函数图像的变换及其应用.
函数图像变换及应用

上节课知识检测一、基本内容1.利用描点法作函数图像其基本步骤是列表、描点、连线,具体为:2、会画基本函数图像(一次(两点想x 取0,,y 取0(或X 取1))、反比例(三点(x 取1/2、1,2)对称轴、对称中心)、二次(对称轴\顶点\开口)、幂(四点x 取0,1/2,1,2对称)、指数(三点x 取-1,0,1)、对数(三点Y-1,0,1)、对勾(两部分相等时X 值点)、三角(x 取五点;对称轴、对称中心))3.掌握画图像的基本方法:(1)描点法(2)图像变换法.平移、伸缩、翻折 (3)讨论分段法(1)平移变换:y =f (x ) ――――――――――→a >0,右移a 个单位a <0,左移|a |个单位 y =f (x -a ); y =f (x ) ―――――――――→b >0,上移b 个单位b <0,下移|b |个单位 y =f (x )+b . (2)伸缩变换:y =f (x )10111ωωωω<<>−−−−−−−−→,伸原的倍,短原的长为来缩为来 y =f (ωx );y =f (x ) ――――――――――――→A >1,伸为原来的A 倍0<A <1,缩为原来的A 倍 y =Af (x ). (3)对称变换:y =f (x )―――――――――→关于x 轴对称 y =-f (x ); y =f (x )――――――→关于y 轴对称 y =f (-x ); y =f (x )――――――――→关于原点对称 y =-f (-x ). (4)翻折变换:y =f (x )―――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图像翻折到左边去y =f (|x |);y =f (x )―――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )|.二、易错点1.在解决函数图像的变换问题时,要遵循“只能对函数关系式中的x ,y 变换”的原则,写出每一次的变换所得图像对应的解析式,这样才能避免出错.2.明确一个函数的图像关于y 轴对称与两个函数的图像关于y 轴对称的不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三、基本考点及例题 考点一 作图像画函数图像的一般方法1、直接法.(1)描点法 (2)经验法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;2、图像变换法.若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换作出,但要注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.3、分段函数:分别作出每段区间的图像,注意:分段函数是一种特殊的函数,自变量在不同范围内取值时,对应的解析式不同,但无论分段函数共有几段,它始终是一个函数,而不是多个函数。
二次函数图像的变化规律及应用

二次函数图像的变化规律及应用引言:二次函数是高中数学中的重要内容之一,它的图像呈现出一种独特的形态,具有丰富的变化规律和广泛的应用。
本文将从图像的变化规律和应用两个方面,对二次函数进行深入的探讨。
一、图像的变化规律1. 平移变换二次函数的图像可以通过平移变换而得到不同的形态。
平移变换是指在坐标平面上将图像整体向左、右、上、下平移的操作。
对于二次函数y=ax^2+bx+c,当平移向右时,a保持不变,b不变,c减小;当平移向左时,a保持不变,b不变,c增大;当平移向上时,a增大,b不变,c增大;当平移向下时,a减小,b不变,c减小。
通过平移变换,我们可以观察到二次函数图像在平面上的移动轨迹,进而掌握其变化规律。
2. 缩放变换缩放变换是指在坐标平面上将图像整体放大或缩小的操作。
对于二次函数y=ax^2+bx+c,当缩放因子为k时,a不变,b不变,c增大(或减小)k倍。
缩放变换可以改变二次函数图像的大小和形状,通过观察不同缩放因子下的图像,我们可以总结出二次函数图像的缩放规律。
3. 翻折变换翻折变换是指在坐标平面上将图像关于某一直线进行对称的操作。
对于二次函数y=ax^2+bx+c,当翻折轴为x轴时,a不变,b变号,c不变;当翻折轴为y轴时,a变号,b不变,c不变;当翻折轴为直线x=k时,a不变,b变号,c变号。
翻折变换可以改变二次函数图像的位置和形状,通过观察不同翻折轴下的图像,我们可以总结出二次函数图像的翻折规律。
二、图像的应用1. 最值问题二次函数的图像呈现出一个开口朝上或朝下的抛物线形态,通过观察图像的顶点,我们可以得出二次函数的最值。
当抛物线开口朝上时,顶点为最小值;当抛物线开口朝下时,顶点为最大值。
最值问题在实际应用中有广泛的应用,例如在物理学中,我们可以通过最值问题求解物体的最高点或最低点。
2. 零点问题二次函数的图像与x轴的交点称为零点,也叫根或解。
通过观察图像与x轴的交点,我们可以求解二次函数的零点。
三角函数图像变换方法

