图论II 图的基本概念

合集下载

图论——二分图1:二分图以及判定

图论——二分图1:二分图以及判定

图论——⼆分图1:⼆分图以及判定图,有有向图,⽆向图,稠密图,简单图······算法,有贪⼼法,⼆分法,模拟法,倍增法······那,⼆分图是啥?⼆分法+有向图?于是,我查了许多资料,才对它有⼀定了解。

⼆分图:⼆分图,是图论中的⼀种特殊模型,设G=(V,E)是⼀个⽆向图,如果顶点V可分割为两个互不相交的⼦集(A,B),并且同⼀集合中不同的两点没有边相连。

这就是⼆分图。

举个栗⼦吧:这是不是⼆分图?反正我第⼀次看觉得不是其实,是的,他是⼆分图,尽管看上去是连着的。

若我们将图中的⼀些边转⼀下,变成:这就是⼀个明显的⼆分图。

集合A与B中的点互不相连。

因此,在⼿动判定⼆分图时学会转边!辣魔,⼆分图要⽤计算机判定怎么实现?数竞⼤佬:简单!!!!染⾊⼤法!!!有没有熟悉的感觉0表⽰还未访问,1表⽰在集合A中,2表⽰在集合B中。

col(color)储存颜⾊。

初始化为0.上代码:其实是模板可以记忆。

1 vector <int> v[N];2void dfs(int x,int y){3 col[x]=y;4for (int i=0; i<v[x].size(); i++) {5if (!col[v[x][i]]) dfs(v[x][i],3-y);6if (col[v[x][i]]==col[x]) FLAG=true; //产⽣了冲突7 }8 }9for (i=1; i<=n; i++) col[i]=0; //初始化10for (i=1; i<=n; i++) if (!col[i]) dfs(i,1); //dfs染⾊11if (FLAG) cout<<"NO"; else cout<<"YES";下⼀章我们将讲到⼆分图的匹配,我们明天见。

