数据通信原理实验报告 (1)(DOC)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建农林大学计算机与信息学院
信息工程类
实验报告
课程名称:数据通信原理
姓名:
系:电子信息工程
专业:电子信息工程
年级:
学号:
指导教师:
职称:讲师
2012年12 月 3 日
实验项目列表
福建农林大学计算机与信息学院信息工程类实验报告
系:电子信息工程专业:电子信息工程年级: 2010
姓名:学号:实验课程:数据通信原理
实验室号:_____田C-405 实验设备号: 1 实验时间: 11.21 指导教师签字:成绩:
实验一数字信号源实验
一、实验目的和要求
1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握集中插入帧同步码时分复用信号的帧结构特点。
3、掌握数字信号源电路组成原理。
4、用示波器观察单极性非归零码(NRZ)、帧同步信号(FS)、位同步时钟(BS)。
5、用示波器观察NRZ、FS、BS三信号的对应关系。
6、学习电路原理图。
二、实验原理
本模块是实验系统中数字信号源,即发送端,其原理方框图如图1-1所示。
本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。
帧长为
24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),
另外16位为2路数据信号,每路8位。
此NRZ信号为集中插入帧同步码时分复
用信号。
发光二极管亮状态表示‘1’码,熄状态表示‘0’码。
本模块有以下测试点及输入输出点:
• CLK-OUT 时钟信号测试点,输出信号频率为4.433619MHz
• BS-OUT 信源位同步信号输出点/测试点,频率为170.5KHz
• FS 信源帧同步信号输出点/测试点,频率为7.1KHz
• NRZ-OUT NRZ信号输出点/测试点
图1-3为数字信源模块的电原理图。
图1-1中各单元与图1-3中的元器件对
应关系如下:
•晶振 CRY:晶体;U1:反相器7404
•分频器 US2:计数器74161;US3:计数器74193;
US4:计数器40160
•并行码产生器 KS1、KS2、KS3:8位手动开关,从左到右依次与帧
同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相
对应
•八选一 US5、US6、US7:8位数据选择器4512
•三选一 US8:8位数据选择器4512
•倒相器 US10:非门74HC04
•抽样 US9:D触发器74HC74
图1-1 数字信源方框图
图1-2 帧结构
下面对分频器,八选一及三选一等单元作进一步说明。
(1)分频器
74161进行13分频,输出信号频率为341kHz。
74161是一个4位二进制加计数器,预置在3状态。
74193完成÷2、÷4、÷8、÷16运算,输出BS、S1、S2、S3等4个信号。
BS为位同步信号,频率为170.5kHz。
S1、S2、S3为3个选通信号,频率分别为BS信号频率的1/2、1/4和1/8。
74193是一个4位二进制加/减计数器,当CD= PL =1、MR=0时,可在Q0、QB、QC及QD端分别输出上述4个信号。
40160是一个二一十进制加计数器,预置在7状态,完成÷3运算,在Q
0和Q
端分别输出选通信号S4、S5,这两个信号的频率相等、等于S3信号频率的1
1/3。
分频器输出的S1、S2、S3、S4、S5等5个信号的波形如图1-4(a)和1-4(b)所示。
(2)八选一
采用8路数据选择器4512,它内含了8路传输数据开关、地址译码器和三态驱动器,其真值表如表1-1所示。
US5、US6和US7的地址信号输入端A、B、C 并连在一起并分别接S1、S2、S3信号,它们的8个数据信号输入端x0 ~ x7分别K1、K2、K3输出的8个并行信号连接。
