专升本高等数学【函数极限和连续】知识点及例题
专升本高数第一章极限与连续
![专升本高数第一章极限与连续](https://img.taocdn.com/s3/m/410e483530b765ce0508763231126edb6f1a763a.png)
金融领域
连续复利在金融领域中有着广泛 的应用,如债券、股票、基金等 投资产品的价值计算。
100%
保险领域
在保险领域中,连续复利可以用 于计算保险产品的未来价值,帮 助客户了解保险合同未来的收益 情况。
80%
养老金领域
在养老金领域中,连续复利可以 用于计算个人养老金账户的未来 价值,帮助个人了解自己退休后 的养老金收益情况。
极值的计算
对于可导的函数,其一阶导数为0的点可能是极值点。然后通过判断二阶导数的正负来判断是极大值还是极小值。 如果二阶导数大于0,则为极小值;如果二阶导数小于0,则为极大值。
极值的应用
最大最小值问题
在生产、生活中经常遇到求最大最小值的问题,极值的概念可以用来解决这类问题。例如,在经济学中求成本最低、 利润最大的方案等。
02
(1) lim(x->0) (sin x / x)
03
(2) lim(x->0) ((1 + x)^(1/x))
04
(3) lim(x->∞) ((1 + 1/x)^x)
连续复利部分的习题
(2) A = P(1 + r/n)^nt / (1 + r/n)^n
(1) A = P(1 + r/n)^nt
单调性
如果函数在某个区间内单调递增或递减,则该区间 内导数大于等于0或小于等于0。
极值点
如果函数在某一点的导数为0,且该点两侧的 导数符号相反,则该点为极值点。
04
函数的单调性与极值
单调性的判断方法
01
02
03
定义法
导数法
图像法
通过比较函数在某区间内任意两点x1和 x2的函数值f(x1)和f(x2),判断单调性。 如果f(x1)<f(x2),则函数在此区间内单 调递增;反之,则单调递减。
高职专升本第一章函数极限与连续习题及答案
![高职专升本第一章函数极限与连续习题及答案](https://img.taocdn.com/s3/m/bf901417bb68a98271fefa8f.png)
高等数学习题集第一章 函数极限与连续一.选择题1.若函数)(x f 的定义域为[0,1],则函数)(ln x f 的定义域是( B )。
A [0,1]B [1,e]C [0,e]D (1,e)2.设xx f 11)(+=,则)]([x f f =( A )。
(2002-03电大试题) A.x x ++11 B.x x +1 C.x ++111 D.x+11。
3.设)(x f =e 2x ,则函数)()()(x f x f x F -+=是( B )。
A 奇函数;B 偶函数;C 既是奇函数又是偶函数;D 非奇非偶函数。
4.下列说法错误的是( D )。
A y=2x 与y=|x|表示同一函数; B x x f 3sin 21)(=是有界函数; C x x x f +=cos )(不是周期函数; D 12+=x y 在(-∞,+∞)内是单调函数。
5.下列函数中非奇非偶的函数是( D )。
A ||lg )(x x f =;B 2)(xx e e x f --=; C x x x f sin )(+=; D ||)(x x x f -=。
6.下列函数中( A )是基本初等函数。
A x x f 2=)(;B x x f 2=)(;C 2)(+=x x f ;D x x x f +=2)(。
7.函数( A )是初等函数: A x x y arccos 12-=; B ⎪⎩⎪⎨⎧=≠--=.1,0,1,112x x x x y C xx y ln )ln(-=; D +++++=+12421n y 8.“数列{x n }的极限存在”是“数列{x n }有界”的( A )。
A 充分但非必要条件;B 必要但非充分条件;C 充分必要条件;D 既非充分亦非必要条件。
9.∞→x lim 5x 的值是( D )。
A +∞; B -∞; C 0; D 不存在。
10.+∞→x lim e -x 的值是( A )。
A 0; B +∞; C 1; D 不存在。
河北专升本高等数学复习资料课件第一章函数极限连续
![河北专升本高等数学复习资料课件第一章函数极限连续](https://img.taocdn.com/s3/m/ddea077466ec102de2bd960590c69ec3d5bbdba6.png)
从函数图像上看,偶函数的图像关于 y 轴对称,奇函数的图像关于原点对称.
典例精析
知识清单
知识点二 函数的基本性质
3.函数的单调性
设函数 f (x)定义域为 D ,区间 ⊆ .若对于 I 上任意两点1 , 2 ,当1 < 2 时,恒有
f (1 ) < f (2 ),
→∞
(或 a ≤ 0).
知识清单
知识点一 数列极限
定理4(数列极限的四则运算) 设 lim = , lim = ,则
→∞
→∞
① lim ( ± ) = ± ;② lim ( ∙ ) = ∙ ;③ lim = (b ≠ 0).
→∞
→∞
称为函数在点 x 处的函数值,记作 f (x).当自变量 x 遍取 D 的所有数值时,对应的函数值 f (x)的全
体构成的集合称为函数 f 的值域,记作f (D),即
= {| = , ∈ }.
由函数的定义可以看出,函数的定义域与对应法则是确定函数的两个必不可少的要素.也就
是说,如果两个函数的对应法则和定义域都相同,那么这两个函数就是相同的函数.
区间(0,1)上无界,在[1,+∞)上有界.
典例精析
知识清单
知识点二 函数的基本性质
2.函数的奇偶性
设函数 f (x)的定义域为 D,且 D 关于原点对称,即对任一 x∈D,都有- x∈D.若
f (-x) = f (x)
对一切 x∈D成立,则称 f (x)为偶函数;若
f (-x) = -f (x)
知识清单
知识点三 基本初等函数
2.指数函数:形如 = (a > 0 , a ≠ 1)的函数称为指数函数.
山东专升本高等数学第一章知识点总结
![山东专升本高等数学第一章知识点总结](https://img.taocdn.com/s3/m/d0dddea41b37f111f18583d049649b6648d7099e.png)
第一章 函数、极限和连续第一单元 函数1.函数的概念函数两要素:定义域和对应法则。
原函数定义域等于反函数值域,反函数值域等于原函数定义域。
定义域:y =1x ,x ≠0y =ln x ,x >0 y =√x,x ≥0y =√x4x >0 y =arcsin x ,−1≤x ≤1y =arccos x ,−1≤x ≤12.函数的性质单调性:同增异减当x 1<x 2时,有f (x 1)<f (x 2),为增函数。
当x 1<x 2时,有f (x 1)>f (x 2),为减函数。
原函数与反函数有相同单调性。
奇偶性:f (−x )=f (x ) 为偶函数关于y 轴对称f (−x )=−f (x ) 为奇函数关于原点对称 对数专用 f (−x )+f (x )=0 f (0)=0常见偶函数:y =|x | y =2 y =x 2 y =x 4+2 y =cos x常见奇函数:y =x y =x 3 y =1x y =tan x y =cot x y =sin x arctan x arccos x常见非奇非偶函数:arccot x arccos x奇×奇=偶 偶×偶=偶 奇×偶=奇奇±奇=奇 偶±偶=偶 奇±偶=非奇非偶原函数与反函数奇偶相同;奇函数求导后为偶函数,偶函数求导后为奇函数。
有界性:|f (x )|≤M ⇔−m ≤f (x )≤M |f (x )|>M ⇔f (x )>M 或f (x )<−m 有界×有界=有界 有界±有界=有界 有界±无界=无界 常见有界函数: y =sin xy =cos xy =1sin xy =1cos xy=arcsin x y=arccos x y=arctan x y=arccot x 周期性:y=A sin(ωx+φ)+B y=A tan(ωx+φ)+B y=A cos(ωx+φ)+B y=A cot(ωx+φ)+B最小正周期T=2π|ω|最小正周期T=π|ω|3.基本初等函数幂函数:y=xα(α∈R,α≠0)指数函数:y=a x(a>0,a≠1)1)x对数函数:y=log a x(a>0,a≠1)x正弦函数 奇函数 T=2π 有界 余弦函数 偶函数 T=2π 有界x正切函数 奇函数 T=π 无界 余切函数 奇函数 T=π 无界 y =tan x y =cot x三角函数常用公式:tan x =sin xcos x cot x =1tan x =cos xsin xsec x =1cos x csc x =1sin x sin (−x )=−sin x cos (−x )=cos x tan (−x )=−tan x 降幂公式:sin 2x =1−cos 2x2cos 2x =1+cos 2x2cos 2x =(cos x )2tan x 和cot x 互为倒数 sin x 和csc x 互为倒数 cos x 和sec x 互为倒数1.度与弧度π1rad 0.017453rad 180︒=≈,1801rad 571744.8π︒⎛⎫'''=≈︒ ⎪⎝⎭22sin cos 1x x += 22tan 1sec x x += 22cot 1csc x x +=3.两角的和差公式()sin sin cos cos sin x y x y x y ±=± ()cos cos cos sin sin x y x y x y ±=m()tan tan tan 1tan tan x yx y x y±±=m4.和差化积公式sin sin 2sin cos22x y x yx y +−+= sin sin 2sincos22x y x yx y −+−= cos cos 2cos cos22x y x yx y +−+= cos cos 2sinsin22x y x yx y +−−=− 5.积化和差公式[]1sin cos sin()sin()2x y x y x y =++− []1cos sin sin()sin()2x y x y x y =+−− []1cos cos cos()cos()2x y x y x y =++− []1sin sin cos()cos()2x y x y x y =−+−− 6.倍角公式和半角公式sin 22sin cos x x x =2222cos 2cos sin 2cos 112sin x x x x x =−=−=−21cos cos 22x x+=21cos sin 22x x−=22tan tan 21tan xx x=− 1cos sin tan2sin 1cos x x xx x−==+22tan2sin 1tan 2x x x=+ 221tan 2cos 1tan 2x x x−=+ 22tan2tan 1tan 2x x x=− 8.三角形边角关系 (1)正弦定理sin sin sin a b cA B C==(2)余弦定理 2222cos a b c bc A =+− 2222cos b a c ac B =+− 2222cos c a b abc C =+−反三角函数:反正弦函数y =arcsin x 定义域[-1,1] 反余弦函数y =arccos x 定义域[﹣1,1] 值域[−π2,π2] 奇函数 有界函数 非周期函数 值域[0,π] 有界函数 非奇非偶函数非周期函数−2反正切函数y=arctan x定义域(−∞,+∞)反余切函数y=arccot x定义域(−∞,+∞)值域(−π2,π2)有界函数奇函数非周期函数值域(0,π) 有界函数非奇非偶函数非周期函数反函数:原函数定义域等于反函数值域,反函数值域等于原函数定义域。
专升本高等数学复习资料(含答案)
![专升本高等数学复习资料(含答案)](https://img.taocdn.com/s3/m/571c7685a1116c175f0e7cd184254b35eefd1a9e.png)
专升本高等数学复习资料(含答案)一、函数、极限和连续1.函数yf(某)的定义域是()yf(某)的表达式有意义的变量某的取值范围A.变量某的取值范围B.使函数C.全体实数D.以上三种情况都不是2.以下说法不正确的是()A.两个奇函数之和为奇函数B.两个奇函数之积为偶函数C.奇函数与偶函数之积为偶函数D.两个偶函数之和为偶函数3.两函数相同则()A.两函数表达式相同B.两函数定义域相同C.两函数表达式相同且定义域相同D.两函数值域相同4.函数y4某某2的定义域为()A.(2,4)B.[2,4]C.(2,4]D.[2,4)5.函数f(某)2某33in某的奇偶性为()A.奇函数B.偶函数C.非奇非偶D.无法判断1某,则f(某)等于()2某1某某21某2某A.B.C.D.2某112某2某112某6.设f(1某)7.分段函数是()A.几个函数B.可导函数C.连续函数D.几个分析式和起来表示的一个函数8.下列函数中为偶函数的是()A.ye某B.yln(某)C.y某3co某D.yln某9.以下各对函数是相同函数的有()A.f(某)某与g(某)某B.f(某)1in2某与g(某)co某某2某f(某)与g(某)1D.f(某)某2与g(某)某2某C.某2某210.下列函数中为奇函数的是()e某e某A.yco(某)B.y某in某C.y23D.y某3某211.设函数yf(某)的定义域是[0,1],则f(某1)的定义域是()[1,0]C.[0,1]D.[1,2]A.[2,1]B.某2某012.函数f(某)20某0的定义域是()某220某2A.(2,2)B.(2,0]C.(2,2]D.(0,2]13.若f(某)1某2某33某2某,则f(1)()A.3B.3C.1D.114.若f(某)在(,)内是偶函数,则f(某)在(,)内是()A.奇函数B.偶函数C.非奇非偶函数D.f(某)015.设f(某)为定义在(,)内的任意不恒等于零的函数,则F(某)f(某)f(某)必是(A.奇函数B.偶函数C.非奇非偶函数D.F(某)01某116.设f(某)某1,2某21,1某2则f(2)等于()0,2某4A.21B.821C.0D.无意义17.函数y某2in某的图形()A.关于o某轴对称B.关于oy轴对称C.关于原点对称D.关于直线y某对称18.下列函数中,图形关于y轴对称的有()A.y某co某B.y某某31e某e某C.y2D.ye某e某219.函数f(某)与其反函数f1(某)的图形对称于直线()A.y0B.某0C.y某D.y某20.曲线ya某与yloga某(a0,a1)在同一直角坐标系中,它们的图形()A.关于某轴对称B.关于y轴对称C.关于直线y某轴对称D.关于原点对称21.对于极限lim某0f(某),下列说法正确的是()A.若极限lim某0f(某)存在,则此极限是唯一的B.若极限lim某0f(某)存在,则此极限并不唯一)C.极限lim某0f(某)一定存在D.以上三种情况都不正确22.若极限limA.左极限C.左极限D.某0f(某)A存在,下列说法正确的是()某0limf(某)不存在B.右极限limf(某)不存在某0某0某0limf(某)和右极限limf(某)存在,但不相等某0某0某0limf(某)limf(某)limf(某)Aln某1的值是()某e某e1A.1B.C.0D.eelncot某24.极限lim的值是().+某0ln某A.0B.1C.D.123.极限lima某2b2,则()25.已知lim某0某in某A.a2,b0B.a1,b1C.a2,b1D.a2,b026.设0ab,则数列极限limnanbn是nA.aB.bC.1D.ab27.极限lim11某2311A.0B.C.D.不存在25128.lim某in为()某2某1A.2B.C.1D.无穷大量2inm某(m,n为正整数)等于()29.lim某0inn某A.某0的结果是mnB.nmC.(1)mnmnmnD.(1)nma某3b1,则()30.已知lim某0某tan2某A.a2,b0B.a1,b0C.a6,b0D.a1,b131.极限lim某co某()某某co某A.等于1B.等于0C.为无穷大D.不存在232.设函数in某1f(某)0e某1某0某0某0则lim某0f(某)()A.1B.0C.1D.不存在33.下列计算结果正确的是()A.某某lim(1)某eB.lim(1)某e4某0某04411111某某4C.lim(1)某eD.lim(1)某e4某0某04434.极限1lim()tan某等于()某0某C.0D.A.1B.1235.极限lim某in某011in某的结果是某某A.1B.1C.0D.不存在1k0为()某k某1A.kB.C.1D.无穷大量k36.lim某in37.极限limin某某=()2A.0B.1C.1D.38.当某21时,函数(1)某的极限是()某A.eB.eC.1D.1in某1f(某)0co某1某0某0,则limf(某)某0某039.设函数A.1B.0C.1D.不存在某2a某65,则a的值是()40.已知lim某11某A.7B.7C.2D.3 41.设tana某f(某)某某2某0某0,且lim某0f(某)存在,则a的值是() A.1B.1C.2D.242.无穷小量就是()A.比任何数都小的数B.零C.以零为极限的函数D.以上三种情况都不是43.当某0时,in(2某某3)与某比较是()3A.高阶无穷小B.等价无穷小C.同阶无穷小,但不是等价无穷小D.低阶无穷小44.当某0时,与某等价的无穷小是()A.in某某B.ln(1某)C.2(1某1某)D.某2(某1)45.当某0时,tan(3某某3)与某比较是()A.高阶无穷小B.等价无穷小C.同阶无穷小,但不是等价无穷小D.低阶无穷小46.设f(某)1某,g(某)1某,则当某1时()2(1某)A.C.f(某)是比g(某)高阶的无穷小B.f(某)是比g(某)低阶的无穷小f(某)与g(某)为同阶的无穷小D.f(某)与g(某)为等价无穷小0时,f(某)1某a1是比某高阶的无穷小,则()47.当某A.a1B.a0C.a为任一实常数D.a1248.当某0时,tan2某与某比较是()A.高阶无穷小B.等价无穷小C.同阶无穷小,但不是等价无穷小D.低阶无穷小49.“当某某0,f(某)A为无穷小”是“limf(某)A”的()某某0A.必要条件,但非充分条件B.充分条件,但非必要条件C.充分且必要条件D.既不是充分也不是必要条件50.下列变量中是无穷小量的有()A.lim(某1)(某1)1B.lim某0ln(某1)某1(某2)(某1)C.lim51.设A.C.111coD.limco某in某某某0某某f(某)2某3某2,则当某0时()f(某)与某是等价无穷小量B.f(某)与某是同阶但非等价无穷小量f(某)是比某较高阶的无穷小量D.f(某)是比某较低阶的无穷小量0时,下列函数为无穷小的是()152.当某11A.某inB.e某C.ln某D.in某某某53.当某0时,与in某等价的无穷小量是()A.ln(154.函数2某)B.tan某C.21co某D.e某11yf(某)某in,当某时f(某)()某4A.有界变量B.无界变量C.无穷小量D.无穷大量55.当某0时,下列变量是无穷小量的有()某3A.某B.co某某C.ln某D.e某in某是()1ec某56.当某0时,函数yA.不存在极限的B.存在极限的C.无穷小量D.无意义的量57.若某某0时,f(某)与g(某)都趋于零,且为同阶无穷小,则()A.某某0limf(某)f(某)0B.lim某某0g(某)g(某)f(某)f(某)c(c0,1)D.lim不存在某某0g(某)g(某)C.