气体放电管在浪涌抑制电路的应用
防浪涌保护器原理
防浪涌保护器原理
防浪涌保护器是一种用于保护电子设备免受浪涌电压影响的重要装置。
在电力系统中,由于雷电、电网切换、电动机启动等原因,会产生瞬时的浪涌电压,如果这些浪涌电压超过了设备的承受范围,就会对设备造成严重损坏。
因此,防浪涌保护器的应用显得尤为重要。
防浪涌保护器的原理主要是利用其内部的元件对浪涌电压进行吸收和抑制,从而保护设备不受损害。
其主要原理包括以下几个方面:
首先,防浪涌保护器内部会采用金属氧化物压敏电阻器(MOV)等元件来吸收浪涌电压。
当浪涌电压超过设定的阈值时,MOV会迅速变为导电状态,将浪涌电压吸收并转化为热量释放出去,从而保护设备。
其次,防浪涌保护器还会采用气体放电管(GDT)等元件来抑制浪涌电压。
当浪涌电压超过设定的阈值时,GDT会迅速导通,将浪涌电压通过放电通路释放出去,起到抑制的作用。
此外,防浪涌保护器还会通过电感元件和电容元件构成的低通滤波器,将高频的浪涌电压滤除,从而保护设备不受高频浪涌的影响。
最后,防浪涌保护器还会采用过压保护器等元件来监测电压波形,一旦检测到异常电压,就会迅速切断电路,保护设备免受损害。
总的来说,防浪涌保护器的原理是通过吸收、抑制和滤除浪涌电压,保护设备不受损害。
其内部的各种元件相互协作,形成了一套完善的保护机制,确保了设备的安全稳定运行。
在实际应用中,选用合适的防浪涌保护器对设备进行保护,可以有效地延长设备的使用寿命,降低维护成本,提高系统的可靠性。
因此,防浪涌保护器的原理及
其应用具有重要的意义,对于电力系统和电子设备的安全稳定运行起着至关重要的作用。
气体放电管作用
气体放电管作用
气体放电管的作用是什么?在电路中,气体放电管起到一个缓冲的作用,电路中有很多电子元件,如二极管、三极管等。
当电子元件工作时,他们之间会产生高频电流,产生的热量会使电子元件的内部温度上升,从而使电路出现故障。
当气体放电管的两端电压为零时,它会把高频电流泄放掉,这样就不会产生过高的温度,从而保护了电路中的元件。
气体放电管主要是用在交流220V的电源电压超过5V时,为了防止二极管击穿而采用的一种保护器件。
在我们日常生活中,也经常用到气体放电管,比如电视机、录像机、收音机等电子设备中。
当电子设备中发生短路时,气体放电管就会把电源中的浪涌电流泄放掉。
这样就不会产生过高的温度而损坏元件。
当我们在使用电视机时,有时会出现雪花屏或者图像模糊等现象,这是因为电视机发射管的栅极被氧化了,虽然也叫“栅极”,但它没有金属氧化层。
电视画面中出现雪花和模糊现象时,是因为显像管本身故障导致电压过高而损坏了显像管。
—— 1 —1 —。
浪涌防护电路设计
浪涌防护电路设计一、引言浪涌防护电路是指在电路中采用一定的电气或电子技术手段,以保护设备免受突发的、短暂的高电压脉冲的影响,从而保证设备的正常工作。
浪涌防护电路设计是现代电子技术中非常重要的一部分,因为在工业生产和日常生活中,各种突发事件都有可能导致电网中出现高压脉冲,如果没有浪涌防护措施,就会对设备造成不可逆转的损害。
二、浪涌现象及其影响1.浪涌现象浪涌是指突发的、短暂的高压脉冲,通常由雷击、开关操作、线路故障等原因引起。
在实际应用中,由于各种原因导致的高压脉冲可能会以不同形式进入电子设备内部。
2.影响当高压脉冲进入设备内部时,就会对设备产生不同程度的影响。
例如:(1)直接损坏器件:当高压脉冲达到一定程度时,可能会直接击穿器件内部的绝缘层,导致器件损坏。
(2)降低器件寿命:即使高压脉冲没有直接击穿器件,也会在器件内部产生热量,从而使器件温度升高,进而缩短器件的寿命。
(3)引起系统故障:高压脉冲可能会干扰设备内部的信号传输,从而引起系统故障。
三、浪涌防护电路设计原则1.选择合适的防护元件在浪涌防护电路中,选择合适的防护元件非常重要。
一般来说,常用的浪涌防护元件有气体放电管、金属氧化物压敏电阻、二极管等。
不同类型的防护元件具有不同的特点和应用范围,在选择时需要根据实际情况进行考虑。
2.合理布局在电路设计中,合理布局也是非常重要的一点。
例如,在PCB板上布局时,需要将输入端和输出端分开布置,并尽量减少线路长度和环形线路等因素对信号稳定性造成影响。
3.保证接地良好良好的接地是保证浪涌防护电路有效的关键。
在电路设计中,需要保证接地点的数量充足,并尽量减小接地电阻,从而提高接地效果。
四、浪涌防护电路设计实例以下是一种简单的浪涌防护电路设计实例:1.选择合适的防护元件在本例中,选择了气体放电管作为浪涌防护元件。
气体放电管具有响应速度快、容量大、寿命长等优点,在浪涌防护中得到了广泛应用。
2.合理布局在PCB板上,将输入端和输出端分开布置,并采用短线连接,避免环形线路对信号稳定性造成影响。
目前用于浪涌保护的器件有四种