由表1-1可以分析出US5、US6、US7输出信号都是码速率为170.5KB、以8位为周期的串行信号。
(3)三选一
三选一电路原理同八选一电路原理。
S4、S5信号分别输入到US8的地址端A 和B ,US5、US6、US7输出的3路串行信号分别输入到US8的数据端x3、x0、x1,U8的输出端即是一个码速率为170.5KB 的2路时分复用信号,此信号为单极性不归零信号(NRZ )。
S 3
S2S1
(a)
S5
S4S3
(b)
图1-4 分频器输出信号波形
(4)倒相与抽样
图1-1中的NRZ 信号的脉冲上升沿或下降沿比BS 信号的下降沿稍有点迟后。
在实验二的数字调制单元中,有一个将绝对码变为相对码的电路,要求输入的绝对码信号的上升沿及下降沿与输入的位同步信号的上升沿对齐,而这两个信号由数字信源提供。
倒相与抽样电路就是为了满足这一要求而设计的,它们使NRZ-OUT 及BS-OUT 信号满足码变换电路的要求。
表1-1 4512真值表
图1-3 数字信源电原理图
FS信号可用作示波器的外同步信号,以便观察2DPSK等信号。
FS信号、NRZ-OUT信号之间的相位关系如图1-5所示,图中NRZ-OUT的无定义位为0,帧同步码为1110010,数据1为11110000,数据2为00001111。
FS 信号的低电平、高电平分别为4位和8位数字信号时间,其上升沿比NRZ-OUT
码第一位起始时间超前一个码元。
FS
NRZ-OUT
图1-5 FS 、NRZ-OUT 波形
三、 主要仪器设备
(1)通信原理实验箱 (2)示波器
四、操作方法与实验步骤
1、熟悉信源模块的工作原理。
2、打开电源开关及模块电源开关,用示波器观察数字信源模块上的各种信号波形。
3、用同轴电缆将FS 输出与示波器外同步信号输入端相连接,把FS 作为示波器的外同步信号,进行下列观察:
(1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管
的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);
(2) 用拨码K1产生代码×1110010(×为任意代码,1110010为7位帧
同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ 码特点。
五、实验内容及实验数据记录 1、熟悉信源模块的工作原理。
本模块有以下测试点及输入输出点:
• CLK-OUT 时钟信号测试点,输出信号频率为4.433619MHz • BS-OUT 信源位同步信号输出点/测试点,频率为170.5KHz • FS 信源帧同步信号输出点/测试点,频率为7.1KHz
• NRZ-OUT NRZ 信号输出点/测试点 2、打开电源开关及模块电源开关,用示波器观察数字信源模块上的各种信号波形。
3、用同轴电缆将FS 输出与示波器外同步信号输入端相连接,把FS 作为示波器的外同步信号,进行下列观察:
(1)示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发
光管熄);
(2)用拨码K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。
六、实验数据处理与分析
(1)通道探头分别接NRZ-OUT和BS-OUT相应图如下
拨码K1产生代码相应图如下
输入的K1为01110010 10110010 01010000
(1)通过实验得出NRZ与RZ在波形上有区别,NRZ在一个码元周期内电
位维持不变,而RZ在一个码元周期内,高电位只维持一段时间就返回零位。
(2)通过对NRZ,FS,BS三个波形的分析得出NRZ是由帧同步吗和数据共同决定的,BS是信源位同步,与码元周期同步,FS是信源帧同步,是与其帧周期同步。
七、质疑、建议、问题讨论
根据实验观察和记录结果可知NRZ、FS、BS三个信号的对应关系为:FS信号的上升沿比NRZ-OUT码第一位起始时间超前一个码元,信源同步信号BS是周期矩形信号。
