第三章 二元合金相图汇总

合集下载

03第三章二元合金相图及相变PPT课件

03第三章二元合金相图及相变PPT课件
.2
28
温度降到3点以下, 固溶体被Sn过饱和,由于晶 格不稳,开始析出(相变过程也称析出)新相—
相。由已有固相析出的新固相称二次相或次生相。 形成二次相的过程称二次析出, 是固态相变的一种。
H
29
由 析出的二次 用Ⅱ 表示。 随温度下降, 和 相的成分分别沿CF线和DG线变
化, Ⅱ的重量增加。
温度继续下降,将从一次
和共晶 中析出Ⅱ,从 共晶 中析出Ⅱ。其室温 组织为Ⅰ+ (+) + Ⅱ。
亚共晶合金 的结晶过程
39
④ 过共晶合金结晶过程 与亚共晶合金相似, 不同的
是一次相为 , 二次相为Ⅱ 室温组织为Ⅰ+(+ )+Ⅱ。
40
Pb-Sn合金的结晶过程
⑶ 组织组成物在相图上的标注 组织组成物是指组成合金显微组织的独立部分。
螺旋状(Zn-Mg3)4
在共晶转变过程中,L、
、 三相共存,三个相
的量在不断变化,但它们 各自成分是固定的。
共晶组织中的相称共晶相.
共晶转变结束时, 和
相的相对重量百分比为:
C(19.2)
E(61.9) D(97.5)
QC ED D 10% 09 9..7 7 5 5 1 6..9 1 2 910% 04.5 4%
x1x2 (ab)、 x1x(ao)的长度。 10
因此两相的相对 重量百分比为:
QL
xx 2 x1x2
ob ab
Q
x1x x1x2
ao ab
两相的重量比为:
Q Q Lx x1x 2x (a o)o b或 Q Lx1xQ x2x
11
上式与力学中的杠杆定律完全相似,因此称之为杠杆 定律。即合金在某温度下两平衡相的重量比等于该温 度下与各自相区距离较远的成分线段之比。

第3章二元合金相图及应用PPT课件

第3章二元合金相图及应用PPT课件

31.10.2020
工程材料
99-30
合金I的结晶过程
温度继续下降, 从β中析出二次α。
31.10.2020
工程材料
99-31
合金I的结晶过程
室温组织为 β+二次α 。
组成相和组织组成物的成分和相对重量可根据杠杆定 律来确定。
31.10.2020
工程材料
99-32
相图与性能的关系
具有匀晶相图、共晶相图的合金的机械性能和物理性 能随成分而变化的一般规律见下图
工程材料
99-38
渗碳体(Cem渗en碳tit体e)组织金相图
定义——C与Fe的化合物(Fe3C)。 代表符号: Cm
性能:含碳6.69%,其硬度高,极脆,塑性几乎 为0,熔点为1227℃。
铁碳合金中渗碳体量多会导致材料力学性能变坏。 适量渗碳体若弥散分布在基体上,可提高材料强 度和硬度。
31.10.2020
31.10.2020
工程材料
99-21
合金Ⅳ的结晶过程
31.10.2020
工程材料
99-22
组织和相的关系
31.10.2020
工程材料
99-23
共析相图
31.10.2020
d点成分(共析成分)的合金从 液相经过匀晶反应生成 γ相后, 继续冷却到d 点温度(共析温度) 时, 在此恒温下发生共析反应: γ → (α+β)
分数相对重量。
液相在共晶反应后全部转变为共晶 体(α+β) , 这部分液相的质量分 数就是室温组织中共晶体 (α+β)
的质量分数。 初生 αc冷却不断析出 βII, 到室 温后转变为 αf和 βII。按照杠杆 定律, 可求出 αf、βII占 αf+ βII的质量分数(注意, 杠杆支点在 c'点), 再乘以初生 αc在合金中的 质量分数, 求得 αf、βII占合金的 质量分数。

第3章__二元合金相图

第3章__二元合金相图
1、相图相区分析 T,C 1500 1400 1300 1200 1100 1000 1083 Cu 固相区 20 40 60 Ni% 80 L 液相区
液相线 纯镍 熔点
1455
L+
纯铜 熔点

Ni 100
固相线
固液两相区
2、合金的结晶过程
L L
平衡结晶
形核和晶粒的长大
能量起伏 结构起伏 成分起伏
图3-17 匀晶相图合金的结晶过程
3、杠杆定律及其应用
设合金成分为ω,合金的总质量 为m,在T温度时,固相成分ωα, 液相成分ωL,对应的质量 m α , mL mL m m
mLL m m
mL bc m L ab
mL bc m ab m ac m ac m ab
T,C
T,C 1 L L+(+)+
183