图论的基本概念和应用

图论的基本概念和应用

图论的基本概念和应用图论,顾名思义,是研究图的一门数学分支。

在计算机科学、网络科学、物理学等领域都有广泛的应用。

本文将从图的基本概念入手,介绍图论的基础知识和常见应用。

一、图的基本概念1.1 图的定义图是由若干点和若干边构成的。

点也被称为顶点,边也被称为弧或者线。

一个点可以与任意个点相连,而边则是连接两个点的线性对象。

一些有向边可以构成一棵树,而一些无向边则形成了一个回路。

1.2 图的表示图可以用一张二维平面图像表示。

这张图像由若干个点和连接这些点的线组成。

这种表示方式被称为图的平面表示。

图还可以用邻接矩阵、邻接表、关联矩阵等数据结构进行表示。

1.3 图的类型根据图的性质,可以将图分为有向图、无向图、完全图、连通图、欧拉图、哈密顿图等。

有向图:边有方向,表示从一个点到另一个点的某种关系。

无向图:边没有方向,表示两个点之间的某种关系。

完全图:任意两个点之间都有一条边,不存在自环。

\连通图:任意两个点之间都有至少一条通路,没有孤立的点。

欧拉图:一条欧拉通路是一条从一点开始经过所有边恰好一次后回到该点的通路。

哈密顿图:经过所有点恰好一次的通路被称为哈密顿通路。

二、图的应用2.1 最短路径问题图论在计算机算法中最常见的应用之一就是最短路径问题。

在一个有向图中,从一个点到另一个点可能有多条不同的路径,每条路径的长度也可能不同。

最短路径问题就是找到两个点之间长度最短的路径。

最短路径问题可以通过深度优先搜索、广度优先搜索等方法来解决,但是时间复杂度通常较高。

另外,使用Dijkstra算法、Floyd算法等优化算法可以大大缩短计算时间。

2.2 社交网络社交网络是图论应用的一个重要领域。

在社交网络中,人们之间的关系可以用图的形式表示。

例如,在微博网络中,每个用户和他/她所关注的人就可以形成一个有向图。

在这种图中,点表示用户,边表示一个人关注另一个人的关系。

通过对社交网络进行图论分析,可以研究用户之间的互动模式,了解到哪些用户之间联系较为紧密,哪些用户是网络中的“大咖”等。

第五章 图论

第五章 图论
第五章 图论
图论可应用于多个领域,如信息论,控制论, 运筹学,运输网络,集合论等(如用关系图来 描述一个关系)。
计算机领域,其可应用于人工智能,操作系统, 计算机制图,数据结构)
§1
图论基本概念
1-1 图的实例 问题1、哥尼斯堡桥问题
A C B D C B A D
问题:一个散步者能否从任一块陆地出发,走过七 座桥,且每座桥只走过一次,最后回到出发点?
同理,结点间按别的对应方式,便都不存在一一对应
关系。
所以G1,G2不同构。
两图同构有必要条件:
(1)结点数相同; (2)边数同; (3)次数相同的结点数目相等。
1-5 多重图与带权图
1.5.1 多重图 定义11、一个结点对对应多条边,称为多重边。
包含多重边的图称为多重图,否则,成为简单图。
如:
如:基本通路:p1,p2,p3.
简单通路:p1,p2,p3,p5,p6. p4,p7既不是基本通路,也不是简单通路。
定义3、起始结点和终止结点相同的通路称为回路。 各边全不同的回路称为简单回路,各点全不同 的回路称为基本回路。
例2、上例中,1到1的回路有: c1: (1,1,),c2: (1,2,1),c3: (1,2,3,1), 1 2
例2、设有四个城市c1,c2,c3,c4;其中c1与c2间, c1与c4间,c2与c3间有高速公路直接相连,用图表 示该事实。 解:G=<V,E>,其中:V={c1,c2,c3,c4}, E={l1,l2,l3}={(c1,c2),(c1,c4),(c2,c3)} 例3、有四个程序p1,p2,p3,p4,其间调用关系为p1 p2, p1 p4,p2 p3,用图表示该事实。 解:G=<V,E>,V={p1,p2,p3,p4}, E={l1,l2,l3}={(p1,p2),(p1,p4),(p2,p3)}

图论知识及运用举例

图论知识及运用举例

图论知识及运用举例1 概论图论中的“图”是指某类具体事物和这些事物之间的联系。

如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。

图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。

图是运筹学(Operations Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。

下面将要讨论最短路问题、最大流问题、最小费用流问题和匹配问题等。

2 图的基本概念2.1 无向图一个无向图(undirected graph)G 是由一个非空有限集合)(G V 和)(G V 中某些元素的无序对集合)(G E 构成的二元组,记为))(),((G E G V G =。

其中},,,{)(21n v v v G V =称为图G 的顶点集(vertex set )或节点集(node set ), )(G V 中的每一个元素),,2,1(n i v i =称为该图的一个顶点(vertex )或节点(node );},,,{)(21m e e e G E =称为图G 的边集(edge set ),)(G E 中的每一个元素k e (即)(G V 中某两个元素j i v v ,的无序对) 记为),(j i k v v e =或i j j i k v v v v e == ),,2,1(m k =,被称为该图的一条从i v 到j v 的边(edge )。

当边j i k v v e =时,称j i v v ,为边k e 的端点,并称j v 与i v 相邻(adjacent );边k e 称为与顶点j i v v ,关联(incident )。