目前用于浪涌保护的器件有四种:(1)二极管瞬变电压抑制器(TVS),电流调节能力强,工作电压和箝位电低,响应速度快,用于保护400V以下的低压电路,能承受50~500A的浪涌电流,有串联型和并联型两种,是电路板保护和理想器件。
(2)金属氧化物变阻器(压敏电阻),响应速度比TVS管慢,但通流量大于TVS管,可保护电压低于20 kV的设备,常用于电源保护回路。
(3)气体放电管或放电火花间隙,是一个充有惰性气体的密封式火花间隙,当两端出现超过其保护电压的干扰时,一小段延时后间隙被击穿变为低阻抗,通流量大(>20Ka),保护电压可达10kV,适合信号保护回路使用。
(4)固体放电管,是基于晶闸管原理和结构的一种二端负阻器件,响应速度快,无限重复,功耗小,起动电压为5~500V,瞬间冲击电流可达50~3000A,适用于保护电子元器件。
这四类器件的性能各有优缺点,通过配合使用才能达到最佳效果。
4、浪涌保护的实际应用所有保护器件都涉及功率问题,如果浪涌功率太大,单靠一级保护很难彻底完成保护功能,应采用多级的串级保护方案。
高能量的浪涌保护器(避雷器)安装在建筑物的入口处,以泄放浪涌能量的主要部分;低能量的SPD(抑制器)安装在靠近被保护设备处,将浪涌电压箝位到设备的安全电压。
对于这样的保护方案,在避雷器和抑制器之间需要有一定的配合,包括各元件的箝位电压、响应时间、通流容量和它们之间的波阻抗,这种配合间隙有时不是很容易解决。
对一些安全电压水平低,又可能受高浪涌电压干扰的设备,则最好采用内置二级保护的浪涌保护器。
实际系统中,影响自动化设备的干扰既有共模干扰又有差模干扰,并且往往是两者同时发生,因此实用的浪涌保护器必须能同时抑制共模干扰和差模干扰。
浪涌能量最终通过保护器泄放入地,因此保护器的可靠接地至关重要。
常见防雷(surge,lighting)器件(TVS,压敏电阻,气体放电管,固体放电管,SPD)应用
常见防雷(surge,lighting)器件(TVS,压敏电阻,气体放电管,固体放电管,SP D)应用TVS瞬态干扰抑制器性能与应用瞬态干扰瞬态干扰指交流电网上出现的浪涌电压、振铃电压、火花放电等瞬间干扰信号,其特点是作用时间极短,但电压幅度高、瞬态能量大。
瞬态干扰会造成控制系统的电源电压的波动;当瞬态电压叠加在控制系统的输入电压上,使输入控制系统的电压超过系统内部器件的极限电压时,便会损坏控制系统内部的设备,因此必须采用抑制措施。
硅瞬变吸收二极管硅瞬变吸收二极管的工作有点象普通的稳压管,是箝位型的干扰吸收器件;其应用是与被保护设备并联使用。
硅瞬变电压吸收二极管具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力,及极多的电压档次。
可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压。
TVS管有单方向(单个二极管)和双方向(两个背对背连接的二极管)两种,它们的主要参数是击穿电压、漏电流和电容。
使用中TVS管的击穿电压要比被保护电路工作电压高10%左右,以防止因线路工作电压接近TVS击穿电压,使TVS漏电流影响电路正常工作;也避免因环境温度变化导致TVS管击穿电压落入线路正常工作电压的范围。
TVS管有多种封装形式,如轴向引线产品可用在电源馈线上;双列直插的和表面贴装的适合于在印刷板上作为逻辑电路、I/O总线及数据总线的保护。
TVS的特性TVS的电路符号和普通的稳压管相同。
其电压-电流特性曲线如图1所示。
其正向特性与普通二极管相同,反向特性为典型的PN结雪崩器件。
图2是TVS的电流-时间和电压-时间曲线。
在浪涌电压的作用下,TVS两极间的电压由额定反向关断电压VWM上升到击穿电压VBR,而被击穿。
随着击穿电流的出现,流过TVS的电流将达到峰值脉冲电流IPP,同时在其两端的电压被箝位到预定的最大箝位电压VC以下。
其后,随着脉冲电流按指数衰减,TVS两极间的电压也不断下降,最后恢复到初态,这就是TVS抑制可能出现的浪涌脉冲功率,保护电子元器件的过程。
常用的防浪涌电路有三种方案
常用的防浪涌电路有三种方案常用的防浪涌电路有三种方案:一、利用传统的防雷元器件组合成防浪涌电路,例如TVS管(瞬态抑制二极管),气体放电管,PTC(热敏电阻)等。
这些防雷元器件的价格都很低。
二、光耦合电路。
(光隔离器件,价格较低,TPL521-4价格为2元左右。
)三、磁耦合电路。
磁隔离是ADI公司iCoupler专利技术,是基于芯片级变压器的隔离技术。
利用该公司生产的相关芯片可以大大简化电路,减少PCB的面积。
(adm2483的价格在10元左右,adm3251e的价格在10元~20元之间。
)浪涌的来源:浪涌通常由自然界的雷电、电源系统(特别是带很重的感性负载)开关切换时引起的,浪涌的产生将带来能量巨大的瞬变过压或过流,例如感应雷在RS-485传输线上引起的瞬变干扰,其能量可在瞬间烧毁连结传输线上的全部器件。