三角函数图像变换方法是数学和工程领域中非常重要的概念,其应用范围广泛,包括但不限于信号处理、图像处理、机械振动分析等领域。
下面将详细介绍三角函数图像变换的原理、方法和应用。
一、三角函数图像变换的基本原理三角函数图像变换的核心是通过调整三角函数的参数(如振幅、频率、相位等),从而改变其图像的形状和位置。
具体来说,可以通过以下几种方式来实现三角函数图像的变换:1. 振幅变换:通过改变三角函数的振幅参数,可以改变图像在垂直方向上的大小。
振幅增加时,图像的高度增加;振幅减小时,图像的高度减小。
2. 频率变换:通过改变三角函数的频率参数,可以改变图像在水平方向上的周期性。
频率增加时,图像的周期减小,图像变得更密集;频率减小时,图像的周期增加,图像变得更稀疏。
3. 相位变换:通过改变三角函数的相位参数,可以改变图像在水平方向上的平移。
相位增加时,图像向右平移;相位减小时,图像向左平移。
二、三角函数图像变换的常见方法1. 振幅变换法:通过直接调整三角函数的振幅参数,实现图像在垂直方向上的大小变化。
例如,将正弦函数y=sin(x)的振幅扩大2倍,得到y=2sin(x)的图像,其高度变为原来的2倍。
2. 频率变换法:通过调整三角函数的频率参数,实现图像在水平方向上的周期性变化。
例如,将正弦函数y=sin(x)的频率增加2倍,得到y=sin(2x)的图像,其周期变为原来的1/2。
3. 相位变换法:通过调整三角函数的相位参数,实现图像在水平方向上的平移。
例如,将正弦函数y=sin(x)的相位增加π/2,得到y=sin(x+π/2)的图像,其向右平移π/2个单位。
此外,还可以结合使用上述方法,实现更复杂的图像变换。
例如,可以同时调整振幅、频率和相位参数,得到不同形状和位置的三角函数图像。
三、三角函数图像变换的应用三角函数图像变换在各个领域有着广泛的应用。
以下是一些典型的应用示例:1. 信号处理:在信号处理中,三角函数图像变换常用于分析信号的频率成分和相位关系。
高考数学中的函数图像变换及其应用

高考数学中的函数图像变换及其应用高考数学作为广大学生面临的一大挑战,其中数学分值占比不容忽视,其中函数图像变换的相关知识成为了考生备考重点之一。
本文将介绍这些知识,并探讨其相关应用。
一、函数图像的平移平移是函数图像变换中最基本的一种,它是通过改变函数图像与坐标轴的相对位置来实现的。
其中,平移的方向与距离是决定平移效果的两个重要因素。
对于一般的函数y=f(x),将它的图像向右平移a个单位长度的方法如下:设新函数为y=f(x-a),则各个点的实际位置为(x+a,y),根据平移的原理,需要将这些点在坐标系中向左平移a个单位长度即可实现。
类似地,将函数图像向左平移a个单位长度的方法就是y=f(x+a),而将其上移或下移b个单位长度的方法分别为y=f(x)+b 和y=f(x)-b。
函数图像的平移主要应用于研究函数图像的周期性,以及改变其输出值区间、控制其渐进线等方面。
二、函数图像的伸缩伸缩也是函数图像变换中常用的一种方法,它是通过改变函数图像沿x、y轴的长度比例来实现的。
对于一般的函数y=f(x),将其图像沿x轴方向压缩k倍的方法如下:设新函数为y=f(kx),则每个点的实际位置为(x/k,y),因此只需将这些点在坐标系中沿x轴方向伸缩k倍即可。
类似地,函数图像沿y轴方向压缩k倍的方法为y=kf(x),而沿x、y轴方向伸缩k倍的方法分别为y=f(x/k)和y=kf(kx)。
函数图像的伸缩主要应用于研究函数图像的单调性、极值、导数等性质,以及折线图、曲线图的绘制等方面。
三、函数图像的旋转旋转是函数图像变换中相对复杂的一种,它是通过改变函数图像与坐标轴的相对位置和形状来实现的。
对于一般的函数y=f(x),将其图像沿原点逆时针旋转α角的方法如下:设新函数为y=f(xcosα+ysinα),则原函数中每个点的坐标(x,y)将变为(xcosα+ysinα,-xsinα+ycosα),按照旋转的原理,需要将这些点在坐标系中沿逆时针方向旋转α角度即可实现。
高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析

高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析在高考中涉及到的三角函数图像变换主要指的是形如()sin y A x ωϕ=+的函数,通过横纵坐标的平移与放缩,得到另一个三角函数解析式的过程。
要求学生熟练掌握函数图像变换,尤其是多次变换时,图像变化与解析式变化之间的对应联系。
一、基础知识:(一)图像变换规律:设函数为()y f x =(所涉及参数均为正数) 1、函数图像的平移变换:(1)()f x a +:()f x 的图像向左平移a 个单位 (2)()f x a −:()f x 的图像向右平移a 个单位 (3)()f x b +:()f x 的图像向上平移b 个单位 (4)()f x b −:()f x 的图像向下平移b 个单位 2、函数图像的放缩变换:(1)()f kx :()f x 的图像横坐标变为原来的1k(图像表现为横向的伸缩) (2)()kf x :()f x 的图像纵坐标变为原来的k 倍(图像表现为纵向的伸缩) 3、函数图象的翻折变换: (1)()fx :()f x 在x 轴正半轴的图像不变,负半轴的图像替换为与正半轴图像关于y 轴对称的图像(2)()f x :()f x 在x 轴上方的图像不变,x 轴下方的部分沿x 轴向上翻折即可(与原x 轴下方图像关于x 轴对称)(二)图像变换中要注意的几点:1、如何判定是纵坐标变换还是横坐标变换?在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下: ① 若变换发生在“括号”内部,则属于横坐标的变换 ② 若变换发生在“括号”外部,则属于纵坐标的变换例如:()31y f x =+:可判断出属于横坐标的变换:有放缩与平移两个步骤()2y f x =−+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标的为平移变换2、解析式变化与图像变换之间存在怎样的对应?由前面总结的规律不难发现: (1)加“常数”⇔ 平移变换(2)添“系数”⇔放缩变换 (3)加“绝对值”⇔翻折变换3、多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:① 横坐标的变换与纵坐标的变换互不影响,无先后要求 ② 横坐标的多次变换中,每次变换只有x 发生相应变化 例如:()()21y f x y f x =→=+可有两种方案方案一:先平移(向左平移1个单位),此时()()1f x f x →+。
三角函数的图像及其变换