也通过该实验掌握了信源模块的工作原理。
福建农林大学计算机与信息学院信息工程类实验报告
系: 电子信息工程专业: 电子信息工程 年级: 2010 姓名: 学号: 实验课程: 数据通信原理
实验室号:_____田C -405 实验设备号: 1 实验时间: 11.21
指导教师签字: 成绩:
实验二 数字调制实验
一、实验目的和要求
1、掌握绝对码、相对码概念及它们之间的变换关系。
2、掌握用键控法产生2ASK 、2FSK 、2PSK 、2DPSK 信号的方法。
3、掌握相对码波形与2PSK 信号波形之间的关系、绝对码波形与2DPSK 信号波形之间的关系。
4、了解2ASK 、2FSK 、2PSK 、2DPSK 信号的频谱与数字基带信号频谱之间的关系。
5、用示波器观察绝对码波形、相对码波形。
6、用示波器观察2ASK 、2FSK 、2PSK 、2DPSK 信号波形。
7、用频谱仪观察数字基带信号频谱及2ASK 、2FSK 、2DPSK 信号的频谱。
二、实验原理
本实验使用数字信源模块和数字调制模块。
信源模块向调制模块提供位同步信号和数字基带信号(NRZ 码)。
调制模块将输入的NRZ 绝对码变为相对码、用键控法产生2ASK 、2FSK 、2DPSK 信号。
(A )二进制数字调制原理
1.2ASK 1.产生
m(t)t
cos )t (m )t (e c o ω=NRZ
模拟法
键控法
cos c ωe o (t)
1
信息代码2ASK
2.频谱
)t (Cos )t (m )t (cos )t (m )t (e )t (e )(R c c o o eo τωτωττ++=+=
]e e )[(R 4
1cos )(R 21)t (cos t cos )t (m )t (m c c j j m c m c c τωτωττωττωωτ+==+⋅+=-
)]f f (P )f f (P [4
1
)f (P c s c s eo -++=
式中P s (f)为m(t)的功率密度
谱零点带宽 B=2f s =2R B
发滤波器最小带宽可为f s (理论值) 也可将基带信号处理后再进行2ASK 调制
2.2FSK 1.产生
2.频谱 键控法2FSK
)]f f (P )f f (P [
1
)]f f (P )f f
(P [41)f (P
2c 2s 1c 2s 2c 1s 1c 1s eo -+++-++=
式中)(1f p s 是m(t)2s
)f (p 1s =)f (p 2s s 2c 1c f 2|f f |>-
或
f c2 f
c1
1
f c f c -f s /2 fc+f s /2
相位连续
⎥⎦
⎤⎢⎣⎡+=⎰
dt )t (m K t cos A )t (e F c o ω 相位不连续
()t
cos t m t cos 2c 1c ωω+
s 2c 1c f 2|f f |<-
2FSK 信号带宽s 2c 1c f 2|f f |B +-=
3.2PSK (BPSK ) (绝对调相)
⎩
⎨⎧-=="0",t cos "
1",t cos t cos )t (m )t (e c c c o ωωω
Ts )1kt 2(t kT 2,
BNRZ :)t (m
≤≤
1. 产生
信息代码→2PSK 规律:“异变同不变”,即本码元与前一码元相异时,本码元内2PSK 信号的初相相对于前一码元内2PSK 信号的未相变化180°,相同时则不变。
2.频谱
)]f f (p )f f (
p [4
1
)f (P c s c s eo -++= ,P eo (f)中无离散谱
f c
)(f p s 为m(t)的频谱,
当p(1)=p(0)时p s (f)中无直流, B=2f
s 4.2DPSK (差分相位键控,相对调相) 1.产生 码变换—2PSK 调制法
信息代码 cos ωc t 2PSK cos ωc t
2PSK
绝对码a k →相对码b k