如果某两条边至少有一个公共端点,则称这两条边在图G 中相邻。

边上赋权的无向图称为赋权无向图或无向网络(undirected network )。

图论常考知识点总结

图论常考知识点总结

图论常考知识点总结1. 图的基本概念图是由顶点集合和边集合构成的。

顶点之间的连接称为边,边可以有方向也可以没有方向。

若图的边没有方向,则称图为无向图;若图的边有方向,则称图为有向图。

图的表示方式:邻接矩阵和邻接表。

邻接矩阵适合存储稠密图,邻接表适合存储稀疏图。

2. 图的连通性连通图:如果图中任意两点之间都存在路径,则称该图是连通图。

强连通图:有向图中,任意两个顶点之间都存在方向相同的路径,称为强连通图。

弱连通图:有向图中,去掉每条边的方向之后,所得到的无向图是连通图,称为弱连通图。

3. 图的遍历深度优先搜索(DFS):从起始顶点出发,沿着一条路往前走,走到不能走为止,然后退回到上一个分支点,再走下一条路,直到走遍图中所有的顶点。

广度优先搜索(BFS):从起始顶点出发,先访问它的所有邻居顶点,再按这些邻居顶点的顺序依次访问它们的邻居顶点,依次类推。

4. 最短路径狄克斯特拉算法:用于计算图中一个顶点到其他所有顶点的最短路径。

弗洛伊德算法:用于计算图中所有顶点之间的最短路径。

5. 最小生成树普里姆算法:用于计算无向图的最小生成树。

克鲁斯卡尔算法:用于计算无向图的最小生成树。

6. 拓扑排序拓扑排序用于有向无环图中对顶点进行排序,使得对每一条有向边(u,v),满足排序后的顶点u在顶点v之前。

以上就是图论中一些常考的知识点,希望对大家的学习有所帮助。

当然,图论还有很多其他的知识点,比如欧拉图、哈密顿图、网络流等,这些内容都值得我们深入学习和探讨。

图论在实际应用中有着广泛的应用,掌握好图论知识对于提升计算机科学和工程学的技能水平有着重要的意义。

图论及应用习题答案

图论及应用习题答案

图论及应用习题答案图论及应用习题答案图论是数学中的一个分支,研究的是图的性质和图之间的关系。

图论在现实生活中有着广泛的应用,涵盖了许多领域,如计算机科学、通信网络、社交网络等。

本文将为读者提供一些关于图论及应用的习题答案,帮助读者更好地理解和应用图论知识。

1. 图的基本概念题目:下面哪个不是图的基本概念?A. 顶点B. 边C. 路径D. 线段答案:D. 线段。

图的基本概念包括顶点、边和路径。

线段是指两个点之间的连线,而在图论中,我们使用边来表示两个顶点之间的关系。

2. 图的表示方法题目:以下哪个不是图的表示方法?A. 邻接矩阵B. 邻接表C. 边列表D. 二叉树答案:D. 二叉树。

图的表示方法包括邻接矩阵、邻接表和边列表。

二叉树是一种特殊的树结构,与图的表示方法无关。

3. 图的遍历算法题目:以下哪个不是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 迪杰斯特拉算法D. 克鲁斯卡尔算法答案:D. 克鲁斯卡尔算法。