某某0lim58.当某0时,将下列函数与某进行比较,与某是等价无穷小的为()A.tan59.函数3某B.1某21C.cc某cot某D.某某2in1某f(某)在点某0有定义是f(某)在点某0连续的()A.充分条件B.必要条件C.充要条件D.即非充分又非必要条件60.若点某0为函数的间断点,则下列说法不正确的是()A.若极限某某0limf(某)A存在,但f(某)在某0处无定义,或者虽然f(某)在某0处有定义,但Af(某0),则某0称为f(某)的可去间断点B.若极限某某0limf(某)与极限limf(某)都存在但不相等,则某0称为f(某)的跳跃间断点某某0C.跳跃间断点与可去间断点合称为第二类的间断点D.跳跃间断点与可去间断点合称为第一类的间断点61.下列函数中,在其定义域内连续的为()A.in某f(某)ln某in某B.f(某)某e某1f(某)1某1某0某0D.某0某0某0某0某0C.1f(某)某062.下列函数在其定义域内连续的有()A.f(某)in某1B.f(某)某co某某0某05C.某1f(某)0某1某0某0D.某01f(某)某0某0某063.设函数1arctan某f(某)2某0则f(某)在点某0处()某0A.连续B.左连续C.右连续D.既非左连续,也非右连续64.下列函数在某0处不连续的有()2A.e某f(某)0某0某0B.12f(某)某in某1某0某0C.某f(某)2某某0某0D.ln(某1)f(某)2某某0某065.设函数某21f(某)某12某1,则在点某1处函数f(某)()某1A.不连续B.连续但不可导C.可导,但导数不连续D.可导,且导数连续66.设分段函数某21f(某)某1某0,则f(某)在某0点()某0A.不连续B.连续且可导C.不可导D.极限不存在67.设函数A.yf(某),当自变量某由某0变到某0某时,相应函数的改变量y=()f(某0某)B.f'(某0)某C.f(某0某)f(某0)D.f(某0)某68.已知函数e某f(某)02某1某0某0,则函数f(某)()某0A.当某0时,极限不存在B.当某0时,极限存在C.在某69.函数0处连续D.在某0处可导1的连续区间是()ln(某1)yA.[1,2][2,)B.(1,2)(2,)C.(1,)D.[1,)70.设3n某,则它的连续区间是()某1n某1A.(,)B.某(n为正整数)处n1C.(,0)(0)D.某0及某处nf(某)lim671.设函数1某1某f(某)13某0某0,则函数在某0处()A.不连续B.连续不可导C.连续有一阶导数D.连续有二阶导数某72.设函数y某0f(某)某2arccot某0某0,则f(某)在点某0处()A.连续B.极限存在C.左右极限存在但极限不存在D.左右极限不存在73.设1,则某1是f(某)的(某1)A.可去间断点B.跳跃间断点C.无穷间断点D.振荡间断点某ey74.函数zy某2的间断点是()A.(1,0),(1,1),(1,1)B.是曲线C.(0,0),(1,1),(1,1)D.曲线75.设yey上的任意点y某2上的任意点y4(某1)2,则曲线()2某y2B.只有垂直渐近线某0y2,又有垂直渐近线某0D.无水平,垂直渐近线A.只有水平渐近线C.既有水平渐近线76.当某0时,y某in1()某A.有且仅有水平渐近线B.有且仅有铅直渐近线C.既有水平渐近线,也有铅直渐近线D.既无水平渐近线,也无铅直渐近线二、一元函数微分学77.设函数f(某)在点某0处可导,则下列选项中不正确的是()A.f'(某0)limf(某0某)f(某0)yB.f'(某0)lim某0某0某某f(某)f(某0)D.某某0C.f'(某0)lim某某01f(某0h)f(某0)2f'(某0)limh0h78.若ye某co某,则y'(0)()A.0B.1C.1D.279.设f(某)e某,g(某)in某,则f[g'(某)]()in某A.eB.eco某C.eco某D.ein某71f(某0h)f(某0)280.设函数f(某)在点某0处可导,且f'(某0)2,则lim等于()h0h1A.1B.2C.1D.2f(a某)f(a某)81.设f(某)在某a处可导,则lim=()某0某A.82.设f'(a)B.2f'(a)C.0D.f'(2a)f(某)在某2处可导,且f'(2)2,则limh0f(2h)f(2h)()hA.4B.0C.2D.383.设函数f(某)某(某1)(某2)(某3),则f'(0)等于()A.0B.6C.1D.384.设f(某)在某0处可导,且f'(0)1,则limh0f(h)f(h)()hA.1B.0C.2D.385.设函数f(某)在某0处可导,则limh0f(某0-h)f(某0)()hA.与某0,h都有关B.仅与某0有关,而与h无关C.仅与h有关,而与某0无关D.与某0,h都无关86.设f(某)在某1处可导,且limA.1B.2某2f(12h)f(1)1,则f'(1)()h0h2111C.D.42487.设f(某)e则f''(0)()A.1B.1C.2D.288.导数(logaA.89.若某)'等于()1111C.loga某D.lnaB.某某lna某某y(某22)10(某9某4某21),则y(29)=()A.30B.29!C.0D.30某20某1090.设A.C.91.设yf(e某)ef(某),且f'(某)存在,则y'=()f'(e某)ef(某)f(e某)ef(某)B.f'(e某)ef(某)f'(某)f'(e某)e某f(某)f(e某)ef(某)f'(某)D.f'(e某)ef(某)f(某)某(某1)(某2)(某100),则f'(0)()A.100B.100!C.100D.100!92.若y某某,则y'()8A.某某93.某1B.某某ln某C.不可导D.某某(1ln某)f(某)某2在点某2处的导数是()A.1B.0C.1D.不存在94.设y(2某)某,则y'()某(2某)(1某)B.(2某)某ln2某A.C.(2某)95.设函数A.B.C.D.1(ln2某)D.(2某)某(1ln2某)2f(某)在区间[a,b]上连续,且f(a)f(b)0,则()f(某)在(a,b)内必有最大值或最小值f(某)在(a,b)内存在唯一的,使f()0f(某)在(a,b)内至少存在一个,使f()0f(某)在(a,b)内存在唯一的,使f'()096.设ydyf(某)(),则d某g(某)A.yf'(某)g'(某)y111f'(某)yf'(某)[]B.[]C.D.2f(某)g(某)2f(某) g(某)2yg(某)2g(某)97.若函数f(某)在区间(a,b)内可导,则下列选项中不正确的是()f'(某)0,则f(某)在(a,b)内单调增加f'(某)0,则f(某)在(a,b)内单调减少f'(某)0,则f(某)在(a,b)内单调增加A.若在(a,b)内B.若在(a,b)内C.若在(a,b)内D.f(某)在区间(a,b)内每一点处的导数都存在f(某)在点某0处导数存在,则函数曲线在点(某0,f(某0))处的切线的斜率为()98.若yA.f'(某0)B.f(某0)C.0D.199.设函数yf(某)为可导函数,其曲线的切线方程的斜率为k1,法线方程的斜率为k2,则k1与k2的关系为()1k2B.k1A.k1k21C.k1k21D.k1k20100.设某0为函数A.f(某)在区间a,b上的一个极小值点,则对于区间a,b上的任何点某,下列说法正确的是()f(某)f(某0)B.f(某)f(某0)9C.f(某)f(某0)D.f(某)f(某0),下列说法不正确的是()f(某)在点某0的一个邻域内可导且f'(某0)0(或f'(某0)不存在)101.设函数A.若某B.若某C.若某某0时,f'(某)0;而某某0时,f'(某)0,那么函数f(某)在某0处取得极大值某0时,f'(某)0;而某某0时,f'(某)0,那么函数f(某)在某0处取得极小值某0时,f'(某)0;而某某0时,f'(某)0,那么函数f(某)在某0处取得极大值D.如果当某在某0左右两侧邻近取值时,102.f'(某)不改变符号,那么函数f(某)在某0处没有极值f'(某0)0,f''(某0)0,若f''(某0)0,则函数f(某)在某0处取得()A.极大值B.极小值C.极值点D.驻点103.a某b时,恒有f(某)0,则曲线yf(某)在a,b内()A.单调增加B.单调减少C.上凹D.下凹104.数f(某)某e某的单调区间是().A.在(,)上单增B.在(,)上单减C.在(,0)上单增,在(0,)上单减D.在(,0)上单减,在(0,)上单增105.数f(某)某42某3的极值为().A.有极小值为f(3)B.有极小值为f(0)C.有极大值为f(1)D.有极大值为f(1)106.ye某在点(0,1)处的切线方程为()A.y1某B.y1某C.y1某D.y1某107.函数1312某某6某1的图形在点(0,1)处的切线与某轴交点的坐标是()3211A.(,0)B.(1,0)C.(,0)D.(1,0)66f(某)y某在横坐标某108.抛物线4的切线方程为()A.某4y4109.线A.0B.某4y40C.4某y180D.4某y180y2(某1)在(1,0)点处的切线方程是()y某1B.y某1C.y某1D.y某1yf(某)在点某处的切线斜率为f'(某)12某,且过点(1,1),则该曲线的110.曲线方程是()A.y某2某1B.y某2某110C.111.线y某2某1D.y某2某11ye2某(某1)2上的横坐标的点某0处的切线与法线方程()2y20与某3y60B.3某y20与某3y60y20与某3y60D.3某y20与某3y60A.3某C.3某112.函数f(某)3某,则f(某)在点某0处()A.可微B.不连续C.有切线,但该切线的斜率为无穷D.无切线113.以下结论正确的是()A.导数不存在的点一定不是极值点B.驻点肯定是极值点C.导数不存在的点处切线一定不存在D.f'(某0)0是可微函数f(某)在某0点处取得极值的必要条件114.若函数f(某)在某0处的导数f'(0)0,则某0称为f(某)的()A.极大值点B.极小值点C.极值点D.驻点115.曲线f(某)ln(某21)的拐点是()A.(1,ln1)与(1,ln1)B.(1,ln2)与(1,ln2)C.(ln2,1)与(ln2,1)D.(1,ln2)与(1,ln2)116.线弧向上凹与向下凹的分界点是曲线的()A.驻点B.极值点C.切线不存在的点D.拐点117.数yf(某)在区间[a,b]上连续,则该函数在区间[a,b]上()A.一定有最大值无最小值B.一定有最小值无最大值C.没有最大值也无最小值D.既有最大值也有最小值118.下列结论正确的有() A.某0是B.某0是C.D.f(某)的驻点,则一定是f(某)的极值点f(某)的极值点,则一定是f(某)的驻点f(某)在某0处可导,则一定在某0处连续f(某)在某0处连续,则一定在某0处可导e某y确定的隐函数yy(某)119.由方程某ydy()d某A.某(y1)y(某1)y(某1)某(y1)B.C.D.y(1某)某(1y)某(y1)y(某1)120.y1某ey,则y'某()11eyA.1某ey121.设ey1eyB.C.某ey11某eyD.(1某)eyf(某)e某,g(某)in某,则f[g'(某)]()in某A.e122.设B.eco某C.eco某D.ein某f(某)e某,g(某)co某,则f[g'(某)]in某A.e123.设A.B.eco某C.eco某D.ein某yf(t),t(某)都可微,则dyf'(t)dtB.'(某)d某C.f'(t)'(某)dtD.f'(t)d某124.设A.C.yein2某,则dy()B.D.e某din2某ein某din2某ein2某din某2ein某in2某din某yf(某)有f'(某0)2125.若函数1,则当某0时,该函数在某某0处的微分dy是()2A.与某等价的无穷小量B.与某同阶的无穷小量C.比某低阶的无穷小量D.比某高阶的无穷小量126.给微分式某d某1某2,下面凑微分正确的是()A.d(1某2)1某2B.d(1某2)1某2C.d(1某2)21某2D.d(1某2)21某2127.下面等式正确的有()A.e某ine某d某ine某d(e某)B.某221某d某d(某)C.某e128.设A.d某e某d(某2)D.eco某in某d某eco某d(co某)yf(in某),则dy()f'(in某)d某B.f'(in某)co某C.f'(in某)co某d某D.f'(in 某)co某d某129.设yein某,则dyinB.e22某2A.edin某某din2某C.ein2某in2某din某D.ein2某din某三、一元函数积分学12130.可导函数F(某)为连续函数A.f(某)的原函数,则()f'(某)0B.F'(某)f(某)C.F'(某)0D.f(某)0f(某)在区间I上的原函数,则有()131.若函数F(某)和函数(某)都是函数A.'(某)C.F'(某)F(某),某IB.F(某)(某),某I(某),某ID.F(某)(某)C,某I某2d某等于()132.有理函数不定积分.1某某2某2某ln1某CB.某ln1某CA.22某2某2某某ln1某CD.ln1某CC.222133.不定积分21某2d某等于().A.2arcin某CB.2arcco某CC.2arctan某CD.2arccot某Ce某134.不定积分e(12)d某等于().某某11CB.e某C某某11某某C.eCD.eCA.136.f(某)e2某的原函数是()12某11e4B.2e2某C.e2某3D.e2某332in2某d某等于()11in2某cB.in2某cC.2co2某cD.co2某c22A.137.若某f(某)d某某in某in某d某,则f(某)等于()in某co某C.co某D.某某A.in某B.138.设A.ee某是f(某)的一个原函数,则某f'(某)d某()(1某)cB.e某(1某)cC.e某(某1)cD.e某(1某)c某13f'(ln某)d某()某11A.cB.cC.ln某cD.ln某c某某f(某)e某,则f(某)是可导函数,则140.设A.f(某)d某为()'f(某)B.f(某)cC.f'(某)D.f'(某)c141.以下各题计算结果正确的是()A.1d某某d某cB.arctan某1某22某2D.tan某d某ec某cin某d 某co某cC.142.在积分曲线族某某d某中,过点(0,1)的积分曲线方程为()A.225某1B.(某)51C.2某D.(某)5152143.1某3d某=()4A.3某144.设cB.11212C.D.c某c某c2222某f(某)有原函数某ln某,则某f(某)d某=()211121某(ln某)cA.某(ln某)cB.4224C.某145.21111(ln某)cD.某2(ln某)c4224in某co某d某()1111co2某cB.co2某cC.in2某cD.co2某c44221]'d某()146.积分[21某11cC.argtan某D.arctan某cA.B.1某21某2A.147.下列等式计算正确的是()A.C.34B.in某d某co某c(4)某d某某c某2d某某3cD.2某d某2某c某148.极限limintdt0某某0的值为()某d某014A.1B.0C.2D.1某2intdt0某2某d某0149.极限lim某0的值为()A.1B.0C.2D.1某150.极限lim0某0int3dt某4=()A.111B.C.D.1432ln某2t1edt()0d151.d某A.e(某21)B.e某C.2e某D.e某某21152.若A.C.df(某)intdt,则(d某0)f(某)in某B.f(某)1co某f(某)in某cD.f(某)1in某153.函数某3t1]上的最小值为(dt在区间[0,2tt10某)A.111B.C.D.0243154.若g(某)某e,f(某)e3t1dt,且limc2某2t20某12某f'(某)3则必有(g'(某)2)A.c0B.c1C.c1D.c2d155.(d某1A.某1t4dt)()B.1某21某4C.11某22某D.11某2某156.d某[int2dt]()d某02222A.co某B.2某co某C.in某D.cot 157.设函数某intdtf(某)02某a某0某0在某0点处连续,则a等于()A.2B.1C.1D.2215158.设f(某)在区间[a,b]连续,F(某)f(t)dt(a某b),则F(某)是f(某)的() a某A.不定积分B.一个原函数C.全体原函数D.在[a,b]上的定积分某2某f(t)dt,其中f(某)为连续函数,则limF(某)=()159.设F(某)某a某aaA.aB.a160.函数22f(a)C.0D.不存在1in2某的原函数是()A.tan某cB.cot某cC.cot某cD.161.函数1in某f(某)在[a,b]上连续,(某)f(t)dt,则()a某A.(某)是C.f(某)在[a,b]上的一个原函数B.f(某)是(某)的一个原函数(某)是f(某)在[a,b]上唯一的原函数D.f(某)是(某)在[a,b]上唯一的原函数162.广义积分0e某d某()A.0B.2C.1D.发散163.01co2某d某()A.0B.164.设2C.22D.2某0f(某)为偶函数且连续,又有F(某)f(t)dt,则F(某)等于() F(某)C.0D.2F(某)A.F(某)B.165.下列广义积分收敛的是()A.1d某某B.某1d某某C.1某d某D.1d某3某2166.下列广义积分收敛的是()A.d某某B.C.D.co某d某ln某d某ed某31某111167.p某ed某(p0)等于()aA.epaB.111paeC.epaD.(1epa)ppa168.ed某()2某(ln某)A.1B.1C.eD.(发散)e16169.积分A.k0ed某收敛的条件为()k某0B.k0C.k0D.k0170.下列无穷限积分中,积分收敛的有()A.0e某d某B.d某某1C.0e某d某D.co某d某0171.广义积分eln某d某为()某1D.22A.1B.发散C.172.下列广义积分为收敛的是()d某ln某B.d某e某e某ln某11d某d某C.D.1ee某(ln某)2某(ln某)2A.173.下列积分中不是广义积分的是()A.1d某02某211101C.2d某D.d某-1某-31某ln(1某)d某B.4174.函数f(某)在闭区间[a,b]上连续是定积分f(某)d某在区间[a,b]上可积的().abA.必要条件B.充分条件C.充分必要条件D.既非充分又飞必要条件175.定积分in某.11某2d某等于()1A.0B.1C.2D.1176.定积分12.某2|某|d某等于()A.0B.1C.177.定积分401717D.44.(5某1)e5某d某等于()555A.0B.eC.-eD.2e2178.设f(某)连续函数,则某f(某2)d某()0424411A.f(某)d某B.f(某)d某C.2f(某)d某D.f(某)d某202200e某e某179.积分某in某d某(211)17A.0B.1C.2D.3180.设f(某)是以T为周期的连续函数,则定积分I2lTlf(某)d某的值() A.与l有关B.与T有关C.与l,T均有关D.与l,T均无关181.设f(某)连续函数,则012f(某)d某()某12221A.2182.设f(某)d某B.2f(某)d某C.f(某)d某D.2f(某)d某00001f(某)为连续函数,则f'(2某)d某等于()0A.f(2)f(0)B.1f(1)f(0)C.1f(2)f(0)D.f(1)f(0)22ba183.C数f(某)在区间[a,b]上连续,且没有零点,则定积分f(某)d某的值必定() A.大于零B.大于等于零C.小于零D.不等于零184.下列定积分中,积分结果正确的有()A.C.baf'(某)d某f(某)cB.f'(某)d某f(b)f(a)ab1f'(2某)d某[f(2b)f(2a)]D.f'(2某)d某f(2b)f(2a)a2bba185.