“1变0不变”。
b k =a k +b k-1,设b k 初始值为1,各点波形如图所示:
第一个码元内信号的初相可任意假设
a k →2DPSK 规律:“1变0不变”,即信息代码(绝对码)为“1”时,本码元内2DPSK 信号的初相相对于前一码元内2DPSK 信号的未相变化180°,信息代码为“0”时,则本码元内2DPSK 信号的初相相对于前一码元内2DPSK 信号的末相不变化。
2.频谱 同2PSK
(B )电路原理
数字调制单元的原理方框图及电路图分别如图2-1,图2-2所示。
图2-1 数字调制方框图
本单元有以下测试点及输入输出点:
• BS-IN 位同步信号输入点• NRZ-IN 数字基带信号输入点图2 -2数字调制原理图
• CAR 2DPSK信号载波测试点
• AK 绝对码测试点(与NRZ-IN相同)
• BK 相对码测试点
>0.5V • 2DPSK(2PSK)-OUT 2DPSK(2PSK)信号测试点/输出点,V
P-P • 2FSK-OUT 2FSK信号测试点/输出点,V
>0.5V
P-P
>0.5V
• 2ASK-OUT 2ASK信号测试点,V
P-P
图2-1中晶体振荡器与信源共用,位于信源单元,其它各部分与图2-2中的主要元器件对应关系如下:
•÷2(A)UM2:双D触发器74HC74
•÷2(B) UM2:双D触发器74LS74
•滤波器A UM5:运放LF347,调谐回路
•滤波器B UM5:运放LF347,调谐回路
•码变换UM1:双D触发器74LS74;UM3:异或门74LS86
• 2ASK调制UM6:三路二选一模拟开关4053
• 2FSK调制UM6:三路二选一模拟开关4053
• 2DPSK(2PSK调制)UM6:三路二选一模拟开关4053
•放大器QM4:三极管9013
•射随器QM1:三极管9013
将晶振信号进行2分频、滤波后,得到2ASK的载频2.2165MHZ。
放大器的发射极和集电极输出两个频率相等、相位相反的信号,这两个信号就是2PSK、2DPSK的两个载波,2FSK信号的两个载波频率分别为晶振频率的1/2和1/4,也是通过分频和滤波得到的。
下面重点介绍2PSK、2DPSK。
2PSK、2DPSK波形与信息代码的关系如图2-3所示。
图2-3 2PSK、2DPSK波形
图中假设码元宽度等于载波周期的1.5倍。
2PSK信号的相位与信息代码的关系是:前后码元相异时,2PSK信号相位变化180︒,相同时2PSK信号相位不变,可简称为“异变同不变”。
2DPSK信号的相位与信息代码的关系是:码元为“1”时,2DPSK信号的相位变化180︒。
码元为“0”时,2DPSK信号的相位不变,可简称为“1变0不变”。
应该说明的是,此处所说的相位变或不变,是指将本码元内信号的初相与上一码元内信号的末相进行比较,而不是将相邻码元信号的初相进行比较。
实际工程中,2PSK或2DPSK信号载波频率与码速率之间可能是整数倍关系也可能是非
整数倍关系。
但不管是哪种关系,上述结论总是成立的。
本单元用码变换——2PSK调制方法产生2DPSK信号,原理框图及波形图如图2-4所示。
相对于绝对码AK、2PSK调制器的输出就是2DPSK信号,相对于相对码、2PSK调制器的输出是2PSK信号。
图中设码元宽度等于载波周期,已调信号的相位变化与AK、BK的关系当然也是符合上述规律的,即对于AK来说是“1变0不变”关系,对于BK来说是“异变同不变”关系,由AK到BK的变换也符合“1变0不变”规律。
图2-4中调制后的信号波形也可能具有相反的相位,BK也可能具有相反的序列即“00100”,这取决于载波的参考相位以及异或门电路的初始状态。
2DPSK通信系统可以克服上述2PSK系统的相位模糊现象,故实际通信中采用2DPSK而不用2PSK(多进制下亦如此,采用多进制差分相位调制MDPSK),此问题将在数字解调实验中再详细介绍。
+2PSK调制
2DPSK(AK)
2PSK(BK)
T
S
A
K
B
K
B
K-1