图的遍历算法包括深度优先搜索和广度优先搜索,用于遍历图中的所有顶点。

迪杰斯特拉算法是用于求解最短路径的算法,与图的遍历算法有所不同。

4. 最小生成树题目:以下哪个算法不是用于求解最小生成树?A. 克鲁斯卡尔算法B. 普里姆算法C. 弗洛伊德算法D. 公交车换乘算法答案:D. 公交车换乘算法。

最小生成树是指包含图中所有顶点的一棵树,使得树的边的权重之和最小。

克鲁斯卡尔算法和普里姆算法是常用的求解最小生成树的算法,而弗洛伊德算法是用于求解最短路径的算法,与最小生成树问题有所不同。

5. 图的应用题目:以下哪个不是图的应用?A. 社交网络分析B. 路径规划C. 图像处理D. 数字逻辑电路设计答案:D. 数字逻辑电路设计。

图的应用广泛存在于社交网络分析、路径规划和图像处理等领域。

数字逻辑电路设计虽然也涉及到图的概念,但与图的应用有所不同。

总结:图论是一门重要的数学分支,具有广泛的应用价值。

通过本文提供的习题答案,读者可以更好地理解和应用图论知识。

图论知识点总结笔记

图论知识点总结笔记

图论知识点总结笔记一、图的基本概念1. 图的定义图是由节点(顶点)和连接节点的边构成的一种数据结构。

图可以用来表示各种关系和网络,在计算机科学、通信网络、社交网络等领域有着广泛的应用。

在图论中,通常将图记为G=(V, E),其中V表示图中所有的节点的集合,E表示图中所有的边的集合。

2. 节点和边节点是图中的基本单位,通常用来表示实体或者对象。

边是节点之间的连接关系,用来表示节点之间的关联性。

根据边的方向,可以将图分为有向图和无向图,有向图的边是有方向的,而无向图的边是没有方向的。

3. 度度是图中节点的一个重要度量指标,表示与该节点相连的边的数量。

对于有向图来说,可以分为入度和出度,入度表示指向该节点的边的数量,出度表示由该节点指向其他节点的边的数量。

4. 路径路径是图中连接节点的顺序序列,根据路径的性质,可以将路径分为简单路径、环路等。

在图论中,一些问题的解决可以归结为寻找合适的路径,如最短路径问题、汉密尔顿路径问题等。

5. 连通性图的连通性是描述图中节点之间是否存在路径连接的一个重要特征。

若图中每一对节点都存在路径连接,则称图是连通的,否则称图是非连通的。

基于图的连通性,可以将图分为连通图和非连通图。

6. 子图子图是由图中一部分节点和边组成的图,通常用来描述图的某个特定属性。

子图可以是原图的结构副本,也可以是原图的子集。

二、图的表示1. 邻接矩阵邻接矩阵是一种常见的图表示方法,通过矩阵来表示节点之间的连接关系。

对于无向图来说,邻接矩阵是对称的,而对于有向图来说,邻接矩阵则不一定对称。

2. 邻接表邻接表是另一种常用的图表示方法,它通过数组和链表的组合来表示图的节点和边。

对于每一个节点,都维护一个邻接点的链表,通过链表来表示节点之间的连接关系。

3. 关联矩阵关联矩阵是另一种图的表示方法,通过矩阵来表示节点和边的关联关系。

关联矩阵可以用来表示有向图和无向图,是一种比较灵活的表示方法。

三、常见的图算法1. 深度优先搜索(DFS)深度优先搜索是一种常见的图遍历算法,通过递归或者栈的方式来遍历图中所有的节点。

图论-二部图、连通性

图论-二部图、连通性

二部图定义:图),(E V G =称为二部图(bipartite graph),如果V 是两个互不相交的集合21,V V 的开集,且1V 和2V 中的顶点互不相邻. 这样的二部图也常称为),(21V V -二部图.定义:图G 的匹配是由G 中没有公共顶点构成的集合,与匹配M 中的边关联的顶点称为是被M -浸润的(saturated by M),其余的顶点称为未被M -浸润的(M-unsaturated). 图G 的一个完美匹配(perfect matching)是浸润的所有顶点的匹配. 图G 的边数最多的匹配称为一个最大匹配(maximum matching).例如在上图中,粗边给出了一个匹配1M ,显然两条细边给出了一个最大匹配2M . 定义:设M 是图G 的一个匹配. 如果路径P 的边交替出现在M 和不出现在M 中,则称P 是一条M -交错路径(M-alternating path). 两个顶点都未被M -浸润的交错路径称为M -增广路径(M-augmenting path).在上例中存在1M -增广路径,2M 是最大匹配,而不存在2M -增广路径,这不是偶然的. 因为可以让(留作习题):图G 的一个匹配M 是最大匹配⇔G 中无M -增广路径. 定义:图G 的一个顶点覆盖(covering)是一些顶点构成的集合)(G V ⊆κ,使得G 的任何一边都有一个顶点含于κ. 一个顶点覆盖κ称为最小顶点覆盖,是指不存在覆盖'κ,使得κκ<'.设κ是G 的一个顶点覆盖,M 是G 的一个匹配,显然M ≥κ. 我们关心对于最大匹配的最小顶点覆盖来说,等式是否成立. 在图1(a)中,等式成立,而图1(b)中最小顶点覆盖大小为3,而最大匹配大小为2. 注意图1(a)为二部图,图1(b)为有5条边的圈,从而不是二部图(可以一个图G 是二部图⇔G 中不含奇数边的图,证明留作习题).对于二部图,我们有下面一般的结论:定理:设G 是),(Y X -二部图,则G 的最大匹配的大小等于G 的最小顶点覆盖的大小(könig 1931).证明:设M 是G 的最大匹配,而Q 是M 的最小顶点覆盖,要证Q M =. 显然M Q ≥,故只需证明存在G 的M 个顶点的覆盖(则Q M ≥),对于M 中每一条边,如果存在未被M -浸润的X 中顶点出发的交错路径可达这条边,则选择此边在Y 中的顶点;否则选择此边在X 中的顶点,这样就选了M 个顶点,记为U .设E xy ⊂,Y y X x ∈∈,,只需证明x 或U y ∈,或M xy ∈,则由U 的定义得证.