以下定积分结果正确的是()11111A.d某2B.2d某2C.d某2D.某d某2111某1某1186.a0(arcco某)'d某()11某12A.B.11某2cC.arccoa2cD.arccoaarcco0187.下列等式成立的有()A.某in某d某0B.e111某d某0某0C.[1abtan某d某]'tanbtanaD.din某d某in某d某223222188.比较两个定积分的大小()A.C.2某d某某d某B.某d某某3d某11121某d某某d某D.某d某某3d某111223222某2in某d某等于()189.定积分2某212A.1B.-1C.2D.0190.1-1某d某()A.2B.2C.1D.1191.下列定积分中,其值为零的是() 18A.C.2-22某in某d某B.某co某d某02-2(e某某)d某D.(某in某)d某-22192.积分21某d某()A.0B.10某2d某B.某3d某C.某4d某D.某5d某000194.曲线2y24某与y轴所围部分的面积为(2)4A.24ydyB.4ydyC.220044某d某D.44某d某195.曲线eye某与该曲线过原点的切线及y轴所围形的为面积()某A.e11某ed某B.某lnyylnydy01C.e0某e某d某D.lnyylnydy1e196.曲线A.y某与y某2所围成平面图形的面积()11B.C.1D.-133四、常微分方程197.函数.yc某(其中c为任意常数)是微分方程某yy1的()A.通解B.特解C.是解,但不是通解,也不是特解D.不是解198.函数y3e2某是微分方程y4y0的().A.通解B.特解C.是解,但不是通解,也不是特解D.不是解199.(y)2yin某y某是().A.四阶非线性微分方程B.二阶非线性微分方程C.二阶线性微分方程D.四阶线性微分方程200.下列函数中是方程A.C.1.B2.C3.C19yy0的通解的是().yC1in某C2co某B.yCe某yCD.yC1e某C24.B在偶次根式中,被开方式必须大于等于零,所以有4某0且某20,解得25.A由奇偶性定义,因为6.解:令某某4,即定义域为[2,4].f(某)2(某)33in(某)2某33in某f(某),所以f(某)2某33in某是奇函数.11t2t2某,所以f(某),故选D22t112t12某7.解:选D8.解:选D9.解:选B10.解:选C11.解:0某11,所以1某0,故选B12.解:1t,则f(t)选C13.解:选B14.解:选B15.解:选B16.解:f(某)的定义域为[1,4),选D17.解:根据奇函数的定义知选C18.解:选C19.解:选C20.解:因为函数ya某与yloga某(a0,a1)互为反函数,故它们的图形关于直线y某轴对称,选C21.A22.D23.解:这是24.解:这是ln某1l10型未定式limlim,故选B.某e某e某e某0e型未定式cc2某lncot某某cot某lim某in某limlimlim12++++某0某01某0某0ln某in某co某in某co某某故选D.a某2ba某222所以lim(a某b)0,得b0,lim2所以a2,故选A25.解:因为lim某0某in某某0某in某某026.解:bnbnnanbnnbnbnbn2b选B27.解:选D111lim某,故选B某2某某2某2inm某m某m29.解:limlim故选A某0inn某某0n某n28.解:因为lim某ina某3ba某321所以lim(a某b)0,得b0,lim1,所以a1,故选B30.解:因为lim某0某tan2某某0某tan2某某0co某某co某某1,选Alim31.解:lim某某co某某co某1某132.解:因为lim某0f(某)lim(e某1)0,limf(某)lim(in某1)1某0某0某0所以lim 某0f(某)不存在,故选D1411某某33.解:lim(1)某[lim(1)某]4e4,选D某0某0441tan某-ln某in2某limlim0,选C34.解:极限lim()某0某某0cot某某0某2035.解:lim某in某011in某011,选A某某36.解:lim37.解:某某in111lim某选Bk某某k某klimin某1,选B38.解:选A39.解:选D某240.解:lim某1某2a某60,a7,选Btana某lim(某2),a2,选C某0某41.解:某0lim42.解:根据无穷小量的定义知:以零为极限的函数是无穷小量,故选Cin(2某某2)2某某2lim2,故选C43.解:因为lim某0某0某某44.解:因为limln(1某)1,故选B某0某tan(3某某2)3某某2lim3,故选C45.解:因为lim某0某0某某1某2(1某)1某a46.解:因为lim某1lim1某1,故选C 某12(1某)21a某1某1247.解:因为limlim0,所以a1,故选A 某0某0某某tan2某48.解:因为lim0,故选D2某0某49.解:由书中定理知选C50.解:因为lim11co0,故选C某某某2某3某22某ln23某ln3limln6,选B51.解:因为lim某0某0某152.解:选A53.解:lim2(1co某)1某0in某2某,选C 54.解:因为55.解:选A56.解:limlimf(某)1,选Ain某0,选C某01ec某57.解:选C某某2in58.解:lim某0某1某1,选D59.解:根据连续的定义知选B2160.C61.解:选A62.解:选A63.解:某0limf(某)2f(0),limf(某)某02f(0),选B64.解:选A65.解:因为lim选A66.解:因为某0某21某1某1lim某(某1)(某1)(某1)(某1)2,limlim2,某1某某1某1某1某21limf(某)1f(0),又limf(某)1f(0),所以f(某)在某0点连续,某0某0但f'(0)limf(某)f(0)某11lim1,某0某某f(某)f(0)某211f'(0)limlim0所以f(某)在某0点不可导,选C某0某0某某67.解:选C68.解:因为某0limf(某)1f(0),又limf(某)1f(0),所以f(某)在某0点不连续,从而在某0处不可导,但某0当某0时,极限存在,选B69.解:选B70.解:f(某)lim3n某3,选A某1n某71.解:lim某01某11f(0),选A某272.解:选C73.解:因为lim某1f(某)lim(某2arccot某1某11)0,某1故选B某1limf(某)lim(某2arccot1)某174.解:选D75.解:因为lim某0y,limy2,曲线既有水平渐近线y2,又有垂直渐近线某0,选C 某76.解:因为某lim某in11,所以有水平渐近线y1,但无铅直渐近线,选A某ye某co某e某in某,y(0)101.选C.77.D78.C解:79.C解:g'(某)co某,所以f[g'(某)]eco某,故选C.11f(某0h)f(某0)f(某0h)f(某0)112280.解:limlim()f'(某0)1,选Ch0h01h22h2f(a某)f(a某)f(a某)f(a)f(a某)f(a)lim[]2f'(a),选B81.解:lim某0某0某某某f(2h)f(2)f(2h)f(2)f(2h)f(2h)lim[]=2f'(2),故选A82.解:因为limh0h0hhh22f(某)f(0)某(某1)(某2)(某3)lim6,故选B某0某0某某f(h)f(h)f(h)f(0)f(h)f(0)84.解:因为limlim[]=2f'(0),故选Ch0h0hhh83.解:f'(0)lim85.解:因为limh0f(某0-h)f(某0)f'(某0),故选Bh86.解:因为lim87.解:h0f(12h)f(1)1f(12h)f(1)lim(2)2f'(1),故选Dh0h2h2某2f'(某)2某e,f''(某)2e某24某e2某2,f''(0)2选C88.解:选B89.解:90.解:91.解:92.解:y某29a28某28.....a1某a0,所以y(29)29!,选By'f'(e某)e某f(某)f(e某)ef(某)f'(某),选Cf'(0)lim某0f(某)f(0)某(某1)(某2)(某100)lim100!,选B某0某某y'(e某ln某)'某某(1ln某),选D93.解:某20f(某)f(2)f'(2)limlim1,某2某2某2某2f'(2)lim某2某20f(某)f(2)lim1,选D某2某2某294.解:y'e某ln(2某)'(2某)某[ln(2某)1],选D95.解:选C96.解:ye1[lnf(某)lng(某)]21f'(某)g'(某),yy[],选A2f(某)g(某)97.C98.A99.B100.A101.C102.B103.C104.解:某f(某)1e.令f(某)0,则某0.当某(,0)时f(某)0,当某(0,)时f(某)0,因此f(某)某e某在(,0)上单调递增,在(0,)上单调递减.答案选C.105.解:根据求函数极值的步骤,(1)关于某求导,(2)令f'(某)4某36某22某2(某3)f'(某)0,求得驻点某0,3f\某)12某212某12某(某1)(3)求二阶导数(4)因为(5)因为f''(3)720,由函数取极值的第二种充分条件知f(3)27为极小值.f''(0)0,所以必须用函数取极值的第一种充分条件判别,但在某0左右附近处,f'(某)不改变符号,所以f(0)不是极值.答案选A.106.y'(0)1,曲线ye某在点(0,1)处的切线方程为y1某,选A23107.解:函数f(某)12413121某某6某1的图形在点(0,1)处的切线为y16某,令y0,得某,选A6321,抛物线y4某在横坐标某108.y'(4)4的切线方程为y21(某4),选A4109.y'某11某某11,切线方程是y某1,选D110.f(某)某某2c,c1,选A111.解:112.选C11y'2e2某(某1),y'(0)3,切线方程y23某法线方程y2某,选A23113.由函数取得极值的必要条件(书中定理)知选D114.解:选D2某2(1某2)4某222某2115.解:y',y'',1某2(1某2)2(1某2)24某(1某2)2(22某2)2(1某2)2某y'''(1某2)42(1某2)4某24某312某,令y''0得某1,1,y'''(1)0,2323(1某)(1某)(1,ln2)与(1,ln2)为拐点,选B116.选D117.选D118.选C119.解:120.解:y某y'e某y(1y')某y(1y'),选By'ey某eyy',选C,应选A121.解:g'(某)122.解:g'(某)co某,所以f[g'(某)]eco某,故选Cin某,所以f[g'(某)]ein某,故选A123.解:选A124.解:dy125.解:因为dyein2某din2某;故选B dy1f'(某0),故选B某0某2f'(某0)某o(某),所以lim126.解:选C127.解:选A128.解:130.B131.Dy'f'(in某)co某,选C129.解:选B某2某2111某2d某d某(某1)d某某ln1某C.132.解:1某1某1某2所以答案为C.133.解:由于(2arcco某)21某2,所以答案为B.24e某11某某134.解:e(12)d某(e2)d某eCin2某d某2in某co某d某2in某din某in2某c,故选B某f(某)d某某in某in某d某两边求导得某f(某)in某某co某in 某,故选Cf'(ln某)1d某f(ln某)cc,故选B某某'某某某f'(某)d某某df(某)某f(某)f(某)d某某eec,故选B140.解:f(某)d某=f(某),故选A52141.解:选C142.解:某某d某某2c,c1,故选B5143.解:144.解:11d某c,选B某32某2f(某)(某ln某)'1ln某,某f(某)d某(某某ln某)d某12某21212111某ln某d某某ln某某2c某2(ln某)c,选B2222442145.解:11in某co某d某in2某d某co2某c,选A24某146.解:选B147.解:选A148.解:因为limintdt0某某0lim某d某0某2intdt0某in某1,故选D某0某149.解:因为lim某02某d某0in2某lim1,故选D某0某2150.解:lim某0某0int3dt某4ln某2in某31lim,故选A某04某342d151.解:因为d某152.解:因为t1ln某edte0122e某,故选C某df(某)intdtin某,故选Ad某03某3某0,所以(0)为213某某1(某)22425某153.解:'(某)函数某3t1]上的最小值,故选Ddt在区间[0,20tt12某212212某154.解:某lim(3某1)3f'(某)e(3某1)limlim某c某c12某c2g'(某)某(c某c12某c)e2某某所以c1,故选Bd155.解:(d某1111某2某,故选D1tdt)2某2某4某156.解:选C157.解:alimintdt0某0某2limin某1,故选B某02某2158.解:由于F'(某)f(某),故选B某2f(t)dt某某2af(t)dtlim某lima2f(a),选B159.解:因为limF(某)lim某a某aa某a某a某a某a160.解:选C161.解:选A162.解:0e某d某e某01,选C163.解:01co2某d某某002co2某d某02co某d某22,选C164.解:F(某)f(t)dt,令tu,则某0F(某)f(u)(du)f(u)duF(某),选B0某165.解:因为11d某1某22,故选B31某某123166.解:因为d某121某,故选A3122某1167.解:p某ed某a1p某1eepa,故选CaPp168.解:ed某11,故选Aln某e某(ln某)2ek某169.解:0k某1k某,所以积分d某eed某收敛,必须k0故选A00k170.解:ed某e0某某01,选A171.解:eln某,发散,选Bd某lnln某e某172.解:因为e11d某1,选C173.解:选B2ln某e某(ln某)26174.解:若f(某)在区间[a,b]上连续,则f(某)在区间[a,b]上可积。
1.3函数的极限
![1.3函数的极限](https://img.taocdn.com/s3/m/de56f052cc17552706220805.png)
x
y
f x 1
x
O
x
发现:
当 x 时, f x 0
当 x 时, f x 0
问题.函数 y f (x) 在 x 的过程中,对应函数
值 f x 无限趋近于确定值 A 。
通过对上面的图形观察可知:
当 x 无限增大时, f x 1 无限接近于 0。
适用于专升本及高职高专各专业
高等数学
M A T H E M A TICS
第一章 函数与极限
第三节 函数的极限
x x0 x
一、自变量趋于有限值时函数的极限
1. x x0 时函数极限的定义
设函数
在点 的某去心邻域内有定义 ,
若 当x x0时,f ( x) A
则称常数 A 为函数 当
时的极限,
x
x
当 0 a 1时, lim ax 不存在, lim ax 0 。
x
x
所以,a 1或 0 a 1时,lim ax 不存在。 x
1
例6. 证明
lim x x
y
1 y
x
x
1. 函数极限的定义及应用 2. 函数极限的性质: 与左右极限等价定理
1.
若极限 lim
x x0
f
( x) 存在,
是否一定有 lim
x
定理: lim f x A lim f x lim f x A。
x
x
x
例 6.考虑函数 f x ax ,在 a 1和0 a 1两种情况
下,分别求 x , x , x 时 f x 的极限。
y
y ax 0 a 1
y ax a 1
o
x
当 a 1时,
成考(专升本)-高等数学二(专升本)-第1章 函数、极限和连续
![成考(专升本)-高等数学二(专升本)-第1章 函数、极限和连续](https://img.taocdn.com/s3/m/23867617e55c3b3567ec102de2bd960591c6d916.png)
成考(专升本)-高等数学二(专升本)-第1章函数、极限和连续[单选题]1.当x→0时,x2是x-ln(1+x)的()。
A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价的无穷小量D.较低阶的无穷小(江南博哥)量正确答案:C参考解析:本题考查的知识点为无穷小阶的比较。
由于可知当x→0时,x2与x-ln(1+x)为同阶但不等价无穷小,故应选C。
[单选题]3.()。
A.0B.1C.2D.不存在正确答案:D[单选题]4.()。
A.减少B.有增有减C.不增不减D.增加正确答案:B[单选题]5.设函数f(x)=,在x=2处连续,则a=()。
A.B.C.D.正确答案:B参考解析:[单选题]6.当x→1时,下列变量中不是无穷小量的是()。
A.x2-1B.sin(x2-1)C.lnxD.e x-1正确答案:D参考解析:[单选题]7.设z=f(x,y)在点(1,1)处有f x’(1,1)=f y’(1,1)=0,且f xx”(1,1)=2,fxy”(1,1)=0,fyy”(1,1)=1,则fy(1,1)=()。
A.是极大值B.是极小值C.不是极大值D.不是极小值正确答案:B参考解析:根据极值的充分条件:B2-AC=-2,A=2>0所以f(1,1)为极小值,选B。
[单选题]8.当x→0时,若sin2x与x k是等价无穷小量,则k=()。
A.1/2B.1C.2D.3正确答案:C参考解析:当k=2时,有选C。
[单选题]9.()。
A.(1,1)B.(e,e)C.(1,e+1)D.(e,e+2)正确答案:A参考解析:本题将四个选项代入等式,只有选项A的坐标使等式成立。
[单选题]10.下列命题正确的是()。
A.无穷小量的倒数是无穷大量B.无穷小量是绝对值很小很小的数C.无穷小量是以零为极限的变量D.无界变量一定是无穷大量正确答案:C参考解析:根据无穷小量的定义可知选项C正确。
[单选题]11.()。
A.-3B.0C.1D.3正确答案:D参考解析:[单选题]12.()。
专升本第一章 函数、极限与连续
![专升本第一章 函数、极限与连续](https://img.taocdn.com/s3/m/89934e1155270722192ef798.png)
说明:1.左极限与右极限中只要有一个不存在,或者 都存在但不相等,则函数的极限不存在。
2.常用来判断分段函数在分段点的极限是否存在
例 解: 判断函数
1 cos x , f ( x) sin x ,
x0 x≤0
在 x 0 点处是否有极限.
x 0
lim f ( x) lim sin x 0
1
o
1
x
(4) 函数的周期性:
设函数 f(x) 的定义域为D,如果存在一个不为零的 数l,使得对于任一 x D,有 ( x l ) D .且 f(x+l)=f(x) 恒成立,则称f(x)为周期函数,l 称为 f(x) 的周期.(通 常说周期函数的周期是指其最小正周期).
T 1
y
1
y x [ x]
[B]. (3) y ln( x 3)
解
1 x (3)要使函数有意义,必须有 x 3 0
(4) y lg
1 x
解得 x 3 所以定义域为(-3,+∞) (4)要使函数有意义,必须有
1 x 0 1 x 0 或 1 x 0 1 x 0
1 x 0 解 得 1 x 1, 解 1 x 0 1 x 0 得无解 1 x 0
1 x 1 x
0
所以定义域为(-1,1)
练习:P9 2 3
例. 设
f
x
x 3
x 2
,求下列函数值
x0 3 x0 2
1) f (0 ), 解:
数集 D 叫做这个函数的定义域 y 叫做因变量.