图2-4 2DPSK调制器
2PSK信号的时域表达式为
S(t)= m(t)Cosω
c
t
式中m(t)为双极性不归零码BNRZ,当“0”、“1”等概时m(t)中无直流分量,S(t)中无载频分量,2DPSK信号的频谱与2PSK相同。
2ASK信号的时域表达式与2PSK相同,但m(t)为单极性不归零码NRZ,NRZ 中有直流分量,故2ASK信号中有载频分量。
2FSK信号(相位不连续2FSK)可看成是AK与AK调制不同载频信号形成的两个2ASK信号相加。
时域表达式为
t
t
m
t
t
m
t
S
c
c2
1
cos
)(
cos
)(
)(ω
ω+
=
式中m(t)为NRZ码。
=1/Ts在数值上等于码速率,2ASK、2PSK(2DPSK)、设码元宽度为Ts,f
S
2FSK的功率谱密度如图2-5所示。
可见,2ASK、2PSK(2DPSK)的功率谱是数字基带信号m(t)功率谱的线性搬移,故常称2ASK、2PSK(2DPSK)为线性调制信号。
多进制的MASK、MPSK(MDPSK)、MFSK信号的功率谱与二进制信号功率谱类似。
本实验系统中m(t)是一个周期信号,故m(t)有离散谱,因而2ASK、2PSK (2DPSK)、2FSK也具有离散谱。
三、主要仪器设备
(1)通信原理实验箱
(2)示波器
四、实验步骤
1、熟悉数字信源单元及数字调制单元的工作原理。
2、连线:数字调制单元的CLK-IN、BS-IN、NRZ-IN分别连至信源单元CLK-OUT、BS-OUT、NRZ-OUT。
打开电源开关和模块电源开关。
3、用数字信源模块的FS信号作为示波器的外同步信号,示波波CH1接AK,CH2接BK,信源模块的KS1、KS2、KS3置于任意状态(非全0),观察AK、BK波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律。
4、示波器CH1接2DPSK-OUT,CH2分别接AK及BK,观察并总结2DPSK信号相位变化与绝对码的关系以及2DPSK信号相位变化与相对码的关系(此关系即是2PSK信号相位变化与信源代码的关系)。
注意:2DPSK信号的幅度可能不一致,但这并不影响信息的正确传输。
5、示波器CH1接AK、CH2依次接2FSK-OUT和2ASK-OUT;观察这两个信号与AK的关系(注意“1”码与“0”码对应的2FSK信号幅度可能不相等,这对传输信息是没有影响的)。
6、用频谱议观察AK、2ASK、2FSK、2DPSK信号频谱(条件不具备时不进行此项观察)。
应该注明的是:由于示波器的原因,实验中可能看不到很理想的2FSK、2DPSK 波形。
五、实验内容及实验数据记录
<1>首先熟悉数字信源单元及数字调制单元,示波器CH1接2DPSK-OUT,CH2分别
接AK及BK时的波形:
1.AK波形如下:
2.用示波器观察BK的波形如下:
3.从相对码至绝对码对应波形:
<2>示波器CH1接AK,CH2依次接2FSK-OUT,2ASK-OUT和的波形分别如下:
六、实验数据处理与分析
(1)通过对2PSK和2DPSK示波器输出的波形与信号源输入的数据进行比较和分析,得出两者关系为相对调相本质上是经过相对码变换后的数字序列的绝对调相。
(2)绝对码至相对码的变换规律为:“1”变“0”不变,即绝对码的“1”码时相对码发生变化,绝对码的“0”码时相对码不发生变化。
相对码至绝对码的变换规律:相对码的当前码元与前一码元相同时对应的当前绝对码为“0”码,相异时对应的当前绝对码为“1”码。
七、质疑、建议、问题讨论
福建农林大学计算机与信息学院信息工程类实验报告
系:电子信息工程专业:电子信息工程年级: 2010
姓名:学号:实验课程:数据通信原理
实验室号:_____田C-405 实验设备号: 1 实验时间: 11.21 指导教师签字:成绩:
实验三2ASK、2FSK数字解调实验
一、实验目的和要求
1. 掌握2ASK过零检测解调原理。
2. 掌握2FSK过零检测解调原理。
