高校大数据专业教学科研平台建设方案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高校大数据专业教学科研平台建设方案
一、项目建设的意义及目的
芝诺数据自主研发的高校大数据教学科研平台以校企联合培养模式为手段,通过校企合作联合培养机制,让企业、行业深度参与人才培养过程,逐步实现校企共同制定培养目标、共同建设课程体系和教学内容、共同实施培养过程、共同把控培养质量,全面提升学生的应用实践能力。该平台以应用型人才培养为目标定位,在以解决现实问题为目的的前提下,使培养的学生有更宽广和跨学科的知识视野,注重知识的实用性,有创新精神和综合运用知识的能力。注重培养学生具有在创新中应用、在应用中创新的能力,让学生真正学会大数据行业各个岗位真正的职业技能。
二、功能模块和建设思路
芝诺大数据教学科研平台构建总体分为三大部分,一是平台硬件,二是教学与实验支撑系统(包括:芝诺数据综合分析ZDM平台、芝诺数据教学实训平台),三是产品服务体系。
具体如下:
教学与实验支撑系统由芝诺数据综合分析ZDM平台和芝诺数据教学实训平台构成,教学与实验支撑系统部署在大数据教学科研一体机中。
二、项目建设的目标及内容
1、项目建设目标
1)平台的建设能让高校大数据专业与实际应用相结合,提高学生的学习、实践和创新创业能力,能够培养实用性人才所需的专业能力,提升教学效果与就业率,为“大数据时代”的创新人才培养做出贡献。
2)平台的建设将支撑大数据去冗降噪、大数据融合、大数据可视化等关键技术研究,能够服务于学校的教学和科研,有助于大数据方向发展和自主创
新,有利于创新团队培育和高水平研究成果积累,有利于提升教师的教学和科研水平,推动教学和科研团队建设。
3)平台的建设搭建可以发挥学校的行业优势,体现学校办学特色,推进与国内外高校、科研机构和企业间的产学研合作,开展项目合作研究和人才培养,促进科研成果转化,促进产学研协同创新。
4)平台的建设有利于促进学科交叉与融合。
2、项目建设内容
1)模块一:平台相关硬件建设
本模块主要包含:大数据教学科研一体机
技术参数:
作为一个可供大量学生完成大数据实训的集成环境,该平台同步提供了配套的培训服务,对于教学组件的安装、配置、教材、实验手册等具体应用提供一站式服务,有助于高校更好地满足课程设计、课程上机实验、实习实训、科研训练等多方面需求,并在一定程度上缓解大数据师资不足的问题。对于各大高校而言,即使没有任何大数据实验基础,该平台也能助其轻松开展大数据的教学、实验与科研。
2)模块二:教学与实践支撑系统
芝诺大数据教学科研平台由芝诺数据综合分析ZDM平台及芝诺数据教学实训平台联合搭建。通过典型的算法展示、算法实现结合大数据分析的应用场景与案例对学生进行数据分析方面的综合训练,从而实现专业实验教学的由点及面、理论到应用、涵盖原理验证/综合应用/自主设计及创新的多层次实践教学体系。
(1)芝诺数据综合分析ZDM平台
芝诺数据综合分析ZDM平台是全面基于 Apache Hadoop 及ApacheSpark 计算框架的高性能大数据分析平台,提供一站式大数据开发环境和工具,包括数据存储、分布式计算、分析挖掘及数据可视化的整套支持。用户可以在大数据综合分析处理平台上采集、存储、分析、挖掘海量数据及其内在价值。
ZDM平台包含的Hadoop生态组件:
①平台构成:
i. Zeno Container分布式实时数据库:支持结构化、半结构化和非结构化数据的存储;采用分布式存储,支持海量数据存储,支持高并发的快速查询。
ii. Zeno Monitor 服务器监控套件:服务器监控是利用Ganglia和Nagios 对集群机器进行资源监控,包括CPU内存,硬盘,网络资源等进行实时监控,方便用户实时掌握集群机器资源的利用情况。通过典型的算法展示、算法实现结合大数据分析的应用场景与案例对学生进行数据分析方面的综合训练,从而实现专业实验教学的由点及面、理论到应用、涵盖原理验证/综合应用/自主设计及创新的多层次实验体系,以满足不同学校的实践需求。
iii. Zeno Mining 数据挖掘套件:支持多种数据挖掘工具相结合,支持Mahout,MLlib自带的并行化的高性能机器学习算法库;同时也致辞基于R 自定义的编程算法;也有强大的主流数据统计个绘图语言R以及Web图形化开发界面R-Studio。
iv. Zeno Analysis 数据分析套件:使用Sqoop和Flume支持数据迁移和采集;采用多计算框架模型,可满足不同数据的计算要求。及支持Hadoop离线大数据的计算,也支持Stream实时流式处理,还支持Spak内存快速计算;支持多语言的数据分析工作,支持SQL、Java、Python、Scala等。
v. Zeno Coop协作管理引擎:基于Zookeeper的协调服务机制,采用Yarn的管理模式,支持同时运行多个计算框架,可同时部署Hadoop、Storm、Spark等计算框架。
ZDM平台工作流:
②平台优点:
I 安装方便
友好的图形化安装界面,使用户可在1小时内,零基础搭建基于Hadoop/Spark的大数据存储、分析、监控及可视化平台。确保安装100%成功。
Ⅱ功能完备
提供一站式大数据开发环境和工具,解决从数据源采集/清洗/存储/分析/挖掘/机器学习到数据流处理/可视化/集群监控等问题。 Stream分布式实时流处理引擎提供强大的流计算能力,可支持复杂的实时处理逻辑,满足企业实时告警、风险控制、在线统计和挖掘等应用需求
Ⅲ性能保障
计算速度比传统关系型数据库快50-100倍。例如,一个集群包括13个Spark节点,每个256G内存的服务器,1个计算任务30秒以内处理200M数
据,处理过程包括数据入库、逻辑计算、结果展现。同时,系统可线性扩充存储容量或提高处理性能,只需要简单地向集群中增加机器,无需停机。
Ⅳ使用方便
图形化的数据分析和挖掘界面,令使用者不用理会Hadoop底层技术,只需专注于自身业务逻辑。
③基于Hadoop的ZDM分布式存储与计算的优点
Ⅰ高可扩展性
Hadoop是一个高度可扩展的存储平台,可以存储和分发横跨数百个并行操作的廉价的服务器数据集群。不同于传统的关系型数据库系统不能扩展到处理大量的数据,Hadoop是能给企业提供涉及成百上千TB的数据节点上运行的应用程序。
Ⅱ成本效益
Hadoop还为企业用户提供了极具成本效益的存储解决方案。传统关系型数据库管理系统并不符合海量数据的处理器,不符合企业的成本效益。许多