L+
M
L
E
L+
N
2L+
+
Pb X3
(+ )+ (+ )+ + Ⅱ Sn
t
标注了组织组成物的相图
M
E
N
三、相图与性能的关系
1. 合金的使用性能与相图的关系
固溶体中溶质浓度↑ → 强度、硬度↑ 组织组成物的形态对强度影响很大。组织越细密,强度越高。
二、共晶相图
液相线
固相线
T,C

Pb
L+
L
L+

Sn
固溶线
+
Sn%
固溶线
铅-锡合金共晶相图

第三章二元相图和合金的凝固

第三章二元相图和合金的凝固

固溶体的平衡结晶过程: 固相成核
相内浓度梯度 相内扩散
界面浓度不平衡 晶体长大
重新建立平衡 固溶体的平衡结晶过程 原子的扩散过程 液相和固相均匀一致 原子的扩散进行完全 缓慢冷却 冷却速度大 相内成分不均匀 偏离平衡结晶条件(不平衡
结晶)
17
三、固溶体合金的不平衡结晶
条件:液相完全均匀化,而固相内却来不及进行扩散。
C1平衡重新建立→浓度梯度→原子
扩散→进一步长大
C1
→重复进行
溶 质
LC1

k0C1

k 0C1
L
(a)


L
k0C1 T1
C1
k0C2 T2
C2
L+
C0
C0

C0’


k0C1

பைடு நூலகம்
L
C1
溶 C0’ 质

k0C1

L
C1 溶

浓 度
k0C1
L
(b)
(c)
(d) 15
温度T2的结晶过程: LC 2 k 0C 2
§3.1 二元相图的建立
一、相图的表示方法 对二元合金来说,通常用横 坐标表示成分,纵坐标表示 温度。 坐标平面上的任一点称为表 象点,表示合金的成分和温度
1
二、相图的建立
通过实验测定:
先配制一系列成分不同的合金,然后测定这些合金的相变临 界点,最后把这些点标在温度—成分坐标图上,把各相同 意义的点连结成线,这些线就在坐标图上划分出一些区域, 即相区,将各相区所存在的相的名称标出,相图的建立工 作即告完成。
25
形成成分过冷临界条件:G mC 0 1 k0

第三章 二元合金的相结构与结晶(包晶相图)4(16)-10-2剖析

第三章  二元合金的相结构与结晶(包晶相图)4(16)-10-2剖析

α
包晶偏析:因包晶转变 不能充分进行而导致的 成分不均匀现象。
四、包晶转变的实际应用
包晶转变特点:
包晶转变的形成相依附在初生相上形成; 包晶转变的不完全性。(不彻底性)
组织设计:如轴承合金需要的软基体上分布硬质点的组织。 首先形成硬质点,包晶反应形成软固溶体包于其外层
晶粒细化。 包晶反应生成细小化合物,异质形核。
包晶反应的推广
包晶反应(Peritectic) L + 包析反应(Peritectoid) + 合晶反应(Syntectic) L1 + L2
第三章 二元合金的相结构与结晶
§3-1 合金中的相 §3-2 合金的相结构 §3-3 二元合金相图的建立 §3-4 匀晶相图及固溶体的结晶 §3-5 共晶相图及其合金的结晶 §3-6 包晶相图及其合金的结晶 §3-7 其它类型的合金相图 §3-8 二元相图的分析及使用
§3-6 包晶相图及其合金的结晶
室温组织组成:β+αⅡ
室温相组成: α+β
三、不平衡结晶及其组织
原因 新生β相依附于α相生核长大, β相将α相包围
液体和α相反应形成β相,须 通过β相层进行扩散
原子在固体中的扩散低于液体, 包晶转变缓慢
冷却速度快.包晶转变被抑制 不能完全进行
剩余的液体在低于包晶转变温 度直接转变为β
保留下来的α,以及形成的β 相成分都不均匀。
(2) 线:
液相线: ACB,固相线:APDB。 固溶线:PE、DF线分别为中的固溶线(溶解度曲线)。
包晶线:水平线PDC
一、相图分析
(3)相区:
三个单相区: L、、; 三个两相区:L+、L+、+; 一个三相区:即水平线PDC; L + + 。