3. 用示波器观察2ASK过零检测解调器各点波形。
4. 用示波器观察2FSK过零检测解调器各点波形。
二、实验原理
(A)2ASK解调
(1)包络检波
(t),进行数学抽象时认为系统是物理不可实实际系统中x(t)迟后于e
o
现的,是否有码间串扰决定于滤波器和信道的频率特性。
LPF
(2)相干解调
r (t )与(1)中不同,有正、负值,其它同(1)
(3)过零检测
波形图见P134图6-7,但还要对f (t )进行样判决处理。
判决准则:10)B A (2
1)kTs (f →-≥ (B )2FSK 解调
(1) 包络检波
条件:s 2c 1c f 2|f f |>-。
判决准则:10)kTs (b )kTs (a →≥ (2)相干解调
无码间串扰
f(t) A
B
判决准则同(1)
(3)过零检测
波形图见P134图6-7,但还要对f (t )进行样判决处理。
判决准则:10)B A (2
1)kTs (f →-≥
(C )电路原理
2FSK 信号的解调方法有:包络括检波法、相干解调法、鉴频法、过零检测法等。
图3-1 2FSK 过零检测解调方框图
BPF 1
BPF 2
LPF LPF
位同步
抽样判决
a(t)
b(t)
载波同步
cos ω
载波同步 cos ω
g 限幅 微分 整流 单稳 低通 抽样判决 位同步器
a b c d e f
cp(t)
f(t) cp(t)
A B
本实验采用过零检测法解调2FSK 信号。
图3-1、图3-2分别为解调器的方框图和电路原理图。
2FSK 解调模块上有以下测试点及输入输出点:
• 2FSK-IN 2FSK 信号输入点/测试点
图3-2 2F S K 数字解调电路图
• BS-IN 位同步信号输入点
• FD 2FSK过零检测输出信号测试点
• LPF 低通滤波器输出点/测试点
• NRZ(B)位同步提取输出测试点
• NRZ-OUT 解调输出信号的输出点/测试点
2FSK解调器方框图中各单元与电路图中元器件对应关系如下:•整形1 UF1:A:反相器74HC04
•单稳1、单稳2 UF2:单稳态触发器74LS123
•相加器 UF3:或门74LS32
•低通滤波器 UF4:运算放大器LM318;若干电阻、电容
•整形2 UF1:B:反相器74HC04
•抽样器 UF5:A:双D触发器74HC74
在实际应用的通信系统中,解调器的输入端都有一个带通滤波器用来滤除带外的信道白噪声并确保系统的频率特性符合无码间串扰条件。
本实验系统中为简化实验设备,发端即数字调制的输出端没有带通滤波器、信道是理想的,故解调器输入端就没加带通滤波器。
2FSK解调器工作原理及有关问题说明如下:
•图3-3为2FSK过零检测解调器各点波形示意图,图中设“1”码载频等于码速率的两倍,“0”码载频等于码速率。
图3-3 2FSK过零检测解调器各点波形示意图
整形1和整形2的功能与比较器类似,在其输入端将输入信号叠加在2.5V 上。
74HC04的状态转换电平约为2.5V,可把输入信号进行硬限幅处理。
整形1将正弦2FSK信号变为TTL电平的2FSK信号。
整形2和抽样电路共同构成一个判决电平为2.5V的抽样判决器。
•单稳1、单稳2分别被设置为上升沿触发和下降沿触发,它们与相加器一起共同对TTL电平的2FSK信号进行微分、整流处理。
•LPF不是TTL电平信号且不是标准的非归零码,必须进行抽样判决处理。
UF1对抽样判决输出信号进行整形。
•必须说明一点,2FSK解调的信号码不能为全0或全1,否则抽样判决器不能正常工作。
三、主要仪器设备
(1)通信原理实验箱
(2)示波器
四、操作方法与实验步骤
本实验使用数字信源模块、数字调制模块、载波同步模块、2DPSK解调模块及2FSK解调模块,它们之间的信号连结方式如图3-4所示。
实际通信系统中,解调器的位同步信号来自位同步提取单元,本实验中这个信号直接来自数字信源。
数字
信源
数字
调制
2FSK解调
2DPSK解调
载波
同步
BS-OUT
BS-OUT
BS-IN
