数据仓库

合集下载

数据仓库的介绍(数据仓库和数据库的区别)

数据仓库的介绍(数据仓库和数据库的区别)

数据仓库的介绍(数据仓库和数据库的区别)数据仓库的介绍⼀、数据仓库的基本概念数据仓库,英⽂名称为Data Warehouse,可简写为DW或DWH。

数据仓库顾名思义,是⼀个很⼤的数据存储集合,出于企业的分析性报告和决策⽀持⽬的⽽创建,对多样的业务数据进⾏筛选与整合。

它为企业提供⼀定的BI(商业智能)能⼒,指导业务流程改进、监视时间、成本、质量以及控制。

数据仓库的输⼊⽅是各种各样的数据源,最终的输出⽤于企业的数据分析、数据挖掘、数据报表等⽅向。

⼆、数据仓库的主要特征数据仓库是⾯向主题的(Subject-Oriented )、集成的(Integrated)、稳定的(Non-Volatile)和时变的(Time-Variant )数据集合,⽤以⽀持管理决策。

1.主题性不同于传统数据库对应于某⼀个或多个项⽬,数据仓库根据使⽤者实际需求,将不同数据源的数据在⼀个较⾼的抽象层次上做整合,所有数据都围绕某⼀主题来组织。

这⾥的主题怎么来理解呢?⽐如对于城市,“天⽓湿度分析”就是⼀个主题,对于淘宝,“⽤户点击⾏为分析”就是⼀个主题。

2.集成性数据仓库中存储的数据是来源于多个数据源的集成,原始数据来⾃不同的数据源,存储⽅式各不相同。

要整合成为最终的数据集合,需要从数据源经过⼀系列抽取、清洗、转换的过程。

3.稳定性数据仓库中保存的数据是⼀系列历史快照,不允许被修改。

⽤户只能通过分析⼯具进⾏查询和分析。

这⾥说明⼀点,数据仓库基本上是不许允许⽤户进⾏修改,删除操作的。

⼤多数的场景是⽤来查询分析数据。

4.时变性数据仓库会定期接收新的集成数据,反应出最新的数据变化。

这和稳定特点并不⽭盾。

三、数据仓库与数据库区别1、数据库数据库是⾯向交易的处理系统,它是针对具体业务在数据库联机的⽇常操作,通常对记录进⾏查询、修改。

⽤户较为关⼼操作的响应时间、数据的安全性、完整性和并发⽀持的⽤户数等问题。

传统的数据库系统作为数据管理的主要⼿段,主要⽤于操作型处理,也被称为联机事务处理 OLTP(On-Line Transaction Processing)。

数据仓库与数据湖的区别与联系

数据仓库与数据湖的区别与联系

数据仓库与数据湖的区别与联系随着数字化时代的到来,数据量急剧增长,对数据进行有效管理和处理变得越来越重要。

为了满足企业在数据管理和分析上的需求,数据仓库和数据湖成为了热门话题。

本文将讨论数据仓库和数据湖的区别与联系。

一、数据仓库1.1 概念数据仓库是指将数据从不同的业务系统中整合到一个集中式的数据存储库,并进行清洗、集成和转换,使其变成可供决策支持系统使用的数据的过程。

它是企业决策层面上的重要工具,包含历史的、事实的、统一的、一致的和可信的数据,从而对企业做出更准确、更快速的决策提供重要支持。

1.2 特点数据仓库的特点主要包括以下几点:(1)面向主题:数据仓库是针对特定业务领域的主题进行构建的,如销售、营销、客户和供应链等。

(2)综合性:数据仓库整合了多个不同关系型数据库的信息,形成一个统一的、综合的数据源,支持多维分析和数据挖掘。

(3)历史性:数据仓库记录着业务过程发生的历史记录,包括过去几年的数据,从而使企业具有更好的长期规划。

(4)只读性:数据仓库采用只读的方式提供数据,即使是企业的操作人员不能随意更改数据。

二、数据湖2.1概念数据湖是在存储和管理数据时使用建模技术,使得未经整理的数据流动更容易,从而使企业更快速地获取特定信息的一种架构。

与传统的数据仓库架构不同的是,数据湖并不要求数据经过ETL或其他处理而直接存放在湖中,从而保留了数据的原始状态,提供了更快速和更灵活的数据分析方法。

2.2 特点数据湖的特点主要包括以下几点:(1)存储原始数据:数据湖存储各种数据格式的原始数据,包括结构化数据、半结构化数据和非结构化数据。

(2)弹性:数据湖可以快速存储大量数据,可以根据需求自由调整存储容量,支持大数据处理和分析。

(3)自助服务性:数据湖不需要预先规划数据存储方式,而是要求用户首先获得存储权限,然后使用常见的数据管理和探索工具进行查询和筛选。

(4)灵活性:数据湖可以整合各种类型的工具和技术,包括Hadoop、Spark和NoSQL数据库等。

数据仓库与数据集市的区别与选择

数据仓库与数据集市的区别与选择

数据仓库与数据集市的区别与选择随着信息技术的发展和数据量的快速增长,企业对数据的需求也越来越高。

为了更好地利用和管理企业的数据资产,数据仓库和数据集市成为了常用的解决方案。

本文将探讨数据仓库与数据集市的区别,并给出在不同场景下的选择建议。

一、数据仓库的定义与特点数据仓库是指将企业各个业务系统产生的数据进行整合、清洗和转换,形成一个统一、集中、一致的数据存储空间。

数据仓库通常采取面向主题的建模方式,将业务数据按照主题进行组织,例如按照销售、客户、产品等主题进行存储。

数据仓库的特点包括:1. 面向主题:数据仓库关注企业的关键主题,将数据按照主题进行组织。

2. 集成的:数据仓库整合来自不同业务系统的数据,形成一张全面的数据模型。

3. 非易失的:数据仓库中的数据一般是只读的,不可修改,保证了数据的一致性和稳定性。

4. 历史的:数据仓库中保存了历史数据,可以进行时间序列分析和趋势预测。

二、数据集市的定义与特点数据集市是面向具体业务需求的数据存储和处理环境,它是数据仓库的一种延伸和扩展。

不同于数据仓库的集中式架构,数据集市通常采用分散式的架构,根据业务需求构建多个独立的数据集市。

数据集市的特点包括:1. 面向业务需求:数据集市根据不同的业务需求构建,可以为不同的部门和角色提供定制化的数据视图。

2. 高度灵活:数据集市采用分散式架构,每个集市可以独立定义数据模型和数据存储方式,实现灵活性和快速响应业务变化的能力。

3. 实时性需求:某些业务场景下,对于数据的实时性要求较高,数据集市可以针对这些需求提供实时数据。

4. 可扩展性:数据集市可以根据业务扩展的需要,灵活添加或删除数据集市,以适应业务的发展和变化。

三、数据仓库与数据集市的区别1. 架构设计:数据仓库采用集中式的架构,将各个业务系统的数据整合到一个统一的存储空间中;而数据集市采用分散式的架构,根据业务需求构建多个独立的数据集市。