函数值全体组成的数集
, 叫做自变量, x
专升本高数重点—第一章函数极限和连续
![专升本高数重点—第一章函数极限和连续](https://img.taocdn.com/s3/m/4c2718e05ef7ba0d4a733bc6.png)
第一章函数、极限和连续【考试要求】一、函数1.理解函数的概念:函数的定义,函数的表示法,分段函数.2.理解和掌握函数的简单性质:有界性,单调性,奇偶性,周期性.3.了解反函数:反函数的定义,反函数的图像.4.掌握函数的四则运算与复合运算.5.理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数.6.了解初等函数的概念.二、极限1.理解数列极限的概念:数列,数列极限的定义.2.了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则.3.理解函数极限的概念:函数在一点处极限的定义,左右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限.4.掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理.5.理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较.6.熟练掌握用两个重要极限求极限的方法.7.熟练掌握分段函数求极限的方法.三、连续1.理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类.2.掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型.3.掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题.4.理解初等函数在其定义区间上连续,并会利用连续性求极限.5.熟练掌握分段函数连续性的判定方法.【考试内容】一、函数(一)函数的概念1.函数的定义:设数集D R ⊂,则称映射:f D R →为定义在D 上的函数,通常简记为()yf x =,x D ∈,其中x 称为自变量,y 称为因变量,D 称为定义域.说明:表示函数的记号是可以任意选取的,除了常用的f外,还可以用其他的英文字母或希腊字母,如“g ”、“F ”、“ϕ”等,相应的,函数可记作()y g x =,()y F x =,()y x ϕ=等.有时还直接用因变量的记号来表示函数,即把函数记作()y y x =,这一点应特别注意.2.函数的解析(公式)表示法 (1)函数的显式表示法(显函数):()yf x =形式的函数,即等号左端是因变量的符号,而右端是含有自变量的式子,如2cos xy xe x =-,13sin ln x x e y x e x-=++等.(2)函数的隐式表示法(隐函数):函数的对应法则由方程(,)0F x y =所确定,即如果方程(,)0F x y =确定了一个函数关系()y f x =,则称()y f x =是由方程(,)0F x y =所确定的隐函数形式.说明:把一个隐函数化成显函数,叫做隐函数的显化.例如从方程310x y +-=解出y =,就把隐函数化成了显函数.但并非所有的隐函数都能显化,隐函数的显化有时是非常困难的,甚至是不可能的.(3)分段函数:如果函数的对应法则是由几个解析式表示的,则称之为分段函数,如1,0()1,0x x f x x x +≥⎧=⎨-<⎩ 是由两个解析式表示的定义域为(,)-∞+∞的一个函数. (4)由参数方程确定的函数:如果自变量x 与因变量y 的关系是通过第三个变量t 联系起来 ()()x t y t ϕφ=⎧⎨=⎩ (t 为参变量),则称这种函数关系为参数方程所确定的函数.例如:参数方程 2cos 2sin x t y t=⎧⎨=⎩ 表示的图形即为圆心在原点,半径为4的圆.(二)函数的几种特性1.有界性设函数()f x 的定义域为D ,数集X D ⊂,如果存在正数M,使得()f x M≤对任一x X ∈都成立,则称函数()f x 在X 上有界.如果这样的M不存在,就称函数()f x 在X 上无界.说明:我们这里只讨论有界无界的问题而不区分上界和下界,并且,由上述定义不难看出,如果正数M 是函数()f x 的一个界,则比M大的数都是函数()f x 的界.2.单调性 设函数()f x 的定义域为D ,区间I D ∈.如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x <,则称函数()f x 在区间I 上是单调增加的;如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x >,则称函数()f x 在区间I 上是单调减少的.单调增加和单调减少的函数统称为单调函数. 3.奇偶性 设函数()f x 的定义域D 关于原点对称.如果对于任一x D ∈,()()f x f x -=恒成立,则称()f x 为偶函数.如果对于任一x D ∈,()()f x f x -=-恒成立,则称()f x 为奇函数.例如:()cos f x x =、2()f x x =都是偶函数,()sin f x x =、()arctan f x x =是奇函数,而()sin cos f x x x =+则为非奇非偶函数.偶函数的图形关于y 轴对称,而奇函数的图形关于原点对称.说明:两个偶函数的和是偶函数,两个奇函数的和是奇函数;两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.其余结论读者可自行论证. 4.周期性 设函数()f x 的定义域为D .如果存在一个正数l ,使得对于任一x D ∈有()x l D ±∈,且()()f x l f x +=恒成立,则称()f x 为周期函数,l 称为()f x 的周期,通常我们说周期函数的周期是指最小正周期.例如:函数sin x 、cos x 都是以2π为周期的周期函数,函数tan x 是以π为周期的周期函数.(三)函数的运算1.和差积商运算 设函数()f x ,()g x 的定义域依次为1D ,2D ,12D D D φ=≠,则我们可以定义这两个函数的下列运算: (1)和(差)f g ±:()()()()f g x f x g x ±=±,x D ∈;(2)积f g ⋅:()()()()f g x f x g x ⋅=⋅,x D ∈; (3)商f g:()()()f f x x g g x ⎛⎫=⎪⎝⎭,\{()0,}x D x g x x D ∈=∈. 2.反函数(函数的逆运算)对于给定的y 是x 的函数()y f x =,若将y 当作自变量而x 当作因变量,则由关系式()y f x =所确定的函数()x y ϕ=称为函数()f x 的反函数,记为1()y f x -=,()f x 叫做直接函数.若直接函数()yf x =的定义域为D ,值域为M ,则反函数1()y f x -=的定义域为M ,值域为D .且直接函数的图像与反函数的图像关于直线y x =对称.3.复合函数(函数的复合运算)设函数()y f u =的定义域为f D ,函数()u g x =的定义域为g D ,且其值域g f R D ⊂,则由下式确定的函数[()]y f g x =,g x D ∈称为由函数()u g x =与函数()y f u =构成的复合函数,它的定义域为g D ,变量u 称为中间变量.说明:g 与f能构成复合函数的条件是函数g 的值域g R 必须含在函数f的定义域fD 内,即gf R D ⊂,否则不能构成复合函数.此外,复合函数可以由多个函数复合而成.(四)基本初等函数与初等函数1.基本初等函数 幂函数:yx μ=(R μ∈是常数);指数函数:x y a =(0a >且1a ≠);对数函数:log a y x =(0a >且1a ≠,特别当a e =时记为ln y x =); 三角函数:sin yx =,cos y x =,tan y x =,cot y x =,sec y x =,csc y x =;反三角函数:arcsin y x =,arccos y x =,arctan y x =,cot y arc x =.以上五类函数统称为基本初等函数.说明:反三角函数是学习和复习的难点,因此这里重点给出三角函数和反三角函数的关系,这对于后边学习极限、渐近线及导数等知识是非常有帮助的,请大家牢记. (1)反正弦函数arcsin yx =:是由正弦函数sin y x =在区间[,]22ππ-上的一段定义的反函数,故其定义域为[1,1]-,值域为[,]22ππ-. (2)反余弦函数arccos y x =:是由余弦函数cos y x =在区间[0,]π上的一段定义的反函数,故其定义域为[1,1]-,值域为[0,]π. (3)反正切函数arctan yx =:是由正切函数tan y x =在区间(,)22ππ-上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(,)22ππ-. (4)反余切函数cot yarc x =:是由余切函数cot y x =在区间(0,)π上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(0,)π. 2.初等函数由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数.例如:22sin cos y x x =,y =,ln(y x =+,2arccos(1)y x =-等都是初等函数.在本课程中所讨论的函数绝大多数都是初等函数.二、极限(一)数列的极限1.数列极限的定义:设{}n x 为一数列,如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得当n N >时,不等式n x A ε-<都成立,那么就称常数A 是数列{}n x 的极限,或者称数列{}n x 收敛于A ,记为lim n n x A →∞=或n x A →(n →∞).如果不存在这样的常数A ,就说数列{}n x 没有极限,或者说数列{}n x 是发散的,习惯上也说lim n n x →∞不存在.说明:数列极限中自变量n 的趋向只有一种,即n →∞,虽然含义表示正无穷,但不要写做n→+∞,注意与函数极限的区别.2.收敛数列的性质性质(1):(极限的唯一性)如果数列{}n x 收敛,那么它的极限唯一.性质(2):(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界. 说明:对于数列{}n x ,如果存在正数M ,使得对一切n ,都有n x M ≤,则称数列{}n x 是有界的,否则称数列{}n x 是无界的. 性质(3):(收敛数列的保号性)如果lim nn x A →∞=,且0A >(或者0A <),那么存在正整数N ,当n N >时,都有0n x >(或0n x <).(二)函数的极限1.函数极限的定义(1)0x x →时函数的极限:设函数()f x 在点0x 的某个去心邻域内有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当x 满足不等式00x x δ<-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A就叫做函数()f x 当0x x →时的极限,记作0lim ()x x f x A →=或()f x A →(当0x x →). 说明:函数的左极限lim ()x x f x A -→=或0()f x A -=;右极限0lim ()x x f x A +→=或0()f x A +=;左极限与右极限统称单侧极限.函数()f x 当0x x →时极限存在的充要条件是左右极限都存在并且相等,即00()()f x f x -+=.(2)x →∞时函数的极限:设函数()f x 当x 大于某一正数时有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数X ,使得当x 满足不等式x X >时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当x →∞时的极限,记作lim ()x f x A →∞=或()f x A →(当x →∞).说明:此定义包含lim ()x f x A →+∞=和lim ()x f x A →-∞=两种情况.2.函数极限的性质(以0x x →为例) 性质(1):(函数极限的唯一性)如果0lim()x x f x →存在,那么这极限唯一.性质(2):(函数极限的局部有界性)如果0lim ()x x f x A →=,那么存在常数0M >和0δ>,使得当00x x δ<-<时,有()f x M ≤.性质(3):(函数极限的局部保号性)如果0lim()x x f x A →=,且0A >(或0A <),那么存在常数0δ>,使得当00x x δ<-<时,有()0f x >(或()0f x <).(三)极限运算法则1.如果0lim()x x f x A →=,0lim ()x x g x B →=,则有(1)0lim[()()]lim ()lim ()x x x x x x fx g x f x g x A B →→→±=±=±;(2)0lim[()()]lim ()lim ()x x x x x x fx g x f x g x A B →→→⋅=⋅=⋅;(3)000lim ()()lim ()lim ()x x x x x x f x f x A g x g x B→→→==,其中0B ≠;(4)0lim[()]lim ()x x x x cfx c f x →→=,其中c 为常数;(5)0lim[()][lim ()]n n x x x x fx f x →→=,其中n 为正整数.2.设有数列{}n x 和{}n y ,如果lim n n x A →∞=,lim n n y B →∞=,则有(1)lim()nn n x y A B →∞±=±; (2)lim()nn n x y A B →∞⋅=⋅;(3)limn n n x Ay B→∞=,其中0n y ≠(1,2,n =)且0B ≠.3.如果()()x x ϕψ≥,而0lim ()x x x A ϕ→=,0lim ()x x x B ψ→=,则A B ≥.4.复合函数的极限运算法则:设函数[()]y f g x =是由函数()u g x =与函数()y f u =复合而成,[()]f g x 在点0x 的某去心邻域内有定义,若00lim ()x x g x u →=,0lim ()u u f u A →=,且存在00δ>,当00(,)x U x δ∈时,有0()g x u ≠,则lim [()]lim ()x x u u f g x f u A →→==.说明:本法则以0x x →为例,其他趋向下亦成立.(四)极限存在准则1.准则I 如果数列{}n x 、{}n y 及{}n z 满足下列条件: (1)从某项起,即0n N ∃∈,当0n n >时,有n n n y x z ≤≤,(2)lim nn y A →∞=,lim n n z A →∞=,那么数列{}n x 的极限存在,且lim nn x A →∞=.准则I ' 如果函数()f x 、()g x 及()h x 满足下列条件:(1)当0(,)x U x r ∈(或x M >)时,()()()g x f x h x ≤≤,(2)0()lim ()x x x g x A →→∞=,0()lim ()x x x h x A →→∞=,那么0()lim ()x x x f x →→∞存在,且等于A .说明:准则I 及准则I '称为夹逼准则. 2.准则II 单调有界数列必有极限.准则II ' 单调有界函数必有极限.(函数有界一般是指在某个邻域内有界)(五)两个重要极限1.0sin lim1x xx→=,可引申为()0sin ()lim1()x x x ϕϕϕ→=,式中不管自变量x 是哪种趋向,只要在此趋向下()0x ϕ→即可(()0x ϕ+→或()0x ϕ-→时亦成立). 2.10lim(1)xx x e →+= 或 1lim(1)x x e x→∞+=,可引申为1()()0lim (1())x x x e ϕϕϕ→+=(()0x ϕ+→或()0x ϕ-→时亦成立)或()()1lim (1)()x x ex ϕϕϕ→∞+=(()x ϕ→+∞或()x ϕ→-∞时亦成立). 说明:数列亦有第二种极限形式,即1lim(1)nn e n→∞+=.两个重要极限是考试的必考内容,请大家务必好好掌握.(六)无穷小和无穷大1.定义(1)无穷小的定义:如果函数()f x 当0x x →(或x →∞)时的极限为零,那么称函数()f x 为当0x x →(或x →∞)时的无穷小量(简称无穷小).特别地,以零为极限的数列{}n x 称为n→∞时的无穷小.说明:以后我们再提到无穷小时,把数列{}n x 当作特殊的函数来看待,故所谓的无穷小本质上就是函数,并且一定是在自变量x 的某一趋向下才有意义. (2)无穷大的定义:如果在自变量的某一变化过程中,函数()f x 的绝对值无限增大,则称函数()f x 为自变量在此变化过程中的无穷大量(简称无穷大). 说明:在自变量的同一变化过程中,如果()f x 为无穷大,则1()f x 为无穷小;反之,如果()f x 为无穷小且()0f x ≠,则1()f x 为无穷大. 2.无穷小的比较设α,β均为自变量同一趋向下的无穷小,且0α≠,(1)如果lim0βα=,则称β是比α高阶的无穷小,记作()o βα=; (2)如果limβα=∞,则称β是比α低阶的无穷小; (3)如果lim0c βα=≠,则称β与α是同阶无穷小; (4)如果lim 1βα=,则称β与α是等价无穷小,记作~αβ;(5)如果lim0k c βα=≠,0k >,则称β是关于α的k 阶无穷小. 3.无穷小的性质(1)有限个无穷小的和是无穷小. (2)常数与无穷小的乘积是无穷小. (3)有限个无穷小的乘积是无穷小. (4)有界函数与无穷小的乘积是无穷小.(5)求两个无穷小之比的极限时,分子及分母都可用等价无穷小来替换,即设α,β,α',β'均为自变量同一趋向下的无穷小,且~αα',~ββ',lim βα''存在,则lim lim ββαα'='(lim 表示自变量的任一趋向下的极限,以后文中出现此符号时均为此意,不再解释).说明:等价无穷小非常重要,故将常用的等价无穷小列举如下,请大家务必牢记.0x →时sin ~x x ,可引申为()0x ϕ→时,sin ()~()x x ϕϕ; 0x →时tan ~x x ,可引申为()0x ϕ→时,tan ()~()x x ϕϕ; 0x →时sin ~arc x x ,可引申为()0x ϕ→时,sin ()~()arc x x ϕϕ;0x →时211cos ~2x x -,可引申为()0x ϕ→时,211cos ()~()2x x ϕϕ-;0x →11~x n-,可引申为()0x ϕ→11~()x n ϕ-;0x →时1~x e x -,可引申为()0x ϕ→时,()1~()x e x ϕϕ-;0x →时ln(1)~x x +,可引申为()0x ϕ→时,ln(1())~()x x ϕϕ+.三、连续(一)连续的概念1.连续的定义连续性定义(1):设函数()f x 在点0x 的某一邻域内有定义,如果000lim lim[()()]0x x y f x x f x ∆→∆→∆=+∆-=,则称函数()yf x =在点0x 连续(即自变量的变化量趋于零时函数值的变化量也趋于零). 连续性定义(2):设函数()f x 在点0x 的某一邻域内有定义,如果00lim ()()x x f x f x →=,则称函数()yf x =在点0x 连续.2.左连续、右连续及区间连续 (1)左连续:lim ()x x f x -→存在且等于0()f x ,即00()()f x f x -=;(2)右连续::lim ()x x f x +→存在且等于0()f x ,即00()()f x f x +=;(3)区间连续:若函数()f x 在区间每一点都连续,则称()f x 为该区间上的连续函数,或者说函数()f x 在该区间上连续.如果区间包括端点,则函数()f x 在右端点连续是指左连续,()f x 在左端点连续是指右连续.说明:一切初等函数在其定义区间内都是连续的.(二)函数的间断点1.定义:设函数()f x 在点0x 的某去心邻域内有定义,如果函数有下列三种情形之一:(1)在0x x =处没有定义;(2)虽在0x x =处有定义,但0lim ()x x f x →不存在;(3)虽在0x x =处有定义,且0lim ()x x f x →存在,但00lim ()()x x f x f x →≠,则函数()f x 在点0x 为不连续,而点0x 称为函数()f x 的不连续点或间断点.2.分类:(1)第一类间断点:如果0x 是函数()f x 的间断点,但左极限0()f x -和右极限0()f x +都存在,那么0x 称为函数()f x 的第一类间断点.00()()f x f x -+=时称0x 为可去间断点,00()()f x f x -+≠时称0x 为跳跃间断点.(2)第二类间断点:不是第一类间断点的任何间断点,称为第二类间断点.常见的第二类间断点有无穷间断点和振荡间断点.(三)闭区间上连续函数的性质1.有界性与最值定理:在闭区间[,]a b 上连续的函数在该区间上有界且一定能取得它的最大值和最小值. 2.零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使得()0f ξ=. 3.介值定理:设函数()f x 在闭区间[,]a b 上连续,且在这区间的端点取不同的函数值()f a A =及()f b B =,那么对于A 与B 之间的任意一个数C ,在开区间(,)a b 内至少有一点ξ,使得()f C ξ=(a b ξ<<).【典型例题】【例1-1】求复合函数.1.设()12x f x x=-,求[()]f f x .解:求[()]f f x 就是用()f x 代替x 然后化简,得12[()]122141212xx xx f f x x x x x x-===----⋅-.2.设2,01()3,12x x f x x x ⎧≤≤=⎨<≤⎩ ,()xg x e =,求[()]f g x .解:当01xe ≤≤即0x ≤时,22[()]()x xfg x e e ==, 当12xe <≤即0ln 2x <≤时,[()]3xfg x e =,故2,0[()]3,0ln 2x xe xfg x e x ⎧≤=⎨<≤⎩ . 【例1-2】求函数的定义域. 1.()ln(1)f x x =+-.解:由arcsin(21)x -可得1211x -≤-≤,即01x ≤≤得arcsin(21)0x -≥,即0211x ≤-≤,112x ≤≤;由l n (1)x-可得10x->,即1x <,故原函数的定义域为三部分的交集,即1[,1)2. 2.2()arccos(2)2f x x x x =+---. 解:10x -≥,即1x ≥;由220x x --≠即(1)(2)0x x +-≠可得1x≠-且2x ≠;由arccos(2)x -可得121x -≤-≤,13x ≤≤,故原函数的定义域为三部分的交集,即为[1,2)(2,3].【例1-3】判断函数的奇偶性. 1.设()f x 和()g x 为任意函数,定义域均为(,)-∞+∞,试判定下列函数的奇偶性. (1)()()()()f x f x g x g x +-++-解:由奇偶性的判定可知,()()f x f x +-与()()g x g x +-均为偶函数,故其和亦为偶函数. (2)()()()()f x f x g x g x --++-解:由奇偶性的判定可知,()()f x f x --为奇函数,()()g x g x +-为偶函数,故其和为非奇非偶函数. 2.判定函数()ln(f x x =+的奇偶性.解:因()ln(f x x -=-+ln(x =-+ln=)()x f x =-+=-,故原函数为奇函数.【例1-4】计算下列极限.1.22212lim()n n n nn→∞+++. 解:当n →∞时,此题是无限个无穷小之和,不能直接求极限,先变形化简再计算:222221(1)121212lim()lim lim 2n n n n n n n n n n n n →∞→∞→∞+++++++===. 2.2n n→∞++++. 解:因2n <+++<+,并且l i 1n →∞=,1n →∞=,故原极限值为1.(夹逼准则)3.222lim(1)nn n n→∞++. 解:22(22)222222222222lim(1)lim(1)lim(1)n n n n n n n n n n n n e n n n n+⋅+→∞→∞→∞++++=+=+=.4.23lim()21nn n n →∞-+.解:21424212344lim()lim(1)lim(1)212121n nn n n n n n n e n n n +-⋅--+→∞→∞→∞---=+=+=+++. 【例1-5】计算下列极限.1.sin limx xx→∞.解:当x →∞时,1x为无穷小,sin x 虽没有极限但却是有界函数,故根据无穷小与有界函数的乘积仍为无穷小,可得sin lim0x xx→∞=.说明:本极限与01lim sin x x x →意义是一样的.2.21lim 1n x x x x nx →+++--.解:2211111lim lim 11n n x x x x x n x x x x x →→+++--+-++-=--2121lim[1(1)(1)(1)]n n x x x x x x x --→=+++++++++++(1)1232n n n +=++++=. 说明:此题也可用洛必达法则(见第三章)求解,过程如下:2111(1)lim lim(12)12n n x x x x x n n n x nx x -→→+++-+=+++=-.3.0sin(1)lim 3x x e x→-.