第3章合金相图和合金的凝固

第3章合金相图和合金的凝固

rb wL 100% ab
w
ar 100% ab
动画3-3 杠杆定律证明
3.3 匀晶相图及固溶体的结晶 匀晶相图:两组元在液态无限互溶、固态也无限互溶的二元合 金相图。 匀晶转变:从液相结晶出单相固溶体的结晶过程。
主要二元合金系:Cu-Ni、Ag-Au、Cr-Mo、Cd-Mg、Fe-Ni、 Mo-W等。
2)温度t3 温度到t3时,最后一滴液体结晶成固体,固溶体的成分完全与合 金成分一致,成为均匀(C0)的单相固溶体组织时。
固溶体结晶过程概述:
固溶体晶核的形成(或原晶体的长大),产生相内(液相或固相)的 浓度梯度,从而引起相内的扩散过程,这就破坏了相界面处的 平衡(造成不平衡),因此,晶体必须长大,才能使相界面处重新
不是3,与合金的成分C0不同, 因此,仍有一部分液体尚未结 晶,一直要到t4温度才能结晶 完毕。
晶内偏析:一个晶粒内部化学成分不均匀的现象 枝晶偏析:固溶体树枝状晶体枝干和枝间化学成分不同的现象
影响晶内偏析的因素: 1)分配系数k0 当k01时,k0值越小,则偏析越大; 当k01时,k0越大,偏析也越大。 2)溶质原子的扩散能力 结晶的温度较高,溶质原子扩散能力又大,则偏析程度较小;反之,则 偏析程度较大。 3)冷却速度 冷却速度越大,晶内偏析程度越严重。 削除晶内偏析的方法: 扩散退火或均勺化退火
两相。
对二元系来说,组元数c=2,当f=0时,P=2-0+1=3,说明 二元系中同时共存的平衡相数最多为3个。
(2)利用相律可以解释纯金属与二元合金结晶时的一些差别。 纯金属结晶时存在液、固两相,其自由度为零,说明纯金属 在结晶时只能在恒温下进行。 二元合金结晶时,在两相平衡条件下,其自由度f=2-2+1, 说明此时还有一个可变因素(温度),因此,二元合金将在一定

最新第三章二元合金与相图介绍教学讲义ppt课件

最新第三章二元合金与相图介绍教学讲义ppt课件


相 图 的
这是因为主要混合物各相的变形能力不同,造成一相阻碍另一相的变 形,使塑性变形阻力增加,因而共晶体的压力加工性最差


第三章 二元合金与相图
作业
P59-60: 1、2、4、5
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
共晶相图
共晶合金 结晶过程
室温下合金Ⅱ的显微组织:a)相组成:α、β;b)组织组成:(α+β)
第三章 二元合金与相图
第二节 二元合金相图
共晶相图
亚共晶合金 结晶过程
合金III的结晶过程:L→L+α→α+(α+β) →α+(α+β)+βII
第三章 二元合金与相图
第二节 二元合金相图
共晶相图
亚共晶合金 结晶过程
第三章 二元合金与相图
第二节 二元合金相图
基本知识 二元合金基本相图
匀晶相图 共晶相图 包晶相图 共析相图 稳定化合物相图
第三章 二元合金与相图
第二节 二元合金相图
匀晶相图
两组元在液态时无 限互溶,在固态时 也无限互溶,且形 成单相固溶体,所 构成的相图
I:纯铜;II:75%Cu+25%Ni III:50%Cu+50%Ni
液固相线距离愈小,结晶温 度范围愈小→合金的流动性好
关 →有利于浇注

三、二元合金相图和合金的凝固

三、二元合金相图和合金的凝固

2018/3/29
金属学与热处理
14
二、固溶体的平衡结晶过程
2018/3/29
金属学与热处理
15

在1点温度以上, 合金为液相L。 缓慢冷却至1~2温度之间时, 合金发生匀晶反应: L→α , 从液相中逐 在1~2点之间任意温度都可以用杠杆定理确定液相L和固相α 的相对

渐结晶出α 固溶体。

含量和成分。
2018/3/29
金属学与热处理
5
2018/3/29
金属学与热处理
6
三、相律及杠杆定理
1.相律及其应用
f c p 2
f —自由度数 c—系统的组元数 p—平衡条件下系统的相数 当系统的压力为常数时
f c p 1
2018/3/29 金属学与热处理 7
自由度是指在保持合金系中相的数目不变的条件下,合 金系中可以独立改变的影响合金状态的内部和外部因素 的数目。 影响合金状态的因素有合金的成分、温度和压力,当压 力不变时,则合金的状态由成分和温度两个因素确定。 纯金属的自由度最多只有一个; 二元系合金的自由度最多为2个; 三元系合金的自由度最多为3个。
的成份是不同的,它应按固相 线变化。如果冷却速度较快,
固体中原子难以通过扩散满足
相图中的平衡成份,则就产生 了不平衡凝固过程。此时,通 常先结晶的固溶体内部含高熔 点组元,而后结晶的外部则富 含低熔点组元。 这种在晶粒内部出现的成份
下图是在金相显微镜下观察 到的Cu-Ni合金不平衡凝固的 铸态组织,Ni熔点高,先结晶 出的枝干富含Ni,耐浸蚀,呈 白亮色枝间后结晶含Cu多,易 受浸蚀,呈黑色。 扩散退火的方法可消除晶内 偏析。
成全部共晶组织的成分和 温度范围称为伪共晶区。