下证之:设M xy ∉. 又由M 是最大匹配,故M y x ∈∃11(其中Y y X x ∈∈11,)且1x x =或1y y =. 若1y y =(此时M x ∉),由于xy 是M -交错路径,故U y ∈.下设1x x =,如果U x ∉,则U y ∈1,由U 的定义:某条交错路径可达1y . 则存在交错路径'P 可达y ;或Py (若P x ∈1);或y x Py 11. 这样就出现了M -增广路径,与M 是最大匹配矛盾,故U x ∈.对于),(Y X -二部图,若存在一个浸润X 的匹配,则显然X ⊆∀κ,至少在Y 中存在κ个顶点与κ中的顶点相邻. 我们用)(κN 表示与κ中顶点相邻的顶点构成的集合,下面的定理说明“κκκ≥⊆∀)(,N X ”这个显然的必要条件也是充分的定理(1935):),(Y X -二部图中存在浸润X 的匹配⇔κκκ≥⊆∀)(,N X .证明:“⇐”由könig 定理,只需证明对每个顶点覆盖z ,有X z ≥. 令X z X s ⋂-=,则s 的点都不在X 中,因此)(s N 中的点都在z 中(由顶点覆盖定义),故X s X z s N X z z =+⋂≥+⋂≥)(,证毕.图的连通性因为连通与否与图是否含环无关,故本小节假定所有图都不含环,且1)(>G n .定义1:图G 的一个点割(vertex cut)是一个集合)(G V S ⊆,使得S G -的连通分量多于一个G 的连通度(connectivity),)(G κ是使得S G -不连通或只有一个顶点的顶点集合S 大小的最小值. 如果G 的连通度最少是κ,则称G 是κ-连通的(κ-connected).由定义,显然可知:①连通图都是1-连通的;②G 是不连通的⇔G 的连通度为0;③顶点数大于2的图的连通度为1⇔它是连通的且有一个割点.若图G 的连通度为κ,则κδ≥)(G ,故G 中至少有⎥⎥⎤⎢⎢⎡2n κ条边(见习题1). 我们关心是否可以给出n 个顶点的κ-连通图且有⎥⎥⎤⎢⎢⎡2n κ条边(即下界是否可以取到).习题1给出了肯定的回答.定义2:图G 中的边割(edge cut)是一顶点在S 中,一顶点在S G V -)(中的G 中所有边构成的集合,记为],[S S ()(G V S ⊆). 若使得],[S S G -不连通的],[S S 边数最小值为κ,则称G 是κ-边连通的,κ称为G 的边连通度,记为)('G κ.在下图G 中粗线标出的边割是G 的最小边割,因此2)('=G κ,G 是2-边连通的. 图G 中还标出了一个只含一个顶点的点割,故G 是1-连通的.定理3(Whitney 1932):设G 是简单图,则)()(')(G G G δκκ≤≤.证明:设)}(:)(min{)(G V x x d v d ∈=,即)()(G v d δ=,则与v 关联的所有边构成一个边割,故)()('G G δκ≤,下证)(')(G G κκ≤.显然1)()(-≤G n G κ,设],[S S 为G 的最小边割,若S 中的顶点与S 中的顶点都邻接,则)(1)(],[G G n S S S S κ≥-≥=,命题得证. 下设存在S y S x ∈∈,.则y x ,不相邻,构造集合T :T 包含S 中x 的相邻顶点;T 包含{x}-S 中的所有与S 中顶点有相邻顶点的顶点(或}{{)}(:{x S v E V xv S v T -∈⋃∈∈=:存在S u ∈使得)}(E vu ∀∈). 因为每条y x ,路径都通过T ,因此T 是一个点割,故)(G T κ≥. 在],[S S 中选T 条边:T v ∈∀,若S v ∈,则选边xv ;若}{x S v -∈,则任意选取一条边],[S S vu ∈,这样选取的T 条边都是不同的,因此[])(,)('G T S S G κκ≥≥=下面给出2-连通图的特征.定理4(Whitney 1932):图)3)((≥G n G 是2-连通的⇔)(,G V v u ∈∀,在G 中存在内部不相交的(internally-disjoint)v u ,-路径(即两条路径没有公共的内顶点).证明:“⇐”删除一个顶点不能使一对任意顶点不可达,故G 是2-连通的.“⇒”对),(v u d 用数学归纳法证明.1),(=v u d ,uv G -是连通的(因为2)()('=≥G G κκ).uv G -中的v u ,-路径与边uv 构成了内部不相交的两条v u ,-路径.假设-),(κ≤v u d .令w 是某条最短u ,-路径上的前一顶点,则1. 由归纳假设,G 有内部不相交w u ,路径Q P ,. 若)()(Q V P V v ⋃∈,则在圈Q P ⋃上可以找两条内部不相交路径. 若)()(Q V P V v ⋃∉,由于G 是2-连通的,故w G -连通,所以w G -中含有一条v u ,-路径R . 若R 不含P 或Q 的内部顶点,则完成了证明. 如若不然,不妨设R 与P 的内部顶点相交,设z 是这些交点中在P 上与v 最近的一个顶点,则P 上的z u ,-路径合并R 上的v z .-路径就得到一条与wv Q ⋃内部不相交路径练习中给出2-连通图的其它特征. 定理4可以推广到一般的κ-连通图.证明较繁,我们这里略去,有兴趣的读者可参见D.B. West,Introduction to Graph Theory,2nd 2001.或J.A. Bondy,U.S.R. Murty,Graph Theory with Applications,1976.习题.1.图G 的连通度为κ且n G =,则G 至少有⎥⎥⎤⎢⎢⎡2n κ条边. 2.证明下图中4)(=G κ,从而满足⎥⎥⎤⎢⎢⎡=2)(n G E κ3.设3)(≥G V ,则G 是2-连通的⇔G 是连通的且G 无割点 ⇔)(,G V y x ∈∀,存在经过y x ,的环 ⇔1)(>G δ且G 的每一对边均位于一个公共环上。