2. 数据模型:数据仓库通常采用面向主题的数据建模方式,按照主题进行数据整合和存储;而数据集市根据具体的业务需求,可以采用不同的数据模型,如关系型模型、多维模型等。

数据仓库知识点总结

数据仓库知识点总结

数据仓库知识点总结一、数据仓库概念数据仓库是一个用来集成、清洗、存储和管理企业数据的系统,以支持企业决策制定、分析和商业智能服务。

它是一个面向主题的、集成的、时间性的、非易失的数据集合,用于支持企业决策。

数据仓库是企业数据管理的重要组成部分,它与操作型数据处理系统相辅相成。

数据仓库以不同的视角和角度组织数据,帮助企业管理者对企业整体情况进行全面分析和评估。

二、数据仓库的特点1. 面向主题:数据仓库与传统数据库相比,更加侧重对业务应用的支持,主要面向业务应用的主题而不是基本事务数据,以方便企业管理者进行更好的分析和决策。

2. 集成性:数据仓库集成了来自不同数据源的数据,将数据统一管理,并且进行了数据清洗和转换,确保数据的一致性和准确性。

3. 时态性:数据仓库中的数据具有时间性,可以保存历史数据,能够支持分析历史数据的趋势和变化。

4. 非易失性:数据仓库中的数据不会丢失,可以持久保存,并且根据需要定期备份,确保数据的安全和可靠。

5. 大数据量和复杂性:数据仓库通常包含大量的数据,并且数据之间的关系复杂,需要采用专门的数据模型和处理方法来管理和分析。

6. 以支持决策为目标:数据仓库的目标是为企业管理者提供数据支持,帮助他们更好地了解企业的经营状况和趋势,以支持企业决策。

三、数据仓库架构数据仓库架构包括了多个重要组成部分,主要包括数据提取、数据清洗、数据转换、数据加载、元数据管理和数据查询分析等。

1. 数据提取:数据提取是指从各个数据源中将需要的数据提取出来,数据源可以包括企业内部的数据库、文件系统、应用系统等,也可以包括外部数据源,如公共数据等。

2. 数据清洗:数据清洗是指对提取的数据进行清洗和规范,包括去重、校验、纠错、转换等处理,以确保数据的准确性和一致性。

3. 数据转换:数据转换是指对清洗后的数据进行格式转换、相关联和整合,以便于数据仓库的统一管理和分析。

4. 数据加载:数据加载是将转换后的数据载入数据仓库中,通常包括全量加载和增量加载两种方式,以确保数据的及时性和准确性。

数据库与数据仓库的区别与联系

数据库与数据仓库的区别与联系

数据库与数据仓库的区别与联系在信息时代的背景下,数据处理已经成为各行各业的核心工作。

数据库和数据仓库作为两个常见的数据管理工具,在实践中有着不同的应用场景和特点。

本文将对数据库和数据仓库的区别与联系进行探讨,以帮助读者更好地理解它们的不同之处和相互关系。

一、数据库的概念和特点数据库是指为了满足用户需求而设计、构建和维护的一系列数据集合。

数据库通过数据结构与数据管理系统,实现对数据的存储、查询、更新和删除等基本操作。

其特点主要包括以下几个方面:1. 数据持久化:数据库中的数据可以长期保留,并在需要时进行读取和修改。

2. 数据共享:数据库可以实现多个用户对数据进行共享和协作,提高数据利用效率。

3. 数据一致性:数据库通过事务机制保证数据的一致性和完整性,避免数据冗余和不一致的问题。

4. 高效查询:数据库通过索引等技术快速定位和获取用户需要的数据,提高查询效率。

二、数据仓库的概念和特点数据仓库是指按照时间顺序、面向主题和集成的方式,将多个异构的数据源进行统一整合和管理的大型数据存储库。

它主要用于支持决策分析和业务智能,具有以下特点:1. 面向主题:数据仓库基于企业的业务需求,以主题为中心组织和存储数据,方便用户进行专题分析和决策支持。

2. 集成统一:数据仓库通过数据抽取、转换和加载等技术整合来自不同来源的数据,保证数据的一致性和可信度。

3. 历史存储:数据仓库会长期保留历史数据,以支持用户对过去事务和趋势的分析和判断。

4. 复杂分析:数据仓库提供了复杂的分析功能,如数据切片、切块、钻取等,为决策提供更全面和深入的支持。

三、数据库与数据仓库的区别1. 定义和目的:数据库是为了满足用户的日常业务操作需求而设计的,而数据仓库则是为了支持决策分析和业务智能而构建的。

2. 数据类型和时效性:数据库主要存储操作性数据,如订单、库存等,具有实时性要求;数据仓库存储分析型数据,如销售趋势、市场调研等,具有较长的历史时效性。

数据仓库方案

数据仓库方案

数据仓库方案•数据仓库概述•数据仓库的架构•数据仓库的设计•数据仓库的建立•数据仓库的使用和维护•数据仓库的发展趋势和未来展望01CATALOGUE数据仓库概述数据仓库是一个大型、集中式存储系统,用于存储和管理企业或组织的数据。