解:因当0x →时,sin(1)~1xx ee --,1~x e x -,故 00sin(1)11limlim 333x x x x e e x x →→--==. 说明:本题可以使用洛必达法则求解如下:00sin(1)cos(1)1lim lim 333x x x x x e e e x →→--⋅==.4.sin 0limsin x xx e e x x→--.解:sin sin sin 00(1)lim lim 1sin sin x x x x x x x e e e e x x x x-→→--==--(0x →时,sin ~sin x x e x x --).5.23lim()2xx x x→∞++. 解:2(2)2222311lim()lim(1)lim(1)222x x x x xx x x x e x x x+⋅+→∞→∞→∞+=+=+=+++. 6.11lim(sincos )x x x x→∞+. 解:111(sin cos 1)11sin cos 11111lim(sin cos )lim[1(sin cos 1)]x x x x x xx x x x x x⋅+-+-→∞→∞+=++-211111sin cos 1sincos 12limlim lim 1lim 111110x x x x x x x x x xx xxe e e e e →∞→∞→∞→∞-+--+++=====.【例1-6】已知()f x 是多项式,且32()2lim 2x f x x x →∞-=,0()lim 3x f x x→=,求()f x . 解:利用前一极限式可令32()22f x x x ax b =+++,再利用后一极限式,得 00()3lim lim()x x f x ba x x→→==+,则 3a =,0b =,故32()223f x x x x =++.【例1-7】当0x →时,比较下列无穷小的阶. 1.2x 比1cos x -.解:因 22002limlim 211cos 2x x x x x x →→==-,故2x 与1cos x -是同阶无穷小. 2.2x1-.解:因220lim 012x x x x→→==,故2x1高阶的无穷小. 3-x .解:因00lim x x x →→-=1x →==x 是等价无穷小. 4.2x 比tan sin x x -.解:因 2220002cos limlim lim 1tan sin sin (1cos )2x x x x x x x x x x x x x →→→===∞--⋅, 故2x 是比tan sin x x -低阶的无穷小. 说明:本题中的四个题目均可用洛必达法则求解. 【例1-8】讨论下列分段函数在指定点处的连续性.1.01()1,11,1x f x x x x ⎧≤<⎪==⎨⎪+>⎩在1x =处的连续性. 解:因(1)1f =,11(1)lim ()2x x f f x ---→→===,11(1)lim ()lim(1)2x x f f x x +++→→==+=,从而1lim ()2(1)x f x f →=≠,故函数在1x =处不连续.2.1,0()ln(1),0x e x f x x x ⎧⎪<=⎨⎪+≥⎩ 在0x =处的连续性.解:因(0)0f =,1(0)lim ()lim 0xx x f f x e ---→→===,(0)lim ()lim ln(1)0x x f f x x +++→→==+=,从而0lim ()0(0)x f x f →==,故函数在0x =处连续.【例1-9】当常数a 为何值时,函数2,0()ln(1),0x a x f x x x x-≤⎧⎪=⎨+>⎪⎩ 在0x =处连续?解:因(0)f a =-,0(0)lim ()lim(2)x x f f x x a a ---→→==-=-, 10000ln(1)1(0)lim ()lim lim ln(1)lim ln(1)1xx x x x x f f x x x x x +++++→→→→+===+=+=,故由连续性可得,(0)(0)(0)f f f -+==,即1a -=,故1a =-.【例1-10】求下列函数的间断点并判断其类型.1.1()xf x e= .解:所给函数在0x =处无定义,故0x =是间断点.又1lim x x e +→=+∞,10lim 0xx e -→=,故0x=是()f x 的第二类间断点.2.()sin xf x x=. 解:所给函数在x k π=(0,1,2,k =±±)处无定义,故0x =、x k π=(1,2,k=±±)是间断点.又0lim 1sin x xx→=,故0x =是第一类间断点,且是可去间断点;limsin x k xx π→=∞,故x k π=是第二类间断点,且是无穷间断点.3.111()1xx e f x e -=+ .解:所给函数在0x=处无定义,故0x =是间断点.又111(0)lim 11xx xe f e ++→-==+,111(0)lim 11xx xe f e --→-==-+,故0x =是()f x 的第一类间断点且是跳跃间断点.4.1arctan ,0()0,0x f x xx ⎧≠⎪=⎨⎪=⎩ . 解:该题是分段函数的连续性问题,因0x ≠时1arctan x 是初等函数,故1arctan x 在0x ≠时是连续的,所以该题主要考虑分界点0x =处的连续性.由01(0)lim arctan 2x f x π++→==,01(0)lim arctan 2x f x π--→==-,可知0x =是()f x 的第一类间断点且是跳跃间断点.【例1-11】证明方程32410x x -+=在区间(0,1)内至少有一个根.证:函数32()41f x x x =-+在闭区间[0,1]上连续,又(0)1f =>,(1)20f =-<,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即32410ξξ-+= (01ξ<<),该等式说明方程32410x x -+=在区间(0,1)内至少有一个根是ξ.【例1-12】证明方程21xx ⋅=至少有一个小于1的正根.证:由题意,函数()21x f x x =⋅-在区间[0,1]上连续,又(0)10f =-<,(1)10f =>,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即210ξξ⋅-= (01ξ<<),该等式说明方程21x x ⋅=在区间(0,1)内至少有一个小于1的正根ξ.【历年真题】一、选择题1.(2010年,1分)函数1arccos2x y+=的定义域是( ) (A )[3,1]- (B )[3,1]-- (C )[3,1)-- (D )[1,1]-解:因 2101112x x ⎧-≥⎪⎨+-≤≤⎪⎩ ,故 11212x x -≤≤⎧⎨-≤+≤⎩ , 1131x x -≤≤⎧⎨-≤≤⎩ ,所以 11x -≤≤,故选(D ).2.(2010年,1分)极限0sin3limx xx→等于( )(A )0 (B )1 (C )13(D )3解:00sin33limlim 3x x x xxx →→==,故选(D ). 3.(2009年,1分)极限(1)limnn n n→∞+-=( ) (A )1 (B )0 (C )∞ (D )不存在解:(1)(1)(1)lim lim[1]1lim 101n n n n n n n n n n→∞→∞→∞+---=+=+=+=,故选(A ).4.(2009年,1分)若1,0()0,01,0x x f x x x x -<⎧⎪==⎨⎪+>⎩,则0lim ()x f x →=( )(A )1- (B )0 (C )1 (D )不存在 解:因lim ()lim(1)1x x f x x --→→=-=-,0lim ()lim(1)1x x f x x ++→→=+=,lim ()lim ()x x f x f x -+→→≠,故0lim ()x f x →不存在,选(D ).5.(2009年,1分)2x π=是函数tan xy x=的( ) (A )连续点 (B )可去间断点 (C )跳跃间断点 (D )第二类间断点 解:因2lim 0tan x x x π→=,故2x π=是函数tan xy x =的可去间断点,选(B ). 6.(2008年,3分)设1()sin f x x x= ,则lim ()x f x →∞等于( )(A )0 (B )不存在 (C )∞ (D )1解:1sin1lim ()lim sin lim 11x x x x f x x xx→∞→∞→∞===,故选(D ).7.(2008年,3分)当0x →时,23x 是2sinx 的( )(A )高阶无穷小 (B )同阶无穷小,但不等价 (C )低阶无穷小 (D )等价无穷小解:因 22220033lim lim 3sin x x x x x x→→==,故选(B ).8.(2007年,3分)当0x →时,tan 2x 是( )(A )比sin3x 高阶的无穷小 (B )比sin3x 低阶的无穷小 (C )与sin3x 同阶的无穷小 (D )与sin3x 等价的无穷小解:因0tan 222limlim sin333x x x x x x →→==,故选(C ). 9.(2006年,2分)设()sin f x x = ,,0(),0x x g x x x ππ-≤⎧=⎨+>⎩ ,则[()]f g x =( )(A )sin x (B )cos x (C )sin x - (D )cos x - 解:当0x ≤时,[()]()sin()sin()sin f g x f x x x x πππ=-=-=--=-;当0x >时,[()]()sin()sin f g x f x x x ππ=+=+=-,故选(C ).10.(2005年,3分)设120lim(1)xx mx e →-=,则m =( )(A )12-(B )2 (C )2- (D )12解:由11()20lim(1)lim[1()]m m xmxx x mx mx e e ⋅---→→-=+-==,得2m =-,选(C ). 11.(2005年,3分)设1xye-=是无穷大,则x 的变化过程是( )(A )0x +→ (B )0x -→ (C )x →+∞ (D )x →-∞解:0x +→时,1x →+∞,1x-→-∞,10x e -→;0x -→时,1x →-∞,1x-→+∞,1x e -→+∞;故选(B ). 二、填空题1.(2010年,2分)若函数21,1(),1x x f x x a x -+≤⎧=⎨->⎩ 在1x =处连续,则a = .解:11lim()lim(21)1x x f x x --→→=-+=-,11lim ()lim()1x x f x x a a ++→→=-=-,因()f x 在点1x =处连续,故11lim ()lim ()x x f x f x -+→→=,即11a -=-,2a =. 2.(2010年,2分)0x=是函数1()cosf x x x=的第 类间断点. 解:因 001lim ()lim cos 0x x f x x x →→==,故0x =是函数()f x 的第一类间断点.3.(2009年,2分)设1,1()0,11,1x f x x x ⎧<⎪==⎨⎪->⎩ ,()x g x e =,则[(l n 2)]g f = .解:因0ln 21<<,故 (ln2)1f =,所以 1[(ln 2)](1)g f g e e ===.4.(2009年,2分)1siny x=在0x =处是第 类间断点. 解:因0x →时,1x→∞,1sin x 没有极限,故 0x = 是第二类间断点.5.(2008年,4分)函数ln arcsin y x x =+的定义域为 .解:由题意,011x x >⎧⎨-≤≤⎩ ,故原函数的定义域为 (0,1].6.(2008年,4分)设数列n x 有界,且lim 0n n y →∞=,则lim n n n x y →∞= .解:数列可看作特殊的函数,因数列n x 有界,数列n y 为无穷小,所以根据无穷小与有界函数的乘积仍然是无穷小可得,lim 0n nn x y →∞=.7.(2008年,4分)函数y =的反函数为 .解:由y=31y x =+,31x y =-,故反函数为 31y x =-.8.(2007年,4分)函数21arcsin 3x y -=的定义域为 .解:由21113x --≤≤得,3213x -≤-≤,即12x -≤≤,所以定义域为[1,2]-. 9.(2007年,4分)21lim()xx x x→∞-= .解:22(2)2111lim()lim(1)lim(1)x x x x x x x e x x x-⋅--→∞→∞→∞---=+=+=.10.(2006年,2分)若函数2121212(),0()12,0x x x f x x x a x +⎧->⎪=⎨+⎪-≤⎩在0x =处连续,则a = .解:0lim()lim(2)x x f x x a a --→→=-=-,22211221(3)3322000123lim ()lim()lim(1)11x x x x x x xx f x e xx+++++⋅---→→→--==+=++,因()f x 在0x =处连续,故0lim ()lim ()x x f x f x -+→→=,即3a e --=,故3a e -=-. 三、计算题1.(2010年,5分)求极限lim xx x c x c →∞+⎛⎫⎪-⎝⎭,其中c 为常数.解:22222lim lim 1lim 1x c cxxxc x cc x x x x c c c e x c x c x c -⋅-→∞→∞→∞+⎛⎫⎛⎫⎛⎫=+=+=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.2.(2010年,5分)求极限30tan lim x x xx→-. 解:22322000tan sec 1tan 1lim lim lim 333x x x x x x x x x x →→→--===. 说明:此题也可多次使用洛必达法则,解法如下:232000tan sec 12sec sec tan 1lim lim lim 363x x x x x x x x x x x x →→→--⋅===. 3.(2009年,5分)求极限 3113lim 11x x x →⎛⎫- ⎪--⎝⎭ . 解:此题为“∞-∞”型的极限,解法如下:23321111313(1)(2)lim lim lim 1111(1)(1)x x x x x x x x x x x x x →→→++--+⎛⎫-===- ⎪----++⎝⎭. 4.(2009年,5分)求极限 0lim sin x x x e e x -→- .解:002limlim 2sin cos 1x x x x x x e e e e x x --→→-+===. 5.(2008年,5分)求极限 2sin 2lim cos()x xx ππ→- .解:22sin 22cos2lim lim 2cos()sin()(1)x x x xx x ππππ→→==----⋅-.6.(2007年,5分)求极限011lim()1x x x e →-- . 解:20000111111lim()lim lim lim 1(1)22x x x x x x x x x e x e x e x e x e x x →→→→------====--. 说明:0x →时,1~xex -.7.(2006年,4分)求极限 011limcot ()sin x x x x→- .解:2300011cos (sin )sin limcot ()lim lim sin sin x x x x x x x xx x x x x x→→→---== 2220011cos 12lim lim 336x x xx x x →→-===.8.(2006年,4分)设1cos 20()sin xf x t dt -=⎰,56()56x xg x =+,求0()lim()x f x g x →. 解:因0x →时,1cos 20()sin 0xf x t dt -=→⎰,56()056x xg x =+→,且1cos 220()(sin )sin sin(1cos )xf x t dt x x -''==-⎰,45()g x x x '=+,故 2245450000()()sin sin(1cos )(1cos )lim lim lim lim ()()x x x x f x f x x x x x g x g x x x x x →→→→'--==='++224454500011()124lim lim lim 041x x x x x x x x x x x x x→→→⋅====+++.9.(2005年,5分)求极限111lim()1ln x x x→-- . 解: 1111111ln 1lim()lim lim 11ln (1)ln ln x x x x x x x x x x x x x→→→--+-==---+11111lim lim ln 1ln 112x x x x x x x →→--===-+-++.。
江苏专转本高等数学 极限、连续与间断 例题加练习
![江苏专转本高等数学 极限、连续与间断 例题加练习](https://img.taocdn.com/s3/m/814e98ca680203d8ce2f24e9.png)
第一章 极限、连续与间断本章主要知识点● 求极限的几类主要题型及方法 ● 连续性分析 ● 间断判别与分类● 连续函数的介值定理及应用一、求极限的七类题型求极限问题归纳为七类主要题型,这里介绍前五类,后两类在相应的章节(洛必达法则,变限积分)再作相应介绍。
(1)题型I ()()limm x nP x P x ->∞方法:上下同除以x 的最高次幂例1.1.5422lim x x x x x->∞+-+ 解:原式534111lim 11x x x x x ->∞+-==∞+ 例1.2.()()2243123lim31x x x x ->∞+-+解:原式()()222243123lim13x x x x x x ->∞+-=+2241332lim 13x x x x->∞⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=+=12 例1.3.111313lim-++-++∞→x x x x x解:原式=111313lim-++-++∞→x x x x x =xx x x x 11111313lim-++-++∞→=3 例1.4.)214(lim 2x x x x -+-+∞→解:原式=xx x x x 2141lim2++-+-+∞→=211411lim 2++-+-+∞→xx x x =41-例1.5.xx x xx x x 234234lim --+++∞→解:原式=xx xx x )21()43(1)21()43(1lim--+++∞→=1 (2)题型II ()lim()m x an p x p x → 原式=()(),0(),()0,()0()()0m n n n m n m p a p a p a p a p a p a p a ⎧≠⎪⎪⎪∞=≠⎨⎪==⎪⎪⎩上下分解因式(或洛比达), 例1.6.12cos lim1++→x x x π解:原式=1/2例1.7.12sin lim 231+-++→x x xx x x π解:原式=∞例1.8.32lim 221-+-→x x xx x解:原式=)3)(1()1(lim 1+--→x x x x x =3lim 1+→x x x =41例1.9.11lim31--→x x x解:令u ==322111(1)(1)lim lim 1(1)(1)u u u u u u u u u →→--++=--+=23例1.10. 2232lim 221=+-++→x x bx ax x 解:a+2+b=0,原式=222)2)(1()2)(1(lim )2)(1()2(2lim2=--=--++-=--+-+a x x a ax x x x a x ax a=2,b=-4 (3)题型III若0)(lim =→x f ax ,)(x g 有界⇒0)()(lim =→x g x f ax例1.11. 22limarccot(sin(1))3x x x →+∞++解:因为 limx →+∞2arccot(sin(1))x +有界 所以 原式=0。
江苏省专转本高等数学第一章函数的极限与连续知识点讲解第一节函数
![江苏省专转本高等数学第一章函数的极限与连续知识点讲解第一节函数](https://img.taocdn.com/s3/m/592b9bde89eb172ded63b71e.png)
例如, { x x R, x 1 0}
2
规定 空集为任何集合的子集.
2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a, b R, 且a b.
{ x a x b} 称为开区间, 记作 (a, b)
x a a a ˆ, ). 点a的去心的邻域, 记作N (a
ˆ , ) {x 0 x a }. N (a
4.常量与变量: 在某过程中数值保持不变的量称为常量,
而数值变化的量称为变量.
注意 常量与变量是相对“过程”而言的. 常量与变量的表示方法: 通常用字母a, b, c等表示常量, 用字母x, y, t等表示变量.
(通常说周期函数的周期是指其最小正周期).
3l 2
l 2
l 2
3l 2
五、初等函数
(一)基本初等函数及其图像
y x (是常数) 1、幂函数 y
y x
x
y x2
1
(1,1)
y
o
1 y x
1
x
x 2、指数函数 y a
(a 0, a 1)
y ex
1 x y( ) a
数集分类:
N----自然数集 Q----有理数集
Z----整数集 R----实数集
数集间的关系: N Z , Z Q , Q R.
若A B, 且B A, 就称集合A与B相等. ( A B )
例如 A {1,2},
C { x x 2 3 x 2 0}, 则 A C .
称 f ( x )为奇函数;
y
函数极限与连续性知识点及典例
![函数极限与连续性知识点及典例](https://img.taocdn.com/s3/m/21ed2ad4988fcc22bcd126fff705cc1754275f5c.png)
性质 2
如果 $\lim_{x \to a} f(x)$ 和 $\lim_{x \to a} g(x)$ 都存在。且 $c$ 为常数
性质 3
如果 $\lim_{x \to a} f(x) = A$。且 $f(x)$ 在点 $a$ 的某个去心邻域内有 定义。那么对于任意给定的正数 $\varepsilon$。都存在一个正数 $\delta$。使得当 $0 < |x-a| < \delta$ 时
04
典型例题解析
极限的运算
要点一
极限的加法
$\lim_{x \to \infty}(f(x)+g(x))=\lim_{x \to \infty}f(x)+\lim_{x \to \infty}g(x)$
要点二
极限的乘法
$\lim_{x \to \infty}(f(x) \cdot g(x))=\lim_{x \to \infty}f(x) \cdot \lim_{x \to \infty}g(x)$
导数与微分的关系
总结词
导数是微分的商,微分是导数的逆运算。二者都是函数变化率的极限,但在实际应用中有着不同的意义和作用 。
详细描述
导数和微分是密切相关的概念。导数是微分的商,表示函数在某一点附近的变化率,而微分是导数的逆运算, 表示函数在某一点附近的近似值。在实际应用中,导数可以用于求函数的极值、最值等,而微分可以用于近似 计算、数值分析和优化等。
微分的定义与计算
总结词
微分是函数在某一点附近的近似值,表示函数在这一 点变化趋势的近似特征。计算微分的方法主要有定义 法和公式法。
详细描述
微分定义为函数在某一点附近的近似值,即函数在该 点的切线。对于基本初等函数,可以通过直接代入公 式计算微分。对于复杂函数,可以利用定义求微分, 也可以利用微分法则和公式进行计算。
专升本高数极限与连续知识点
![专升本高数极限与连续知识点](https://img.taocdn.com/s3/m/fbbd916fb80d6c85ec3a87c24028915f814d845a.png)
专升本高数极限与连续知识点
1. 极限到底是个啥呀?就好比跑步比赛,你一直往前跑,无限接近终点线,那这个接近的过程就是在趋近一个极限呀!比如说,函数 y=1/x,当 x 越来越大时,y 就越来越接近 0 啦。
2. 连续性可重要啦!你想想看,如果走在路上突然有个大坑,那多难受呀,而连续就像是一路平坦顺畅。
像函数 y=x,它在整个定义域内都是连续的呢。
3. 函数的极限会有不同情况哦!有的就像火箭一样直直冲上去,有的慢悠悠晃过去,这可太有意思啦!比如 y=sinx 当 x 趋近于 0 时极限就是 0 呀。
4. 极限存在的条件得搞清楚呀!这就好比你要参加比赛得符合资格一样。
比如说一个函数在某点左右极限相等,那在这点就有极限啦。
5. 无穷小和无穷大的关系很奇妙耶!就像跷跷板的两头,一个上去另一个就下来。
像当 x 趋近于 0 时,x 是无穷小,1/x 就是无穷大啦。
6. 连续性和间断点可得区分开来呀!间断点就像路上的绊脚石,而连续就是没有阻碍。
比如 y=1/x 在 x=0 就是间断点哟。
7. 极限的运算规则要牢记心里呀!这就跟玩游戏知道规则才能玩得转一样。
比如两个函数极限都存在,那它们相加的极限就等于极限相加。
8. 利用极限来求一些值可太有用啦!好比有了一把钥匙能打开难题的锁。
例如通过极限求曲线的渐近线呢。
9. 搞懂了极限与连续,那高等数学就有了坚实的基础呀!这就像建房子有了牢固的地基,后面的学习就能更顺利啦!