NRZ-OUT NRZ-IN
2DPSK-OUT
2DPSK-IN CAR-OUT
2FSK-OUT
2DPSK-OUT
2FSK-IN
2DPSK-IN
BS-IN
CAR-IN
BS-IN CLK-OUT
图3-4 数字解调实验连接图
1、按图5-4将五个模块的信号输出、输入点连在一起。
打开交流电源开关
和各使用模块的电源开关。
2、检查数字信源模块、数字调制模块及载波同步模块是否已在工作正常。
3、2FSK解调实验
示波器探头CH1接数字调制单元中的AK,CH2分别2FSK解调单元中的FD、LPF、NRZ(B)及NRZ-OUT,观察2FSK过零检测解调器的解调过程(注意:低通及整形2都有倒相作用)。
LPF的波形应接近图3-3所示的理论波形。
4、2ASK解调实验实验方式与2FSK一样
五、实验内容及实验数据记录
<1>首先按图3-4将五个模块的信号输出、输入点连在一起
1.将示波器探头CH1接数字调制单元中的AK,CH2分别2FSK解调单元中的FD、LPF、NRZ(B)及NRZ-OUT的波形。
1)2FSK波形
2)FD波形
3)LPF波形
4)NRZ(B)波形
5)NRZ-OUT的波形
六、实验数据处理与分析
1.2FSK解调的信号码不能为全0或全1,否则抽样判决器不能正常工作。
2.在相干解调中,不可能既传送“1”码又传送“0”码。
3.通过对2ASK和2FSK两种解调后的信号与信号源的NRZ的比较,发现解调的效果良好。
七、质疑、建议、问题讨论
福建农林大学计算机与信息学院信息工程类实验报告
系: 电子信息工程专业: 电子信息工程 年级: 2010 姓名: 学号: 实验课程: 数据通信原理
实验室号:_____田C -405 实验设备号: 1 实验时间: 11.21
指导教师签字: 成绩:
实验四 2DPSK 数字解调实验
一、 实验目的和要求
1、 掌握2DPSK 相干解调原理。
2、 用示波器观察2DPSK 相干解调器各点波形。
二、 实验原理
(A )2PSK 解调:
只能用相干解调法
设收发滤波器及信道对2PSK 信号波形无影响,各点波形如下
a(t) -cos ωc t b(t) r(t) cp(t)
c(t)
÷2电路有“1”和“0”两个不同的初始状态,故其输出信号有0、π两个不同相位的信号。
用其它方法(如castos 环等)提取相干载波时也会出现上述现象,此为相干载波相位模糊现象。
由于有两种相干载波,使解调输出现两种可能,即m(t)或)t (m 。
在2DPSK 中,数字信息是用前后码元已调信号的相位变化来表示的,因此用有相位模糊的载波进行相干解调时并不影响相对关系.虽然解调得到的相对码完全是0,1倒置,但经过差分译码得到得绝对码不会发生任何倒置的现象,从而克服了相位模糊的问题。
故工程上不用2PSK ,而用2DPSK 。
(B )2DPSK 解调 (1)相干解调 设收发滤波器及信道对2DPSK 信号波形无影响,则各点波形如下
此处设f c =R B ,实际工作中并不要求载波与码速率满足某一关系。
码反变换输出的第一位可任意选取。
(2)差分相干解调(相位比较法)
BPF LPF
抽样判决 a c d
e cp(t)
a
b
c
e d
f a k
b k-1
BPF
载波同步
LPF
位同步 抽样判决
T S
2PSK 解调
码反变换
b k 0
1
1
1
信息代码 (发a k )
a(t) b(t) c(t)
d(t)
cp(t) e(t) f(t)
a
-a
b k 1 1 0 0 1 0 a k 0 0 1 0 1 1
当码元宽度T s 与载波周期T C 满足一定关系时 才能用此方法解调2DPSK
设T S =KT c 则判决规则为:0
1s 0)kT (d →≥
若c s T )5.0K (T +=则判决规则为:
10s 0)kT (d →≥
(C )电路原理
可用相干解调或差分相干解调法(相位比较法)解调2DPSK 信号。
在相位比较法中,要求载波频率为码速率的整数倍,当此关系不能满足时只能用相干解调法。