振幅变换
振幅变换
通过将三角函数中的系数乘以一 个常数,可以改变函数图像的形 状和大小。例如,将正弦函数 y=sin(x)变为y=2sin(x),图像的 高度变为原来的两倍。
总结词
振幅变换可以改变函数图像的大 小和形状,但不影响位置。
详细描述
振幅变换通常通过乘以一个常数来实 现。例如,对于正弦函数y=sin(x),乘 以2得到y=2sin(x),图像的高度变为 原来的两倍。同样地,对于余弦函数 y=cos(x),乘以2得到y=2cos(x),图 像的高度也变为原来的两倍。
与复数的联系
三角函数与复数之间有着密切的联系。例如,复数的三角形式就是由三角函数来表示的,这使得复数 的一些性质和运算可以通过三角函数来理解和实现。
此外,在复分析中,三角函数也起着重要的作用,如在求解某些复数域上的微分方程时,经常需要用 到三角函数。
谢谢
THANKS
应用
正切函数在解决实际问题和数学 问题中也有应用,例如在几何学 和三角学中的角度和长度计算。
02 三角函数的图像
CHAPTER
正弦函数的图像
01
正弦函数图像是周期函数,其基本周期为$2pi$,在$[0, 2pi]$ 区间内呈现波形。
02
正弦函数图像在$x$轴上的交点是$(frac{pi}{2} + kpi, 0)$,其
周期变换
总结词
详细描述
通过改变三角函数的周期,可以改变
函数图像的形状和位置。例如,将正 弦函数和余弦函数的周期从2π变为4π, 图像将变为原来的两倍长,但形状和
周期变换可以改变函数图像的长度, 但不影响形状和位置。
位置保持不变。
周期变换通常通过乘以一个常数来实现。例 如,将函数y=sin(x)变为y=sin(2x),周期 从2π变为π,图像长度减半。同样地,对于 余弦函数,将y=cos(x)变为y=cos(2x),周 期从2π变为π,图像长度也减半。
高三数学专题教案函数图像的变换及应用_

芯衣州星海市涌泉学校2021届高三数学专题教案:函数图像的变换及应用一.知识梳理复习函数图像的变换:(1)、奇偶函数图象的对称性;(2)、假设f(x)满足f(a+x)=f(b -x)那么f(x)的图象以2a b x+=为对称轴;特例:假设f(a+x)=f(a -x)那么f(x)的图象关于x=a 对称。
(3)、假设f(x)满足f(a+x)=-f(b -x)那么f(x)的图象以(,0)2a b +为对称中心;特例:假设f(a+x)=-f(a -x)那么f(x)的图象以点〔a,0〕为对称中心。
(4)、假设f(x)满足f(a+x)+f(b-x)=c 那么f(x)的图象关于点(,)22a b c +中心对称。
二.例题讲解例1、求函数y=f 〔1-x 〕与函数y=f 〔x-1〕的图象对称轴方程?〔1〕.对于定义在R 上的函数)(x f ,有下述命题: ①假设)(x f 是奇函数,那么)1(-x f 的图像关于点)0,1(A 对称;②假设对R x ∈,恒有)1()1(-=+x f x f ,那么)(x f 的图像关于直线1=x 对称; ③假设函数)1(-x f 的图像关于直线1=x 对称,那么)(x f 为偶函数; ④函数)1(x f +与函数)1(x f -的图像关于直线1=x 对称.其中正确命题的序号为______________________.例2、设f(x)=x+1,求f(x+1)关于直线x=2对称的曲线的解析式。
例3、设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,求f(x)的解析式。
例3、设定义域为R 的函数⎩⎨⎧=≠-=1,01,||1|lg |)(x x x x f ,那么关于x 的方程0)()(2=++c x bf x f有7个不同实数解的充要条件是〔〕(A)0<b 且0>c(B)0>b 且0<c (C)0<b 且0=c (D)0≥b 且0=c 例4.函数)(x f 的图像与函数21++=x x y 的图像关于点)1,0(A 对称. 〔1〕求)(x f 的解析式;〔2〕假设xa x f x g +=)()(且)(x g 在区间]2,0(上为减函数,求正数a 的取值范围. 例5、函数4(1)|1|()2(1)x x f x x ⎧≠⎪-=⎨⎪=⎩〔1〕作出函数()y f x =的大致图像. 〔2〕〔考虑题〕假设关于x 的方程2()()0f x bf x c ++=有三个不同的实数解123x x x 、、,求222123x x x ++的值.三、课后习题:1、设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,求f(x)的解析式。
三角函数图像与变换