图论之二部图图形解析

图论之二部图图形解析

*7.5 二部图及匹配7.5.1二部图在许多实际问题中常用到二部图,本节先介绍二部图的基本概念和主要结论,然后介绍它的一个重要应用—匹配。

定义7.5.1 若无向图,G V E =的顶点集V 能分成两个子集1V 和2V ,满足(1)12V V V = ,12V V φ= ;(2)(,)e u v E ∀=∈,均有1u V ∈,2v V ∈。

则称G 为二部图或偶图(Bipartite Graph 或Bigraph),1V 和2V 称为互补顶点子集,常记为12,,G V V E =。

如果1V 中每个顶点都与2V 中所有顶点邻接,则称G 为完全二部图或完全偶图(Complete Bipartite Graph),并记为,r s K ,其中12,r V s V ==。

由定义可知,二部图是无自回路的图。

图7-55中,(),(),(),(),(a b c d e 都是二部图,其中(),(),(),(b c d e 是完全二部图1,32,32,43,3,,,K K K K 。

图7-55二部图示例显然,在完全二部图中,r s K 中,顶点数n r s =+,边数m rs =。

一个无向图如果能画成上面的样式,很容易判定它是二部图。

有些图虽然表面上不是上面的样式,但经过改画就能成为上面的样式,仍可判定它是一个二部图,如图7-56中()a 可改画成图()b ,图()c 可改画成图()d 。

可以看出,它们仍是二部图。

图7-56二部图示例定理7.5.1 无向图,G V E =为二部图的充分必要条件为G 中所有回路的长度均为偶数。

证明 先证必要性。

设G 是具有互补节点子集1V 和2V 的二部图。

121(,,,,)k v v v v 是G 中任一长度为k 的回路,不妨设11v V ∈,则211m v V +∈,22m v V ∈,所以k 必为偶数,不然,不存在边1(,)k v v 。

