进行检索和分析。

空间数据库可以高效地存储和管理大量的地理空间数据,并能支持一些空间分析操作,如缓冲区分析、叠置分析等。

总的来说,地理信息系统的数据结构决定了地理空间数据的表示方式和存储结构,而空间数据库则是用来管理和存储这些地理空间数据的。

栅格数据结构适用于连续、均匀分布的数据,而矢量数据结构适用于离散、不规则分布的数据。

空间数据库则是为了方便地存储、管理和分析地理空间数据而设计的。

GIS空间分析第三章栅格数据分析

GIS空间分析第三章栅格数据分析

GIS空间分析第三章栅格数据分析栅格数据分析是GIS空间分析的重要组成部分,它是通过对栅格数据进行数学计算、空间统计和空间模型构建来揭示地理现象和解决实际问题的过程。

本文将围绕栅格数据的分类、栅格数据的操作、栅格数据的转换和栅格数据的模型构建展开阐述。

首先,栅格数据可以分为单波段栅格数据和多波段栅格数据。

单波段栅格数据是指只包含一个变量的栅格数据,如高程数据、遥感影像数据等;而多波段栅格数据则是指包含多个变量的栅格数据,如遥感影像的RGB波段数据。

栅格数据的操作包括栅格数据的重分类、栅格数据的代数运算和栅格数据的空间过滤。

栅格数据的重分类是指将栅格数据的属性值按照一定的标准进行重新划分,以便于后续的分析和应用;栅格数据的代数运算是指对栅格数据进行加、减、乘、除等数学运算,以获得新的栅格数据;栅格数据的空间过滤是指通过设定空间窗口大小和权重来对栅格数据进行平滑或者锐化处理,以揭示地理现象的模式和变化。

栅格数据的转换包括栅格数据的样本导出、栅格数据的统计和栅格数据的可视化。

栅格数据的样本导出是指从栅格数据中提取一部分样本数据,用于建立统计模型或者进行其他分析;栅格数据的统计分析是指对栅格数据进行均值、方差、标准差等统计指标的计算,以了解栅格数据的分布特征;栅格数据的可视化是指通过色彩、阴影和填充等方式将栅格数据以图像的形式展示出来,以便于人们对其进行直观的理解和分析。

最后,栅格数据的模型构建是指根据栅格数据的特征和空间关系建立数学模型,用于解决实际问题。

常见的栅格数据模型包括地形模型、遥感模型和景观模型。

地形模型是通过栅格数据的高程信息构建的,它可以用来进行地形分析、地形模拟和洪水预测等;遥感模型是通过栅格数据的反射率信息构建的,它可以用来进行植被分析、土地利用分类和环境监测等;景观模型是通过栅格数据的空间分布和格网图案构建的,它可以用来进行景观格局分析和景观生态研究等。

总之,栅格数据分析是GIS空间分析中一种重要的数据分析方法,它通过对栅格数据进行分类、操作、转换和模型构建来揭示地理现象和解决实际问题。

GIS空间分析第三章栅格数据分析

GIS空间分析第三章栅格数据分析

名称(Name): 每个栅格数据集必须有一个名称以 便在数据库中相互区分。所有对栅格数据集的访 问都是通过它的名称进行的,数据集的名称在所 有表达式中必须一致。
3.2 栅格数据分析的环境
在对栅格数据进行分析之前,需要设置分 析选项,主要包括:
结果输出的路径 分析范围 单元大小 在选择的单元上进行分析的分析掩膜
栅格数据的再分类(Reclassifying raster data)
输入离散型栅格
再分类栅格
类别数据的再分类需要用新值代替原来的值。例如,土地利
用类型可以根据适宜性的状况分为:低适宜 (1)、中适宜 (2)、 高适宜(3)。与适宜性无关的用地类型表示为空值。
•输入连续型栅格
•再分类栅格
连续型数据的再分类需要用新值代替一定范围的值。例如, 描述距离公路远近的栅格可以被分为三个距离带。
视域(Viewshed)
视域判别输入栅格中能够从一个或多个观 察点或线上可以看到的单元。在输出栅格 上,每个单元的值表示可以看到该点的观 察点的数量。
如果只有一个观察点,则能够被看到的栅 格单元被赋值为1。其它无法看到的栅格单 元被赋值为0。
观察点的要素类可以包含点或线。线的结 点或中间点将被看作是观察点。
坡向(Aspect)
坡向是指坡度的朝向,即某一单元对朝坡下的相 邻单元的方向。
在坡向栅格中的单元值是由0-360表示的方向。其 中,北为0,按顺时针的方向,90为东,180为南, 270为西。坡度为0(平地)的栅格单元,其坡向 值为-1。
坡向值为90的单元朝向 东方。由此顺坡而下, 就是向东而行。早晨太 阳升起时,该单元充满 阳光。晚上太阳西下, 则缺少阳光。
等高线(Contours)