它是一个面向主题的、集成的、非易失的数据集合,支持管理决策制定。

集成性数据仓库中的数据来源于多个源系统,经过清洗、转换和整合后集成在一起。

决策支持性数据仓库为决策制定提供支持,通过数据分析、报表和可视化工具来帮助决策者做出决策。

非易失性数据仓库中的数据是历史的、稳定的,不会因为操作频繁而发生变动。

面向主题性数据仓库中的数据组织是按照主题进行分类的,例如销售、库存、财务等。

操作型数据仓库(Operational Data Warehouse, ODW):用于支持企业日常业务操作和流程。

分析型数据仓库(Analytical Data Warehouse, ADW):用于支持高级数据分析、报表和可视化。

混合型数据仓库(Hybrid Data Warehouse, HDW):同时包含操作型和分析型数据仓库的特点,既支持日常操作也支持高级分析。

02CATALOGUE数据仓库的架构包括企业内部的业务系统、CRM系统、ERP系统等,这些系统是企业数据的主要来源。

内部数据源从数据源中抽取需要的数据,进行清洗和转换。

E(Extract)对抽取的数据进行清洗、整合、转换和加载等操作,使其满足数据仓库的需求。

T(Transform)将转换后的数据加载到数据仓库中,供后续分析和查询使用。

L(Load)星型模型以事实表为中心,周围关联多个维度表,形成星型结构。

星座模型将多个星型模型关联起来,形成一个更大型的模型。

雪花模型将维度表进一步拆分,形成更复杂的结构。

存储层OLAP层多维分析对数据仓库中的数据进行多维度的分析和查询,如时间维度、地理维度、产品维度等。

切片和切块对数据仓库中的数据进行切片和切块操作,提取需要的数据进行分析。

数据仓库 的名词解释

数据仓库 的名词解释

数据仓库的名词解释数据仓库的名词解释数据仓库(Data Warehouse)是指一个用于存储、整合和管理企业各个部门产生的大规模数据的集中式数据库系统。

它主要用于支持企业决策制定、战略规划以及业务分析。

数据仓库的设计和构建需要考虑数据的采集、转换、加载以及存储等多个方面,以确保数据的准确性和可用性。

一、数据仓库的基本概念数据仓库是一个面向主题的、集成的、时间一致的、非易失的数据集合,用于支持企业决策制定和业务分析。

它将来自不同数据源的数据进行抽取、转换和加载,形成一个统一的、易于查询和分析的数据源。

数据仓库的特点:1. 面向主题:数据仓库以主题为中心,将数据按照主题进行组织和存储,以满足不同部门和用户的信息需求。

2. 集成:数据仓库将来自不同数据源的数据进行整合,消除了数据冗余和不一致性。

3. 时间一致性:数据仓库中的数据是按照一致的时间标准进行存储和管理的,以支持历史数据分析和趋势预测。

4. 非易失性:数据仓库中的数据一旦存储,不会轻易被删除或修改,以确保数据的可追溯性和可靠性。

二、数据仓库的架构和组成部分数据仓库的架构通常包括数据采集、数据转换、数据加载、数据存储和数据查询等几个关键组成部分。

1. 数据采集:数据仓库的数据采集涉及到从各个数据源中提取和抽取数据的过程。

这些数据源可以是企业内部的关系型数据库、操作型数据源,也可以是外部的数据源,如Web数据、日志数据等。

数据采集可以通过ETL(Extract、Transform、Load)工具进行,在此过程中可以对数据进行清洗、转换和加工。

2. 数据转换:数据采集后,需要进行数据转换的操作,将采集到的数据进行整合和规范化。

这包括数据清洗、数据集成、数据变换等一系列处理,以确保数据的一致性和质量。

3. 数据加载:数据加载是将经过转换的数据加载到数据仓库中的过程。

数据加载可以是全量加载,也可以是增量加载。

在加载过程中,还可以对数据进行校验和验证,以确保数据的准确性和完整性。

数据仓库名词解释

数据仓库名词解释

数据仓库名词解释数据仓库是一个面向主题的、集成的、稳定的、直接面向最终用户的数据集合,用于支持企业决策制定、分析和决策支持系统。

数据仓库是一个独立的数据存储和管理系统,其目标是针对企业中各个部门的数据进行整合、清洗、加工和建模,从而提供一套一致、可信、易于访问和理解的数据,帮助用户进行数据分析和企业决策。

以下是一些与数据仓库相关的重要概念和名词的解释:1. 数据集成:将来自不同数据源的数据整合到数据仓库中,包括内部和外部数据源。

2. 数据清洗:数据清洗是指通过一系列的操作,消除数据中的错误、重复、缺失和不一致的部分,提高数据的质量。

3. 数据加工:对数据进行转换、聚合、计算和抽取,以满足用户的特定需求和分析目的。

4. 主题:数据仓库的主题是指根据企业的业务需求而组织起来的数据类别或领域,例如销售、人力资源、供应链等。

5. 元数据:元数据是描述数据的数据,包括数据的源头、结构、定义、关系等。

元数据对于数据仓库的管理和使用非常重要。

6. 维度:维度是数据仓库中描述主题的属性,如时间、地理位置、产品、客户等,用于分析和查询。

7. 度量:度量是数据仓库中可以计量和比较的数据,如销售额、利润、客户数量等。

8. 星型模式:星型模式是一种常见的数据仓库建模技术,其中一个中心表(事实表)围绕着多个维度表进行关联。

9. 粒度:粒度是指数据仓库中所记录的事实的详细程度,如日销售额、月销售额、年销售额等。

10. OLAP(联机分析处理):OLAP是一种针对多维数据进行快速查询和分析的技术,通过透视表、图表和报表等方式展现数据。

11. ETL(抽取、转换和加载):ETL是数据仓库中的核心过程,用于从源系统中抽取数据,通过转换和加工后加载到数据仓库中。

12. 决策支持系统:决策支持系统是通过利用数据仓库中的数据和分析工具,辅助管理层做出决策的信息系统。

数据仓库在企业中扮演着重要的角色,它能够提供一致、准确的数据,帮助企业决策者进行数据分析和制定决策。

数据仓库技术名词解释

数据仓库技术名词解释

数据仓库技术名词解释
数据仓库技术是一种用于帮助企业集成、存储和分析大量数据的技术。

这种技术主要基于数据库系统技术发展而来,逐步形成了一系列独立的新应用技术。

通过数据仓库技术,大量的数据可以从不同的数据源中提取、转换并加载到一个数据存储库中。

然后,对这些数据进行多维分析和报告,以帮助企业做出更明智的商业决策。

数据仓库是一个为企业提供决策支持的数据存储系统,可以提供包括历史数据、实时数据、汇总数据等在内的所有类型的数据支持。

数据仓库的架构通常采用星型模型或雪花模型,以方便进行多维分析和查询。

此外,数据仓库技术还可以帮助企业提高数据质量,通过对收集到的数据进行清理和转换,提高数据的质量和准确性。

以上内容仅供参考,如需更多信息,建议查阅数据仓库相关书籍或咨询该领域专业人士。

数据仓库的基本架构

数据仓库的基本架构

数据仓库的基本架构引言概述:数据仓库是一个用于集中存储和管理企业数据的系统,它可以匡助企业更好地理解和分析数据,从而支持决策和业务发展。

数据仓库的基本架构是构建数据仓库的基础,了解数据仓库的基本架构对于设计和维护数据仓库至关重要。

一、数据仓库的概念1.1 数据仓库的定义:数据仓库是一个用于集中存储和管理企业数据的系统,它包含了来自不同数据源的数据,并经过清洗、转换和加载等过程,用于支持企业的决策和分析需求。