再证充分性。

设G 是连通图,否则对G 的每个连通分支进行证明。

图论基础:图的基本概念和应用

图论基础:图的基本概念和应用

图论基础:图的基本概念和应用图论是数学中的一个分支领域,研究的是图的性质和图上的问题。

图被广泛应用于计算机科学、电子工程、运筹学、社交网络分析等领域。

本文将介绍图论的基本概念和一些常见的应用。

一、图的基本概念1. 顶点和边图是由顶点和边组成的,顶点代表图中的元素,边则代表元素之间的关系。

通常顶点表示为V,边表示为E。

2. 有向图和无向图图可以分为有向图和无向图。

在无向图中,边是没有方向的,顶点之间的关系是双向的;而在有向图中,边是有方向的,顶点之间的关系是单向的。

3. 权重在一些应用中,边可能具有权重。

权重可以表示顶点之间的距离、成本、时间等概念。

有权图是指带有边权重的图,而无权图则是指边没有权重的图。

4. 路径和环路径是指由一系列边连接的顶点序列,路径的长度是指路径上边的数量。

环是一种特殊的路径,它的起点和终点相同。

5. 度数在无向图中,顶点的度数是指与该顶点相关联的边的数量。

在有向图中分为出度和入度,出度是指从该顶点出去的边的数量,入度是指指向该顶点的边的数量。

二、图的应用1. 最短路径问题最短路径问题是图论中的一个经典问题,它研究如何在图中找到两个顶点之间的最短路径。

这个问题有许多实际应用,例如在导航系统中寻找最短驾驶路径,或者在电信网络中找到最短的通信路径。

2. 最小生成树最小生成树是指一个连接图中所有顶点的无环子图,并且具有最小的边权重之和。

这个概念在电力网络规划、通信网络优化等领域有广泛的应用。

3. 路由算法在计算机网络中,路由算法用于确定数据包在网络中的传输路径。

图论提供了许多解决路由问题的算法,如最短路径算法、Bellman-Ford 算法、Dijkstra算法等。

4. 社交网络分析图论在社交网络分析中起着重要的作用。

通过构建社交网络图,可以分析用户之间的关系、信息传播、社区发现等问题。

这些分析对于推荐系统、舆情监测等领域具有重要意义。

5. 电路设计图论在电路设计中也有应用。

通过将电路设计问题转化为图论问题,可以使用图论算法解决电路布线、最佳布局等问题。

二分图

二分图
是,G至少有两个顶点,且其所有回路的长度均为偶数。 证先证必要性。 设G为二分图<X,E,Y>。由于X,Y非空,故G至少有两个顶点。若C为G中任一回路,令 C = (v0,v 1,v2,…,v l-1,v l = v0) 其中诸vi (i = 0,1,…,l)必定相间出现于X及Y中,不妨设 {v0,v2,v4,…,v l = v0} &Iacute; X {v1,v3,v5,…,v l-1} &Iacute; Y 因此l必为偶数,从而C中有偶数条边。 再证充分性。 设G的所有回路具有偶数长度,并设G为连通图(不失一般性,若G不连通,则可对G的各连通分支作下述讨 论)。
二分图
图论中的一种特殊模型
01 定义
03 充要条件 05 性质
目录
02 辨析示例 04 最大匹配 06 判定
二分图又称作二部图,是图论中的一种特殊模型。设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相 交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。
性质
二分图中,点覆盖数是匹配数。
(1)二分图的最大匹配数等于最小覆盖数,即求最少的点使得每条边都至少和其中的一个点相关联,很显然 直接取最大匹配的一段节点即可。
(2)二分图的独立数等于顶点数减去最大匹配数,很显然的把最大匹配两端的点都从顶点集中去掉这个时候 剩余的点是独立集,这是|V|-2*|M|,同时必然可以从每条匹配边的两端取一个点加入独立集并且保持其独立集 性质。
易知:任何无回路的的图均是二分图 。
谢谢观看
定义
简而言之,就是顶点集V可分割为两个互不相交的子集,并且图中每条边依附的两个顶点都分属于这两个互不 相交的子集,两个子集内的顶点不相邻。

运筹学图论概述

运筹学图论概述

最短路线问题
一般针对赋权连通图(有向图或无向图皆可) , 求两点之间所经路线权值之和为最小的路线
求解该问题可以采用上一章介绍的动态规划的 方法
该方法适用于无负初等回路(指所有边的权值之和 为负值的初等回路)的赋权连通图(有向图或无向图 皆可);若有负初等回路,则不存在最短路线
该方法需要人工划分阶段,适合人工计算
在有向图中,由顶点指向外的弧的数目称为正度, 记为d+,指向该顶点的弧的数目称为负度,记为 d–
度数为0的点称为孤立点,度数为1的点称为悬挂点
图的基本概念(5)
与悬挂点连接的边称为悬挂边 若图中所有的点都是孤立点,则称为空图 定理6.1
所有顶点的度数之和,等于所有边数的两倍 原因:每条边关联两个顶点,计算顶点的度数时,每条
本章重点
图的基本概念 常见的四个问题的求解方法
图的含义
图是一种模型
如公路、铁路交通图,通讯网络图等
图是对现实的抽象
很多问题都可以用顶点和边来表示,一般顶点 表示实体,边(顶点与顶点之间的连线)表示实 体之间的关系,顶点和边的集合定义为图
图论的提出(1)
用图来描述事物及其联系,最早是由瑞士 数学家欧拉(Euler)于1736年解决哥尼斯堡七 桥问题时提出的
图的基本概念(7)
在有向图中,点边交错序列v0, e1, v1, e2, v2, …, vn-1, en, vn (其中ek=(vk-1, vk) )称为路
若v0≠vn,称为开路;反之,称为回路(注意和无向 图的回路区分开来)
若路中所含的边均不相同,称为简单路 若路中所含的顶点均不相同,称为初等路 除起点和终点外均不相同的回路,称为初等回路
因此,该算法一般应用于无负权值的赋权连 通有向图或无向图