我的观点结论是:极限与连续是专升本高数里非常重要且有趣的知识点,只要认真去理解和掌握,就能够学好它们!。
专升本高等数学复习资料(含答案)
![专升本高等数学复习资料(含答案)](https://img.taocdn.com/s3/m/48bf912dcc7931b764ce1507.png)
专升本高等数学复习资料一、函数、极限和连续1.函数)(x f y =的定义域是( )A .变量x 的取值范围B .使函数)(x f y =的表达式有意义的变量x 的取值范围C .全体实数D .以上三种情况都不是2.以下说法不正确的是( )A .两个奇函数之和为奇函数B .两个奇函数之积为偶函数C .奇函数与偶函数之积为偶函数D .两个偶函数之和为偶函数3.两函数相同则( )A .两函数表达式相同B .两函数定义域相同C .两函数表达式相同且定义域相同D .两函数值域相同 4.函数42y x x =-+-的定义域为( ) A .(2,4) B .[2,4] C .(2,4] D .[2,4) 5.函数3()23sin f x x x =-的奇偶性为( )A .奇函数B .偶函数C .非奇非偶D .无法判断6.设,121)1(-+=-x xx f 则)(x f 等于( )A .12-x xB .x x 212--C .121-+x xD .xx212--7. 分段函数是( )A .几个函数B .可导函数C .连续函数D .几个分析式和起来表示的一个函数8.下列函数中为偶函数的是( )A .x e y -=B .)ln(x y -=C .x x y cos 3=D .x y ln =9.以下各对函数是相同函数的有( )A .x x g x x f -==)()(与B .x x g x x f cos )(sin 1)(2=-=与C .1)()(==x g x xx f 与 D .⎩⎨⎧<->-=-=2222)(2)(x x x x x g x x f 与10.下列函数中为奇函数的是( )A .)3cos(π+=x y B .x x y sin = C .2xx e e y --= D .23x x y +=11.设函数)(x f y =的定义域是[0,1],则)1(+x f 的定义域是( )A .]1,2[--B . ]0,1[-C .[0,1]D . [1,2]12.函数⎪⎩⎪⎨⎧≤<+=<<-+=20200022)(2x x x x x x f 的定义域是( )A .)2,2(-B .]0,2(-C .]2,2(-D . (0,2] 13.若=---+-=)1(,23321)(f xx x x x f 则( )A .3-B .3C .1-D .114.若)(x f 在),(+∞-∞内是偶函数,则)(x f -在),(+∞-∞内是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x f15.设)(x f 为定义在),(+∞-∞内的任意不恒等于零的函数,则)()()(x f x f x F -+=必是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .0)(≡x F16. 设 ⎪⎩⎪⎨⎧<<≤<-≤<--=42,021,1211,1)(2x x x x x x f 则)2(πf 等于 ( ) A .12-π B .182-π C . 0 D .无意义 17.函数x x y sin 2=的图形( )A .关于ox 轴对称B .关于oy 轴对称C .关于原点对称D .关于直线x y =对称 18.下列函数中,图形关于y 轴对称的有( ) A .x x y cos = B .13++=x x yC .2x x e e y -+=D .2xx e e y --=19.函数)(x f 与其反函数)(1x f-的图形对称于直线( )A .0=yB .0=xC .x y =D .x y -=20. 曲线)1,0(log ≠>==a a x y a y a x 与在同一直角坐标系中,它们的图形( )A .关于x 轴对称B .关于y 轴对称C .关于直线x y =轴对称D .关于原点对称 21.对于极限)(lim 0x f x →,下列说法正确的是( )A .若极限)(lim 0x f x →存在,则此极限是唯一的B .若极限)(lim 0x f x →存在,则此极限并不唯一C .极限)(lim 0x f x →一定存在D .以上三种情况都不正确22.若极限A )(lim 0=→x f x 存在,下列说法正确的是( )A .左极限)(lim 0x f x -→不存在 B .右极限)(lim 0x f x +→不存在C .左极限)(lim 0x f x -→和右极限)(lim 0x f x +→存在,但不相等D .A )(lim )(lim )(lim 0===→→→-+x f x f x f x x x23.极限ln 1limx e x x e→--的值是( )A .1B .1eC .0D .e24.极限ln cot lim ln x xx→+0的值是( ). A . 0 B . 1 C .∞ D . 1-25.已知2sin lim20=+→xx bax x ,则( ) A .0,2==b a B .1,1==b a C .1,2==b a D .0,2=-=b a26.设b a <<0,则数列极限l i m n n n n a b →+∞+是A .aB .bC .1D .b a + 27.极限xx 1321lim+→的结果是A .0B .21C .51D .不存在28.∞→x lim xx 21sin为( )A .2B .21C .1D .无穷大量29. n m nxmxx ,(sin sin lim 0→为正整数)等于( )A .n mB .m nC .n m n m --)1(D .mn m n --)1(30.已知1tan lim230=+→xx bax x ,则( ) A .0,2==b a B .0,1==b a C .0,6==b a D .1,1==b a 31.极限xx xx x cos cos lim+-∞→( )A .等于1B .等于0C .为无穷大D .不存在32.设函数⎪⎩⎪⎨⎧>-=<+=01001sin )(x e x x x x f x 则=→)(lim 0x f x ( )A .1B .0C .1-D .不存在33.下列计算结果正确的是( )A . e x x x =+→10)41(lim B .410)41(lim e xx x =+→C .410)41(lim --→=+e x x x D .4110)41(lim e xx x =+→34.极限x x xtan 0)1(lim +→等于( )A . 1B . ∞C .0D .2135.极限⎪⎭⎫⎝⎛-→x x x x x sin 11sin lim 0的结果是A .1-B .1C .0D .不存在36.()01sin lim ≠∞→k kxx x 为 ( )A .kB .k 1C .1D .无穷大量37.极限x x sin lim 2π-→=( )A .0B .1C .1-D .2π-38.当∞→x 时,函数x x)11(+的极限是( )A .eB .e -C .1D .1- 39.设函数⎪⎩⎪⎨⎧>-=<+=01cos 001sin )(x x x x x x f ,则=→)(lim 0x f xA .1B .0C .1-D .不存在40.已知a xax x x 则,516lim21=-++→的值是( ) A .7 B .7- C . 2 D .341.设⎪⎩⎪⎨⎧≥+<=020tan )(x x x xaxx f ,且)(lim 0x f x →存在,则a 的值是( )A .1B .1-C .2D .2-42.无穷小量就是( )A .比任何数都小的数B .零C .以零为极限的函数D .以上三种情况都不是 43.当0→x 时,)2sin(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 44.当0→x 时,与x 等价的无穷小是( ) A .xx sin B .)1ln(x + C .)11(2x x -++ D .)1(2+x x45.当0→x 时,)3tan(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 46.设,1)(,)1(21)(x x g x xx f -=+-=则当1→x 时( )A .)(x f 是比)(x g 高阶的无穷小B .)(x f 是比)(x g 低阶的无穷小C .)(x f 与)(x g 为同阶的无穷小D .)(x f 与)(x g 为等价无穷小 47.当+→0x 时, 11)(-+=a x x f 是比x 高阶的无穷小,则( )A .1>aB .0>aC .a 为任一实常数D .1≥a 48.当0→x 时,x 2tan 与2x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 49.“当0x x →,A x f -)(为无穷小”是“A x f x x =→)(lim 0”的( )A .必要条件,但非充分条件B .充分条件,但非必要条件C .充分且必要条件D .既不是充分也不是必要条件 50. 下列变量中是无穷小量的有( ) A .)1ln(1lim 0+→x x B .)1)(2()1)(1(lim 1-+-+→x x x x xC .x x x 1cos 1lim∞→ D .xx x 1sin cos lim 0→ 51.设时则当0,232)(→-+=x x f x x ( )A .)(x f 与x 是等价无穷小量B .)(x f 与x 是同阶但非等价无穷小量C .)(x f 是比x 较高阶的无穷小量D .)(x f 是比x 较低阶的无穷小量 52. 当+→0x 时,下列函数为无穷小的是( )A .x x 1sinB .x e 1C .x lnD .x xsin 153. 当0→x 时,与2sin x 等价的无穷小量是 ( ) A .)1ln(x + B .x tan C .()x cos 12- D .1-x e54. 函数,1sin )(xx x f y ==当∞→x 时)(x f ( )A .有界变量B .无界变量C .无穷小量D .无穷大量55. 当0→x 时,下列变量是无穷小量的有( )A .x x 3B .xx cos C .x ln D .x e -56. 当0→x 时,函数xxy sec 1sin +=是( )A .不存在极限的B .存在极限的C .无穷小量D .无意义的量 57.若0x x →时, )(x f 与)(x g 都趋于零,且为同阶无穷小,则( ) A .0)()(lim=→x g x f x x B .∞=→)()(lim 0x g x f x xC .)1,0()()(lim≠=→c c x g x f x x D .)()(lim 0x g x f x x →不存在58.当0→x 时,将下列函数与x 进行比较,与x 是等价无穷小的为( ) A .x 3tan B .112-+x C .x x cot csc - D .xx x 1sin 2+ 59.函数)(x f 在点0x 有定义是)(x f 在点0x 连续的( )A .充分条件B .必要条件C .充要条件D .即非充分又非必要条件60.若点0x 为函数的间断点,则下列说法不正确的是( )A .若极限A )(lim 0=→x f x x 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A 0x f ≠,则0x 称为)(x f 的可去间断点B .若极限)(lim 0x f x x +→与极限)(lim 0x f x x -→都存在但不相等,则0x 称为)(x f 的跳跃间断点C .跳跃间断点与可去间断点合称为第二类的间断点D .跳跃间断点与可去间断点合称为第一类的间断点 61.下列函数中,在其定义域内连续的为( )A .x x x f sin ln )(+=B .⎩⎨⎧>≤=00sin )(x ex xx f xC .⎪⎩⎪⎨⎧>-=<+=01011)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f62.下列函数在其定义域内连续的有( ) A .x x f 1)(=B .⎩⎨⎧>≤=0cos 0sin )(x xx x x fC .⎪⎩⎪⎨⎧>-=<+=01001)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f63.设函数⎪⎩⎪⎨⎧=-≠=0201a r c t a n )(x x x x f π 则)(x f 在点0=x 处( ) A .连续 B .左连续 C .右连续 D .既非左连续,也非右连续 B .64.下列函数在0=x 处不连续的有( )A .⎪⎩⎪⎨⎧=≠=-000)(2x x e x f xB .⎪⎩⎪⎨⎧=≠=010sin )(21x x x x x f C .⎩⎨⎧≥<-=00)(2x x x xx f D .⎩⎨⎧≤->+=00)1ln()(2x xx x x f65.设函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f , 则在点)(1x f x 处函数=( )A .不连续B .连续但不可导C .可导,但导数不连续D .可导,且导数连续66.设分段函数⎩⎨⎧<+≥+=0101)(2x x x x x f ,则)(x f 在0=x 点( )A .不连续B .连续且可导C .不可导D .极限不存在67.设函数)(x f y =,当自变量x 由0x 变到y x x ∆∆+相应函数的改变量时,0=( ) A .)(0x x f ∆+ B .x x f ∆)('0 C .)()(00x f x x f -∆+ D .x x f ∆)(068.已知函数⎪⎩⎪⎨⎧>+=<=01200)(x x x x e x f x ,则函数)(x f ( ) A .当0→x 时,极限不存在 B .当0→x 时,极限存在C .在0=x 处连续D .在0=x 处可导 D . 69.函数)1ln(1-=x y 的连续区间是( )A .),2[]2,1[+∞⋃B .),2()2,1(+∞⋃C .),1(+∞D .),1[+∞70.设nxnxx f x -=∞→13lim)(,则它的连续区间是( )A .),(+∞-∞B .处为正整数)(1n nx ≠C .)0()0,(∞+⋃-∞D .处及nx x 10≠≠D . 71.设函数⎪⎪⎩⎪⎪⎨⎧=≠-+=031011)(x x x x x f , 则函数在0=x 处( )A .不连续B .连续不可导C .连续有一阶导数D .连续有二阶导数B .72.设函数⎪⎩⎪⎨⎧=≠=00x x xx y ,则)(x f 在点0=x 处( )A .连续B .极限存在C .左右极限存在但极限不存在D .左右极限不存在73.设11cot )(2-+=x arc x x f ,则1=x 是)(x f 的( )A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点74.函数2xy e x z y-+=的间断点是( ) A .)1,1(),1,1(),0,1(-- B .是曲线y e y -=上的任意点 C .)1,1(),1,1(),0,0(- D .曲线2x y =上的任意点 75.设2)1(42-+=xx y ,则曲线( ) A .只有水平渐近线2-=y B .只有垂直渐近线0=x C .既有水平渐近线2-=y ,又有垂直渐近线0=x D .无水平,垂直渐近线76.当0>x 时, xx y 1sin=( ) A .有且仅有水平渐近线 B .有且仅有铅直渐近线C .既有水平渐近线,也有铅直渐近线D .既无水平渐近线,也无铅直渐近线二、一元函数微分学77.设函数)(x f 在点0x 处可导,则下列选项中不正确的是( ) A .x yx f x ∆∆=→∆00lim)(' B .xx f x x f x f x ∆-∆+=→∆)()(lim )('0000C .000)()(lim )('0x x x f x f x f x x --=→D .h x f h x f x f h )()21(lim )('0000--=→78.若e cos x y x =,则'(0)y =( )A .0B .1C .1-D .279.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .x e sinB .x e cos -C .x e cosD .x e sin -80.设函数)(x f 在点0x 处可导,且2)('0=x f ,则hx f h x f h )()21(lim 000--→等于( )81.A .1-B .2C .1D .21-B .81.设)(x f 在a x =处可导,则xx a f x a f x )()(lim--+→=( )A .)('a fB .)('2a fC .0D .)2('a f 82.设)(x f 在2=x 处可导,且2)2('=f ,则=--+→hh f h f h )2()2(lim 0( )A .4B .0C .2D .383.设函数)3)(2)(1()(---=x x x x x f ,则)0('f 等于( ) A .0 B .6- C .1 D .3 84.设)(x f 在0=x 处可导,且1)0('=f ,则=--→hh f h f h )()(lim 0( )A .1B .0C .2D .3 85.设函数)(x f 在0x 处可导,则0lim→h hx f f )()h - x (00-( )A .与0x ,h 都有关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 都无关86.设)(x f 在1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=)1('f ( )A . 21B . 21-C . 41D .41-87.设==-)0('')(2f e x f x 则( )A .1-B .1C .2-D .2 88.导数)'(log x a 等于( )A .a x ln 1B .a x ln 1C .x xa log 1 D .x 189.若),1()2(249102+-++=x x x x y 则)29(y =( )A .30B .29!C .0D .30×20×10 90.设',)(',)()(y x f e e f y x f x 则存在且==( )A .)()()()('x f x x f x e e f e e f +B .)(')(')(x f e e f x f x ⋅C .)(')()(')()(x f e e f e e f x f x x f x x ⋅++D .)()('x f x e e f 91.设=---=)0('),100()2)(1()(f x x x x x f 则 ( )A .100B .100!C .!100-D .100- 92.若==',y x y x 则( )A .1-⋅x x xB .x x x lnC .不可导D .)ln 1(x x x +93.处的导数是在点22)(=-=x x x f ( )A .1B .0C .1-D .不存在94.设==-',)2(y x y x 则( )A .)1()2(x x x +--B .2ln )2(x x -C .)2ln 21()2(x x x +- D .)2ln 1()2(x x x +-- 95.设函数)(x f 在区间],[b a 上连续,且,0)()(<b f a f 则 ( )A .)(x f 在),(b a 内必有最大值或最小值B .)(x f 在),(b a 内存在唯一的0)(,=ξξf 使C .)(x f 在),(b a 内至少存在一个0)(,=ξξf 使D .)(x f 在),(b a 内存在唯一的0)(',=ξξf 使96.设,)()(x g x f y =则=dx dy ( ) A .])()(')()('[2x g x g x f x f y - B .])(1)(1[2x g x f y - C .)()('21x g x f y ⋅ D .)()('2x g x f y ⋅ 97.若函数)(x f 在区间)b a,(内可导,则下列选项中不正确的是( )A .若在)b a,(内0)('>x f ,则)(x f 在)b a,(内单调增加B .若在)b a,(内0)('<x f ,则)(x f 在)b a,(内单调减少C .若在)b a,(内0)('≥x f ,则)(x f 在)b a,(内单调增加D .)(x f 在区间)b a,(内每一点处的导数都存在98.若)(y x f =在点0x 处导数存在,则函数曲线在点))(,(00x f x 处的切线的斜率为( )A .)('0x fB .)(0x fC .0D .199.设函数)(y x f =为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,则1k 与2k 的关系为( )A .211k k = B .121-=⋅k k C .121=⋅k k D .021=⋅k k 100.设0x 为函数)(x f 在区间()b a ,上的一个极小值点,则对于区间()b a ,上的任何点x ,下列说法正确的是( )A .)()(0x f x f >B .)()(0x f x f <C .)()(0x f x f ->D .)()(0x f x f -<专升本高等数学综合练习题参考答案1.B 2.C 3.C4.B 在偶次根式中,被开方式必须大于等于零,所以有40x -≥且20x -≥,解得24x ≤≤,即定义域为[2,4].5.A 由奇偶性定义,因为33()2()3sin()23sin ()f x x x x x f x -=---=-+=-,所以3()23sin f x x x=-是奇函数.6.解:令t x -=1,则tt t t t f 21212211)(--=---+=,所以x x x f 212)(--= ,故选D 7.解:选D 8. 解:选D 9. 解:选B 10.解:选C 11. 解:110≤+≤x ,所以01≤≤-x ,故选B12. 解:选C 13. 解:选B 14. 解:选B 15.解:选B 16. 解:)(x f 的定义域为)4,1[-,选D17.解:根据奇函数的定义知选C 18. 解:选C 19. 解:选C20.解:因为函数)1,0(log ≠>==a a x y a y a x 与互为反函数,故它们的图形关于直线x y =轴对称,选C 21.A 22.D23.解:这是00型未定式ln 1l 1lim lim x e x e x x e x e→→-==-,故选B . 24.解:这是∞∞型未定式 22csc ln cot sin cot lim lim lim lim 11ln sin cos sin cos x x x x xx x x x x x x x x xx→→→→-==-⋅=-=-++++0000 故选D .25.解:因为2sin lim 20=+→x x b ax x 所以0)(lim 20=+→b ax x ,得0=b ,2sin lim 20=→x x ax x 所以2=a ,故选A 26.解:b b b b b a b b n n n n n n n n n ==+≤+≤=2选B27.解:选D28.解:因为∞→x lim 2121lim 21sin==∞→x x x x x ,故选B 29.解:n m nx mx nx mx x x ==→→00lim sin sin lim 故选A 30.解:因为1tan lim 230=+→x x b ax x 所以0)(lim 20=+→b ax x ,得0=b ,1tan lim 230=→x x ax x ,所以1=a ,故选B 31.解:1cos 1cos 1lim cos cos lim =+-=+-∞→∞→x x x xx x x x x x ,选A32.解:因为01lim )(lim 00=-=++→→)(x x x e x f ,11sin lim )(lim 00=+=--→→)(x x f x x 所以)(lim 0x f x →不存在,故选D 33.解:41414010])41(lim [)41(lim e x x x x x x =+=+→→,选D 34.解:极限0sin lim cotx lnx - lim )1(lim 200tan 0===+++→→→xx x x x x x ,选C 35.