第三章 二元合金相图和合金的凝固

第三章  二元合金相图和合金的凝固

第三章二元合金相图和合金的凝固一.名词解释相图、相律、匀晶转变、共晶转变、包晶转变、共析转变、包析转变、异晶转变、平衡结晶、不平衡结晶、异分结晶、平衡分配系数、晶内偏析、显微偏析、区域偏析、区域提纯、成份过冷、胞状组织、共晶组织、亚共晶组织、过共晶组织、伪共晶、离异共晶、二.填空题1.相图可用于表征合金体系中合金状态与和之间的关系。

2.最基本的二元合金相图有、、。

3.根据相律,对于给定的金属或合金体系,可独立改变的影响合金状态的内部因素和外部因素的数目,称为,对于纯金属该数值最多为,而对于二元合金该数值最多为。

4.典型的二元合金匀晶相图,如Cu-Ni二元合金相图,包含、两条相线,、、三个相区。

5.同纯金属结晶过程类似,固溶体合金的结晶包括和两个基本过程。

6.勻晶反应的特征为_____________,其反应式可描述为________ 。

7.共晶反应的特征为_____________,其反应式可描述为___________ _。

8.共析反应的特征为_____________,其反应式可描述为_____________。

9.金属或合金在极缓慢冷却条件下进行的结晶过程称为。

纯金属结晶时所结晶出的固相成分与液相成分,称为;而固溶体合金结晶时所结晶出的固相成分与液相成分,称为。

10.固溶体合金经不平衡结晶所产生的两类成分偏析为、。

11.固溶体合金产生晶内偏析的程度受到溶质原子扩散能力的影响,若结晶温度较高,溶质原子的扩散能力小,则偏析程度。

如磷在钢中的扩散能力较硅小,所以磷在钢中的晶内偏析程度较,而硅的偏析较。

12.固溶体合金结晶后出现枝晶偏析时,结晶树枝主轴含有较多的________组元。

严重的晶内偏析降低合金的,为消除枝晶偏析,工业生产中广泛采用的方法。

13.根据区域偏析原理,人们开发了,除广泛用于提纯金属、金属化合物外,还应用于半导体材料及有机物的提纯。

通常,熔化区的长度,液体的成分,提纯效果越好。

第三章 金属的结晶与二元合金相图

第三章 金属的结晶与二元合金相图

液相区L 双相区L+α 固相区α 液相线 固相线
固相区
匀 晶 相 图 合 金 的 结 晶 过 程 (P33)
☆在不同温度下刚刚结晶出来的固相的化学成分是 不相同的,其变化规律是沿着固相线变化.与此同 时剩余液相的化学成分也相应地沿着液相线变化.
2,晶内偏析——枝晶偏析 (P33)
晶内偏析: 晶内偏析: 在一个晶粒内,各处 成分的不均匀现象. 因为金属通常以枝晶 方式结晶,先形成的 主干和后形成的支干 就会有化学成分之差, 枝晶偏析. 所以也称枝晶偏析 枝晶偏析
第一节 金属结晶的基础知识
一,金属结晶的温度与过冷现象(P26) 金属结晶的温度与过冷现象 3,过冷度(△T):理论结晶温度与实际结 过冷度( 晶温度之差.对于纯金属: △T= T0- Tn 4,金属的结晶都 是在一定的过冷 度下进行的,这 种现象称过冷现 过冷现 象.
第一节 金属结晶的基础知识
(二)共晶相图 1,相图分析 (P35)
7)α固溶体溶解度变化曲线——cf 8) β固溶体溶解度变化曲线——eg 9)三个单相区:L,α,β
10)液相线——adb 11)固相线——acdeb 12)共晶线——cde
(二)共晶相图 1,相图分析 (P35)
13)三个两相区:L+α,L+β,α+β 14)一个三相区:L+α+β,在共晶转变过程中三相同时存在.
第一节 金属结晶的基础知识
一,金属结晶的温度与过冷现象(P26) 金属结晶的温度与过冷现象 1,理论结晶温度 0: 又称平衡结晶温度. 理论结晶温度T 理论结晶温度 (冷速极慢)也就是金属的熔点Tm. 2,实际结晶温度 n:在某一实际冷却速度下 实际结晶温度T 实际结晶温度 的结晶温度.