北师大地理信息系统课件03空间数据模型

北师大地理信息系统课件03空间数据模型

因此,最好的通用数据模型是不存在的,数据模型优劣取决于 你的需要,使用数据的方式和目的才是决定数据模型优劣的标 准。
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
空间数据模型类型
例子:
河流作为组成网络的一系列要素。每条线段都拥有流量、容量和其他属性 。这时可以使用线性网络模型(几何网络)来分析水文流量或者船务运输 等。
空间事物或现象 选择、综合、简化和抽象
概念世界
数据世界 (计算机)
概念模型 Conceptial Model
最高层
编码、表达、建立空间关系
逻辑数据模型 Logical Data Model
中间层
数据结构对数据进行组织
物理数据模型 Physical Data Model
最底层
信息
11 地理空间数学基础
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
空间数据模型类型
例子: 即使在同一数据模型中,每种空间数据也有不同的表达方式。
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
空间数据概念模型类型
现有GIS中常用的空间数据概念模型主要有三个: 场(Field)模型:强调空间要素的连续性
地图使用者的认识模型
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
维度世界:度 量语言
地理空间世 界:GIS 语言
概念世界:自 然语言
现实世界:基 本语言
地理空间数学基础
对现实世界的抽象
项目世界: 信息团体
点世界:坐标 几何
几何世界:WKT
OpenGIS的九层模 型
要素世界:要 素

p03第三章 空间数据模型-第六-八节2

p03第三章 空间数据模型-第六-八节2

要素的特点
① 要素具有形状 ② 要素具有空间参考 ③ 要素具有属性 ④ 要素具有子类 ⑤ 要素具有关联 ⑥ 要素属性可以被限制 ⑦ 要素能用规则来验证 ⑧ 要素具有拓扑关系 ⑨ 要素具有复杂的行为
1)要素具有形状
要素的形状是以 Geometry (shape)这么一个特殊字段存储在要素类 表中的。要素可以用以下这些几何类型表达: 点或多点(一组点) 线(一组相连或不相连的线段) 多边形(不相邻或嵌套的环)。环是由一组连接的、闭合的、不 相交的线段组成的
• 属性关联:也可以定义非空间对象的关联,如房屋与 其主人的关系。
6)要素属性可以被限制
• 为加强数据录入的准确性,还可以制定属性域对要素的属性 进行限定。属性域,表现为一个数值范围或合法值的列表, 也可以在要素创建之时为其属性自动分配一个缺省值。可以 在要素类中为不同的子类设置不同的属性域和缺省值。
要素集中可以存储对象(Objects)、要素(features)及关联 类(Relationship class)和拓扑、几何网络。
对象、要素和关联类直接存储在 Geodatabase 中,不需要非得 存放在要素集中。
二、对象类
• 对象类是Geodatabase中的一个表,保存与地理对 象相关联的描述性信息;
7)要素能用规则来验证
• 现实世界中的对象存在或改变都是必须遵循一定规则 的。可以用这样的规则来限制几何网络中元素的制约 规则,或者定义这些元素关联的对应基数。
8)要素可具有拓扑关系
各类型要素之间具有的精确的空间位置关系就叫做拓扑。 例如,宗地 的二级小分块必须是彼此严格毗邻的,不允许有缝隙和重叠。这种二 维关系称为平面拓扑。
第八节、面向对象的空间数据模型介绍