三角函数图像与变换一、引言三角函数是高中数学中的重要内容,它们在数学和物理等领域都有广泛的应用。
本文将从三角函数的图像出发,探讨其与变换的关系,并探讨它们在实际问题中的应用。
二、三角函数的基本图像1. 正弦函数的图像正弦函数是最基本的三角函数之一,它的图像呈现周期性的波动形态。
当自变量为0时,正弦函数的值为0;当自变量为90度(或π/2弧度)时,正弦函数的值为1;当自变量为180度(或π弧度)时,正弦函数的值为0;当自变量为270度(或3π/2弧度)时,正弦函数的值为-1;以此类推,正弦函数的图像在每个周期内都呈现出上升、下降、上升、下降的特点。
2. 余弦函数的图像余弦函数与正弦函数非常相似,它们的图像在形态上只有一个平移。
当自变量为0时,余弦函数的值为1;当自变量为90度(或π/2弧度)时,余弦函数的值为0;当自变量为180度(或π弧度)时,余弦函数的值为-1;当自变量为270度(或3π/2弧度)时,余弦函数的值为0;以此类推,余弦函数的图像也呈现出上升、下降、上升、下降的特点。
3. 正切函数的图像正切函数是另一个重要的三角函数,它的图像呈现出周期性的波动形态。
正切函数的图像在每个周期内都有一个渐进线,即在自变量接近90度(或π/2弧度)和270度(或3π/2弧度)时,函数值趋近于无穷大。
三、三角函数的变换1. 平移变换平移变换是指将函数的图像沿x轴或y轴方向移动一定的距离。
对于正弦函数和余弦函数,平移变换可以通过改变自变量的值来实现。
例如,将正弦函数的自变量增加π/4,可以使函数图像向左平移π/4个单位;将正弦函数的自变量减少π/4,可以使函数图像向右平移π/4个单位。
同样的,对于余弦函数,也可以通过改变自变量的值来实现平移变换。
2. 伸缩变换伸缩变换是指将函数的图像在x轴或y轴方向进行拉伸或压缩。
对于正弦函数和余弦函数,伸缩变换可以通过改变自变量的系数来实现。
例如,将正弦函数的自变量乘以2,可以使函数图像在x轴方向压缩一倍;将正弦函数的自变量除以2,可以使函数图像在x轴方向拉伸一倍。
函数图象的变换

3.合理处理识图题与用图题
(1)识图
对于给定函数的图象,要能从图象的 左右、上下分布范围、变化趋势、对 称性等方面研究函数的定义域、值域、 单调性、奇偶性、周期性,注意图象 与函数解析式中参数的关系.
从图象的左右分布,分析函数的定义域;从 图象的上下分布,分析函数的值域;从图象 的最高点、最低点,分析函数的最值;从图 象的对称性,分析函数的奇偶性;从图象的 走向趋势,分析函数的单调性、周期性等.
2.已知x1是方程xlg x=2008的根,x2是方程 x10x=2008的根,则x1x2等于( )
正确的一组是( C )
A. (4) (1) (2) (3) C. (1) (4) (2) (3)
B. (1) (4) (3) (2) D. (3) (4) (2) (1)
例2 设a<b,函数 y=(x-a)2(x-b)的图象可能是
( C)
解析 当x>b时,y>0,x<b时,y≤0.故选C.
(1)函数y=
8.已知f(x)是以2为周期的偶函数,当x∈[0,1]时,
f(x)=x,且在[-1,3]内,关于x的方程
f(x)=kx+k+1
( 1 ,0)
3 (k∈R,k≠-1)有四个根,则k的取值范围是
.
三、解答题 10.已知g(x)=x(2-x)(0≤x<1),g(1)=0,若函数
y=f(x)(x∈R)是以2为周期的奇函数,且在[0,1] 上f(x)=g(x),作出函数y=f(x)(-2≤x≤2)的图象 并 求其表达式. 解 ①x∈[0,1)时,f(x)=g(x)=x(2-x); ②∵f(x)为奇函数,当x=1时, f(1)=g(1)=0,∴f(-1)=0=f(1), ③若x∈(-1,0],则-x∈[0,1), ∴g(-x)=-x(2+x), 又∵f(-x)=g(-x)且f(x)为奇函数, ∴f(-x)=-f(x)=-x(2+x),
函数图像的变换及其应用.

函数图像的变换及其应用执教:嘉定区教师进修学院 张桂明教学目标:1.熟练掌握常见函数图像的画法,记住它们的大致形状和准确位置. 2.掌握函数图像的几种类型的变换,能用图像变换法解决一些有关的函数问题.3.通过对函数图像变换与应用问题的探究及解决,提高分析问题和解决问题的能力,体会数形结合的思想方法在解决函数与方程问题中的重要作用并能初步加以应用.教学重点:1.常见函数的图像及其画法.2.函数图像的变换及变换后的对称性、单调性的变化. 教学难点:应用数形结合的思想方法对问题进行分析思考,寻求解题策略. 教学过程: 一、引入课题问题:设定义域为R 的函数⎩⎨⎧=≠-=1,01,||1|lg |)(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是( )(A) 0<b 且0>c (B) 0>b 且0<c (C) 0<b 且0=c (D) 0≥b 且0=c二、知识回顾1.函数图像的作法,你有哪些常用的方法?2.请说出常见函数图像的形状、位置,作出它们的草图.3.你会用哪些函数图像的变换方法来作函数的图像?在这些变换中,如果原来的函数图像具有某种对称性,那么变换后它们的对称性有什么变化?函数的单调性在变换后又有什么变化?4.函数)(x f 的图像关于直线a x =成轴对称图形的充要条件是什么?函数)(x f 的图像关于点),(b a 成中心对称图形的充要条件双是什么?三、问题探究1.若函数3)2(2+++=x a x y ,],[b a x ∈的图像关于直线1=x 对称,则=b ______________.2.已知函数|12|)(-=x x f 的图像与直线a y =有且仅有一个公共点,则实数a 的取值范围是___________________.3.已知函数222)(+=x x x f ,R x ∈.(1)求证:函数)(x f 的图像关于点)21,21(A 对称;(2)不使用计算器,试求)109()108()102()101(f f f f ++++Λ的值.4.讨论方程a x x =+-|3||4|2的实数解的情况.四、方法小结五、练习与作业学生练习与作业1.怎样变换函数x y =的图像,得到函数13+-=x y 的图像,并画出此函数的图像。
正弦型函数图像的变换及其应用