1.2 数据仓库的特点:数据仓库具有数据集中、主题导向、面向主管和决策者、时间一致性等特点,能够提供高质量、一致性和易于访问的数据。

1.3 数据仓库的作用:数据仓库可以匡助企业更好地理解和分析数据,支持决策和业务发展,提高企业的竞争力和效率。

二、数据仓库的架构2.1 数据源层:数据仓库的数据源层包括了来自不同业务系统、数据库、文件等数据源的数据,这些数据需要经过抽取、清洗和转换等过程后才干加载到数据仓库中。

2.2 数据存储层:数据仓库的数据存储层包括了数据仓库数据库或者数据仓库服务器,用于存储经过处理和清洗后的数据,并提供数据访问和查询功能。

2.3 数据访问层:数据仓库的数据访问层包括了报表、查询工具、OLAP工具等,用于匡助用户访问和分析数据,支持决策和业务发展。

三、数据仓库的建模3.1 维度建模:维度建模是数据仓库中常用的建模方法,通过定义维度和事实表来描述业务过程和数据关系,匡助用户更好地理解和分析数据。

3.2 星型模式:星型模式是一种常用的维度建模方法,它将数据仓库中的事实表和维度表以星型结构进行组织,便于查询和分析数据。

3.3 雪花模式:雪花模式是星型模式的一种扩展,它将维度表进一步规范化,使数据仓库的结构更加灵便和规范。

四、数据仓库的ETL过程4.1 抽取(Extract):抽取是ETL过程的第一步,它从数据源中提取需要的数据,进行数据清洗和转换,以满足数据仓库的需求。

4.2 转换(Transform):转换是ETL过程的第二步,它对抽取的数据进行清洗、转换和整合等处理,以确保数据的质量和一致性。

数据仓库的使用方法

数据仓库的使用方法

数据仓库的使用方法数据仓库是一个用于存储和管理大量数据的集中式存储系统。

它有助于组织和分析企业内部和外部的数据,帮助企业做出更明智的决策。

下面是数据仓库的使用方法。

1. 数据收集与整理:首先,收集各个部门或业务领域的数据并将其整合到数据仓库中。

这包括来自各种数据库、文件和其他数据源的结构化和非结构化数据。

然后,对数据进行清洗、转换和整理,以确保其一致性和可用性。

2. 数据存储与组织:将数据存储在数据仓库中,并按照特定的结构进行组织和分类。

常见的组织方式包括维度模型和星型模型。

维度模型基于事实表和多个维度表,用于描述业务过程中的事实和维度关系。

星型模型则将事实表与维度表直接连接,构成一个星型结构。

3. 数据提取与加载:从源系统中提取数据,并将其加载到数据仓库中。

这可以通过批处理或实时处理来实现。

批处理通常在特定时间点对数据进行提取和加载,而实时处理则会实时捕捉或传输数据并将其加载到数据仓库中。

4. 数据转换与清洗:在提取和加载数据到数据仓库之前,需要对数据进行转换和清洗。

这包括对数据进行清洗、处理缺失值和错误数据、进行数据结构转换和标准化等操作。

此步骤是确保数据质量的重要环节。

5. 数据分析与报告:一旦数据加载到数据仓库中,就可以使用各种商业智能工具和数据分析技术来分析和挖掘数据。

这些工具和技术可以帮助用户从数据中提取有用的信息和洞察,并生成各种类型的报表、仪表盘和数据可视化。

6. 数据保护与安全:在使用数据仓库时,必须确保数据的保护和安全。

这包括对数据进行备份和恢复,实施访问控制和权限管理,监控数据访问和使用等。

此外,还需要遵守相关的数据隐私和安全法规。

7. 数据维护与更新:数据仓库是一个动态的存储系统,需要定期进行数据的维护和更新。

这包括对数据的清理、删除过期数据、更新维度和事实表等操作,以确保数据的准确性和完整性。

总之,数据仓库是一个有助于企业进行数据分析和决策支持的重要工具。

通过正确的使用方法,可以充分发挥数据仓库的优势,提高企业的决策效率和竞争力。

数据仓库岗位职责(16篇)

数据仓库岗位职责(16篇)

数据仓库岗位职责(16篇)数据仓库岗位职责篇一1、参与数据仓库建立,负责数据仓库模型设计;2、开发高质量可扩展的底层数据仓库体系;3、负责数据仓库系统与业务系统的接口设计和确认工作;4、负责数据平台相关的管理工作,如数据研发标准、数据质量及稳定性保证等建立;5、参与公司各个业务线bi、数据产品与应用的数据研发,觉察数据潜在价值。

岗位要求:1.大学本科及以上学历,计算机、经济、金融、数学专业背景,有3年以上工作经历;2.熟悉数据仓库建模理论,以及数仓数据层级关系,具备大型数仓逻辑模型和物理模型设计经历;3.熟悉一种etl开发工具(sqoop,datax等),熟悉etl开发施行流程和原理;4.掌握cdh版的hadoop环境,掌握hiveql,有调优经历;5.有一定的编程语言根底,不限制于java,python,shell等;6.有元数据管理、数据质量管理工作经历的优先考虑;7.工作认真,负责,仔细,有良好的团队合作精神。

数据仓库岗位职责篇二职责:1、负责数据仓库(hadoop)etl工作以及数据运营;2、负责数据产品的业务需求梳理、数据开发以及维护;3、负责数据仓库的维度建模以及设计相关的脚本调度;4、负责维度模型的数据处理的脚本开发,程序开发以及接口对接。

职位要求:1. 本科以上学历,信息管理、计算机相关专业,两年以上etl、数据仓库和大数据相关经历;2. 熟悉数据仓库架构,理解hadoop等大数据平台;3. 有oracle\db2等大型的数据仓库的开发经历;4. 可以用hive的sql,hadoop的mapreduce和spark去处理数据;5. 熟悉关系数据库,并有hive的sql的开发经历;6. 熟悉linux的shell编程;7. 有银行和运营商相关的大数据或者数据仓库相关经历的优先8. 热爱技术工作,具有较强的团队协作意识,数据平安意识;9. 工作严谨、责任心强,能承受工作压力。

数据仓库岗位职责篇三职责:1、学习并理解励步云学业务及系统,根据业务部门需求对公司各项业务数据进展统计分析,出具相关报表;2、进展数据仓库设计、模型开发、数据质量校验,报表开发;3、进展数据差异分析,找出统计口径、数据错误、操作错误等造成的差异原因;4、进展数据查询优化,解决跑数性能问题。