通常所说的防浪涌,有两个耐压指标,一个是共模,一个是差模。
自然界雷电或大电流切换时产生的浪涌一般认为是共模的,而差模形式的浪涌往往是由于数据电缆附近有高压线经过,数据电缆与高压线之间因绝缘不良而产生的,虽然后者比前者产生的电压和电流要小得多,但它不像前者那样只维持很短的几毫秒,而会在数据通信网络中较长时间内稳定地存在。
光耦或磁耦器件标称的耐压是共模,也就是前端到后端之间的耐压。
如果超过这个耐压,前端后端都一起烧坏;器件不会标称差模的耐压,这个由电路的设计来决定,如果超过这个耐压,前端烧坏,后端不会烧坏。
防浪涌电路通常分为隔离法和规避法:一、隔离法光耦合(需要隔离电源)光耦合器(optical coupler,OC)亦称光电隔离器,简称光耦。
光耦合器以光为媒介传输电信号。
它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。
目前它已成为种类最多、用途最广的光电器件之一。
光耦合器一般由三部分组成:光的发射、光的接收及信号放大。
输入的电信号驱动发光二极管(LED),使之发出一定波。
浪涌电流及浪涌抑制器分类及主要技术详解
浪涌电流及浪涌抑制器分类及主要技术详解【电源网】浪涌电流指电源接通瞬间,流入电源设备的峰值电流。
由于输入滤波电容迅速充电,所以该峰值电流远远大于稳态输入电流。
电源应该限制AC开关、整流桥、保险丝、EMI滤波器件能承受的浪涌水平。
反复开关环路,AC输入电压不应损坏电源或者导致保险丝烧断。
浪涌电流也指由于电路异常情况引起的使结温超过额定结温的不重复性最大正向过载电流。
浪涌抑制器的分类 1.放电间隙(又称保护间隙): 它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。
这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点是灭弧性能差。
改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。
2.气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。
为了提高放电管的触发概率,在放电管内还有助触发剂。
这种充气放电管有二极型的,也有三极型的,气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF)气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压)在交流条件下使用:U。
气体放电管的作用
气体放电管的作用
气体放电管
气体放电管是一种间隙型的防雷保护组件,它在通信系统的防雷保护中已获得了广泛的应用。
放电管常用于多级保护电路中的第一级或前两级,起泄放雷电瞬时过电流和限制过电压作用,由于放电管的极间绝缘电阻很大,寄生电容很小,对高频信号线路的雷电防护有明硅的优势。
放电管保护特性的主要不足之处在于其放电时延较大,动作灵敏度不够理想,对于波头上升陡度较大的雷电波难以有效地抑制,在电源系统的雷电防护中存在续流问题。
气体放电管在浪涌中的作用
自动控制系统所需的浪涌保护系统一般由二级或三级组成,利用各种浪涌抑制器件的特点,可以实现可靠保护。
气体放电管一般放在线路输入端,做为一级浪涌保护器件,承受大的浪涌电流。
【作用】浪涌保护器的作用
【关键字】作用浪涌保护器的作用雷电放电可能发生在云层之间或云层内部,或云层对地之间;另外许多大容量电气设备的使用带来的内部浪涌,对供电系统和用电设备的影响以及防雷和防浪涌的保护,已成为人们关注的焦点。
云层与地之间的雷击放电,由一次或若干次单独的闪电组成,每次闪电都携带若干幅值很高、持续时间很短的电流。
一个典型的雷电放电将包括二次或三次的闪电,每次闪电之间大约相隔二十分之一秒的时间。
大多数闪电电流在10,000至100,000安培的范围之间降落,其持续时间一般小于100微秒。
供电系统内部由于大容量设备和变频设备等的使用,带来日益严重的内部浪涌问题。
我们将其归结为瞬态过电压(TVS)的影响。
任何用电设备都存在供电电源电压的允许范围。
有时即便是很窄的过电压冲击也会造成设备的电源或全部损坏。
瞬态过电压(TVS)破坏作用就是这样。
特别是对一些敏感的微电子设备,有时很小的浪涌冲击就可能造成致命的损坏。
供电系统浪涌的影响供电系统浪涌的来源分为外部(雷电原因)和内部(电气设备启停和故障等)。
雷击对地闪电可能以两种途径作用在低压供电系统上:(1)直接雷击:雷电放电直接击中电力系统的部件,注入很大的脉冲电流。
发生的概率相对较低。
(2)间接雷击:雷电放电击中设备附近的大地,在电力线上感应中等程度的电流和电压。