正弦型函数图像的变换及其应用作者:郑敬曦来源:《新教育时代·学生版》2018年第22期摘要:正弦型函数的学习是高中数学学习阶段中的一个重要的知识点,本文基于此,分析了正弦型函数图像的变换和应用,希望对大家的学习有帮助。
关键词:正弦型函数图像应用一、函数y=Asin(ωx+φ)图像的变换函数y=Asin(ωx+φ)(其中A,ω,φ都是常数,且A>0,ω>0)是一种重要的三角函数模型,由正弦函数y=Asin(ωx+φ)(A>0,ω>0)的图像,由两种变换途径:“先平移后伸缩”与“先伸缩后平移”,其变换规律是:1.先平移后伸缩(1)相位变换(平移变换)。
将函数y=sinx的图像沿x轴向左平移φ(φ>0)个单位,或向右平移丨φ丨(φ>0)个单位,得到函数y=sin(x+φ)的图像。
(2)周期变换。
将函数y=sin(ωx+φ)图像的纵坐标不变,横坐标变为原来,得到y=sin (ωx+φ)的图像。
(3)振幅变换。
将函数y=sin(ωx+φ)图像的横坐标不变,纵坐标变为原来的A倍,得到y=Asin(ωx+φ)的图像。
2.先伸缩后平移(1)周期变换。
将函数y=sinx的图像纵坐标不变,横坐标变为原来的,得到y=sinωx的图像。
(2)相位变换(平移变换)。
将函数y=sinωx的图像向左(φ>0)或向右(φ(3)周期变换。
将函数y=sin(ωx+φ)图像的横坐标不变,纵坐标变为原来的A倍,得到y=sin(ωx+φ)的图像。
二、应用1.由图像写出与之对应的函数y=Asin(ωx+φ)(A>0,ω>0)的解析式,其中关键的确定A,ω和φ的值。
A通常由最大值和最小值确定,即最大值减最小值除以2;ω由周期确定:ω=;而φ=—ωx(这里的x是指用“五点法”作图时的起点横坐标),或者是将图像上的点的坐标代入,借助待定系数法求解。
例1 已知函数y=Asin(ωx+φ)(A>0,ω>0,丨φ丨分析虽然是部分图形,但也能反应出函数的特征。
探索函数图像的变换与性质

探索函数图像的变换与性质函数图像是数学中重要的概念之一。
通过对函数图像进行变换和分析,可以深入了解函数的性质和特点。
本文将探索函数图像的变换与性质,以帮助读者更好地理解和应用函数。
一、对函数图像的平移变换平移是将函数图像沿着x轴或y轴方向进行移动的操作。
函数图像的平移可以改变函数的位置,但不会改变函数的形状和曲线。
1. 沿x轴的平移当函数表达式中的x被替换为x+a时,函数图像将沿x轴方向平移,其中a为平移的距离和方向。
如果a>0,则图像向左平移;如果a<0,则图像向右平移。
例如,考虑函数y = sin(x)和y = sin(x+π/4)。
通过将函数中的x替换为x+π/4,可以得到第二个函数。
这将使得函数图像向左平移π/4个单位,得到一个新的函数图像。
2. 沿y轴的平移当函数表达式中的y被替换为y+b时,函数图像将沿y轴方向平移,其中b为平移的距离和方向。
如果b>0,则图像向上平移;如果b<0,则图像向下平移。
例如,考虑函数y = x^2和y = (x-2)^2。
将函数中的x替换为x-2,可以得到第二个函数。
这将使得函数图像向右平移2个单位,得到一个新的函数图像。
二、对函数图像的伸缩变换伸缩是改变函数的图像形状和尺寸的操作。
函数图像的伸缩会改变函数的斜率和曲线弯曲程度。
1. 沿x轴的伸缩当函数表达式中的x被替换为kx(k≠0)时,函数图像将沿x轴方向进行伸缩,其中k为伸缩系数。
当k>1时,图像被水平拉伸;当0<k<1时,图像被水平压缩。
例如,考虑函数y = x^2和y = (2x)^2。
将函数中的x替换为2x,可以得到第二个函数。
这将使得函数图像在x轴方向上被压缩为原来的一半,得到一个新的函数图像。
2. 沿y轴的伸缩当函数表达式中的y被替换为ky(k≠0)时,函数图像将沿y轴方向进行伸缩,其中k为伸缩系数。
当k>1时,图像被垂直压缩;当0<k<1时,图像被垂直拉伸。
初中数学函数图像的变换规律与应用实例解析