数据仓库的概念

数据仓库的概念
据仓库会记录历史数据的变化情况, 以便对数据进行分析和追溯。
数据仓库与操作型数据库的区别
操作型数据库主要用于日常业务处理,如订单处理、库存管理等;而数据 仓库主要用于数据分析、报表生成和决策支持等。
操作型数据库通常需要快速响应和实时处理能力;而数据仓库则更注重数 据质量和完整性。
EDI的应用可以帮助企业更好地管理和利用数据资源, 提高企业的数据处理能力和数据价值,促进企业的数 字化转型和升级。
06
数据仓库的发展趋势和 挑战
大数据时代的挑战
数据量的快速增长
随着大数据时代的来临,数据量 呈爆炸式增长,对数据存储和处 理能力提出了更高的要求。
数据多样性的增加
数据来源和类型越来越多样化, 包括结构化、半结构化和非结构 化数据,需要更灵活的数据处理 和分析方法。
数据实时性的需求
随着业务对数据处理速度的要求 提高,数据仓库需要具备实时数 据处理的能力。
数据仓库技术的发展趋势
分布式存储与计算
利用分布式技术提高数据仓库的 存储和计算能力,满足大数据时
代的需求。
内存计算技术
利用内存计算技术提高数据处理速 度,实现更快速的分析和响应。
云计算技术
通过云计算技术实现数据仓库的弹 性扩展和按需服务,降低运维成本。
数据源的质量
在选择数据源时,需要考虑数据的质量、准确性和完整性,以确保数据仓库中的数据是 可靠的。
数据清洗和转换
数据清洗
数据清洗是去除重复、无效或错误数据 的过程,以确保数据的准确性和一致性 。
VS
数据转换
数据转换是将数据从其原始格式或结构转 换为数据仓库所需格式的过程,以满足数 据仓库的设计和规范。
性能优化
随着数据的增长和变化,需要定期对数据仓 库进行性能优化,以提高查询速度和响应时 间。

数据仓库的十大用途有哪些

数据仓库的十大用途有哪些

数据仓库的十大用途有哪些数据仓库是一种设计和管理大量数据的技术和架构,它允许组织将分散在不同系统中的数据整合起来,以支持决策分析和业务智能。

下面是数据仓库的十大用途:1. 数据整合:数据仓库可以集成来自不同业务系统和数据源的数据,将其整合到一个统一的数据模型中。

这样可以消除数据冗余和矛盾,并确保数据的一致性和准确性。

2. 数据备份和恢复:数据仓库可以作为主要业务系统的备份,保证在系统发生故障或数据丢失时可以迅速恢复。

3. 决策支持:数据仓库可以提供对历史和当前数据的全面视图,为管理层提供决策支持,并支持基于数据的分析和预测。

4. 报表和分析:数据仓库可以提供丰富的报表和分析功能,帮助业务用户快速生成各种类型的报表和分析结果,支持业务决策和运营优化。

5. 业务智能:数据仓库可以为企业提供业务智能,通过分析海量数据,发现隐藏的业务规律和趋势,提供业务增长和改进的建议。

6. 客户关系管理:数据仓库可以整合客户相关的数据,包括购买历史、行为特征等,通过分析这些数据,帮助企业实现精准营销和客户关系管理。

7. 风险管理:数据仓库可以整合和分析各种风险相关的数据,包括市场风险、信用风险等,帮助企业评估和控制风险,并提出相应的对策和预警。

8. 供应链管理:数据仓库可以整合供应链的各个环节的数据,包括采购、生产、配送等,通过分析和预测供应链数据,帮助企业优化供应链的效率和成本。

9. 业绩评估:数据仓库可以整合和分析企业的各项业务指标,包括销售额、利润率、市场份额等,帮助企业评估自身的业绩和竞争力,并进行战略调整。

10. 知识发现:数据仓库可以整合和分析企业的各种知识和经验,包括专家知识、历史数据等,通过挖掘这些知识,帮助企业发现新的机会和解决方案。

综上所述,数据仓库在企业中具有多种用途,包括数据整合、决策支持、报表和分析、业务智能、客户关系管理、风险管理、供应链管理、业绩评估和知识发现等。

通过合理利用数据仓库,企业可以提高决策质量、降低风险、提高运营效率,并在竞争激烈的市场中获得竞争优势。

数据仓库:介绍数据仓库的基本概念、特点和设计

数据仓库:介绍数据仓库的基本概念、特点和设计

数据仓库:介绍数据仓库的基本概念、特点和设计引言在当今信息时代,数据的重要性不言而喻。

随着企业和组织的迅速发展,数据量的不断增长,有效地管理和分析数据变得至关重要。

为此,数据仓库作为一种集成和存储大量数据的解决方案被广泛应用。

本文将介绍数据仓库的基本概念、特点和设计,帮助读者更好地了解和应用数据仓库。

第一部分:基本概念H1: 什么是数据仓库?数据仓库可以被理解为一种集成和存储多源、多结构、大容量数据的系统。

它是一个专门用于支持决策分析和业务智能的数据平台。

数据仓库通过把分散的数据整合到一个统一的存储中,提供了一个一致、准确、可靠的数据来源,以便进行各种分析和报告。

H2: 数据仓库的功能数据仓库的主要功能是数据整合、数据存储和数据分析。

数据整合包括从不同的数据源中提取数据,并进行清洗、转换和集成,以保证数据的一致性和准确性。

数据存储是指将整合的数据持久化到数据仓库中,提供高性能的数据访问和查询。

数据分析是数据仓库的核心功能,它可以通过各种分析工具和技术,帮助用户深入挖掘数据,探索数据之间的关联和模式,发现潜在的业务机会和问题。

H3: 数据仓库的架构数据仓库的架构包括数据源层、数据集成层、数据存储层和数据使用层。

数据源层是指各种数据源,如关系数据库、文件、日志等。

数据集成层是负责将数据源中的数据提取、清洗和转换,以满足数据仓库的需求。

数据存储层是指存储整合后的数据的位置,通常采用关系数据库。

数据使用层包括数据访问接口和报表工具,用于用户对数据进行分析和报告。

第二部分:特点和优势H1: 数据仓库的特点数据仓库具有以下几个特点:1.面向主题:数据仓库根据业务需求,将数据组织成主题,提供便于分析的数据模型。

2.集成性:数据仓库整合了不同来源的数据,消除了数据冗余和不一致性。

3.非易失性:数据仓库中的数据一般是只读的,不会因为操作或事务而发生变化。

4.完整性:数据仓库保持历史数据的完整性,记录了过去的业务活动和状态变化。

大数据分析知识:大数据的数据仓库建设

大数据分析知识:大数据的数据仓库建设

大数据分析知识:大数据的数据仓库建设随着信息技术的不断发展,数字化时代的到来,人们生产出的数据不断增长,呈现出海量、多样、高速、低价等特点,这就是大数据。

而随着大数据的普及,企业不仅仅需要收集和存储大量数据,更需要将这些数据转化为有价值的信息,通过数据仓库建设来实现数据的价值挖掘。

一、什么是数据仓库?数据仓库(Data Warehouse)指的是用于存储历史数据和进行数据分析、数据挖掘的信息系统。

它可以集成多源异构的数据,清洗和转换数据,使得数据的存储和查询更加高效和方便。

同时,数据仓库还能够支撑企业内部的报表、OLAP、分析挖掘等业务。

数据仓库主要由以下几个组成部分构成:1.数据源(Data Source):数据仓库中包含了多个数据源,可以是来自不同系统的数据,也可以是外部数据,通过ETL等技术进行清洗和转换后,将数据导入到数据仓库中。