内部浪涌发生的原因同供电系统内部的设备启停和供电网络运行的故障有关:供电系统内部由于大功率设备的启停、线路故障、投切动作和变频设备的运行等原因,都会带来内部浪涌,给用电设备带来不利影响。
特别是计算机、通讯等微电子设备带来致命的冲击。
即便是没有造成永久的设备损坏,但系统运行的异常和停顿都会带来很严重的后果。
比如核电站、医疗系统、大型工厂自动化系统、证券交易系统、电信局用交换机、网络枢纽等。
直接雷击是最严重的事件,尤其是如果雷击击中靠近用户进线口架空输电线。
在发生这些事件时,架空输电线电压将上升到几十万伏特,通常引起绝缘闪络。
(整理)浪涌抑制器件特性及选用
浪涌抑制器件特性及选用浪涌防护器件目前在防雷浪涌过压的保护器件中主要有:防雷器、放电管、压敏电阻和半导体浪涌保护器。
在防雷器件的使用中按防护同流量能力的大小大致分为防雷器>气体放电管>压敏电阻>SAD (Surge Arrest Device ),从价格上按相同容量的防浪涌器件,SAD 的价格高于放电管,约是压敏电阻的2倍,但SAD 的响应时间最快,同时漏电流也相对较小。
以上四种防浪涌器件中,放电管和SAD 都存在有动作后的续流问题,在应用中应加以考虑。
压敏电阻压敏电阻的特性金属氧化物压敏电阻的V/I 特性曲线相似于指数函数,可简单表示为:a KV I ,其中K 为陶瓷常数,取决于压敏电阻器的制作工艺材料等,对于金属氧化物压敏电阻指数a 可大于30,压敏电阻的V/I 特性如图1:图1 压敏电阻的V/I 特性图2 压敏电阻的等效电路其中L为引线电感量,C为电容器,Rig为中间相的电阻值,Rv为理想的压敏电阻,Rb为ZnO的导通阻抗。
压敏电阻的工作电压,指在规定的工作电压时,导通电流较小,当所加电压为压敏电压的0.75倍时,压敏电阻的漏电流为uA级别,可忽略不计。
脉冲电流,一般指流通过压敏电阻电流波形为8/20us波的瞬态最大脉冲电流。
能量耐量,指压敏电阻的能够承受的最大的W。
压敏电压,指压敏电阻流通过1mA的电流时,所需能量,其计算为:⎰=10)()(t t dt t i t v加在压敏电阻上的电压。
响应时间,指压敏电阻对浪涌的响应速度,一般为皮秒到纳秒级别,可和SAD防浪涌器件做比较。
温度系数,指温度变化时压敏电阻的V/I特性随着变化,压敏电阻呈负温度特性,当温度升高时,压敏电阻的动作电压、脉冲电流、能量耐量和持续负荷都相应的降低。
压敏电阻发生浪涌过电压冲击时,在压敏电阻上测得的电压峰值既为残压,残压于压敏电压的比值,称为残压比,一般要求残压比小于3。
在实际应用中应考虑到残压对保护元件的影响。
(整理)气体放电管在浪涌抑制电路的应用
气体放电管在浪涌抑制电路的应用1 浪涌电压的产生和抑制原理在电子系统和网络线路上,经常会受到外界瞬时过电压干扰,这些干扰源主要包括:由于通断感性负载或启停大功率负载,线路故障等产生的操作过电压;由于雷电等自然现象引起的雷电浪涌。
这种过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰。
浪涌电压会严重危害电子系统的安全工作。
消除浪涌噪声干扰,防止浪涌危害一直是关系电子设备安全可靠运行的核心问题。
为了避免浪涌电压损害电子设备,一般采用分流防御措施,即将浪涌电压在非常短的时间内与大地短接,使浪涌电流分流入地,达到削弱和消除过电压、过电流的目的,从而起到保护电子设备安全运行的作用。
2 浪涌电压抑制器件分类浪涌电压抑制器件基本上可以分为两大类型。
第一种类型为橇棒(crow bar)器件。
其主要特点是器件击穿后的残压很低,因此不仅有利于浪涌电压的迅速泄放,而且也使功耗大大降低。
另外该类型器件的漏电流小,器件极间电容量小,所以对线路影响很小。
常用的撬棒器件包括气体放电管、气隙型浪涌保护器、硅双向对称开关(CSSPD)等。
另一种类型为箝位保护器,即保护器件在击穿后,其两端电压维持在击穿电压上不再上升,以箝位的方式起到保护作用。
常用的箝位保护器是氧化锌压敏电阻(MOV),瞬态电压抑制器(TVS)等。
3 气体放电管的构造及基本原理气体放电管采用陶瓷密闭封装,内部由两个或数个带间隙的金属电极,充以惰性气体(氩气或氖气)构成,基本外形如图1所示。
当加到两电极端的电压达到使气体放电管内的气体击穿时,气体放电管便开始放电,并由高阻变成低阻,使电极两端的电压不超过击穿电压。
(a) BB型(b)BBS型图1 气体放电管的基本外形4 气体放电管与其它浪涌抑制器件参数比较1)火花间隙(Arc chopping)为两个形状象牛角的电极,彼此间有很短的距离。
当两个电极间的电位差达到一定程度时,间隙被击穿打火放电,由此将过电流释放入地。
气体放电管在开关变换器中的应用
然 很小 。
( )弧 光 电压 过 程 3
电管在 开关 变换器 中 的设 计误 区与应用要 点 。
2 原 理 与设 计
2 1 气 体放 电管 的工作原 理 .
