波前像差原理及应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单色像差

单色像差分球差、彗差、像散、像场弯曲和畸变等5种
球差和彗差发生于对轴上和靠近轴的点用粗光束成像的
光学系统中,称轴上像差

像散、像场弯曲和畸变发生在对离系统光轴较远的物体 成像的光学系统中,称轴外像差。
球差及色差

轴上物点成像产生球差及色差,还伴有圆孔衍射的情形 , 当透镜孔径较大时,由光轴上一物点发出的光束经球面 折射后不再交于一点,这种现象叫做球面像差,简称球 差。

角膜和晶状体以及玻璃体的内含物质不均匀,以致折射
率有局部偏差。
描述眼光学成像质量的四种方法
1.0 0.8 0.6 0.4 0.2 0.0 0
Ideal Eye
Real Eye
20 40 60 80 100
波前像差
点扩散函数
(PSF)
调制传递函数
(MTF)
视网膜成像
描述眼光学成像质量的方法

对比度:MTF(调制传递函数), OTF (光学传递函数)
0.00
总体 像差
高阶 像差
彗差
球差
使用和不使用波前像差理论引导手术后与手术前 的像差值比数
手 术 后 前 波 前 像 差 均 方 根 之 比
5.00 4.00 3.00 2.00 1.00 0.00
总体 像差 高阶 像差
彗差
波前像差理论引导手术的挑战
a. 术后角膜的生物化学变化。
b. 技术的精确性:激光束的光斑大小、形状、频率以及控制 等等 c. 患者从手术中获益程度的大小。还有很多需要考虑的因素 包括年龄、眼睛调节力、色像差以及large field size等等.
Zernike Modes
2nd
astigmatism
Z2
-2
~ Conventional Refraction
defocus
Z2
0
Z2
2
astigmatism
3rd
Z3
-3
Higher Order Aberrations
trefoil coma
Z3
-1
coma
Z3
1
trefoil
Z3
3
4th
Z4
波前像差的测量意义

对人眼的光学质量予以正确判断
为治疗服务(屈光手术、白内障手术) 为光学矫正提供准确信息


像差的分类

传统光学将像差按产生原因可分两大类:

由单色光成像时产生的像差称单色像差 多色光(即由不同波长的光构成复合光)成像时,由于介质折射
率随光的不同波长而变所引起的像差称为色像差
C. of Austin Roorda
什么是波前?
不规则波前
理想波前
什么是波前像差?
像差
理想波前

波像差——实际波面对理想波面的偏离
波前像差描述眼视觉质量的优点
• 波前像差能提供眼视觉缺陷的局部信息
• 从波前像差可以推导出点扩散函数和调制传递函数, 但是这个过程不可逆
• 个体像差(包括经典像差)也可由波前像差导出
散光等4项内容,第四阶不仅包括球差,还涉及更多项不
规则散光等内容。越高阶,像差内容越复杂。
各类像差的关系

像差是以联合的方式存在
各种像差可相互补偿 有些时候高阶像差可以相互抵消


像差的表示方法RMS (Root Mean Square)
1) Zernike-RMS 2) WF-RMS 1) Zernike-RMS = 1/n * (ai)2 where ai = Zernike-coefficients .
角膜上和整个眼睛系统的像差关系 (He, et al. 2003)
波 前 偏 差 的 均 方 根 值
3
整眼像差 角膜像差
2
1
(um)
0
0
10
20
30
40
50
60
70
眼睛数目
1.50 1.00
a
波 前 0.50 像 差 0.00 均 方 1.50 根 值
1.00 0.50 0.00
b
角膜对眼睛第二阶像差影响比较大,但是眼睛内部的成份则影响着更高阶的 像差(He, et al. 2003) 。
离焦
45°方向散光
X轴彗差 Y轴彗差 球差
像差的表示方法
Wavefront Aberration 3 mm (superior-inferior) 2 1 0 -1 -2 -3 -3 -2 -1 0 1 mm (right-left) 2 3
3 Dimensional View
2 Dimensional View
形状:PSF(点扩散函数) 像差: 是基础,通过波前像差计算出MTF, OTF, PSF