Chapter-3-二元相图及其合金解析

Chapter-3-二元相图及其合金解析
合金相 :指合金中结构相同,成分和性能均一,并有
界面与其他部分分开的均匀组成部分(phase)
金属或合金均由相构成——单相合金、多相合金 ——用α、β、γ、δ、η、θ等表示
合金中,形成条件不同,可能形成不同的相,相的数量、 形态及分布状态不同,形成不同的组织的相:α-Fe 钢中的相:铁素体(α)+渗碳体(Fe3C)
§ 3-3 二元合金相图的建立
给定的合金系究竟以什么状态(相)存在,包 含哪些相,这由内、外因条件决定,外因是温度 和压力,内因则是化学成分 ——用相图来表示它们之间的关系
几个概念: 相图: 表示合金系中的状态(相)与温度,成分
之间关系的图解。又称状态图或平衡图 相变:相与相之间的转变
合金相图可作为合金熔炼、铸造、锻造及热处理的重要依据。
电负性因素
电负性:元素的原子获得电子的相对倾向。
两元素的电负性相差越大,化学亲合力越 强,易生成金属化合物。
两元素间的电负性相差越小,越易形固溶 体,所形成的固溶体的固溶度也越大。
电子浓度因素
在尺寸有利的情况下,溶质原子的价越高,固溶度越 小。
电子浓度定义为合金中价电子数目与原子数目的比值。 固溶度受电子浓度控制,存在一临界值。
算方法。
难点:
1 相与组织的差别;间隙相与间隙化合物的区别; 2 相组成及组织组成相对量的计算; 3 形成金属化合物的相图
§3-1 合金中的相
合金: 一种金属元素与另一种或几种其它元素,经熔炼或 其它方法结合而成的具有金属特性的物质。如黄铜是铜 锌合金,钢、铸铁是铁碳合金。 组 元 :组成合金最基本的、独立存在的物质
一、固溶体
与固溶体的晶格相同的组成元素称为溶剂,在固溶体中一般 都占有较大的含量;其它组成元素称为溶质。

二元合金相图

二元合金相图

21
四 平衡结晶分析及其组织1源自金的结晶过程固溶体合金的结晶过程 22
结晶过程
1.当温度到达1点或稍下时,由L→α固溶体随着温度 的降低α% ↑ ,L%↓。并呈树枝状形态……
2.当温度到达2点时液相完全消失,得到100%α。
液相的成分1→α1→α2→…以致消失。 固相成分由c1→c2→2→… α(ob成分) 最后得到成分均匀的ob成分等轴状的α固溶体。
16
第二节 匀晶相图
一.相图的基本概念
● 相图:研究合金在平衡的条件下(无限缓慢冷却,比如 0.5~1.50C/min) ,合金的状态与温度、 成分间的关系的图解称 为相图或平衡图。
● 合金系:指研究的对象。如:Fe-C系,Pb-Sn系等。
● 状态:指合金在一定条件下有哪几相组成, 称为合金在该条 件下的状态。 如纯铁在1538℃以上的状态为液相;在1538℃时为液相和固 相两相共存; 1538℃以下为固相.
匀晶转变:在一定温度范围内,不断由液相中凝固出 固溶体,液相、固相成分都不断随温度的下降而沿液 相线和固相线变化的过程,叫做匀晶转变。
23
五 匀晶结晶的特点
1)树枝状长大:a固溶体在从液相中结晶出来的过程中, 包括有生核和长大两个过程,但固溶体更趋于呈树枝状 长大。
2)变温结晶过程:在一个温度区间进行。
14
B.复杂结构的间隙化合物
当非金属原子半径(rB)与金属原子半径(rA)之比rB /rA大于0.59时,形成具有复杂结构的间隙化合物。
(1)形成条件:两类元素的负电性相差较大且满足rB /rA > 0.59
(2)特性
(a) 复杂结构如:Fe3C 、Cr7C3 Cr23C6 (b) 高熔点、高硬度,但比间隙相的略低,在钢中也起强化作用; 塑性为零,加热容易分解 © 常形成Cr、Mn、Co、Fe的碳化物或它们的合金碳化物,常见 的类型有:M3C、M7C3、M23C6、M6C。

二元合金与相图

二元合金与相图
第三章 二元合金相图 概述
纯金属具有良好的导电导热性,但机械性能差,而且提炼 困难,价格昂贵,故工业上广泛应用的是合金材料。 合金 一种金属元素同另一种或几种其它元素, 通过熔化 或其它方法结合在一起所形成的具有金属特性的物质。 例如:钢(铁和碳的合金) 黄铜(铜和锌的合金) 组元 组成合金的独立的、最基本的单元叫做组元。组元可以 是金属、非金属元素或稳定化合物。 二元合金 由两个组元组成的合金称为二元合金, 例如工 程上常用的铁碳合金、铜镍合金、铝铜合金等。 合金的强度、硬度、耐磨性等机械性能比纯金属高许多; 某些合金还具有特殊的电、磁、耐热、耐蚀等物理、化学性 能。因此合金的应用比纯金属广泛得多。
第一节 固态合金相结构
合金的生产用的最多的是熔炼法。由于合金中含有2种或2 种以上元素的原子,在熔炼的过程中,原子之间必然相互发生 作用,因而使得合金结晶后生成的结晶产物是含有2种或多种 元素的小晶体。
在金属或合金中,凡化学成分相同、晶体结构相同并有界 面与其它部分分开的均匀组成部分叫做相。
例如:单一的液相;单一的固相; 液相、固相两相共存(冰水混合物); 问题: 水、油混装在一个瓶子里,是几个相? 将奶粉加开水冲一杯牛奶又是几个相? 若合金是由成分和结构都相同的同一种晶粒构成,称合金 含有一种相,为单相。 若合金是由成分和结构互不相同的几种晶粒构成,称合金 含有多种相,为多相。
3. 间隙化合物 由过渡族金属元素与碳、氮、氢、硼等原 子半径较小的非金属元素形成的化合物为间隙化合物。尺寸较 大的过渡族元素原子占据晶格的结点位置,尺寸较小的非金属 原子则有规则地嵌入晶格的间隙之中。根据结构特点,间隙化 合物分间隙相和复杂结构的间隙化合物两种。 (1)间隙相 当非金属原子半径与金属原子半径之比 小于0.59时,形成具有简单晶格的 间隙化合物,称为间隙相。间隙相 具有金属特性,有极高的熔点和硬 度, 非常稳定。它们的合理存在, 可有效地提高钢的强度、热强性、 红硬性和耐磨性,是高合金钢和硬 质合金中的重要组成相。