试 条件 下 的寄生 电容 , 生 电容越 小 , 体放 电管对 寄 气
第3 1卷 第 4期
21 0 2年 1 0月
电 工 电 能 新 技 术
Ad a e c n lg fEl crc lEn i e rn n e g v nc d Te h o o y o e tia g n e i g a d En r y
Vo . 1 31, No. 4
( )击穿 ( 1 汤森 ) 电电压过 程 放 当加 在气体 放 电管两 端 的浪涌 电压超 过击 穿放
的 目的 , 而使 后 级 电 子设 备 可靠 工作 。 常用 的器 从 件 有气体 或 固体放 电管 、 属 氧化物 压敏 电阻 、 瞬 金 硅 变 电压 吸收二极 管等 器件 以及 它们 的组合设 计 。 放 电管 ( D 主 要 可 分 为 气 体 放 电 管 和 固体 G T)
1 引 言
为 了避 免雷 电 、 路故 障等 原 因产生 的浪 涌 电 线
达到 或超过 其击 穿 电压 时 , 体 放 电 管可 近似 认 为 气
一
个 变阻抗 器件 , 由高 阻抗 迅速 变为低 阻抗 状态 , 从
而 为干扰 源提供 泄放 浪涌 电流通 路 。 如 图 1所示 , 体 放 电管 的 电压 击 穿 工作 可 主 气
Oc . 2 2 t 01
浪涌抑制器工作原理
浪涌抑制器工作原理嘿,朋友!你有没有想过,在我们日常生活和工业生产中,有一个默默守护着电气设备的“小卫士”呢?这就是浪涌抑制器啦。
今天呀,我就来给你好好讲讲它那超酷的工作原理。
我先给你讲个小故事吧。
就好比我们住在房子里,有时候会突然来一阵狂风暴雨,这狂风暴雨就像是电路里的浪涌。
浪涌是啥呢?简单说,就是突然出现的超高电压或者超大电流,这就像一群不速之客,突然闯进了电路这个“家”里。
如果没有保护措施,家里的那些电器设备,就像脆弱的小宝贝一样,可就惨喽。
那浪涌抑制器这个“小卫士”是怎么工作的呢?这就得从它的内部构造说起了。
浪涌抑制器里面有一些特殊的元件,最常见的就是压敏电阻和气体放电管。
咱们先来说说压敏电阻。
压敏电阻就像是一个超级敏感的“小守门员”。
在正常电压下,它就安安静静的,就像一个低调的路人甲。
可是一旦电压突然升高,超过了它的“警戒线”,哇塞,它可就一下子活跃起来了!压敏电阻的电阻值会随着电压的升高而急剧下降。
这就好比是一个平时很窄的通道,电压一高,这个通道就突然变得很宽,让那些多余的电流有地方可去,而不是一股脑地冲向那些脆弱的电器设备。
你想啊,如果没有这个“小守门员”,那超高的电压就像洪水猛兽一样,直接就把那些电器设备给淹没了。
再说说气体放电管。
这气体放电管啊,就像是一个充满魔法的小管道。
在正常情况下,里面的气体就像一群乖乖睡觉的小精灵,不吵也不闹。
但是当浪涌的高压到来的时候,这个电压就像一把魔法钥匙,一下子把这些小精灵唤醒了。
气体开始放电,这时候,这个气体放电管就像是一个超级导电的通道,把那些浪涌电流引到大地这个“大怀抱”里。
这多神奇呀!就好像是在电路里突然出现了一个特殊的高速公路,专门把那些危险的电流送走。
我有个朋友,他是做电子设备维修的。
有一次,他跟我讲了一个事儿。
有个工厂的设备老是莫名其妙地出故障,大家都头疼得很。
后来发现呀,就是因为没有安装浪涌抑制器。
那些突然来的浪涌电压,就像一群调皮捣蛋的小恶魔,把设备里面的一些精密元件给搞坏了。
气体放电管选型及在综合浪涌保护系统中的应用
气体放电管选型及在综合浪涌保护系统中的应用优恩半导体(UN)一、气体放电管的选型:在快速脉冲冲击下,陶瓷气体放电管气体电离需要一定的时间(一般为0.2~0.3μs,最快的也有0.1μs左右),因而有一个幅度较高的尖脉冲会泄漏到后面去。
若要抑制这个尖脉冲,有以下几种方法:a、在放电管上并联电容器或压敏电阻;b、在放电管后串联电感或留一段长度适当的传输线,使尖脉冲衰减到较低的电平;c、采用两级保护电路,以放电管作为第一级,以TVS管或半导体过压保护器作为第二级,两级之间用电阻、电感或自恢复保险丝隔离。
*直流击穿电压Vsdc的选择:直流击穿电压Vsdc的最小值应大于可能出现的最高电源峰值电压或最高信号电压的可能出现的最高电源峰值电压或最高信号电压的1.2倍以上。
*冲击放电电流的选择:要根据线路上可能出现的最大浪涌电流或需要防护的最大浪涌电流选择。
放电管冲击放电电流应按标称冲击放电电流(或单次冲击放电电流的一半)来计算。
*陶瓷气体放电管因击穿电压误差较大,一般不作并联使用。
*续流问题:为了使放电管在冲击击穿后能正常熄弧,在有可能出现续流的地方(如有源电路中),可以在放电管上串联压敏电阻或自恢复保险丝等限制续流,使它小于放电管的维持电流。
二、气体放电管在综合浪涌保护系统中的应用自动控制系统所需的浪涌保护系统一般由二级或三级组成,利用各种浪涌抑制器件的特点,可以实现可靠保护。
气体放电管一般放在线路输入端,做为一级浪涌保护器件,承受大的浪涌电流。
二级保保护器件采用压敏电阻,在μs级时间范围内更快地响应。
对于高灵敏的电子电路,可采用三级保护器件TVS,在ps级时间范围内对浪涌电压产生响应。
如下图所示。
当雷电等浪涌到来时,TVS首先起动,会把瞬间过电压精确控制在一定的水平;如果浪涌电流大,则压敏电阻起动,并泄放一定的浪涌电流;两端的电压会有所提高,直至推动前级气体放电管的放电,把大电流泄放到地。
气体放电管和压敏电阻的性能及应用
气体放电管和压敏电阻的性能及应用本文主要介绍气体放电管和压敏电阻的工作原理、特性及其重要参数,对它们各自的优缺点进行总结,并对两种器件进行比较。