解:110sin 11sin lim 0-=-=⎪⎭⎫ ⎝⎛-→x x x x x ,选A 36.解:kkx x kx x x x 11lim 1sin lim ==∞→∞→选B 37.解:1sin lim 2=-→x x π,选B 38.解:选A 39. 解:选D40.解:06lim 21=++→ax x x ,7-=a ,选B 41.解:2),2(lim tan lim 00=+=-+→→a x xax x x ,选C 42.解:根据无穷小量的定义知:以零为极限的函数是无穷小量,故选C 43.解:因为22lim )2sin(lim 2020=+=+→→xx x x x x x x ,故选C 44.解:因为11ln(lim 0=+→xx x ),故选B 45.解:因为33lim )3tan(lim 2020=+=+→→xx x x x x x x ,故选C 46.解:因为21)1(21lim 1)1(21lim 11=++=-+-→→x x x x xx x ,故选C 47.解:因为021lim 11lim 00==-+++→→xx x x a x a x ,所以1>a ,故选A 48.解:因为02tan lim 20=→x x x ,故选D 49.解:由书中定理知选C50.解:因为01cos 1lim =∞→xx x ,故选C 51.解:因为6ln 13ln 32ln 2lim 232lim 00=+=-+→→x x x x x x x ,选B 52.解:选A53.解:1sin )cos 1(2lim 20=-→xx x ,选C54.解:因为1)(lim =+∞→x f x ,选A 55.解:选A56.解:0sec 1sin lim0=+→xx x ,选C 57.解:选C58.解:,11sin lim 20=+→xx x x x 选D 59.解:根据连续的定义知选B60.C61.解:选A62.解:选A 63.解:)0(2)(lim 0f x f x ≠=+→π, )0(2)(lim 0f x f x =-=-→π,选B64.解:选A65.解:因为21)1)(1(lim 11lim 21=-+-=--++→→x x x x x x x ,21)1)(1(lim 11lim 21-=-+--=----→→x x x x x x x , 选A66.解:因为)0(1)(lim 0f x f x ==+→,又)0(1)(lim 0f x f x ==-→,所以)(x f 在0=x 点连续, 但111lim )0()(lim )0('00=-+=-=--→→-xx x f x f f x x , 011lim )0()(lim )0('200=-+=-=++→→+xx x f x f f x x 所以)(x f 在0=x 点不可导,选C 67.解:选C68.解:因为)0(1)(lim 0f x f x ≠=+→,又)0(1)(lim 0f x f x ≠=-→,所以)(x f 在0=x 点不连续,从而在0=x 处不可导,但当0→x 时,极限存在,选B69.解:选B70.解:313lim )(-=-=∞→nxnx x f x ,选A 71.解:)0(2111lim 0f x x x ≠=-+→,选A 72.解:选C73.解:因为0)11cot (lim )(lim 211=-+=++→→x arc x x f x x , π=-+=--→→)11cot (lim )(lim 211x arc x x f x x 故选B 74.解:选D75.解:因为2lim ,lim 0-=∞=∞→→y y x x ,曲线既有水平渐近线2-=y ,又有垂直渐近线0=x ,选C 76.解:因为11sin lim =+∞→xx x ,所以有水平渐近线1=y ,但无铅直渐近线,选A 77.D 78.C 解:e cos e sin x x y x x '=-,(0)101y '=-=.选C .79.C 解:x x g cos )('=,所以x e x g f cos )]('[=,故选C .80.解:=--→h x f h x f h )()21(lim 000 1)('21)21(21)()21(lim 0000-=-=----→x f h x f h x f h ,选C 81.解:)('2])()()()([lim )()(lim 00a f xa f x a f x a f x a f x x a f x a f x x =---+-+=--+→→,选B 82.解:因为=--+→h h f h f h )2()2(lim 0 +-+→h f h f h )2()2([lim 0 ])2()2(hf h f ---=)2('2f ,故选A 83.解:)0('f 6)3)(2)(1(lim )0()(lim 00-=---=-=→→xx x x x x f x f x x ,故选B 84.解:因为=--→h h f h f h )()(lim 0 +-→h f h f h )0()([lim 0 ])0()(hf h f ---=)0('2f ,故选C 85.解:因为0lim →h )(')()h - x (000x f hx f f -=-,故选B 86.解:因为=--→h f h f h )1()21(lim 0 21)1('222)1()21(lim 0=-=----→f h f h f h )( ,故选D 87.解:222242)('',2)('x x x e x e x f xe x f ---+-=-=,2)0(''-=f 选C88.解:选B 89.解:01282829.....a x a x a x y ++++=,所以!29)29(=y ,选B90.解:)(')()('')()(x f e e f e e f y x f x x f x x ⋅+=+,选C91.解:!100)100()2)(1(lim )0()(lim )0('00=---=-=→→xx x x x x f x f f x x ,选B 92.解:)'('ln x x e y =)ln 1(x x x +=,选D93.解:,1202lim 2)2()(lim )2('22=---=--=++→→+x x x f x f f x x ,1202lim 2)2()(lim )2('22-=---=--=--→→-x x x f x f f x x 选D 94.解:[]]1)2ln([)2('')2ln(--==--x x e y x x x ,选D95.解:选C 96.解:])()(')()('[21,)](ln )([ln 21x g x g x f x f y y e y x g x f -⋅='=-,选A 97.C 98.A 99.B 100.A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章函数、极限和连续【考试要求】关注公众号:学习吧同学获取更多升本资料一、函数1.理解函数的概念:函数的定义,函数的表示法,分段函数.2.理解和掌握函数的简单性质:有界性,单调性,奇偶性,周期性.3.了解反函数:反函数的定义,反函数的图像.4.掌握函数的四则运算与复合运算.5.理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数.6.了解初等函数的概念.二、极限1.理解数列极限的概念:数列,数列极限的定义.2.了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则.3.理解函数极限的概念:函数在一点处极限的定义,左右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限.4.掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理.5.理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较.6.熟练掌握用两个重要极限求极限的方法.7.熟练掌握分段函数求极限的方法.三、连续1.理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类.2.掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型.3.掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题.4.理解初等函数在其定义区间上连续,并会利用连续性求极限.5.熟练掌握分段函数连续性的判定方法.【考试内容】关注公众号:学习吧同学获取更多升本资料一、函数(一)函数的概念1.函数的定义:设数集D R ⊂,则称映射:f D R →为定义在D 上的函数,通常简记为()y f x =,x D ∈,其中x 称为自变量,y 称为因变量,D 称为定义域.说明:表示函数的记号是可以任意选取的,除了常用的f外,还可以用其他的英文字母或希腊字母,如“g ”、“F ”、“ϕ”等,相应的,函数可记作()y g x =,()y F x =,()y x ϕ=等.有时还直接用因变量的记号来表示函数,即把函数记作()y y x =,这一点应特别注意.2.函数的解析(公式)表示法(1)函数的显式表示法(显函数):()yf x =形式的函数,即等号左端是因变量的符号,而右端是含有自变量的式子,如2cos xy xe x =-,13sin ln xx e y x e x-=++等.(2)函数的隐式表示法(隐函数):函数的对应法则由方程(,)0F x y =所确定,即如果方程(,)0F x y =确定了一个函数关系()y f x =,则称()y f x =是由方程(,)0F x y =所确定的隐函数形式.说明:把一个隐函数化成显函数,叫做隐函数的显化.例如从方程310x y +-=解出y =有时是非常困难的,甚至是不可能的.(3)分段函数:如果函数的对应法则是由几个解析式表示的,则称之为分段函数,如1,0()1,0x x f x x x +≥⎧=⎨-<⎩是由两个解析式表示的定义域为(,)-∞+∞的一个函数.(4)由参数方程确定的函数:如果自变量x 与因变量y 的关系是通过第三个变量t 联系起来()()x t y t ϕφ=⎧⎨=⎩(t 为参变量),则称这种函数关系为参数方程所确定的函数.例如:参数方程2cos 2sin x t y t=⎧⎨=⎩表示的图形即为圆心在原点,半径为4的圆.(二)函数的几种特性1.有界性设函数()f x 的定义域为D ,数集X D ⊂,如果存在正数M,使得()f x M≤对任一x X ∈都成立,则称函数()f x 在X 上有界.如果这样的M不存在,就称函数()f x 在X 上无界.说明:我们这里只讨论有界无界的问题而不区分上界和下界,并且,由上述定义不难看出,如果正数M 是函数()f x 的一个界,则比M大的数都是函数()f x 的界.2.单调性设函数()f x 的定义域为D ,区间I D ∈.如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x <,则称函数()f x 在区间I 上是单调增加的;如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x >,则称函数()f x 在区间I 上是单调减少的.单调增加和单调减少的函数统称为单调函数.3.奇偶性设函数()f x 的定义域D 关于原点对称.如果对于任一x D ∈,()()f x f x -=恒成立,则称()f x 为偶函数.如果对于任一x D ∈,()()f x f x -=-恒成立,则称()f x 为奇函数.例如:()cos f x x =、2()f x x =都是偶函数,()sin f x x =、()arctan f x x =是奇函数,而()sin cos f x x x =+则为非奇非偶函数.偶函数的图形关于y 轴对称,而奇函数的图形关于原点对称.说明:两个偶函数的和是偶函数,两个奇函数的和是奇函数;两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.其余结论读者可自行论证.4.周期性设函数()f x 的定义域为D .如果存在一个正数l ,使得对于任一x D ∈有()x l D ±∈,且()()f x l f x +=恒成立,则称()f x 为周期函数,l 称为()f x 的周期,通常我们说周期函数的周期是指最小正周期.例如:函数sin x 、cos x 都是以2π为周期的周期函数,函数tanx 是以π为周期的周期函数.(三)函数的运算1.和差积商运算设函数()f x ,()g x 的定义域依次为1D ,2D ,12D D D φ=≠ ,则我们可以定义这两个函数的下列运算:(1)和(差)f g ±:()()()()f g x f x g x ±=±,x D ∈;(2)积f g ⋅:()()()()f g x f x g x ⋅=⋅,x D ∈;(3)商f g :()()()f f x xg g x ⎛⎫= ⎪⎝⎭,\{()0,}x D x g x x D ∈=∈.2.反函数(函数的逆运算)对于给定的y 是x 的函数()y f x =,若将y 当作自变量而x 当作因变量,则由关系式()y f x =所确定的函数()x y ϕ=称为函数()f x 的反函数,记为1()y f x -=,()f x 叫做直接函数.若直接函数()y f x =的定义域为D ,值域为M,则反函数1()y f x -=的定义域为M ,值域为D .且直接函数的图像与反函数的图像关于直线y x =对称.3.复合函数(函数的复合运算)设函数()y f u =的定义域为f D ,函数()u g x =的定义域为g D ,且其值域g fR D ⊂,则由下式确定的函数[()]y f g x =,g x D ∈称为由函数()u g x =与函数()y f u =构成的复合函数,它的定义域为g D ,变量u 称为中间变量.说明:g 与f能构成复合函数的条件是函数g 的值域g R 必须含在函数f的定义域fD 内,即gfR D ⊂,否则不能构成复合函数.此外,复合函数可以由多个函数复合而成.(四)基本初等函数与初等函数1.基本初等函数幂函数:y x μ=(R μ∈是常数);指数函数:x y a =(0a >且1a ≠);对数函数:log a y x =(0a >且1a ≠,特别当a e =时记为ln y x =);三角函数:sin y x =,cos y x =,tan y x =,cot y x =,sec y x =,csc y x =;反三角函数:arcsin y x =,arccos y x =,arctan y x =,cot y arc x =.以上五类函数统称为基本初等函数.说明:反三角函数是学习和复习的难点,因此这里重点给出三角函数和反三角函数的关系,这对于后边学习极限、渐近线及导数等知识是非常有帮助的,请大家牢记.(1)反正弦函数arcsin y x =:是由正弦函数sin y x =在区间[,22ππ-上的一段定义的反函数,故其定义域为[1,1]-,值域为[,22ππ-.(2)反余弦函数arccos y x =:是由余弦函数cos y x =在区间[0,]π上的一段定义的反函数,故其定义域为[1,1]-,值域为[0,]π.(3)反正切函数arctan y x =:是由正切函数tan y x =在区间(,)22ππ-上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(,)22ππ-.(4)反余切函数cot y arc x =:是由余切函数cot y x =在区间(0,)π上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(0,)π.2.初等函数由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数.例如:22sin cos y x x =,y =ln(y x =+,2arccos(1)y x =-等都是初等函数.在本课程中所讨论的函数绝大多数都是初等函数.二、极限(一)数列的极限1.数列极限的定义:设{}n x 为一数列,如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得当nN >时,不等式n x A ε-<都成立,那么就称常数A 是数列{}n x 的极限,或者称数列{}n x 收敛于A ,记为lim nn x A →∞=或n x A →(n →∞).如果不存在这样的常数A ,就说数列{}n x 没有极限,或者说数列{}n x 是发散的,习惯上也说lim n n x →∞不存在.说明:数列极限中自变量n 的趋向只有一种,即n →∞,虽然含义表示正无穷,但不要写做n→+∞,注意与函数极限的区别.2.收敛数列的性质性质(1):(极限的唯一性)如果数列{}n x 收敛,那么它的极限唯一.性质(2):(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界.说明:对于数列{}n x ,如果存在正数M ,使得对一切n ,都有n x M ≤,则称数列{}n x 是有界的,否则称数列{}n x 是无界的.性质(3):(收敛数列的保号性)如果lim nn x A →∞=,且0A >(或者0A <),那么存在正整数N ,当nN >时,都有0n x >(或0n x <).(二)函数的极限1.函数极限的定义(1)0xx →时函数的极限:设函数()f x 在点0x 的某个去心邻域内有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当x 满足不等式00x x δ<-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A就叫做函数()f x 当0x x →时的极限,记作0lim ()x x f x A →=或()f x A →(当0x x →).说明:函数的左极限lim ()x x f x A -→=或0()f x A -=;右极限0lim ()x x f x A +→=或0()f x A +=;左极限与右极限统称单侧极限.函数()f x 当0x x →时极限存在的充要条件是左右极限都存在并且相等,即00()()f x f x -+=.(2)x →∞时函数的极限:设函数()f x 当x大于某一正数时有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数X ,使得当x 满足不等式x X >时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当x →∞时的极限,记作lim ()x f x A →∞=或()f x A →(当x →∞).说明:此定义包含lim ()x f x A →+∞=和lim ()x f x A →-∞=两种情况.2.函数极限的性质(以0xx →为例)性质(1):(函数极限的唯一性)如果0lim ()x x f x →存在,那么这极限唯一.性质(2):(函数极限的局部有界性)如果0lim ()x x f x A →=,那么存在常数0M >和0δ>,使得当00x x δ<-<时,有()f x M≤.性质(3):(函数极限的局部保号性)如果0lim()x x f x A →=,且0A >(或0A <),那么存在常数0δ>,使得当00x x δ<-<时,有()0f x >(或()0f x <).(三)极限运算法则1.如果0lim()x x f x A →=,0lim ()x x g x B →=,则有(1)00lim[()()]lim ()lim ()x x x x x x f x g x f x g x A B →→→±=±=±;(2)0lim[()()]lim ()lim ()x x x x x x f x g x f x g x A B →→→⋅=⋅=⋅;(3)000lim ()()lim ()lim ()x x x x x x f x f x A g x g x B→→→==,其中0B ≠;(4)00lim[()]lim ()x x x x cfx c f x →→=,其中c 为常数;(5)0lim[()][lim ()]n n x x x x f x f x →→=,其中n 为正整数.2.设有数列{}n x 和{}n y ,如果lim n n x A →∞=,lim n n y B →∞=,则有(1)lim()nn n x y A B →∞±=±;(2)lim()nn n x y A B →∞⋅=⋅;(3)limn n n x Ay B→∞=,其中0n y ≠(1,2,n = )且0B ≠.3.如果()()x x ϕψ≥,而0lim ()x x x A ϕ→=,0lim ()x x x B ψ→=,则A B ≥.4.复合函数的极限运算法则:设函数[()]y f g x =是由函数()u g x =与函数()y f u =复合而成,[()]f g x 在点0x 的某去心邻域内有定义,若00lim ()x x g x u →=,lim ()u u f u A →=,且存在00δ>,当00(,)x U x δ∈时,有0()g x u ≠,则lim [()]lim ()x x u u f g x f u A →→==.说明:本法则以0xx →为例,其他趋向下亦成立.(四)极限存在准则1.准则I如果数列{}n x 、{}n y 及{}n z 满足下列条件:(1)从某项起,即0n N ∃∈,当0n n >时,有n n n y x z ≤≤,(2)limn n y A →∞=,lim n n z A →∞=,那么数列{}n x 的极限存在,且lim nn x A →∞=.准则I '如果函数()f x 、()g x 及()h x 满足下列条件:(1)当0(,)x U x r ∈(或x M>)时,()()()g x f x h x ≤≤,(2)0()lim ()x x x g x A →→∞=,0()lim ()x x x h x A →→∞=,那么0()lim ()x x x f x →→∞存在,且等于A .说明:准则I 及准则I '称为夹逼准则.2.准则II 单调有界数列必有极限.准则II '单调有界函数必有极限.(函数有界一般是指在某个邻域内有界)(五)两个重要极限1.0sin lim1x x x →=,可引申为()0sin ()lim 1()x x x ϕϕϕ→=,式中不管自变量x 是哪种趋向,只要在此趋向下()0x ϕ→即可(()0x ϕ+→或()0x ϕ-→时亦成立).2.10lim(1)xx x e →+=或1lim(1x x e x→∞+=,可引申为1()()0lim (1())x x x e ϕϕϕ→+=(()0x ϕ+→或()0x ϕ-→时亦成立)或()()1lim (1)()x x e x ϕϕϕ→∞+=(()x ϕ→+∞或()x ϕ→-∞时亦成立).说明:数列亦有第二种极限形式,即1lim(1nn e n→∞+=.两个重要极限是考试的必考内容,请大家务必好好掌握.(六)无穷小和无穷大1.定义(1)无穷小的定义:如果函数()f x 当0x x →(或x →∞)时的极限为零,那么称函数()f x 为当0x x →(或x →∞)时的无穷小量(简称无穷小).特别地,以零为极限的数列{}n x 称为n→∞时的无穷小.说明:以后我们再提到无穷小时,把数列{}n x 当作特殊的函数来看待,故所谓的无穷小本质上就是函数,并且一定是在自变量x 的某一趋向下才有意义.(2)无穷大的定义:如果在自变量的某一变化过程中,函数()f x 的绝对值无限增大,则称函数()f x 为自变量在此变化过程中的无穷大量(简称无穷大).说明:在自变量的同一变化过程中,如果()f x 为无穷大,则1()f x 为无穷小;反之,如果()f x 为无穷小且()0f x ≠,则1()f x 为无穷大.2.无穷小的比较设α,β均为自变量同一趋向下的无穷小,且0α≠,(1)如果lim 0βα=,则称β是比α高阶的无穷小,记作()o βα=;(2)如果lim βα=∞,则称β是比α低阶的无穷小;(3)如果lim0c βα=≠,则称β与α是同阶无穷小;(4)如果lim 1βα=,则称β与α是等价无穷小,记作~αβ;(5)如果lim0k c βα=≠,0k >,则称β是关于α的k 阶无穷小.3.无穷小的性质(1)有限个无穷小的和是无穷小.(2)常数与无穷小的乘积是无穷小.(3)有限个无穷小的乘积是无穷小.(4)有界函数与无穷小的乘积是无穷小.