第三章二元合金相图

第三章二元合金相图

3.3.2 二元共晶相图
合金Ⅰ的平衡结晶过程示意图
成分位于EG之间的合金,其结晶过程与FD间 的合金类似,室温组织为:β+αⅡ。
3.3.2 二元共晶相图
(2)合金Ⅱ(共晶合金)的平衡结晶过程 液态合金冷却到1点(共晶温度),在恒温下 发生共晶转变,LB →(αD+βE),生成共晶 体。共晶转变完成后,随着温度下降,αD和 βE固溶度逐渐减小,从α中析出βⅡ,从β 中析出αⅡ,但析出的αⅡ和βⅡ量不多,而 且和从液相中析出的α、β混在一起,在显 微镜下难以分辨,一般不予考虑,因此室温 组织为:(α+β)共晶组织。
3.3.1 二元匀晶相图
扩散退火 枝晶偏析会降低合金的力学性能和工艺 性能,生产上常采用扩散退火来消除其影响 ,即把钢加热到高温(低于固相线100℃左 右),进行长时间保温,使原子充分扩散, 从而获得成分均匀的固溶体。
3.3.2 二元共晶相图
二元共晶相图 二元合金系中的两组元在液态时无限互 溶,在固态时有限互溶,并发生共晶转变的 相图,称为二元共晶相图。 具有这类相图的二元合金系主要有Pb-Sn 、Pb-Sb、Ag-Cu、Al-Si等。下面以Pb-Sn相 图为例,分析共晶相图。
3.2.3 杠杆定律
2.平衡相相对含量的确定 在两相平衡区内,温度一定时,两相的 质量比是一定的。 两相的相对含量可用(3-1)式来表达:
式中: QL —液相的质量; Qα — 固相的质量; bc、ab—线段长,用成分坐标上的 数值来度量。
3.2.3 杠杆定律
(3-1)式可写成QL· ab= Qα· bc,形式上与力 学中的杠杆定律相似,因此称为杠杆定律, 杠杆的支点为合金的成分点,杠杆的两个端 点为给定温度时两相的成分点。 液相和固相在合金中所占的质量分数: 运用杠杆定律时要注意, 它只适合于相图中的两相 区,并且只能在平衡状态 下使用。

第三章 二元合金相图及应用

第三章 二元合金相图及应用

性能:
加工性能
机械性能
第六节 铁碳合金相图
钢中的渗碳体
铸铁中的石墨
第六节 铁碳合金相图Fra bibliotek灰铸铁(珠光体+片状石墨 )
球墨铸铁(铸态)珠光体+铁素体+球状石墨 400X
第六节 铁碳合金相图
可锻铸铁 400X (铁素体+团絮状石墨)
蠕墨铸铁 (铁素体+蠕虫状石墨)400X
第六节 铁碳合金相图
四、珠光体(P)
共析相图
A
E
( A+Fe3C ) Ld Ld+Fe3CⅠ A+Ld+Fe3CⅡ 727℃
P+Ld′ +Fe3CⅡ Ld′ Ld′ +Fe3CⅠ ( P+Fe3C )
K
0.0218%C 0.77%C Fe
2.11%C
4.3%C
6.69%C Fe3C
第六节 铁碳合金相图
Fe-Fe3C相图分析
点:A、G、Q、D); E、 P; C、 S 线:ACD、AECF; ECF、PSK; ES、PQ; AE、GS; 区:单相区 两相区 三相区
所谓稳定化合物是指具有一定的熔点, 在熔点温度以下能够保持自己固有结构而 不发生分解的化合物,如:Mg2Si
含稳定化合物的相图
第四节 其他相图
温度
L+Mg L+ Mg2Si 638.8℃ 1087℃
L
L+ Mg2Si L+Si 946.7℃
1414℃
Mg+ Mg2Si
Mg Mg2Si
Mg-Si 合金相图
Mg2Si+ Si Si
第五节 相图与性能的关系