针对这两种器件的优缺点,建议在实际的设计应用中根据电路的实际需求选择不同的保护器件,同时根据实际应用对这两种元器件进行串并联的组合使用,发挥各自的优点,克服各自的缺点,从而达到最佳的保护效果和最优的安全性能指标。
气体放电管一、气体放电管的工作原理及特性气体放电管的工作原理是气体放电。
当外加电压增大到超过气体的绝缘强度时,两极间的间隙将放电击穿,由原来的绝缘状态转化为导电状态,导通后放电管两极之间的电压维持在放电弧道所决定的残压水平(20~50V)。
只有当电极间电压低于放电管的截至电压(约十几伏)或导通电流低于截至电流(约十几mA)时,气体放电管才能恢复截至状态,这就是气体放电管的续流遮断特性。
可见,在直流电源电路中应用时,如果两线间电压超过15V,不可以在两线间直接应用放电管;在50Hz交流电源电路中使用时,交流电压有过零点,可以实现气体放电管的续流遮断。
气体放电管包括二极管和三极管,电压范围从75V-3500V,超过一百种规格。
放电管常用于多级保护电路中的第一级或前两级,起泄放雷电瞬态过电流和限制过电压作用。
二、气体放电管的几个重要参数1.直流击穿电压Vsdc:在放电管上施加100V/s的直流电压时的击穿电压值。
这是放电管的标称电压亦称为“直流点火电压”,常用的有90V、150V、230V、350V、470V、600V、800V等几种,最高可坐到3000V、最低70V。
其误差范围:一般为±20%,也有的为±15%。
2.脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μs的脉冲电压时的击穿电压值。
因反应速度较慢,脉冲击穿电压要比直流击穿电压高得多。
3.冲击耐受电流:将放电管通过规定波形和规定次数的脉冲电流,使其直流放电电压和绝缘电阻不会发生明显变化的最大值电流峰值称为管子的冲击耐受电流。
气体放电管在浪涌抑制电路的应用
气体放电管在浪涌抑制电路的应用发布:2011-06-04 | 作者: | 来源: baijianyue | 查看:551次 | 用户关注:摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。
仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS 工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。
关键词:Butte1 浪涌电压的产生和抑制原理在电子系统和网络线路上,经常会受到外界瞬时过电压干扰,这些干扰源主要包括:由于通断感性负载或启停大功率负载,线路故障等产生的操作过电压;由于雷电等自然现象引起的雷电浪涌。
这种过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰。
浪涌电压会严重危害电子系统的安全工作。
消除浪涌噪声干扰,防止浪涌危害一直是关系电子设备安全可靠运行的核心问题。
为了避免浪涌电压损害电子设备,一般采用分流防御措施,即将浪涌电压在非常短的时间内与大地短接,使浪涌电流分流入地,达到削弱和消除过电压、过电流的目的,从而起到保护电子设备安全运行的作用。
2 浪涌电压抑制器件分类浪涌电压抑制器件基本上可以分为两大类型。
第一种类型为橇棒(crow bar)器件。
其主要特点是器件击穿后的残压很低,因此不仅有利于浪涌电压的迅速泄放,而且也使功耗大大降低。
另外该类型器件的漏电流小,器件极间电容量小,所以对线路影响很小。
常用的撬棒器件包括气体放电管、气隙型浪涌保护器、硅双向对称开关(CSSPD)等。
另一种类型为箝位保护器,即保护器件在击穿后,其两端电压维持在击穿电压上不再上升,以箝位的方式起到保护作用。
常用的箝位保护器是氧化锌压敏电阻(MOV),瞬态电压抑制器(TVS)等。
陶瓷气体放电管特性及应用
过电压和浪涌电流能对通讯设备和数据传输系统造成损坏,甚至对人身安全构成威胁。气体放电管提供最优的过电压 和浪涌保护。放电管能快速安全地限制过电压至正常水平,并可靠地排除危险电流。 过电压和浪涌电流可能由以下因素所造成(示意图1.2):
/ch/Technical_info.asp?id=15(第 1/6 页)2008-6-18 11:59:04
/ch/Technical_inf4
深圳市威特科电子有限公司
3、 应用领域 3.1 作为保护器件 信号保护(建议选用对应的微型管及中、小通流容量系列放电管): 电子线路中集成块、晶闸管、芯片等昂贵元件及线路板 电信网络中的信号线、网线、电话卡、交换机、传真机、电话机、配线架、交接箱、基站、移动电话天线 计算机系统的主机、调制解调器、数据处理系统、长分支线、短分支线及各种终端设备 视频系统、CATV设备、阴极射线管(CRT) 各种家用电器、实验设备、测试设备 电源保护(建议选用对应的中、高及超高流容量系列放电管): 各种设备的电源防雷、电源插座、电源转换器、插线、空气开关、负荷开关等低压电器 铁路电力、电气系统、LC设备、电动机、潜水泵、传动设备浪涌电压防护 3.2 作为开关器件 专用作点火开关的气体放电管具有独特的快速通断特点,能提供几个微秒和非常陡峭的峰值极高的前沿电压及电流脉 冲,它与点火变压相配合可产生电压为 12kV的典型高压脉冲,工业利用此效应就制成了点火开关. 开关放电管以其