(5)求两个无穷小之比的极限时,分子及分母都可用等价无穷小来替换,即设α,β,α',β'均为自变量同一趋向下的无穷小,且~αα',~ββ',limβα''存在,则lim lim ββαα'='(lim 表示自变量的任一趋向下的极限,以后文中出现此符号时均为此意,不再解释).说明:等价无穷小非常重要,故将常用的等价无穷小列举如下,请大家务必牢记.0x →时sin ~x x ,可引申为()0x ϕ→时,sin ()~()x x ϕϕ;0x →时tan ~x x ,可引申为()0x ϕ→时,tan ()~()x x ϕϕ;0x →时sin ~arc x x ,可引申为()0x ϕ→时,sin ()~()arc x x ϕϕ;0x →时211cos ~2x x -,可引申为()0x ϕ→时,211cos ()~()2x x ϕ-;0x →11~x n -,可引申为()0x ϕ→11~()x n-;0x →时1~x e x -,可引申为()0x ϕ→时,()1~()x e x ϕϕ-;0x →时ln(1)~x x +,可引申为()0x ϕ→时,ln(1())~()x x ϕϕ+.三、连续(一)连续的概念1.连续的定义连续性定义(1):设函数()f x 在点0x 的某一邻域内有定义,如果000lim lim[()()]0x x y f x x f x ∆→∆→∆=+∆-=,则称函数()y f x =在点0x 连续(即自变量的变化量趋于零时函数值的变化量也趋于零).连续性定义(2):设函数()f x 在点0x 的某一邻域内有定义,如果00lim ()()x x f x f x →=,则称函数()y f x =在点0x 连续.2.左连续、右连续及区间连续(1)左连续:lim ()x x f x -→存在且等于0()f x ,即00()()f x f x -=;(2)右连续::lim ()x x f x +→存在且等于0()f x ,即00()()f x f x +=;(3)区间连续:若函数()f x 在区间每一点都连续,则称()f x 为该区间上的连续函数,或者说函数()f x 在该区间上连续.如果区间包括端点,则函数()f x 在右端点连续是指左连续,()f x 在左端点连续是指右连续.说明:一切初等函数在其定义区间内都是连续的.(二)函数的间断点1.定义:设函数()f x 在点0x 的某去心邻域内有定义,如果函数有下列三种情形之一:(1)在0xx =处没有定义;(2)虽在0xx =处有定义,但0lim ()x x f x →不存在;(3)虽在0x x =处有定义,且0lim ()x x f x →存在,但00lim ()()x x f x f x →≠,则函数()f x 在点0x 为不连续,而点0x 称为函数()f x 的不连续点或间断点.2.分类:(1)第一类间断点:如果0x 是函数()f x 的间断点,但左极限0()f x -和右极限0()f x +都存在,那么0x 称为函数()f x 的第一类间断点.00()()f x f x -+=时称0x 为可去间断点,00()()f x f x -+≠时称0x 为跳跃间断点.(2)第二类间断点:不是第一类间断点的任何间断点,称为第二类间断点.常见的第二类间断点有无穷间断点和振荡间断点.(三)闭区间上连续函数的性质1.有界性与最值定理:在闭区间[,]a b 上连续的函数在该区间上有界且一定能取得它的最大值和最小值.2.零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使得()0f ξ=.3.介值定理:设函数()f x 在闭区间[,]a b 上连续,且在这区间的端点取不同的函数值()f a A =及()f b B =,那么对于A 与B 之间的任意一个数C ,在开区间(,)a b 内至少有一点ξ,使得()f C ξ=(a b ξ<<).【典型例题】【例1-1】求复合函数.1.设()12xf x x=-,求[()]f f x .解:求[()]f f x 就是用()f x 代替x 然后化简,得12[()]122141212xx xx f f x x x x x x -===----⋅-.2.设2,01()3,12x x f x x x ⎧≤≤=⎨<≤⎩,()xg x e =,求[()]f g x .解:当01x e ≤≤即0x ≤时,22[()]()x x f g x e e ==,当12x e <≤即0ln 2x <≤时,[()]3x f g x e =,故2,0[()]3,0ln 2x xe xfg x e x ⎧≤=⎨<≤⎩.【例1-2】求函数的定义域.1.()ln(1)f x x =+-.解:由arcsin(21)x -可得1211x -≤-≤,即01x ≤≤可得arcsin(21)0x -≥,即0211x ≤-≤,112x ≤≤;由ln(1)x -可得10x ->,即1x <,故原函数的定义域为三部分的交集,即1[,1)2.2.2()arccos(2)2f x x x x =+---.解:由可得10x -≥,即1x ≥;由220x x --≠即(1)(2)0x x +-≠可得1x≠-且2x ≠;由arccos(2)x -可得121x -≤-≤,13x ≤≤,故原函数的定义域为三部分的交集,即为[1,2)(2,3] .【例1-3】判断函数的奇偶性.1.设()f x 和()g x 为任意函数,定义域均为(,)-∞+∞,试判定下列函数的奇偶性.(1)()()()()f x f xg x g x +-++-解:由奇偶性的判定可知,()()f x f x +-与()()g x g x +-均为偶函数,故其和亦为偶函数.(2)()()()()f x f xg x g x --++-解:由奇偶性的判定可知,()()f x f x --为奇函数,()()g x g x +-为偶函数,故其和为非奇非偶函数.2.判定函数()ln(f x x =+的奇偶性.解:因()ln(f x x -=-+ln(x =-+ln=)()x f x =-+=-,故原函数为奇函数.【例1-4】计算下列极限.1.22212lim()n n n n n→∞+++ .解:当n →∞时,此题是无限个无穷小之和,不能直接求极限,先变形化简再计算:222221(1)121212lim()lim lim 2n n n n n n n n n n n n →∞→∞→∞+++++++=== .2.n →∞+++.<++lim1n →∞=,lim1n →∞=,故原极限值为1.(夹逼准则)3.222lim(1)nn n n→∞++.解:22(22)222222222222lim(1)lim(1)lim(1)n n n n n n n n n n n n e n n n n+⋅+→∞→∞→∞++++=+=+=.4.23lim(21nn n n →∞-+.解:21424212344lim(lim(1)lim(1)212121n nn n n n n n n e n n n +-⋅--+→∞→∞→∞---=+=+=+++.【例1-5】计算下列极限.1.sin limx xx→∞.解:当x →∞时,1x为无穷小,sin x 虽没有极限但却是有界函数,故根据无穷小与有界函数的乘积仍为无穷小,可得sin lim0x xx→∞=.说明:本极限与01lim sin x x x →意义是一样的.2.21lim 1n x x x x nx →+++-- .解:2211111lim lim11n n x x x x x n x x x x x →→+++--+-++-=-- 2121lim[1(1)(1)(1)]n n x x x x x x x --→=+++++++++++ (1)1232n n n +=++++=.说明:此题也可用洛必达法则(见第三章)求解,过程如下:2111(1)lim lim(12)12n n x x x x x n n n x nx x -→→+++-+=+++=- .3.0sin(1)lim 3x x e x→-.解:因当0x→时,sin(1)~1x x e e --,1~x e x -,故00sin(1)11lim lim 333x x x x e e x x →→--==.说明:本题可以使用洛必达法则求解如下:00sin(1)cos(1)1lim lim 333x x x x x e e e x →→--⋅==.4.sin 0limsin x xx e e x x→--.解:sin sin sin 00(1)lim lim 1sin sin x x x x x x x e e e e x x x x-→→--==--(0x →时,sin ~sin x x e x x --).5.23lim(2xx x x→∞++.解:2(2)2222311lim(lim(1)lim(1)222x x x x x x x x x e x x x+⋅+→∞→∞→∞+=+=+=+++.6.11lim(sincos )x x x x→∞+.解:111(sin cos 1)11sin cos 11111lim(sin cos )lim[1(sin cos 1)]x x x x x xx x x x x x⋅→∞→∞+=++-211111sin cos 1sincos 12limlim lim 1lim111110x x x x x x x x x xx xxe e ee e→∞→∞→∞→∞---+++=====.【例1-6】已知()f x 是多项式,且32()2lim 2x f x x x→∞-=,0()lim 3x f x x →=,求()f x .解:利用前一极限式可令32()22f x x x ax b =+++,再利用后一极限式,得00()3lim lim()x x f x ba x x→→==+,则3a =,0b =,故32()223f x x x x =++.【例1-7】当0x→时,比较下列无穷小的阶.1.2x 比1cos x -.解:因22002lim lim 211cos 2x x x x x x →→==-,故2x 与1cos x -是同阶无穷小.2.2x1-.解:因220lim lim 012x x x x→→==,故2x1-高阶的无穷小.3-比x .解:因0011lim lim x x x →→-=1x →==-x 是等价无穷小.4.2x 比tan sin x x -.解:因2220002cos lim lim lim 1tan sin sin (1cos )2x x x x x x x x x x x x x →→→===∞--⋅,故2x 是比tan sin x x -低阶的无穷小.说明:本题中的四个题目均可用洛必达法则求解.【例1-8】讨论下列分段函数在指定点处的连续性.1.01()1,11,1x f x x x x ⎧≤<⎪==⎨⎪+>⎩在1x =处的连续性.解:因(1)1f =,11(1)lim ()lim 2x x f f x ---→→===,11(1)lim ()lim(1)2x x f f x x +++→→==+=,从而1lim ()2(1)x f x f →=≠,故函数在1x =处不连续.2.1,0()ln(1),0x e x f x x x ⎧⎪<=⎨⎪+≥⎩在0x =处的连续性.解:因(0)0f =,1(0)lim ()lim 0xx x f f x e ---→→===,(0)lim ()lim ln(1)0x x f f x x +++→→==+=,从而0lim ()0(0)x f x f →==,故函数在0x =处连续.【例1-9】当常数a 为何值时,函数2,0()ln(1),0x a x f x x x x -≤⎧⎪=⎨+>⎪⎩在0x =处连续?解:因(0)f a =-,0(0)lim ()lim(2)x x f f x x a a ---→→==-=-,10000ln(1)1(0)lim ()lim lim )lim ln(1)1xx x x x x f f x x x xx +++++→→→→+===+=+=,故由连续性可得,(0)(0)(0)f f f -+==,即1a -=,故1a =-.【例1-10】求下列函数的间断点并判断其类型.1.1()xf x e=.解:所给函数在0x =处无定义,故0x =是间断点.又1lim x x e +→=+∞,10lim 0xx e -→=,故0x=是()f x 的第二类间断点.2.()sin xf x x=.解:所给函数在x k π=(0,1,2,k =±± )处无定义,故0x =、x k π=(1,2,k=±± )是间断点.又0lim1sin x xx→=,故0x =是第一类间断点,且是可去间断点;lim sin x k xxπ→=∞,故x k π=是第二类间断点,且是无穷间断点.3.111()1xxe f x e -=+.解:所给函数在0x=处无定义,故0x =是间断点.又1101(0)lim 11xx xe f e ++→-==+,111(0)lim 11xx xe f e --→-==-+,故0x =是()f x 的第一类间断点且是跳跃间断点.4.1arctan ,0()0,x f x xx ⎧≠⎪=⎨⎪=⎩.解:该题是分段函数的连续性问题,因0x≠时1arctanx 是初等函数,故1arctan x在0x ≠时是连续的,所以该题主要考虑分界点0x =处的连续性.由1(0)lim arctan 2x f x π++→==,01(0)lim arctan 2x f x π--→==-,可知0x =是()f x 的第一类间断点且是跳跃间断点.【例1-11】证明方程32410x x -+=在区间(0,1)内至少有一个根.证:函数32()41f x x x =-+在闭区间[0,1]上连续,又(0)10f =>,(1)20f =-<,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即32410ξξ-+=(01ξ<<),该等式说明方程32410x x -+=在区间(0,1)内至少有一个根是ξ.【例1-12】证明方程21xx ⋅=至少有一个小于1的正根.证:由题意,函数()21x f x x =⋅-在区间[0,1]上连续,又(0)10f =-<,(1)10f =>,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即210ξξ⋅-=(01ξ<<),该等式说明方程21x x ⋅=在区间(0,1)内至少有一个小于1的正根ξ.【历年真题】一、选择题1.(2010年,1分)函数1arccos 2x y +=-的定义域是()(A )[3,1]-(B )[3,1]--(C )[3,1)--(D )[1,1]-解:因2101112x x ⎧-≥⎪⎨+-≤≤⎪⎩,故11212x x -≤≤⎧⎨-≤+≤⎩,1131x x -≤≤⎧⎨-≤≤⎩,所以11x -≤≤,故选(D ).2.(2010年,1分)极限0sin 3limx xx→等于()(A )0(B )1(C )13(D )3解:00sin 33limlim 3x x x xx x→→==,故选(D ).3.(2009年,1分)极限(1)lim nn n n→∞+-=()(A )1(B )0(C )∞(D )不存在解:(1)(1)(1)lim lim[1]1lim 101n n nn n n n n n n→∞→∞→∞+---=+=+=+=,故选(A ).4.(2009年,1分)若1,0()0,01,0x x f x x x x -<⎧⎪==⎨⎪+>⎩,则0lim()x f x →=()(A )1-(B )0(C )1(D )不存在解:因lim ()lim(1)1x x f x x --→→=-=-,0lim ()lim(1)1x x f x x ++→→=+=,lim ()lim ()x x f x f x -+→→≠,故0lim ()x f x →不存在,选(D ).5.(2009年,1分)2x π=是函数tan x y x=的()(A )连续点(B )可去间断点(C )跳跃间断点(D )第二类间断点解:因2lim 0tan x xx π→=,故2x π=是函数tan x y x =的可去间断点,选(B ).6.(2008年,3分)设1()sinf x x x=,则lim()x f x →∞等于()(A )0(B )不存在(C )∞(D )1解:1sin 1lim()lim sinlim 11x x x x f x x x x→∞→∞→∞===,故选(D ).7.(2008年,3分)当0x →时,23x 是2sin x 的()(A )高阶无穷小(B )同阶无穷小,但不等价(C )低阶无穷小(D )等价无穷小解:因22220033lim lim 3sin x x x x x x→→==,故选(B ).8.(2007年,3分)当0x→时,tan 2x 是()(A )比sin 3x 高阶的无穷小(B )比sin 3x 低阶的无穷小(C )与sin 3x 同阶的无穷小(D )与sin 3x 等价的无穷小解:因00tan 222lim lim sin 333x x x x x x →→==,故选(C ).9.(2006年,2分)设()sin f x x =,,0(),0x x g x x x ππ-≤⎧=⎨+>⎩,则[()]f g x =()(A )sin x (B )cos x (C )sinx -(D )cos x-解:当0x ≤时,[()]()sin()sin()sin f g x f x x x xπππ=-=-=--=-;当0x>时,[()]()sin()sin f g x f x x x ππ=+=+=-,故选(C ).10.(2005年,3分)设120lim(1)xx mx e →-=,则m =()(A )12-(B )2(C )2-(D )12解:由11()20lim(1)lim[1()]m m xmxx x mx mx e e ⋅---→→-=+-==,得2m =-,选(C ).11.(2005年,3分)设1xy e-=是无穷大,则x 的变化过程是()(A )0x+→(B )0x -→(C )x→+∞(D )x→-∞解:0x +→时,1x →+∞,1x-→-∞,10x e -→;0x -→时,1x →-∞,1x-→+∞,1x e -→+∞;故选(B ).二、填空题1.(2010年,2分)若函数21,1(),1x x f x x a x -+≤⎧=⎨->⎩在1x =处连续,则a =.解:11lim()lim(21)1x x f x x --→→=-+=-,11lim ()lim()1x x f x x a a ++→→=-=-,因()f x 在点1x =处连续,故11lim ()lim ()x x f x f x -+→→=,即11a -=-,2a =.2.(2010年,2分)0x=是函数1()cos f x x x=的第类间断点.解:因1lim ()lim cos0x x f x x x →→==,故0x =是函数()f x 的第一类间断点.3.(2009年,2分)设1,1()0,11,1x f x x x ⎧<⎪==⎨⎪->⎩,()x g x e =,则[(ln 2)]g f =.解:因0ln 21<<,故(ln 2)1f =,所以1[(ln 2)](1)g f g e e ===.4.(2009年,2分)1sin y x=在0x =处是第类间断点.解:因0x→时,1x →∞,1sin x没有极限,故x =是第二类间断点.5.(2008年,4分)函数ln arcsin y x x =+的定义域为.解:由题意,011x x >⎧⎨-≤≤⎩,故原函数的定义域为(0,1].6.(2008年,4分)设数列n x 有界,且lim 0n n y →∞=,则lim n n n x y →∞=.解:数列可看作特殊的函数,因数列n x 有界,数列n y 为无穷小,所以根据无穷小与有界函数的乘积仍然是无穷小可得,lim 0n nn x y →∞=.7.(2008年,4分)函数y =的反函数为.解:由y =31y x =+,31x y =-,故反函数为31y x =-.8.(2007年,4分)函数21arcsin 3x y -=的定义域为.解:由21113x --≤≤得,3213x -≤-≤,即12x -≤≤,所以定义域为[1,2]-.9.(2007年,4分)21lim()xx x x→∞-=.解:22(2)2111lim()lim(1)lim(1)x x x x x x x e x x x-⋅--→∞→∞→∞---=+=+=.10.(2006年,2分)若函数2121212(,0()12,0x x x f x xx a x +⎧->⎪=⎨+⎪-≤⎩在0x=处连续,则a =.解:00lim()lim(2)x x f x x a a --→→=-=-,22211221(3)3322000123lim ()lim()lim(1)11x x x x x x xx f x e xx+++++⋅---→→→--==+=++,因()f x 在0x =处连续,故0lim ()lim ()x x f x f x -+→→=,即3a e --=,故3a e -=-.三、计算题1.(2010年,5分)求极限lim xx x c x c →∞+⎛⎫⎪-⎝⎭,其中c 为常数.解:22222lim lim 1lim 1x c cxxxc x cc x x x x c c c e x c x c x c -⋅-→∞→∞→∞+⎛⎫⎛⎫⎛⎫=+=+=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.2.(2010年,5分)求极限3tan limx x xx→-.解:22322000tan sec 1tan 1lim lim lim 333x x x x x x x x x x →→→--===.说明:此题也可多次使用洛必达法则,解法如下:232000tan sec 12sec sec tan 1lim lim lim 363x x x x x x x x x x x x →→→--⋅===.3.(2009年,5分)求极限3113lim 11x x x →⎛⎫- ⎪--⎝⎭.解:此题为“∞-∞”型的极限,解法如下:23321111313(1)(2)lim lim lim 1111(1)(1)x x x x x x x x x x x x x →→→++--+⎛⎫-===- ⎪----++⎝⎭.4.(2009年,5分)求极限0lim sin x xx e e x-→-.解:002lim lim 2sin cos 1x x x x x x e e e e x x --→→-+===.5.(2008年,5分)求极限2sin 2lim cos()x xx ππ→-.解:22sin 22cos 2limlim 2cos()sin()(1)x x x x x x ππππ→→==----⋅-.6.(2007年,5分)求极限011lim(1x x x e →--.解:20000111111lim()lim lim lim 1(1)22x x x x x x x x x e x e x e x e x e x x →→→→------====--.说明:0x→时,1~x e x -.7.(2006年,4分)求极限011limcot ()sin x x x x→-.解:230011cos (sin )sin limcot()lim limsin sin x x x x x x x x x x x x x x →→→---==2220011cos 12lim lim 336x x xx x x →→-===.8.(2006年,4分)设1cos 20()sin xf x t dt -=⎰,56()56x x g x =+,求0()lim ()x f x g x →.解:因0x→时,1cos 20()sin 0xf x t dt -=→⎰,56()056x xg x =+→,且1cos 220()(sin )sin sin(1cos )x f x t dt x x -''==-⎰,45()g x x x '=+,故2245450000()()sin sin(1cos )(1cos )lim lim lim lim ()()x x x x f x f x x x x x g x g x x x x x →→→→'--==='++224454500011()124lim lim 041x x x x x x x x x x x x x→→→⋅====+++.9.(2005年,5分)求极限111lim()1ln x x x→--.解:1111111ln 1lim()lim lim 11ln (1)ln ln x x x x x x x x x x x x x →→→--+-==---+11111lim lim ln 1ln 112x x x x x x x →→--===-+-++.关注公众号:学习吧同学获取更多升本资料。