OTF/MTF/PSF

经过光学系统后,对比度的损失随空间频率的变化叫做
光学传递函数(OTF )


光学传递函数的模叫做调制传递函数(MTF)
点光源经光学系统所成的像叫做点扩散函数(PSF)
像差的表示方法-点离散函数(PSF)
-4
quadrafoil
secondary astigmatism
Z4
-2
Z4
0
spherical
secondary astigmatism
Z4
2
Z4
4
quadrafoil
5th
Z5
-5
pentafoil
secondary trefoil
Z5
-3
secondary coma
Z5
-1
secondary coma
临床视功能评价 二、波前像差仪的测量与应用
理想的眼睛
存在光学缺陷的眼睛
存在光学缺陷的眼睛
视网膜图像质量影响因素

衍射
散射 波前像差
正常人眼:


瞳孔大于3mm
未形成晶体的异常(白内障)
像差是主要影响因素
人眼像差波前像差来源

角膜和晶状体的表面不理想,其表面曲度存在局部偏差;
角膜与晶状体、玻璃体不同轴;

Zernike多项式
Zernike多项式可表示成以n为行数,m为列数的金字塔
Zernike coeffients Zn m –7 -6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 0 C0 1 C1 C2 2 C3 C4 C5 3 C6 C7 C8 C9 4 C10 C11 C12 C13 C14 5 C15 C16 C17 C18 C19 C20 6 C21 C22 C23 C24 C25 C26 C27 7 C28 C29 C30 C31 C32 C33 C34 C35

畸变

畸变是由于光线的倾斜度大引起的。与球差和像散不同,畸变不 破坏光束的同心性,从而不影响像的清晰度。畸变表现在像平面 内图形的各部分与原物不成比例。畸变的情况与光阑的位置有关。
像差的分类

像差分为低阶像差和高阶像差。
低阶像差是指离焦、散光等传统屈光问题 高阶像差指不规则散光等屈光系统存在的其它光学缺陷。 高阶像差的每阶各包括许多项,其中的每一项又代表不 同的内容。例如,高阶像差第三阶包括彗差、三叶草样
波前像差项
对应于传统几何光学的描述
x-axis tilt y-axis tilt X轴偏移 Y轴偏移
Z1
Z2 Z3 Z4 Z5 Z7 Z8 Z12
astigmatism in 0 or 90 degree 0°或90°方向散光
defocus
astigmatism In 45 degree x-axis coma y-axis coma spherical aberration
20 15 10
Emmetropic Adults
N = 108 Mean = 0.88 + 0.28 s.d.
发生频率
5 0 20
Emmetropic Children
15 10 5 0 20 N = 166 Mean = 1.02 + 0.34 s.d.
Myopic Adults
15 N = 184 Mean = 1.26 + 0.99 s.d.
Z5
1
secondary trefoil
Z5
3
Z5
5
pentafoil
像差的表示方法
Z3
Z7
Z12
Z16
1.8
-1.5
0.9
-0.8
1.8*Z3 – 1.5*Z7=
+0.9*Z12=
-0.8*Z16=
像差的表示方法
像差的表示方法
2.0
1.0 0.0 -1.0 -2.0
在数学上,不规则的二维分布可以用泽尼克函数加以分离。
RMS 1.76
角膜 整个眼睛
RMS 0.65
一部分人,整个眼睛的波前像差相对于角膜像差是减少的。 (He,
Gwiazda, Held & Thorn, 2001)
RMS 0.93
角膜 整个眼睛
RMS 1.49
另一部分人, 整个眼睛的波前像差相对于角膜像差是增加的 (He, Gwiazda, Held & Thorn, 2001) 。
Area WF-RMS
Zernike多项式