/ch/Technical_info.asp?id=15(第 5/6 页)2008-6-18 11:59:04
深圳市威特科电子有限公司
Back 版权所有:深圳市威特科电子有限公司 技术支持:/
/ch/Technical_info.asp?id=15(第 6/6 页)2008-6-18 11:59:04
浪涌保护原理
浪涌保护原理浪涌保护是指在电力系统中,为了防止由于雷击、电网故障、电动机突然停止等原因产生的瞬时过电压而对设备进行的保护措施。
浪涌保护的原理是利用浪涌保护器来吸收、分散和消除过电压,保护电气设备不受损害。
本文将从浪涌保护的原理入手,介绍其工作原理和应用。
浪涌保护器的工作原理是基于元件的快速响应和耐受能力。
当电路中出现过电压时,浪涌保护器会迅速导通,将过电压吸收并分散到地线或其他回路中,从而保护电气设备。
浪涌保护器通常采用气体放电管、金属氧化物压敏电阻等元件,其特点是响应速度快、耐受能力强,能够有效地保护设备不受过电压的损害。
浪涌保护器的应用范围非常广泛,几乎所有的电气设备都需要进行浪涌保护。
例如,电力系统中的变压器、开关设备、控制设备等都需要安装浪涌保护器,以保护其不受过电压的影响。
此外,电信设备、计算机设备、家用电器等也都需要进行浪涌保护,以防止由于雷击等原因造成的损坏。
在实际应用中,浪涌保护器的选择和安装非常重要。
首先,需要根据设备的额定电压和额定电流来选择合适的浪涌保护器,以保证其能够正常工作并承受过电压。
其次,浪涌保护器的安装位置也需要合理选择,通常应安装在电气设备的电源输入端和输出端,以最大限度地保护设备。
此外,浪涌保护器的接地也是非常重要的,良好的接地可以有效提高浪涌保护器的工作效果。
总之,浪涌保护是电力系统中非常重要的一环,它能够有效地保护电气设备不受过电压的影响。
通过合理选择和安装浪涌保护器,可以保证电气设备的安全运行,延长设备的使用寿命,减少故障率,提高系统的可靠性。
因此,在电力系统设计和运行中,应充分重视浪涌保护的工作,确保设备和人员的安全。
常见防雷(surge,lighting)器件(TVS,压敏电阻,气体放电管,固体放电管,SPD)应用
常见防雷(surge,lighting)器件(TVS,压敏电阻,气体放电管,固体放电管,SP D)应用TVS瞬态干扰抑制器性能与应用瞬态干扰瞬态干扰指交流电网上出现的浪涌电压、振铃电压、火花放电等瞬间干扰信号,其特点是作用时间极短,但电压幅度高、瞬态能量大。
瞬态干扰会造成控制系统的电源电压的波动;当瞬态电压叠加在控制系统的输入电压上,使输入控制系统的电压超过系统内部器件的极限电压时,便会损坏控制系统内部的设备,因此必须采用抑制措施。
硅瞬变吸收二极管硅瞬变吸收二极管的工作有点象普通的稳压管,是箝位型的干扰吸收器件;其应用是与被保护设备并联使用。
硅瞬变电压吸收二极管具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力,及极多的电压档次。
可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压。
TVS管有单方向(单个二极管)和双方向(两个背对背连接的二极管)两种,它们的主要参数是击穿电压、漏电流和电容。
使用中TVS管的击穿电压要比被保护电路工作电压高10%左右,以防止因线路工作电压接近TVS击穿电压,使TVS漏电流影响电路正常工作;也避免因环境温度变化导致TVS管击穿电压落入线路正常工作电压的范围。
TVS管有多种封装形式,如轴向引线产品可用在电源馈线上;双列直插的和表面贴装的适合于在印刷板上作为逻辑电路、I/O总线及数据总线的保护。
TVS的特性TVS的电路符号和普通的稳压管相同。
其电压-电流特性曲线如图1所示。
其正向特性与普通二极管相同,反向特性为典型的PN结雪崩器件。
图2是TVS的电流-时间和电压-时间曲线。
在浪涌电压的作用下,TVS两极间的电压由额定反向关断电压VWM上升到击穿电压VBR,而被击穿。
随着击穿电流的出现,流过TVS的电流将达到峰值脉冲电流IPP,同时在其两端的电压被箝位到预定的最大箝位电压VC以下。
其后,随着脉冲电流按指数衰减,TVS两极间的电压也不断下降,最后恢复到初态,这就是TVS抑制可能出现的浪涌脉冲功率,保护电子元器件的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气体放电管在浪涌抑制电路的应用
1 浪涌电压的产生和抑制原理
在电子系统和网络线路上,经常会受到外界瞬时过电压干扰,这些干扰源主要包括:由于通断感性负载或启停大功率负载,线路故障等产生的操作过电压;由于雷电等自然现象引起的雷电浪涌。
这种过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰。
浪涌电压会严重危害电子系统的安全工作。
消除浪涌噪声干扰,防止浪涌危害一直是关系电子设备安全可靠运行的核心问题。
为了避免浪涌电压损害电子设备,一般采用分流防御措施,即将浪涌电压在非常短的时间内与大地短接,使浪涌电流分流入地,达到削弱和消除过电压、过电流的目的,从而起到保护电子设备安全运行的作用。
2 浪涌电压抑制器件分类
浪涌电压抑制器件基本上可以分为两大类型。
第一种类型为橇棒(crow bar)器件。
其主要特点是器件击穿后的残压很低,因此不仅有利于浪涌电压的迅速泄放,而且也使功耗大大降低。
另外该类型器件的漏电流小,器件极间电容量小,所以对线路影响很小。