三维GIS空间数据模型

三维GIS空间数据模型
① 复杂实体有可能由不同延展度和类型的空间单元组合而 成;
② 某一类型的空间单元组合形成一个新的类型或一个复合 实例;
③ 某一类型的空间实体可以转换为另一类型;
④ 某些空间实体具有二重性,也就是说,由不同的维数组 合而成。
实体类型组合图例
三、空间实体在地理信息系统中的表示
1、单一实体 2、多种特征的实体 3、带有属性的空间实体的表示 4、多层属性信息的表示
第三章 空间数据模型
空间数据模型:指利用特定的数据 结构来表达空间对象的空间位置、 空间关系和属性信息;是对空间对 象的数据描述。
内容
第一节 空间实体的描述和分类和数据组织 第二节 矢量数据模型 第三节 栅格数据模型 第四节 三角网数据模型(TIN) 第五节 属性信息 第八节 面向对象的空间数据模型
左多边形
P2 P1 P1 Ø P2 P3
右多边形
P1 P4 Ø P2 P4 P2
二、空间实体的几何分类
根据(1)实体本身的特征、(2)所用地图的比例尺
(3)项目中使用这类实体空间数据的目的,将地理
形象抽象为:
1. 点(Point) 2. 线(Line)
空间现象 • 离散
3. 面(Area) 4. 体(Volume)
4、பைடு நூலகம்类信息的表示
空间数据的分类,是指根据系统功能及国家规范和标准,将具有不同属性 或特征的要素区别开来的过程,以便从逻辑上将空间数据组织为不同的信 息层(见下图);
用于表示地理实体的数据模型
GIS的数据模型分为两大类:矢量数据模型和栅格数据模型。
.
Spatial data model
第二节 矢量数据模型
① 长度:从起点到终点的总长;

GIS空间分析的数据模型

GIS空间分析的数据模型
32
基态修正模型
基态修正模型按事先设定的时间间隔进行采样,它 只存储某个时间数据状态(基态)和相对于基态的变 化量。
33
时空立方体模型( Space-time Cube)
由空间两个维度和一个时间维组成,描述了二维 空间沿着第三个时间维演变的过程。任何一个空 间实体的演变历史都是空间-时间立方体中的一 个实体。
➢ 拐点(Turn):从一个链到另一个链的过渡。拐点在 网络模型中不用于模拟现实世界中的实体,而是 代表链与链之间的过渡关系。
21
常用的网络模型:
网络跟踪(Trace)
➢用于研究网络中资源和信息的流向; ➢在水文应用中,网络跟踪可用于: • 计算河流中水流的体积, • 跟踪污染物从污染源开始,沿溪流向下游扩散的
28
3.7 时空数据模型
➢ 静态GIS(SGIS):
传统的地理信息系统应用只涉及地理信息的 两个方面:空间维度和属性维度。
➢时态GIS (TGIS):
能够同时处理时间维度。 解决历史数据的丢失问题。 实现数据的历史状态重建、时空变化跟踪、
发展势态的预测等功能。
29
数据的时间维度:
➢结构化数据:如一个测站历史数据的积累,可以 通过在属性数据表记录中简单地增加一个时间戳 (Time Stamp)实现管理;
➢ 结点(Node):链的终止点。 链总是在结点处相交。结点可以用来表示道路 网络中道路交叉点、河网中的河流交汇点等。
20
➢ 站点(Stops):在某个流路上经过的位置。代表现 实世界中邮路系统中的邮件接收点、或高速公路 网中经过的城市等。
➢ 中心(Center):网络中的一些离散位置,可以提供 资源。如现实世界中的资源分发中心、购物中心、 学校、机场等。其状态属性包括资源容量,如总 的资源量;阻力限额,如中心与链之间的最大距 离或时间限制。

GIS空间数据模型

GIS空间数据模型
能对实体的属性数据和空间数据进行综合管理。
找离火车站 最近的汽车
站?
2021/3/10
距离最近 的汽车站
GIS分析
属性为火 车站的点
检索