初中数学函数图像的变换规律与应用实例解析函数图像的变换规律是数学中的重要概念,它描述了通过何种方式对函数的图像进行平移、伸缩和翻转等操作。
这些变换规律不仅有助于我们理解数学中的函数性质,还可以应用于解决实际问题。
本文将详细讨论数学函数图像的变换规律,并通过应用实例进行解析。
首先,我们来讨论函数图像的平移变换规律。
平移是指将函数图像沿水平或垂直方向移动一定距离。
对于一般函数y=f(x),进行平移变换可以得到新函数y=f(x-a)+b。
其中a表示水平平移的距离,当a>0时向右平移,当a<0时向左平移;b表示垂直平移的距离,当b>0时向上平移,当b<0时向下平移。
例如,对于函数y=x^2,我们可以进行水平平移和垂直平移。
如果我们将函数向右平移2个单位,那么新函数可以表示为y=(x-2)^2。
同样地,如果我们将函数向上平移3个单位,那么新函数可以表示为y=x^2+3。
这些平移变换可以帮助我们研究函数的移动特性,并解决与平移相关的实际问题。
其次,我们探讨函数图像的伸缩变换规律。
伸缩是指通过乘以或除以一个常数来改变函数图像的高度或宽度。
对于一般函数y=f(x),进行伸缩变换可以得到新函数y=a*f(bx)。
其中a表示垂直伸缩的倍数,当a>1时函数图像变高,当0<a<1时函数图像变矮;b表示水平伸缩的倍数,当b>1时函数图像变宽,当0<b<1时函数图像变窄。
例如,对于函数y=x^2,我们可以进行垂直伸缩和水平伸缩。
如果我们垂直伸缩这个函数的高度为原来的2倍,那么新函数可以表示为y=2x^2。
同样地,如果我们水平伸缩这个函数的宽度为原来的1/2倍,那么新函数可以表示为y=(1/2)x^2。
这些伸缩变换使我们能够研究函数图像的变化趋势,并解决与伸缩相关的实际问题。
此外,我们还需要了解函数图像的翻转变换规律。
翻转是指通过改变函数的正负号来改变图像的位置。
对于一般函数y=f(x),进行翻转变换可以得到新函数y=-f(x)。
三角函数图像的变换

三角函数图像的变换三角函数是一类重要的基础函数,包括正弦函数、余弦函数、正切函数等。
在数学中,我们经常遇到需要对三角函数进行图像变换的情况,比如平移、伸缩、翻转等。
本文将介绍三角函数图像的常见变换以及它们对函数图像的影响。
一、平移变换平移是指将函数图像沿着横轴或纵轴方向移动一段距离。
以正弦函数为例,设原函数为y=sin(x),将它沿横轴向右平移a个单位,新函数为y=sin(x-a)。
当a取正值时,函数图像向右平移;当a取负值时,函数图像向左平移。
平移变换后的图像与原图像形状相同,只是位置不同。
二、伸缩变换伸缩是指将函数图像进行横向或纵向的比例拉伸或压缩。
以正弦函数为例,设原函数为y=sin(x),将它沿横轴方向进行压缩b倍,新函数为y=sin(bx)。
当b大于1时,函数图像横向压缩;当0<b<1时,函数图像横向拉伸。
同样,沿纵轴方向进行伸缩也可得到相应的函数图像变换。
三、翻转变换翻转是指将函数图像沿着横轴或纵轴进行翻转,也称为镜像变换。
以正弦函数为例,设原函数为y=sin(x),将它沿横轴进行翻转,新函数为y=-sin(x)。
同样地,纵向翻转可得到相应的函数图像变换。
四、混合变换除了单一的平移、伸缩和翻转变换,我们还可以通过组合这些变换来得到更复杂的函数图像变换。
比如,可以将平移、伸缩和翻转变换相结合,得到更丰富多样的变换效果。
以上是对三角函数图像常见变换的简要介绍,下面我们将进一步讨论这些变换对函数图像的具体影响。
1.平移变换的影响:平移变换只改变了函数图像的位置,不改变其形状。
假设原函数图像位于坐标系上方,若平移后函数图像向右移动,则新函数图像将出现在原来的右侧;若平移后函数图像向左移动,则新函数图像将出现在原来的左侧。
平移变换对函数图像的垂直位置没有影响。
2.伸缩变换的影响:横向伸缩会拉伸或压缩函数图像。
当b大于1时,函数图像在x轴方向上被压缩,变得更加陡峭;当0<b<1时,函数图像在x轴方向上被拉伸,变得更加平缓。
函数图像的变换及应用

函数图像的变换及应用函数图像的变换指的是通过对函数图像进行一系列的操作,使得原函数图像在坐标系中发生平移、伸缩、翻折等变化,从而得到新的函数图像。
这些变换可以通过改变函数的参数或者利用一些特定的变换公式来实现。
函数图像的变换有很多种,下面列举几种常见的变换及其应用:1. 平移变换:平移变换是将函数图像在坐标系上沿着横轴或者纵轴方向进行移动。
对于函数y=f(x),平移变换可以表示为y=f(x-a)+b,其中a表示横向平移的距离,b表示纵向平移的距离。
平移变换的应用场景有很多,例如对于温度变化的曲线图,可以通过平移变换来调整图像在时间轴上的位置,实现对曲线的观察和比较。
2. 伸缩变换:伸缩变换是改变函数图像的尺度,使得函数图像的宽度或者高度发生变化。
对于函数y=f(x),伸缩变换可以表示为y=a*f(bx),其中a控制纵向的伸缩比例,b控制横向的伸缩比例。
伸缩变换可以用来调整图像的大小,使得函数曲线更加清晰或者适应特定的分析需求。
3. 翻折变换:翻折变换是将函数图像沿着坐标轴进行翻转。
对于函数y=f(x),翻折变换可以表示为y=-f(x)(沿着x轴翻折)或者y=f(-x)(沿着y轴翻折)。
翻折变换可以用来分析函数的对称性质,例如判断函数是否关于x轴或者y轴对称。
4. 拉伸变换:拉伸变换是通过改变函数图像的形状来实现对函数的变换。
拉伸变换可以是横向拉伸或者纵向拉伸。
对于函数y=f(x),横向拉伸可以表示为y=f(cx),纵向拉伸可以表示为y=c*f(x),其中c是大于1的常数。
拉伸变换可以用来调整图像的形状,使得函数曲线更加符合实际情况或者更容易进行分析。
5. 压缩变换:压缩变换与拉伸变换相反,是通过改变函数图像的形状来实现对函数的变换。
压缩变换可以是横向压缩或者纵向压缩。
对于函数y=f(x),横向压缩可以表示为y=f(x/c),纵向压缩可以表示为y=(1/c)*f(x),其中c是大于1的常数。
压缩变换可以用来调整图像的形状,使得函数曲线更加符合实际情况或者更容易进行分析。
函数图象的变换PPT