本实验系统中,2DPSK 载波频率等码速率的13倍,两种解调方法都可用。
实际工程中相干解调法用得最多。
图4-1 2DPSK 相干解调方框图
0 1 1 0
0 0 1 1 a(t) b(t) c(t)
d(t) cp(t)
e(t)
图
路
电
调
解
字
数
K
S
P
D
2
2
-
4
图
本实验采用相干解调法解调2DPSK信号、采用过零检测法解调2FSK信号。
图4-1、图4-2分别为解调器的方框图和电原理图。
2DPSK解调模块上有以下测试点及输入输出点:
• 2DPSK-IN 2DPSK信号输入点/测试点
• BS-IN 位同步信号输入点
• CAR-IN 相干载波输入点
• MU 相乘器输出信号测试点
• LPF 低通、运放输出信号测试点
• NRZ(B)整形输出信号的输出点/测试点
• BK 解调输出相对码测试点
• NRZ-OUT 解调输出绝对码的输出点/测试点
2DPSK解调器方框图中各单元与电路图中元器件的对应关系如下:•相乘器 UP1:模拟乘法器MC1496
•低通滤波器RP11,CP1
•整形 UP5A、B:74HC04
•抽样器 UP3:A:双D触发器7474
•码反变换器 UP3:B:双D触发器7474;UP4:A:异或门7486 在实际应用的通信系统中,解调器的输入端都有一个带通滤波器用来滤除带外的信道白噪声并确保系统的频率特性符合无码间串扰条件。
本实验系统中为简化实验设备,发端即数字调制的输出端没有带通滤波器、信道是理想的,故解调器输入端就没加带通滤波器。
下面对2DPSK相干解调电路中的一些具体问题加以说明。
•比较器的输出怕NRZ(B)为TTL电平信号,它不能作为相对码直接送给码反变器,因为它并不是一个标准的单极性非归零码,其单个“1”码对应的正脉冲的宽度可能小于码元宽度、也可能大于码元宽度。
另外,当LPF中有噪声时,CM-OUT中还会出现噪声脉冲。
•异或门74LS86输出的绝对码波形的高电平上叠加有小的干扰信号,经U34整形后即可去掉。
DPSK相干解调器模块各点波形示意图如图4-3所示。
图中设相干载波为π相。
图4-3 2DPSK相干解调波形示意图
2FSK解调器工作原理及有关问题说明如下:
•必须说明一点, 2DPSK解调的信号码不能为全0或全1,否则抽样判决器不能正常工作。
三、主要仪器设备
(1)通信原理实验箱
(2)示波器
四、操作方法与实验步骤
本实验使用数字信源模块、数字调制模块、载波同步模块、2DPSK解调模块,它们之间的信号连结方式如图4-4示。
实际通信系统中,解调器的位同步信号来自位同步提取单元。
本实验中这个信号直接来自数字信源。
图4-4 数字解调实验连接图
1、按图5-5将五个模块的信号输出、输入点连在一起。
打开交流电源开关
和各使用模块的电源开关。
2、信源模块、数字调制模块及载波同步模块是否已在工作正常,使载波同
步模块提取的相干载波CAR-OUT与2DPSK信号的载波CAR同相(或反相)。
2DPSK解调实验
用数字信源的FS信号作为示波器外同步信号,将示波器的CH1接数字调制单元的BK,CH2接2DPSK解调单元的MU。
MU与BK同相或反相,
其波形应接近图5-3所示的理论波形。
示波器的CH2接LPF,可看到LPF与MU反相。
当一帧内BK中“1”码“0”
码个数相同时,LPF的正、负极性信号与0电平对称,否则不对
称。
断开、接通电源若干次,使数字调制单元CAR信号与载波同步单元CAR-OUT信号同相,观察数字调制单元的BK与2DPSK解调单元的
MU、LPF、BK之间的关系,再观察数字调制单元中AK信号与2DPSK
解调单元的MU、LPF、BK、NRZ-OUT信号之间的关系。
再断开、接通电源若干次,使CAR信号与CAR-OUT信号反相,重新进行步骤(3)的观察。
在进行上述各步骤时应注意运放是一个反相放大器。
五、实验内容及实验数据记录
<1>示波器的CH1接数字调制单元的BK,CH2接2DPSK解调单元的MU及CH2接。