所有属性为 汽车站的点
检索
空间 数据库
10
2.5 GIS空间数据模型
二、传统数据模型存储空间数据的局限性
3.关系数据模型用于GIS地理数据库的局限性
对属性数据用通用RDBMS可以很好管理,但对于空间数据一般DBMS却有局限, 表现为: 1)无法用递归和嵌套的方式来描述复杂关系的层次和网状结构,模拟和操作
三、面向对象模型
2.基本概念
地理 对象
属性 — 数据 行为—方法
对象:含有数据和操作方法的独立模块,可以认为是数据和行为的统一体。 对于一个对象,应具有如下特征:
A. 具有一个唯一的标识,以表明其存在的独立性; B. 具有一组描述特征的属性,以表明其在某一时刻的状态 (静态属性—数据)
C. 具有一组表示行为的操作方法,用以改变对象的状态(作用,功能—函数,方
数据
方法
以使对数据的操作只可通过该对象本身的方法来进行。
一对象不能直接作用于另一对象的数据,对象间的通信只能通过消
息来进行。
封装是一种信息隐蔽技术,封装的目的 在于将对象的使用者和对象的设计者分开, 用户只能见到对象封装界面上的信息, 对象内部对用户是隐蔽的。
2021/3/10
18
2.5 GIS空间数据模型
子类与超类是“即是”的关系(is-a)
概括可能有任意多层次 概括技术避免了说明和存储上的大量冗余。
如住宅地址、门牌号、电话号码等是“住宅”类的实例(属性), 同时也是它的超类“建筑物”的实例(属性)。

第三章-空间数据模型

第三章-空间数据模型
多 边 形 与 弧 段 : P2 与 L3,L5,L2
2)邻接性: (同类元素之 间)
多边形之间、结点之间。
邻接矩阵
重叠:-- 邻接:1 不邻接: 0
P1 P2 P3 P4 P1 -- 1 1 1 P2 1 -- 1 0 P3 1 1 -- 0 P4 1 0 0 --
3)连通性:与邻接性相类似,指对弧段连接的判别,如用于网络 分析中确定路径、街道是否相通。
连通矩阵: 重叠:-- 连通:1 不连通:0
V1 V2 V3 …
V1 -- 1 0 V2 1 -- 1 V3 0 1 --
4)拓扑包含:指面状实体包含了哪些线、点或面状实体。
主要的拓扑关系:拓扑邻接、拓扑关联、拓扑包含。
P2
P1
P2
P3 P2
P1 P1
P2
拓扑关系的表达 拓扑关系具体可由4个关系表来表示: (1) 面--链关系: 面 构成面的弧段 (2) 链--结点关系: 链 链两端的结点 (3) 结点--链关系: 结点 通过该结点的链 (4) 链—面关系: 链 左面 右面
2 杨树 x1, y1;x2, y2;…; 林 xn, yn; x1, y1
3 松树 x1, y1;x2, y2;…; 林 xn, yn; x1, y1
空间对象的矢量数据模型
3.4 空间逻辑数据模型
二、栅格数据模型
在栅格数据模型中,点实体是一 个栅格单元(cell)或像元,线实体 由一串彼此相连的像元构成,面实 体则由一系列相邻的像元构成,像 元的大小是一致的。
象)
分类
子类/超类 等效
空间关系 非空间关系 时间关系
地理空间 空间要素
几何坐标
子部分 超部分
非空间属性

GIS空间分析理论与方法复习资料

GIS空间分析理论与方法复习资料

GIS空间分析理论与方法第一章绪论1.空间分析概念GIS空间分析是从一个或多个空间数据图层获取信息的过程。

空间分析是集空间数据分析和空间模拟于一体的技术,通过地理计算和空间表达挖掘潜在空间信息,以解决实际问题(刘湘南等, 2008)。

2.空间分析与GIS的关系空间分析是地理信息系统的核心和灵魂。

空间分析是地理信息系统的主要特征,是评价一个地理信息系统的主要指标之一。

3.空间分析在GIS中的地位和作用空间分析是GIS的核心;空间分析是GIS的核心功能;空间分析的理论性和技术性第二章GIS空间分析的基本理论1.空间分析有哪些理论?空间关系理论;地理空间认知理论;地理空间推论理论;空间数据的不确定性分析理论2.简述空间关系的类型及各类型的特点?GIS空间关系主要分为顺序关系、度量关系和拓扑关系三大类型。