第三章3 金属的结晶与相图之二元相图匀晶

第三章3  金属的结晶与相图之二元相图匀晶

(1)细晶区(2)柱状晶区(3)等轴晶区铸锭结构示意图 (1)细晶区(2)柱状晶区(3)等轴晶区铸锭结构示意图 细晶区(2)柱状晶区(3)
杠杆定律示意图
4.匀晶系合金的非平衡结晶及晶内偏析 匀晶系合金的非平衡结晶及晶内偏析
固溶体结晶时,只有在极缓慢冷却、原子扩散充分的条件下, 固溶体结晶时,只有在极缓慢冷却、原子扩散充分的条件下, 固相的成分才能沿着固相线均匀地变化, 固相的成分才能沿着固相线均匀地变化,最终获得与原合金 成分相同的均匀α固溶体。 成分相同的均匀α固溶体。 实际生产中冷却速度都较快,固态下原子扩散又很困难, 实际生产中冷却速度都较快,固态下原子扩散又很困难,致 使固溶体内的原子来不及充分扩散, 使固溶体内的原子来不及充分扩散,先结晶出的固溶体含高 熔点组元( 中的N 较多, 熔点组元(Cu-Ni中的Ni)较多,后结晶出的固溶体含低 熔点组元( 较多。 熔点组元 ( C u ) 较多 。 这种在一个晶粒内化学成分不均匀 的现象称为晶内偏析。 的现象称为晶内偏析。 偏析会降低合金的力学性能和工艺性能, 生产中采用均匀化 偏析会降低合金的力学性能和工艺性能 退火或扩散退火消除。 退火或扩散退火消除。
三、二元合金相图
相平衡: 在一定条件下, 相平衡: 在一定条件下,合金系中参与相变的各相成 分和相对重量不变所达成的一种状态。 分和相对重量不变所达成的一种状态 。 此时合金系 的状态稳定,不随时间而改变。相平衡是动态平衡。 的状态稳定,不随时间而改变。相平衡是动态平衡。 合金极缓慢冷却结晶过程可认为是平衡结晶过程。 合金极缓慢冷却结晶过程可认为是平衡结晶过程。 合金相图: 合金相图 : 是表明在平衡状态下合金系中各合金的 组成相与温度、 成分之间关系的图解, 组成相与温度 、 成分之间关系的图解 , 又称合金平 衡图或合金状态图。 衡图或合金状态图。 通过相图可以了解合金系中各成分合金在不同温度 的组成相, 及各相的成分和相对量, 的组成相 , 及各相的成分和相对量 , 还可了解合金 在缓慢加热或冷却过程中的相变规律。 在缓慢加热或冷却过程中的相变规律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TL
TA
mCo1
1 K0 K0
exp
RX D
(2) (3)
而界面温度: Ti (TL ) x0 TA mCo / K0 (4)
若自液-固界面开始的温度梯度为G,则距界面X处液体实 际温度为
T=Ti+Gx
(5)
将(4)式代入(5)式:T=TA-mCo/K0+Gx (6)
当液体实际温度T<TL (7),产生成分过冷,成分过 冷是由于界面前沿液相中成分差别与实际温度分布两 个因素共同决定的。
在稳态凝固过程中,固溶体溶质分布方程为:
CS
K eC0
1
X L
Ke 1
其中Ke为有效分配系数,
Ke
(CS )i (CL ) B
K0
K0 (1 K 0 )e R / D
常数
式中 R:凝固速度 δ:边界层厚度 D:扩散系数
19
Ke
(CS )i (CL ) B
K0
K0 (1 K 0 )e R / D
1 4
5
10
1.晶内偏析(枝晶偏析) ·定义:晶粒内部出现的成份不均匀现象。 ·通过扩散退火或均匀化退火,使异类原子互相
充分扩散均匀,可消除晶内偏析。
11
晶内偏析(枝晶偏析)
2.影响晶内偏析的因素 a、·冷却速度 b、 元素的扩散能力 c、 相图上液相线与固相 d、线之间的水平距离
12
四、固溶体合金凝固过程中的溶质分布
1.成分过冷
①成分过冷的产生 设一个K0<1的合金Co在 圆棒形锭模中自左向右 作定向凝固,假定溶质 仅依靠扩散而混合
C
Co1
1 K0 K0
exp
RX D
(1)
由相图,可得界面前沿 液相线温度曲线TL(x) 假定相图的液相线为直 线,斜率为m,则液相线 随浓度变化的温度:
23
TL=TA-mCL (m为斜率的绝对值) (1)式代入(2)式:
14
1.液体中溶质完全混合的情况
15
·圆棒从左端至右端的宏观范围内的成分不均匀现象,称 为宏观偏析。
·圆棒离左端距离X处的溶质浓度 : CS(x)=K0C0(1-X/L)K0-1