水平平移是指函数图像在水平方向上移动一定的距离。
详细描述
水平平移不改变函数的值,只是改变了图像的位置。对于函数y=f(x),若图像向 右平移a个单位,则新的函数为y=f(x-a);若图像向左平移a个单位,则新的函 数为y=f(x+a)。
垂直平移
总结词
垂直平移是指函数图像在垂直方向上移动一定的距离。
函数图象的变换
• 函数图象变换概述 • 平移变换 • 伸缩变换 • 翻折变换 • 旋转变换 • 应用实例
01
函数图象变换概述
函数图象变换的定义
01
函数图象变换是指通过平移、伸 缩、翻转等几何变换操作,改变 函数图象的位置、形状和大小。
02
这些变换操作可以通过代数表达 式或矩阵变换来实现,使得函数 图象在坐标系中按照特定的规则 进行移动、旋转和缩放。
详细描述
当函数图像在y轴方向上伸缩时,其形状和大小会发生变化,但x轴上的比例保持不变。例如,将函数y=f(x)的图 像在y轴方向上放大2倍,得到新的函数y=2f(x)。
斜向伸缩
要点一
总结词
斜向伸缩是指同时沿x轴和y轴方向对函数图像进行放大或 缩小。
要点二
详细描述
当函数图像在x轴和y轴方向上同时伸缩时,其形状和大小 会发生变化,x轴和y轴上的比例都会改变。例如,将函数 y=f(x)的图像在x轴方向上放大2倍,在y轴方向上放大3倍 ,得到新的函数y=3f(2x)。
逆时针旋转
总结词
当函数图像按照逆时针方向旋转时,其形状和大小也不会发生变化,同样只是位置发生 了移动。
详细描述
与顺时针旋转相反,当函数图像按照逆时针方向旋转一定的角度时,每个点的坐标同样 会发生变化,但方向是远离原点。同样地,这种变化也可以用三角函数的性质来描述。
函数图像的变换课件

向右平移
总结词
图像沿x轴正方向移动
数学表达式
y=f(x-a)
详细描述
对于函数y=f(x),若图像向右平移a个单位,则新的函数 解析式为y=f(x-a)。
举例
函数y=cos(x)的图像向右平移π/2个单位后,得到新的函 数y=cos(x-π/2),其图像与原图像相比沿x轴正方向移动 了π/2个单位。
双向伸缩
总结词
同时改变x轴和y轴的长度。
详细描述
当函数图像在x轴和y轴方向上都发生伸缩时,x轴和y轴的长度都会发生变化。这 种变换可以通过将函数中的x和y都替换为其倍数来实现,例如将f(2x)/3替换为 f(x)会使x轴压缩为原来的一半,同时y轴拉伸为原来的三倍。
04
函数图像的旋转变换
逆时针旋转
关于y轴对称
总结词
函数图像关于y轴对称时,图像在y轴两侧对称分布,x值 不变,y值相反。
详细描述
当一个函数图像关于y轴对称时,图像在y轴两侧呈现出 对称分布的特点。这意味着对于任意一个点$(x, y)$在图 像上,关于y轴对称的点$(x, -y)$也在图像上。这种对称 变换不会改变x值,只是将y值取反。例如,函数$f(x) = x^3$的图像关于y轴对称,因为$f(-y) = (-y)^3 = -y^3 = -f(y)$。
任意角度旋转
总结词
任意角度旋转是指将函数图像按照任意角度进行旋转。
详细描述
任意角度旋转函数图像是指将图像上的每个点都按照任意指定的角度进行旋转。这种旋转可以通过参数方程或极 坐标系来实现,其中参数方程为$x = x cos theta - y sin theta$,$y = x sin theta + y cos theta$,极坐标系 下的表示为$x = r cos theta$,$y = r sin theta$。
高中数学二次函数的图像变换规律与应用