顺序关系描述目标在空间中的某种排序,主要是目标间的方向关系,如前后左右、东西南北等。

度量关系是用某种度量空间中的度量来描述的目标间的关系,主要是指目标间的距离关系。

拓扑空间关系是指拓扑变换下的拓扑不变量,如空间目标的相邻和连通关系,以及表示线段流向的关系。

3.简述拓扑空间关系的特点?拓扑空间关系是指拓扑变换下的拓扑不变量,如空间目标的相邻和连通关系,以及表示线段流向的关系.拓扑变换:拓扑所研究的是几何图形的一些性质,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。

拓扑变换的条件:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。

拓扑关系表达的代表性模型:4元组模型、9元组模型、基于V oronoi图的V91模型、RCC 模型、空间代数模型4.简述方向空间关系的类型和特点?方向关系是顺序关系中的最主要的关系。

方向关系的描述方式包括定量描述和定性描述两种。

一般方向关系的形式化描述:使用的是绝对方向关系参考。

九种方向关系:正东:restricted—east(pi,qi)≡X(pi)>X(qi)∧Y(pi)=Y(qi)5.简述距离关系的类型和计算方法?欧氏距离、切比雪夫距离、马氏距离、明氏距离P216.简述空间关系描述模型的评价准则?一般从完备性、严密性、唯一性、通用性1.空间关系表达是否是形式化的、无歧义的2.表达的完备性3.表达的可靠性4.表达的唯一性5.表达的课推理性7.简述时空空间关系的特点?地理实体之间的空间关系往往随着时间而变化,时间关系交织在一起就形成了多种时空关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25
常用的网络模型

选址和分区(Location-Allocation)分析
决定一个或多个服务设施的最优位置。
定位:保证服务设施可以以最经济有效的 方式为它所服务的人群提供服务。
分析中既有定位过程,也有资源分配过程。 实际问题:
• 加油站; • 急救服务设置; • 救火、医疗急救; • 学校的选址等。
26

空间相互作用和引力模型 用于理解和预测某点发生的活动和人、资源及信 息的流动。 两点间距离越近,发生相互作用的可能性越大。
27

空间相互作用和引力模型 实际问题: • 为什么物资总是向沿海地区流动; • 为什么某一区域的人们总是去特定的商场购物; • 从家到电影院超过多长时间后,就不会选择去这 个电影院看电影了。 类似于路径选择,除了考虑两个对象的距离,还 要考虑相互作用时发生的活动的性质。例如,人 们不愿意去距离远的商场购物,但可能愿意去较 远地方的名医求医问药。
现实世界 要素模型 选择要素 选择一个位置 场模型
它在哪里
那里怎么样
数据
18
3.6 网络结构模型

网络模型
网络模型把地物抽象为链和节点,同时要关注其
间的连通关系。
网络模型要考虑多个要素之间的影响和交互。现
象的精确形状并不重要,重要的是具体现象之间
的距离或者阻力的度量。
网络模型的典型例子:陆上、海上及航空线路,
21
常用的网络模型:

网络跟踪(Trace)
用于研究网络中资源和信息的流向;
在水文应用中,网络跟踪可用于:
• 计算河流中水流的体积,
• 跟踪污染物从污染源开始,沿溪流向下游扩散的
过程。
22
常用的网络模型:

路径选择(Path Finding)
在远距离送货、物资派发、急救服务和邮递等服
务中,经常需要在一次行程中同时访问多个站点
36
3.8 三维空间数据模型

GIS本质上是三维连续分布的 以二维系统来描述三维的自然现象,不能够精确 地反映、分析或显示有关信息。 地质、地球物理、气象、水文、采矿、地下水、 灾害、污染等都是三维的。 三维GIS在数据采集、系统维护和界面设计等方 面比二维GIS要复杂得多。
37