Zernike多项式是正交于单位圆上的一组函数,通过 Zernike多项式,眼光学系统像差可以量化,在每个圆 形孔径上任何像差均可以用Zernike多项式表示。 Zernike多项式由三部分组成:标准化系数,半径依赖 性成分(n),方位角依赖性成分(m)。Zernike多项 式表示形式为Zmn(ρ,θ),n描述最高阶的半径阶梯; m描述方位正弦频率成分;ρ表示从0到1的半径坐标;θ 表示从0到2π的方
1
2
3
4
5
6
7
5
10
15
20
25
30
35
泽尼克像差项
散光
慧差
1. 波前像差的来源
角膜的像差对整个眼睛的影响可以通过角膜地形图或者 波振面感应器来测量。
RMS 1.13
角膜 整个眼睛
RMS 1.17
对于有些人来说, 整个眼睛的波前像差取决于角膜像差 (He, Gwiazda, Held & Thorn, 2001)
会发生,称为色像差,简称色差。
像散

扭转透镜,使物光束在倾斜度比较大的条件下入射,则产生像散 现象。
图示物点离主轴较远时,发出的光束经透镜折射后,不再交于一 点,而是会聚在与画面垂直方向的前后两个位置上,会聚的像已 退化为互相垂直的两条短线,称作散焦线。在此区间内,光束截 面由扁椭圆逐渐变成长椭圆,图中取的是其中间某位置。
(um)
AC
IL
WE
2. 眼睛调节力度对像差的影响
波前像差会随着眼睛调节力度的增大而增加 (He, Burns & Marcos, 2000)
3. 波前像差对离焦(近视或远视)成像的影响
-0.75D
0.75D
波前像差会使视网膜成不对称的离焦像, 这样可以提供信号来 指导眼睛的调节 (He, Gwiazda, Held & Thorn, 2000)
常规角膜屈光手术前后波前像差的分析
3.00 波 前 像 差 均 方 根 值 2.50 2.00 1.50 1.00 0.50
(um)
0.00
总体 像差
高阶 像差
彗差
球差
波前像差引导准分子手术前后波前像差的分析
1.00 波 0.80 前 像 0.60 差 均 方 0.40 根 值 0.20
(um)
WF WF2
WF WF2
2) WF-RMS : per definition the average height of WF over full size is zero. WF-RMS: Square the WF-function. The average height of WF 2 over full size is the WF-RMS.
发生频率
10 5 0 20
Myopic Children
15 10 5 0 0.0 N = 174 Mean = 1.16 + 0.55 s.d.
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
波前像差均方根值(um)
7.波前像差在屈光手术的应用
常规屈光手术中的波前项差 a. 常规屈光手术能够引起几乎各项的波像差和泽尼克像差。 b. Lasik 和 PRK都能产生波前像差,但有其不同之处。 c. 术前术后的像差有很大的相关性
4. 波前像差对视觉灵敏度的影响
波前像差会使视网膜图像模糊不清因而导致视觉灵敏度的下降 (Yoon & Willaims, 2000)
5. 波前像差对对比敏感性的影响
波前像差会使视网膜图像模糊不清因而降低眼睛的对比敏 感性 (Yoon & Willaims, 2000)
6波前像差对近视眼的影响
彗差

轴外物点发出的宽阔光束,经透镜成像后,不再交于一 点,而是形成一种状如彗星的亮斑,称为彗形像差,简 称彗差。
透镜的色差(两种色光成像位置不同)

由于介质的折射率随入射光的颜色(光的波长)不同而不同.因 此透镜的焦距随光的颜色而异,不同颜色的光所成像的位置和大 小都各不相同,这种由于色散引起的现象,即使在近轴区域内也
Point Spread Function vs. Pupil Size Typical Eye
1 mm 2 mm 3 mm 4 mm
5 mm
6 mm
7 mm
C. of Austin Roorda
什么是波前?
平行光线 理想波前 变形的波前(近视)
清晰成像 模糊成像
什么是波前?
平行光线 理想波前 不规则波前
相关文档
最新文档