相似三角形易错题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、现给出下列四个命题:
①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;
③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.
其中不正确的命题的个数是()
A、1个
B、2个
C、3个
D、4个
考点:等边三角形的性质;三角形内角和定理;菱形的性质;相似三角形的性质。
分析:对四个选项逐个进行判断即可得出结论.
解答:解:①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;
②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误;
③根据菱形的面积公式,错误;
④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确.
综合以上分析,不正确的命题包括①②③.
故选C.
点评:本题主要考查了等边三角形、相似三角形的性质,菱形的面积公式等内容,范围较广.
3、如图,△DEF的边长分别为1,,2,正六边形网格是由24个边长为2的正三角形组成,以这些正三角形的顶点为顶点画△ABC,使得△ABC∽△DEF.如果相似比=k,那么k的不同的值共有()
A、1个
B、2个
C、3个
D、4个
考点:等边三角形的性质;勾股定理的逆定理;相似三角形的性质。
分析:根据题意可得:在正六边形网格找与△DEF相似的三角形;即找三边的比值为1::2的直角三角形;分析图形可得:共三种情况,相似比分别为:2,2,4;
解答:解:∵△DEF的边长分别为1,,2
∴△DEF为直角三角形,∠F=30°,∠D=60°
根据等边三角形的三线合一,可作三边比为1::2的三角形
∴相似比=k,k可取2,2,4.
故选C.
点评:本题主要考查了相似三角形的判定.
4、(2009•杭州)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()
A、只有1个
B、可以有2个
C、有2个以上,但有限
D、有无数个
考点:勾股定理;相似三角形的判定与性质。
专题:分类讨论。
分析:两条边长分别是6和8的直角三角形有两种可能,即已知边均为直角边或者8为斜边,运用勾股定理分别求出第三边后,和另外三角形构成相似三角形,利用对应边成比例即可解答.
解答:解:根据题意,两条边长分别是6和8的直角三角形有两种可能,一种是6和8为直角边,那么根据勾股定理可知斜边为10;另一种可能是6是直角边,而8是斜边,那么根据勾股定理可知另一条直角边为.
所以另一个与它相似的直角三角形也有两种可能,
第一种是,解得x=5;
第二种是,解得x=.所以可以有2个.
故选B.
点评:本题考查了勾股定理和三角形相似的有关知识.本题学生常常漏掉第二种情况,是一道易错题.
5、(2007•邵阳)如图,△ABC中,点D、E、F分别是边长AB、BC、AC的中点,则△DEF与△ABC的面积之比为()
A、1:4
B、1:3
C、1:2
D、1:
考点:三角形中位线定理;相似三角形的判定与性质。
分析:根据三角形的中位线定理得两三角形三边对应成比例,那么两三角形相似,对应边之比为1:2,即可得到面积之比.解答:解:∵点D、E、F分别是边长AB、BC、AC的中点,
∴EF、DE、DF是三角形的中位线,
∴EF=AB,DE=AC,DF=BC,
∴△DEF∽△ABC,
∴△DEF与△ABC的相似比为1:2,
∴△DEF与△ABC的面积之比为1:4,
故选A.
点评:相似三角形的面积之比等于相似比的平方.
6、(2011•达州)如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()
A、S△AFD=2S△EFB
B、BF=DF
C、四边形AECD是等腰梯形
D、∠AEB=∠ADC
考点:平行四边形的性质;相似三角形的判定与性质。
分析:本题要综合分析,但主要依据都是平行四边形的性质.
解答:解:A、∵AD∥BC
∴△AFD∽△EFB
∴===
故S△AFD=4S△EFB;
B、利用平行四边形的性质可知正确.
C、由∠AEC=∠DCE可知正确.
D、利用等腰三角形和平行的性质即可证明.
故选A.
点评:解决本题的关键是利用相似求得各对应线段的比例关系.
8、如果△ABC∽△A′B′C′,BC=3,B′C′=1.8,则△A′B′C′与△ABC的相似比为()
A、5:3
B、3:2
C、2:3
D、3:5
考点:相似三角形的性质。
分析:根据题意,易证△A′B′C′∽△ABC,又相似比等于对应边的比,列出比例式计算即可得出.
解答:解:∵B′C′:BC=1.8:3=3:5,
∴△A′B′C′与△ABC的相似比为3:5.故选D.
点评:此题主要考查相似三角形的性质的运用.
9、如果△ABC∽△DEF,且相似比为,那么△DEF和△ABC的面积比为()
A、B、
C、4
D、2
考点:相似三角形的性质。
分析:根据相似三角形的面积比等于相似比的平方,即可得出两个相似三角形的面积比.
解答:解:∵△ABC∽△DEF,且相似比为,
∴△DEF和△ABC的面积比为22=4.
故选C.
点评:此题主要考查的是相似三角形的性质:相似三角形的对应边的比等于相似比,面积比等于相似比的平方,要注意两个三角形的相似比与三角形的有先后顺序有关.
10、(2006•十堰)在△ABC中,∠C=90°,D是边AB上一点(不与点A,B重合),过点D作直线与另一边相交,使所得的三角形与原三角形相似,这样的直线有()
A、1条
B、2条
C、3条
D、4条
考点:相似三角形的判定。
专题:分类讨论。
分析:过点D作直线与另一边相交,使所得的三角形与原三角形已经有一个公共角,只要再作一个直角就可以.
解答:解:过点D作AB的垂线,或作AC的垂线,作BC的垂线共三条直线,故选C.
点评:本题主要考查三角形相似的条件,有两个角相等的三角形相似.
11、(2006•杭州)考虑下面4个命题:①有一个角是100°的两个等腰三角形相似;②斜边和周长对应相等的两个直角三角形全等;③对角线互相垂直且相等的四边形是正方形;④对角线相等的梯形是等腰梯形.其中正确命题的序号是()
A、①②③④
B、①③④
C、①②④
D、②③④
考点:相似三角形的判定;全等三角形的判定;正方形的判定;等腰梯形的判定。
专题:综合题。
分析:此题需用排除法对各个选项进行分析,从而确定最终答案.
解答:解:①正确,因为已知一个角为100°和等腰三角形,没有指出该角是顶角还是底角,根据三角形内角和公式得,该角为顶角,又因为是等腰三角形则两腰对应成比例,所以这两个等腰三角形相似;
②正确,因为两个直角三角形的斜边相等,则可以推出此两个三角形全等;
③不正确,还有可能是菱形;
④正确,可以根据等腰梯形的判定得到.
故选C.
点评:考查了相似三角形的判定、全等三角形的判定、正方形的判定、等腰梯形的判定等知识点.
12、(2004•乌鲁木齐)如图,AD∥BC,∠D=90°,DC=7,AD=2,BC=4.若在边DC上有点P使△PAD和△PBC相似,则这样的点P存在的个数有()
A、1
B、2
C、3
D、4
考点:相似三角形的判定。
专题:分类讨论。
分析:根据已知分两种情况△PAD∽△PBC或△PAD∽△CBP来进行分析,求得PD的长,从而确定P存在的个数.