三维GIS:
33

时空立方体模型( Space-time Cube)
由空间两个维度和一个时间维组成,描述了二维 空间沿着第三个时间维演变的过程。任何一个空 间实体的演变历史都是空间-时间立方体中的一 个实体。
34

空间时间组合体模型
空间分隔成具有相同时空过程的最大的公共时空 单元,每个时空对象的变化都将在整个空间内产 生一个新的对象。 模型将空间变化和属性变化都映射为空间的变化, 是序列快照模型和基态修正模型的折衷模型。
4
3.2 空间数据模型

空间数据模型:是关于GIS中空间数据组织的概念, 反映现实世界中的空间实体,及其相互之间的联系, 为空间数据组织和空间数据库模式设计提供基本的概 念和方法。
5

GIS数据模型的三个层次: 概念数据模型
逻辑数据模型
物理数据模型
6

GIS空间数据模型的概念模型:
基本任务:确定感兴趣的现象和基本特性,描述实 体间的相互联系,确定空间数据库的信息内容。
35

面向对象的时空数据模型
将时态变化语义嵌入空间实体的描述中,将空间 实体视为封装有变化组分的对象,可以表现时间 因素并表现实体的过去、现在和未来。
核心:以面向对象的基本思想组织地理时空对象。 每个地理时空对象中封装了对象的时态性、空间 特性、属性特性和相关的行为操作及与其他对象 的关系。 时间、空间及属性在时空对象中具有同等重要的 地位。
10
3.4 场模型
场模型的数学表示 模拟一定空间内具有连续分布特点的现象。
空气中污染物的集中程度、地表的温度、土壤的湿度 水平以及空气与水的流动速度和方向。 场可以表现为二维场或三维场。 一个二维场就是在二维空间中任何已知的地点上, 都有一个表现这一现象的值; 一个三维场就是在三维空间中对于任何位置来说都 有一个值。
7

空间数据的逻辑数据模型是根据概念数据模型确定 的空间数据库的信息内容(空间实体及相互关系),具 体地表达数据项、记录等之间的关系。
湖北省湖区分布图的逻辑模型设计
8

物理数据模型:
是描述数据在计算机中的物理组织、存取路径和 数据库结构。
逻辑数据模型转换为物理数据模型: 涉及空间数据的物理组织、空间存取方法、数据 库总体存储结构等。
(收货方、邮件主人、物资储备站等),
如何寻找到一个最短和最经济的路径,保证访问
到所有站点,同时最快最省地完成一次行程呢?
23
常用的网络模型:

资源分配(Allocate)
反映现实世界网络中资源的供需关系模型。
• “供”代表一定数据的资源或货物,位于“中 心CENTER”设施中。 • “需”指对资源的利用。 分配分析:在空间中的一个或多个点间分配资源。
管线与隧道分析,水、油及电力的流动等。
19

网络组成要素:
链(Link):链构成了网络模型的框架。
链代表用于实现运输和交流的相互联接的线性 实体。可用于表示现实世界网络中运输网络的 高速路、铁路,和电网中的传输线和水文网络 中的河流。其状态属性包括阻力和需求。
结点(Node):链的终止点。 链总是在结点处相交。结点可以用来表示道路 网络中道路交叉点、河网中的河流交汇点等。
11
场模型的数学公式: z:s z (s) z为可度量的函数,s表示空间中的位置。
表示从空间域(甚至包括时间坐标)到某个值 域的映射。
12
3.5 要素模型
地理要素是通过地理实体定义的,地理实体是真实 世界中不能再被细分为同一类现象的地理现象。