2.数据层(Data Layer):数据层是数据仓库的核心,包含了数据模型、数据表、视图等元素,通过数据仓库中的数据层,可以方便地进行数据的存储和查询。

3.元数据(Metadata):元数据是描述数据仓库各种信息的数据,包括数据模型、数据表、视图、数据字典等。

4.分析工具(Analysis Tools):分析工具是数据仓库中进行数据分析和挖掘的工具,包括报表、OLAP和数据挖掘等,它们可以从数据仓库中获取信息并进行分析。

二、数据仓库建设的必要性随着企业业务的发展,数据量在不断增长,这就需要有一个能够支撑企业各种分析查询的平台,数据仓库正是这样一个平台。

通过数据仓库建设,企业可以将各个系统中的数据进行整合,提高数据的价值和利用率。

同时,数据仓库建设还可以解决以下问题:1.数据难以整合:企业应用系统多种多样,每个系统都有自己的数据存储方式,存在数据冗余和数据错误问题,难以进行组合分析。

数据仓库可以将这些不同来源的数据装载到一个统一的数据中心,进行整合。

2.数据质量不高:企业数据中常出现重复、矛盾等问题,诸如此类问题很容易导致分析结果的偏差。

通俗易懂了解什么是数据仓库

通俗易懂了解什么是数据仓库

通俗易懂了解什么是数据仓库什么是数据仓库数据仓库(下⽂以“数仓”称),顾名思义,存放数据的仓库,它集合了各个业务系统的数据,以⾦融业为例,数仓包含了贷款业务、CRM、存款业务等数据。

⽤于企业做数据分析、出报告、做决策;在有些公司也作为各业务系统的数据来源。

从逻辑上理解,数据库和数仓没有区别,都是通过数据库软件实现存放数据的地⽅,只不过从数据量来说,数据仓库要⽐数据库更庞⼤。

他们最主要的区别在于,传统事务型数据库如 MySQL ⽤于做联机事务处理(OLTP),例如交易事件的发⽣等;⽽数据仓库主要⽤于联机分析处理(OLAP),例如出报表等。

有些同学可能想,数据分析、出报表等⼯作也可以直接通过业务数据库完成呀,数据仓库似乎也不是必需品。

如果是简单的系统,⽐如初创时期,业务量少,⽤户和数据少,⼏台服务器和⼏个MySQL组成的系统,那确实可以实现。

但当业务越做越多,⽤户和数据量很庞⼤,出报表需要跨集群关联多个系统的数据实现的话,那数仓还是很有必要的。

如果还不能理解,先想⼏个问题如果你要的数据分别存放在很多个不同的数据库,甚⾄存在于各种⽇志⽂件中,你要如何获取这些数据?如果你从各数据源中取出了你要的数据,但是发现格式不⼀样,或者数据类型不⼀样,你要怎么规范?如果有⼀天你需要在业务系统查历史数据,但发现这些数据被修改过的,你要怎么办?如果要跨集群关联各个不同业务系统的数据,要怎么做?怎么优化查询时间?……数仓的出现,可以很好的解决上⾯这些问题。