·剩余液相的平均浓度: CL(x)=C0(1-X/L)K0-1 其中 L:合金棒长度
C0:合金的原始浓度
16
2.液体中仅借扩散而混合的情况
8
与纯金属相比,固溶体合金凝固过程有两个特点:
·1、固溶体合金凝固时析
出的固相成分与原液相 成份不同,需成份起伏。
α晶粒的形核位置是那 些结构起伏、能量起伏 和成分起伏都满足要求 的地方。
·2、固溶体合金凝固时依
赖于异类原子的互相扩散。
9
三、固溶体合金的非平衡凝固和组织
固相平均成份线
1
1 2
31
·平衡分配系数:一定温度下,固/液两平衡相中溶质 浓度之比值 K0=Cs / CL
CS、CL:固、液相的平衡浓度
13
正常凝固过程 在讨论金属合金的实际凝固问题时,一般不考虑固相内
部的原子扩散,即把凝固过程中先后析出的固相成份看作没 有变化,而仅讨论液相中的溶质原子混合均匀程度问题。以 下讨论的均为正常凝固过程。Ke=1CS NhomakorabeaC0
1
X L
11
C0
CL
C0 1
1 K0 K0
exp
RX D
17
3.液体中溶质部分混合的情况 ① 固液边界层的溶质聚集对凝固圆棒成分的影响。
18
② 初始过渡区的建立
当从固体界面输出溶质的速度等于溶质从界面层扩散 出去的速度时,则达到稳定状态,从凝固开始至建立 稳定的边界层这一段长度称为“初始过渡区”,达到 稳定状态后的凝固过程,称为稳态凝固过程。
·。将(3)、(6)式代入(7)式,得到成分过冷的条件:
3
二、相律
吉布斯相律:f=c-p+2 C:系统的组元数 P:共存的平衡相数 f:自由度的数目,指给定合金系在平衡相数不变的前 提下,可独立改变(如温度、压力、浓度等)的数目。
对于不含气相的凝聚系统,可视为恒压条件,相律表 述为:
f=C-P+1
4
三、二元相图的表示和杠杆定律
合金成分为C,总重量为W。在T温度时,由液相和固相组成, 液
·合金相图:用图的形式表明一个合金系 的成份、温度和相态之间的关系。
2
一、二元合金中存在的相
1.相
·相是一个物系中,结构相同,成分和性能均一, 并以界面相互分开的组成部分。
·相与相之间的转变称为相变。
·如果系统中各相经历很长时间而不互相转化,则 是处于平衡状态。
2.平衡相类型
·液溶体
·固溶体
·金属间化合物
第三章 二元合金相图及合金的凝固
§1 有关相图的基本知识 §2 匀晶相图及固溶体合金的凝固和组织 §3 共晶相图及其晶合金的凝固和组织 §4 包晶相图及其合金的凝固和组织 §5 其它类型的二元合金相图 §6 Fe-C相图及铁碳合金 §7 相图的热力学知识
1
§1 有关相图的基本知识
·合金:由两种以上的金属和非金属熔合 (或烧结)在一起而具有金属特性的物 质。
常数
式中 R:凝固速度 δ:边界层厚度 D:扩散系数
A 当凝固速度非常缓慢时, Rδ/D 0 ,Ke K0 即为液体中溶质完全混合的情况。
B.当凝固速度非常大时,e - Rδ/D
0 , Ke=1,为液体
中溶质仅有通过扩散而混合的情况。
C.当凝固速度介于上面二者之间,
K0<Ke< 1,
液体中溶质部分混合的情况。
注意:杠杆定律适用于平衡结晶时的两相区。
6
§2 匀晶相图及固溶体合金的凝固和组织
一、相图分析 两组元在液态无限互溶,在固态也无限互溶的系
统称为匀晶系。
7
二、固溶体合金的平衡凝固及组织
平衡凝固:指合金从液态很缓慢地冷却,使合金在相 变过程中有充分时间进行组元间的互相扩散,每个 阶段都能达到平衡,达到平衡相的均匀成份。
相的成分为CL ,重量为WL,固相成份为C α ,重量为Wα。

W=WL+Wα
(1)
WL·CL+Wα·C α =W·C
(2)
由(1)、(2)可得:WL/W α=(C α-C) / (C- CL)
故 WL/W α=rb / ar
上式还可换写成:WL/W =rb / ab
杠杆定 律的证 明
·
5
杠杆定律: WL/W α=rb / ar
Ke方程式图解
20
: 圆棒离左端距离X处的溶质浓度 液体中溶质完全混合
CS(x)=K0C0(1-X/L)K0-1 ,液体中仅借扩散而混合,CS
C0
1
X L
11
C0
液体中溶质部分混合 C S
K eC0
1
X L
Ke 1
21
4.区域熔炼
22
五、成分过冷及其对晶体成长形状铸件组织的影响
相关文档
最新文档