高中数学二次函数的图像变换规律与应用二次函数是高中数学中重要的一个概念,它在数学中的应用非常广泛。
掌握二次函数的图像变换规律以及应用,对于解题和理解数学概念都非常有帮助。
本文将详细介绍二次函数的图像变换规律,并通过具体题目的举例,说明其考点和解题技巧,帮助高中学生和他们的父母更好地理解和应用二次函数。
一、二次函数的图像变换规律1. 平移变换平移变换是指将二次函数图像沿着坐标轴的方向进行移动。
对于一般形式的二次函数y = ax^2 + bx + c,平移变换可以通过改变a、b、c的值来实现。
例如,考虑二次函数y = x^2,我们想将其图像向右平移2个单位。
根据平移变换的规律,我们只需将x的值减去2,即可实现平移。
因此,新的二次函数为y = (x-2)^2。
2. 纵向拉伸和压缩纵向拉伸和压缩是指将二次函数图像在纵向上进行拉长或压缩。
对于一般形式的二次函数y = ax^2 + bx + c,纵向拉伸和压缩可以通过改变a的值来实现。
例如,考虑二次函数y = x^2,我们想将其图像在纵向上拉伸2倍。
根据纵向拉伸和压缩的规律,我们只需将a的值改为2,即可实现纵向拉伸。
因此,新的二次函数为y = 2x^2。
3. 横向拉伸和压缩横向拉伸和压缩是指将二次函数图像在横向上进行拉长或压缩。
对于一般形式的二次函数y = ax^2 + bx + c,横向拉伸和压缩可以通过改变x的值来实现。
例如,考虑二次函数y = x^2,我们想将其图像在横向上压缩为原来的一半。
根据横向拉伸和压缩的规律,我们只需将x的值改为原来的两倍,即可实现横向压缩。
因此,新的二次函数为y = (1/2)x^2。
二、二次函数图像变换的应用1. 最值问题二次函数的图像变换可以帮助我们解决最值问题。
例如,考虑二次函数y =x^2 + 2x + 1,我们可以通过平移变换将其图像向左平移1个单位,得到新的二次函数y = (x+1)^2 + 2x + 1。
这样,我们可以发现新的二次函数的最小值为1,即原函数的最小值为1-1=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图像的变换及其应用
执教:嘉定区教师进修学院张桂明
教学目标:
1.熟练掌握常见函数图像的画法,记住它们的大致形状和准确位置.2.掌握函数图像的几种类型的变换,能用图像变换法解决一些有关的函数问题.
3.通过对函数图像变换与应用问题的探究及解决,提高分析问题和解决问题的能力,体会数形结合的思想方法在解决函数与方程问题中的重要作用并能初步加以应用.教学重点:
1.常见函数的图像及其画法.
2.函数图像的变换及变换后的对称性、单调性的变化.教学难点:
应用数形结合的思想方法对问题进行分析思考,寻求解题策略.教学过程:
一、引入课题
问题:设定义域为R 的函数f (x) |lg|x 1||,x 1,则关于x 的方程
0 , x 1
f 2(x) bf (x) c 0有7 个不同实数解的充要条件是( )
(A) b 0 且c 0 (B) b 0 且c 0 (C) b 0 且c 0 (D) b 0 且c 0
二、知识回顾
1.函数图像的作法,你有哪些常用的方法?
2.请说出常见函数图像的形状、位置,作出它们的草图.
3.你会用哪些函数图像的变换方法来作函数的图像?在这些变换中,如果原来的函数图像具有某种对称性,那么变换后它们的对称性有什么变化?函数的单调性在变换后又有什么变化?
4.函数f(x)的图像关于直线x a成轴对称图形的充要条件是什么?函数f(X)的图像关于点(a , b)成中心对称图形的充要条件双是什么?
三、问题探究
2, x R.
1 .若函数y x *
2 (a 2)x 3, x [a,b]的图像关于直线 x 1对称,则 b . 2.已知函数f (x) |2x 11的图像与直线y a 有且仅有一个公共点,则实数
a 的取值范围是
3. 已知函数f(x)
(1) 求证:函数f(x)的图像关于点A(-,-)对称;
2 2 1
(2) 不使用计算器,试求f (丄)f
10 4. 讨论方程| x 2 4|x| 3| a 的实数解的情况.
四、方法小结
五、练习与作业
2x .2
f(-) f 10
的值
.
学生练习与作业
1怎样变换函数y .x的图像,得到函数y ,3 x 1的图像,并画出此函数的图像。
2 •若函数y log 2 | ax 11的图像的对称轴是直线x 2,则非零实数a的值是
______________________________________________________________________________________ 。
3•把下面不完整的命题补充完整,使之成为真命题:若函数f(x) 2x的图像与函数g(x)
的图像关于__________________________ 对称,则g(x) _________________________ 。
2x 1
4.函数y 的图像关于点 ______ 对称,它的对称轴方程是________________________
x 1
5.不等式x2log a x 在x (0, 2)恒成立,则a的取值范围是
x b
6•函数f(x) a 的图像如图所示,其中a、b为常数, 则下列结论正确的
是( )
(A) a 1 , b 0 (B) a 1 , b 0
(C) 0 a 1, b 0 (D) 0 a 1 , b 0
1 f(x)
的图像关于直线x 2对称,则
f(1) f(2) f (3) f(4) f(5) ___________________
2
2
& 57.设b 0,二次函数y ax bx
则a的值为( )
(A) 1 (B)
1
(C) (D)
2
9.若关于x 的一元二次方程mx2 (m a)x m 7 0 有两个实数根x1、
1 x1 0 x
2 1 ,求实数m 的取值范围。
10.已知二次函数y f1(x) 的图像以原点为顶点且过点(1,1) ,反比例函数y 像与直线y x的两个交点间的距离为8, f(x) f1(x) f2(x).
(1)求函数f (x) 的表达式;
(2)证明:当a 3时,关于x的方程f(x) f (a)有三个实数解
7 .设f (x)是定义在R上的奇函数,且y x2 ,且满足f2(x) 的图。