地理要素模型只对地理实体的属性(包括空间属性 和地理属性)及关系感兴趣。
2
3.1 空间数据的表示
空间数据表示的基本任务:将以图形模
拟的空间物体表示成计算机能够接受的 数字形式。
3
空间数据的两种表示模型:
栅格模型:地理空间被划分为规则的小单元,空间位置由栅格 单元的行、列号表示。栅格单元的大小反映了数据的分辨率即 精度,空间物体由若干个栅格单元隐含描述。 矢量模型:各类地理要素根据空间形态特征分为点、线、面三 类/(体状空间对象)。地物是显示描述的。
14
线对象:维度为1的空间组分,有一系列坐标表示。 线对象的特征:
1)实体长度: 从起点到终点的总长度。 2)弯曲度: 如用于表示道路拐弯时弯曲的程度。 3)方向性: 用于表示线对象的方向,如水流方向是从上游到 下游,公路有单向和双向之分。 线状实体:线段、边界、链、弧段、网络等。
多边线
简单闭合多边线
数据来源 图像去噪 原始遥感 影像 叶绿素 辐射定标 值:单位 大气校正 投影变换 几何校正 区域提取 指标专 题图 总悬 浮物 高锰 酸盐 制作 指标编号 指标名称 值:分布 范围 包含 总磷 总氮 透明 度
专题图编号 专题图名称 制作人员 制作单位 制作日期 分辨率/比例尺 备注 区域 转化 包含 地理投影 地理坐标 影像专题 图 包含
15
多边形对象/面状实体:由一封闭曲线加内点来表示, 是对湖泊、岛屿、地块等一类对象的描述。
面状实体的特征: 面积范围; 周长; 独立性或与其它地物相邻:如中国及其周边国家; 内岛或锯齿状外形; 重叠性与非重叠性:如报纸的销售领域、学校的分区、
菜市场的服务范围都有可能出现交叉重叠现象。
16
30

时空数据模型的主要类型:
序列快照模型
基图修正模型
空间时间立方体模型
空间时间组合体模型
31

序列快照模型
将一系列时间片段的快照保存起来,各个切片分 别对应不同时刻的状态图层,反映地理现象的时 空演化过程。
32

基态修正模型
基态修正模型按事先设定的时间间隔进行采样,它 只存储某个时间数据状态(基态)和相对于基态的变 化量。
武汉大学遥感信息工程学院遥感科学与技术本科生教案(2012年)
第三章 GIS空间分析的数据模型
秦昆 qinkun163@
1
空间分析是基于地理对象的位置和形态 特征的空间数据分析技术。
空间分析方法受空间数据表示形式的制 约和影响, 研究空间分析必须考虑空间数据的表示 方法和空间数据模型。
有多种不同类型的多边形:普通多边形、凸多边形、 星状多边形等。
多边形
凸多边形
星状多边形
17
场模型和要素模型
场和对象可以在多种水平上共存,基于场的方法和基于要素 的方法并不互相排斥。有些应用可以很自然地应用场来建模; 但是,场模型也并不是适合所有情况。 基于场的模型和基于要素的模型各有长处,应该恰当地综合 运用这两种方法来建模。 在地理信息系统应用模型的高层建模、数据结构设计及地理 信息系统应用中,都会遇到这两种模型的集成问题。
28
3.7 时空数据模型
静态GIS(SGIS):
传统的地理信息系统应用只涉及地理信息的 两个方面:空间维度和属性维度。
时态GIS (TGIS):
能够同时处理时间维度。 解决历史数据的丢失问题。 实现数据的历史状态重建、时空变化跟踪、 发展势态的预测等功能。
29

数据的时间维度:
结构化数据:如一个测站历史数据的积累,可以 通过在属性数据表记录中简单地增加一个时间戳 (Time Stamp)实现管理; 非结构化数据:如土地利用状况的变化。描述这 种时空数据是TGIS数据模型重点要解决的问题。
20
站点(Stops):在某个流路上经过的位置。代表现 实世界中邮路系统中的邮件接收点、或高速公路 网中经过的城市等。 中心(Center):网络中的一些离散位置,可以提供 资源。如现实世界中的资源分发中心、购物中心、 学校、机场等。其状态属性包括资源容量,如总 的资源量;阻力限额,如中心与链之间的最大距 离或时间限制。 拐点(Turn):从一个链到另一个链的过渡。拐点在 网络模型中不用于模拟现实世界中的实体,而是 代表链与链之间的过渡关系。
相关文档
最新文档