它通过数据抽取和清洗,将各个业务系统的数据整合落地到⼀个系统(数仓),规范化数据,⽅便在出报表做决策的时候获取数据。

数仓的特点集成性数仓中存储的数据来源于多个数据源,原始数据在不同数据源中的存储⽅式各不相同。

要整合成为最终的数据集合,需要从数据源经过⼀系列抽取、清洗、转换的过程。

稳定性数仓中保存的数据是历史记录,不允许被修改。

⽤户只能通过分析⼯具进⾏查询和分析。

动态性数仓的数据会随时间变化⽽定期更新,这⾥的定期更新不是指修改数据,⼀般是将业务系统发⽣变化的数据定期同步到数仓,和稳定性不冲突。

数据仓库报告

数据仓库报告

数据仓库报告在当今数字化的时代,数据已成为企业决策的重要依据。

数据仓库作为一种集中存储和管理数据的系统,对于企业整合、分析和利用数据具有至关重要的作用。

数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。

它与传统的数据库不同,不是简单地存储日常业务操作产生的数据,而是经过一系列的处理和整合,将来自不同数据源的数据转化为有价值的信息。

数据仓库的建设通常需要经历多个阶段。

首先是需求分析,明确企业的业务目标和数据需求。

这一步至关重要,因为只有清楚了解企业想要通过数据仓库实现什么,才能为后续的设计和建设提供正确的方向。

接下来是数据建模,根据需求分析的结果,设计合适的数据模型,确保数据的结构清晰、易于理解和使用。

然后是数据抽取、转换和加载(ETL),这是将源数据经过清洗、转换等处理后加载到数据仓库中的过程。

在这个过程中,需要处理数据的不一致性、缺失值等问题,保证数据的质量。

在数据仓库中,数据的存储方式也有多种选择。

常见的有基于关系型数据库的存储,如 Oracle、SQL Server 等,也有基于分布式文件系统的存储,如 Hadoop 的 HDFS。

不同的存储方式各有优缺点,需要根据企业的数据规模、性能要求和预算等因素进行选择。

数据仓库的安全性也是不容忽视的一个方面。

为了保护企业的数据资产,需要采取一系列的安全措施,如用户认证、权限管理、数据加密等。

同时,还要制定完善的数据备份和恢复策略,以应对可能出现的灾难情况。

数据仓库的性能优化也是一个持续的过程。

随着数据量的不断增长和业务需求的变化,可能会出现查询性能下降等问题。

这时,就需要通过优化数据库结构、调整索引、增加缓存等方式来提高性能。

一个成功的数据仓库项目能够为企业带来诸多好处。

它可以帮助企业更好地了解市场趋势、客户需求和业务运营情况,从而支持企业制定更加科学合理的决策。

例如,通过对销售数据的分析,企业可以了解不同产品在不同地区、不同时间段的销售情况,进而优化产品布局和营销策略。

数据仓库岗位职责

数据仓库岗位职责

数据仓库岗位职责数据仓库是一个用于存储和管理企业数据的特定数据库系统。

数据仓库岗位的职责主要是负责数据仓库的设计、建设和维护,以及支持企业的数据分析和决策。

1.数据仓库设计:数据仓库岗位的首要职责是设计数据仓库系统。

这包括确定数据仓库的结构、数据模型、数据集成和数据存储方案。

数据仓库设计需要考虑企业的业务需求和数据分析的目标,以确保数据仓库能够有效地支持数据分析和决策。

2. 数据仓库建设:数据仓库岗位负责数据仓库的建设和开发。

这包括数据抽取、数据清洗、数据转换和数据加载等过程。

数据仓库岗位需要与数据源部门进行协调,并确保数据准确、完整地导入数据仓库中。

此外,数据仓库岗位还需要开发和维护数据抽取和转换的脚本以及ETL (Extract, Transform, Load)工具。

3.数据仓库维护:数据仓库岗位负责数据仓库的日常运维工作。

这包括监控数据仓库的性能和稳定性,处理数据仓库的故障和异常情况,定期备份和恢复数据仓库,以及优化数据仓库的查询性能等。

数据仓库岗位还需要参与数据仓库的升级和调优工作,以确保数据仓库能够满足企业不断增长的数据需求。

4.数据分析支持:数据仓库岗位负责支持企业的数据分析和决策。

这包括为用户提供数据查询和报表工具,帮助用户获取和分析数据;根据用户需求开发和维护数据模型和数据报表;解决用户的数据查询和分析问题,并提供教育培训,以提高用户的数据分析能力。