常用的撬棒器件包括气体放电管、气隙型浪涌保护器、硅双向对称开关(CSSPD)等。
另一种类型为箝位保护器,即保护器件在击穿后,其两端电压维持在击穿电压上不再上升,以箝位的方式起到保护作用。
常用的箝位保护器是氧化锌压敏电阻(MOV),瞬态电压抑制器(TVS)等。
3 气体放电管的构造及基本原理
气体放电管采用陶瓷密闭封装,内部由两个或数个带间隙的金属电极,充以惰性气体(氩气或氖气)构成,基本外形如图1所示。
当加到两电极端的电压达到使气体放电管内的气体击穿时,气体放电管便开始放电,并由高阻变成低阻,使电极两端的电压不超过击穿电压。
(a) BB型(b)BBS型
图1 气体放电管的基本外形
4 气体放电管与其它浪涌抑制器件参数比较
1)火花间隙(Arc chopping)
为两个形状象牛角的电极,彼此间有很短的距离。
当两个电极间的电位差达到一定程度时,间隙被击穿打火放电,由此将过电流释放入地。
优点:放电能力强,通流容量大(可做到100kA以上),漏电流小;
缺点:残压高(2~4kV),反应时间慢(≤100ns),有跟随电流(续流)。
2)金属氧化物压敏电阻(Metal oxside varistor)
该器件在一定温度下,导电性能随电压的增加而急剧增大。
它是一种以氧化锌为主要成分的金属氧化物半导体非线性电阻。
没有过压时呈高阻值状态,一旦过电压,立即将电压限制到一定值,其阻抗突变为低值。
优点:通流容量大,残压较低,反应时间较快(≤50ns),无跟随电流(续流);
缺点:漏电流较大,老化速度相对较快。
3)瞬态抑制二极管(Transient voltage suppressor)
亦称齐纳二极管,是一种专门用于抑制过电压的器件。
其核心部分是具有较大截面积的PN结,该PN 结工作在雪崩状态时,具有较强的脉冲吸收能力。
优点:残压低,动作精度高,反应时间快(<1ns),无跟随电流(续流);
缺点:耐流能力差,通流容量小,一般只有几百安培。
4)气体放电管(Gas discharge tube)
气体放电管可以用于数据线、有线电视、交流电源、电话系统等方面进行浪涌保护,一般器件电压范围从75~10000V,耐冲击峰值电流20000A,可承受高达几千焦耳的放电。
优点:通流量容量大,绝缘电阻高,漏电流小;
缺点:残压较高,反应时间慢(≤100ns),动作电压精度较低,有跟随电流(续流)。
各种浪涌抑制器件的共同特点为器件在阈值电压以下都呈现高阻抗,一旦超过阈值电压,则阻抗便急剧下降,都对尖峰电压有一定的抑制作用。
但各自都有缺点,因此根据具体的应用场合,一般采用上述器件中的一个或者几个的组合来组建相应的保护电路。
各种浪涌抑制器件的参数对比见表1所列。
表1 几种常用浪涌抑制器参数比较
5 气体放电管的主要参数
1)反应时间指从外加电压超过击穿电压到产生击穿现象的时间,气体放电管反应时间一般在μs数量极。
2)功率容量指气体放电管所能承受及散发的最大能量,其定义为在固定的8×20μs电流波形下,所能承受及散发的电流。
3)电容量指在特定的1MHz频率下测得的气体放电管两极间电容量。
气体放电管电容量很小,一般为≤1pF。
4)直流击穿电压当外施电压以500V/s的速率上升,放电管产生火花时的电压为击穿电压。
气体放电管具有多种不同规格的直流击穿电压,其值取决于气体的种类和电极间的距离等因素。
5)温度范围其工作温度范围一般在-55℃~+125℃之间。
6)电流—电压特性曲线以美国克来电子公司CG2-230L气体放电管为例,如图2所示。
7)绝缘电阻是指在外施50或100V直流电压时测量的气体放电管电阻,一般>1010Ω。
图2 电流—电压特性曲线
6 气体放电管的应用示例
1)电话机/传真机等各类通讯设备防雷应用
如图3所示。
特点为低电流量,高持续电源,无漏电流,高可靠性。
图3 通讯设备防雷应用
2)气体放电管和压敏电阻组合构成的抑制电路
图4是气体放电管和压敏电阻组合构成的浪涌抑制电路。
由于压敏电阻有一致命缺点:具有不稳定的漏电流,性能较差的压敏电阻使用一段时间后,因漏电流变大可能会发热自爆。
为解决这一问题在压敏电阻之间串入气体放电管。
但这又带来了缺点就是反应时间为各器件的反应时间之和。
例如压敏电阻的反应时间为25ns,气体放电管的反应时间为100ns,则图4的R2,G,R3的反应时间为150ns,为改善反应时间加入R1压敏电阻,这样可使反应时间为25ns。
图4 气体放电管和压敏电阻配合应用
3)气体放电管在综合浪涌保护系统中的应用
自动控制系统所需的浪涌保护系统一般由二级或三级组成,利用各种浪涌抑制器件的特点,可以实现可靠保护。
气体放电管一般放在线路输入端,做为一级浪涌保护器件,承受大的浪涌电流。
二级保护器件采用压敏电阻,在μs级时间范围内更快地响应。
对于高灵敏的电子电路,可采用三级保护器件TVS,在ps 级时间范围内对浪涌电压产生响应。
如图5所示。
当雷电等浪涌到来时,TVS首先起动,会把瞬间过电压精确控制在一定的水平;如果浪涌电流大,则压敏电阻起动,并泄放一定的浪涌电流;两端的电压会有所提高,直至推动前级气体放电管的放电,把大电流泄放到地。
图5 三级保护
7 结语
各种电子系统,以及通信网络等,经常会受到外来的电磁干扰,这些干扰主要来自电源线路的暂态过程、雷击闪电、以及宇宙射电等。
这些干扰会使得系统动作失误甚至硬件损坏。
针对这些问题,要做好全面的预防保护措施,就需要先找到问题的根源,再选用合适的浪涌抑制器件予以解决。