5.数据质量管理:数据仓库岗位负责数据质量管理。

这包括监控和评估数据仓库中数据的质量,以确保数据的准确性、完整性和一致性;修复和清洗数据仓库中的数据问题,并与数据源部门合作,解决数据质量问题的根源。

6.技术支持和培训:数据仓库岗位负责为用户提供技术支持和培训。

这包括解答用户的技术问题和故障排除,提供用户培训和指导,以提高用户对数据仓库的使用和理解。

7.数据安全和合规性:数据仓库岗位负责确保数据仓库的安全和合规性。

这包括制定和执行数据安全策略,确保数据的机密性和完整性;跟踪和更新数据仓库的合规性要求,并确保数据仓库符合相关法规和标准。

数据仓库的基本概念

数据仓库的基本概念

数据仓库的基本概念随着信息化时代的到来,数据的积累和应用越来越广泛,数据仓库作为企业数据管理的重要手段,也受到了越来越多的关注。

数据仓库是一种面向主题、集成、稳定、随时可用的数据集合,为企业决策提供了可靠的数据支持。

本文将从数据仓库的基本概念、架构、设计和实现等方面进行探讨。

一、数据仓库的基本概念1.1 数据仓库的定义数据仓库是一个面向主题、集成、稳定、随时可用的数据集合,为企业决策提供可靠的数据支持。

它是一个面向决策支持的数据集成、管理和分析平台,主要用于支持企业的决策制定和业务分析。

1.2 数据仓库的特点(1)面向主题:数据仓库是针对某个主题的数据集合,这个主题可以是企业的销售、市场、客户、产品等。

数据仓库以主题为导向,提供了全面、一致的数据视图,帮助企业深入了解业务。

(2)集成:数据仓库是从多个数据源中集成数据而成,可以包括企业内部的各种数据系统,也可以包括外部的数据源。

数据仓库的集成性使得企业可以从不同的角度来看待业务,更好地进行分析。

(3)稳定:数据仓库提供了稳定的数据环境,数据的结构和内容都是经过精心设计和维护的。

这使得企业可以放心地使用数据仓库中的数据,而不必担心数据的质量和可靠性问题。

(4)随时可用:数据仓库提供了随时可用的数据访问服务,任何人都可以在任何时间、任何地点通过合适的工具来访问数据仓库中的数据。

这为企业的决策制定和业务分析提供了极大的便利。

1.3 数据仓库的目的数据仓库的主要目的是为企业的决策制定和业务分析提供可靠的数据支持。

通过数据仓库,企业可以深入了解业务,发现业务规律,预测业务趋势,从而更好地制定决策和调整业务战略。

二、数据仓库的架构2.1 数据仓库的架构模型数据仓库的架构模型主要包括三层,即数据源层、数据仓库层和数据应用层。

数据源层是指数据仓库所需要的各种数据源,包括企业内部的各种数据系统和外部的数据源;数据仓库层是指数据仓库的存储和管理层,包括数据仓库的数据模型、数据仓库的物理存储结构、数据抽取、转换和加载以及数据仓库的维护和管理;数据应用层是指数据仓库的应用层,包括数据仓库的查询、报表、分析、挖掘等应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TF24 192 64
...
TF48 384 128
...
TF120 960 320
24 8
压缩 (TB)
32
64
128
256
512
1280
容量 压缩
= 用户数据空间 = 有效用户数据空间
议程
• Why Netezza • Netezza优势 -- 高性能 -- 简单性 -- 扩展性 -- 稳定性 -- 深压缩 -- 成熟性 • Netezza应用案例
Data Warehouse High Performance Analytics 1 TB to 1.5 PB
Queryable Archiving
100 TB to 10 PB
Netezza 1000系列 扩展性
1
10
...
TF3
Snippet 处 理器 容量 (TB)
TF6 48 16
TF12 96 32
演讲主题:智慧数据仓储 助力经营创新(Netezza)
演讲人:付杰 演讲人职务:资深信息工程师
议程
• Why Netezza • Netezza优势 • Netezza应用案例
传统数据仓库的缺点 — 花费巨额进行配置调优,但效果并不理想
高性能数据仓库一体机 (Appliance) -- 让一切变得简单
Uncompres s
Project
Restrict, Visibility
Complex ∑ Joins, Aggs, etc.
每个 “Snippet处理器” (FPGA+CPU) 以高于 115MB/秒的速度处理数据库的数据; 高压缩率 = 性能的提高
select DISTRICT, PRODUCTGRP, sum(NRX) and and
数据在进入到内存之前,已经 经过流式的数据处理
Confidential
1 真正的非共享的大规模并行处理架构
FPGA
CPU
内存
高级分 析 BI应用
主机
FPGA
CPU
内存
Hosts
ETL
FPGA
CPU
内存
数据加 载
网络结构
磁盘阵列柜
应用
S-Blades™
Netezza 一体机
1 最小的物理处理单元 -- 数据流处理程序
全省本地数据集市 平台:
某电信公司
客户背景
• 现有1000多万用户,向其客户提供固定电话、 移动电话、互联网接入及应用、数据灾备、视 讯服务、国际及港澳台通信等多种综合信息服 务
客户痛点
• 电信本地网的数据应用需求迫切 • 2006年建设的全省集中经分系统投资巨大, 但对经营分析和数据需求支撑有限
高可用性&稳定性
磁盘阵列柜
RAID1镜像+热备盘SM源自主机主备模式,操作系统级HA
Snippet Blades™ (S-Blades™)
负载均衡,动态接管
Confidential Page 20
-- 数据镜像(Disk Mirroring)和故障保护(Failover)
主空间 镜像空间 临时空间
解决方案
• 经过客户实际评估和验证,IBM Netezza一体 机提供的资料仓储解决方案将能发挥最佳效能, 最符合HTC企业现阶段的需求,并且能够线性 扩展满足企业未来的数据增长和海量数据分析 任务。
全球500+成功客户案例分布广泛
数字传媒
金融服务
政府
健康与生命科学
零售业
电信业
其他
31
谢 谢
select DISTRICT, PRODUCTGRP, sum(NRX) from MTHLY_RX_TERR_DATA where MONTH = '20091201' and MARKET = 509123 and SPECIALTY = 'GASTRO'
FPGA Core
CPU Core
Slice of table MTHLY_RX_TERR_DATA (compressed)
成熟的未来发展路线图
25
成熟的未来发展路线图
• October 2006 – NPS 3.1 系统软件 在 3代硬件上 – 比大多数竞争性数据库快100x倍 • August 2007 – NPS 4.0 系统软件 在3代硬件上 – 比NPS 3.1 SW获得100%的性能提升. 没有HW变化. • May 2008 NPS 4.5 系统软件 在 3代硬件上 – 比NPS 4.0 SW获得100%的性能提升. 没有HW变化. • August 2009 Netezza TwinFin 4代一体机 NPS 5.0 SW – 比NPS 4.5 SW和3代HW 获得2x到10x倍的性能提升. • October 2010 NPS 6.0 系统软件 – 比NPS 5.0 SW获得100%的性能提升. 没有HW变化. • 对于我们发布的每一代一体机,在同等硬件条件下仅通过软件更新,我们就证明 了2x 到10x倍的性能提升! • 没有其他RDBMS厂商显示出这种让同样的一组硬件在速度上不断提升的先例, 我们独一无二的做到了. • 我们的性能提升按这种步伐持续下去…
自适应的流式压缩技术,自动管理,对用户透明
采样结果
• 系统范围的数据压 缩 • 零调优,零管理 • 只需软件升级 • 专利算法 –纵向, 列压缩 –线速解压 –行级存储 • 增强的压缩计划 –基于数据的多压 缩策略 –所有数据类型 -平均4x倍压缩比 ,最大32x倍压 缩比
议程
• Why Netezza • Netezza优势 -- 高性能 -- 简单性 -- 扩展性 -- 稳定性 -- 深压缩 -- 成熟性 • Netezza应用案例
查询请求 服务器 关系型数据库软件 数据首先被搬运到 内存,然后由 SQL 进行处理 存储
Confidential
高性能
Netezza数据仓库专用设备的出现:带来性能的革命性突破
Netezza数据仓库设备
CPU: 仅为现有 系统的2% 查询结果 网络流量: 仅为现有 系统的1%
查询请求 SMP主机 (2-4 CPU) MPP “智能存储”: 数据处理单元与存储相结合
CREATE DATABASE my_db;
简单性 – 减轻运维人员的管理成本
简单性 – 灵活的工作负载管理
工作负载管理 (WLM) 提供可选的功能来管理资源,在不同的多用户环境下设 定资源使用的优先级,来满足混合用户工作负载下的需求 • 保障资源分配(GRA) – 在多用户环境下在多组用户中分配 NPS资源的机制 • 分优先级查询执行 (PQE) – 更细粒度的控制资源分配,从计划到执行层面进一步扩充查询优先级的控 制 • 短查询倾向(SQB) – 在系统工作负载量很大的情况下,保证执行短查询的用户获得更快速的高 优先级的查询响应时间 • 工作负载限制(GRA) – 可以利用group定义的JOB MAXIMUM属性来控制被本组提交的活动的运 行任务的数量
高可用性&稳定性

所有用户数据和临时空间镜像保护 磁盘故障对查询和交易透明


故障磁盘驱动的数据自动重生成
坏数据区自动重写以及自动迁移至新安全区
议程
• Why Netezza • Netezza优势 -- 高性能 -- 简单性 -- 扩展性 -- 稳定性 -- 深压缩 -- 成熟性 • Netezza应用案例
议程
• Why Netezza • Netezza优势 -- 高性能 -- 简单性 -- 扩展性 -- 稳定性 -- 深压缩 -- 成熟性 • Netezza应用案例
Netezza家族扩展性
Skimmer
TwinFin
Cruiser
Development & Test System 1 TB to 10 TB
1. table and indexes DataBase 2. tablespace 3. datafile 4. file Netezza: 极少 (或无需) 涉及 CREATE DATABASE my_db; 5. file system File System 6. striped logical volume 7. mirror/plex 8. sub-disk OS 9. raw device Network 10. Brocade SAN switch 11. EMC Symmetrix volume 12. EMC Symmetrix striped meta-volume Storage 13. EMC Symmetrix hyper-volume 14. EMC Symmetrix remote volume (replication)
50 亿条记录
12,000 个产品代码 40 亿次计算 (ETL) 12 至 20 个测试周期/年
生产周期为 9 天 (CMV)
议程
• Why Netezza • Netezza优势 -- 高性能 -- 简单性 -- 扩展性 -- 稳定性 -- 深压缩 -- 成熟性 • Netezza应用案例
简单性 -- 减轻设计开发人员的工作量
where MONTH = '20091201' MARKET = 509123 SPECIALTY = 'GASTRO'
sum(NRX) FPGA 的实际处 理吞吐量: 460MB/s*
给客户带来的利益 – 美国银行使用Netezza前后给业务带来的变化
使用 Netezza 前 2 个应用程序 使用 Netezza 后 7 个应用程序(且在不断增长) 850 亿条记录 20,100 个产品代码 18 亿次计算 (ETL) 2010 年有 120 个测试周期 生产周期为 24 个小时
相关文档
最新文档