图论的基本概念及其应用

图论的基本概念及其应用

图论的基本概念及其应用图论是离散数学中的一个重要分支,研究的是图的性质和图之间的关系。

图由节点和连接节点的边组成,以解决现实生活中的许多问题。

本文将介绍图论的基本概念,并探讨它在不同领域中的应用。

一、图的基本概念1. 节点和边图由节点(顶点)和边组成,节点代表某个实体或概念,边表示节点之间的关系。

节点和边可以有不同的属性,如权重、方向等。

2. 有向图和无向图有向图中,边有固定的方向,表示节点之间的单向关系;无向图中,边没有方向,节点之间的关系是相互的。

3. 连通图和非连通图连通图是指图中任意两个节点之间都存在路径;非连通图则存在至少一个节点无法到达其它节点。

4. 网络流每条边上有一个容量限制,网络流通过边传输,满足容量限制的条件下尽可能多地进行。

二、图论在计算机科学中的应用1. 最短路径通过图论中的最短路径算法,可以计算出两个节点之间的最短路径。

最短路径在无人驾驶、物流配送等领域中具有重要的应用价值。

2. 最小生成树最小生成树算法用于寻找连接图中所有节点的最小总权重的树形结构。

在通信网络、电力输送等领域中,最小生成树被广泛应用。

3. 网络流问题图论中的网络流算法可以用于解决诸如分配问题、路径规划等优化问题。

例如,在医疗资源调度中,网络流算法可以帮助医院优化资源分配。

三、图论在社交网络分析中的应用1. 社交网络社交网络可以用图模型来表示,节点代表个体,边表示个体之间的联系。

利用图论分析社交网络,可以发现用户群体、影响力传播等信息。

2. 中心性分析中心性分析用于评估节点在网络中的重要性,衡量指标包括度中心性、接近中心性等。

中心节点的识别对于广告投放、信息传播等决策具有指导意义。

3. 社团检测社团检测可以发现社交网络中具有紧密联系的节点群体,进一步分析社交群体的行为模式、用户偏好等。

四、图论在物流优化中的应用1. 供应链管理供应链中的各个环节可以用图模型表示,通过图论算法优化物流路径,提高物流效率。

2. 仓库位置问题通过图论中的最短路径算法和最小生成树算法,可以找到最佳的仓库位置,使物流成本最小化。

图论中的基本概念与算法

图论中的基本概念与算法

图论中的基本概念与算法图论是数学的一个分支,研究的是图的性质和图之间的关系。

图是由一些点和连接这些点的边组成的数学结构。

在图论中,我们探索了一些基本的概念和算法,本文将就这些内容进行探讨。

一、图的基本概念1. 顶点(Vertex):图中的一个点被称为顶点,也可以被称为节点或者结点。

2. 边(Edge):图中的边是连接两个顶点的线段,用于表示两个顶点之间的关系。

3. 有向图(Directed Graph):有向图是一种图,其中的边是有方向的,即从一个顶点指向另一个顶点。

4. 无向图(Undirected Graph):无向图是一种图,其中的边没有方向,即两个顶点之间的关系是互相的。

5. 加权图(Weighted Graph):加权图是一种图,每条边都有一个权重或者距离,用于表示顶点之间的距离或者代价。

6. 路径(Path):路径是图中连接两个顶点的边的序列。

7. 环(Cycle):环是一种路径,其起点和终点相同。

二、图的基本算法1. 广度优先搜索(Breadth-First Search,BFS):BFS是一种用于图中遍历或者搜索的算法。

它从一个起始顶点开始,依次访问与之相邻的顶点,然后再访问与这些顶点相邻的顶点,依次类推。

2. 深度优先搜索(Depth-First Search,DFS):DFS是一种递归的遍历算法。

它从一个起始顶点开始,沿着一条路径尽可能深地访问顶点,直到不能继续为止,然后回退并选择另一条路径。

3. 最小生成树(Minimum Spanning Tree,MST):最小生成树是一个无环连通子图,它包含图中的所有顶点,并且总权重最小。

常用的算法有Prim算法和Kruskal算法。

4. 最短路径问题(Shortest Path Problem):最短路径问题是找出图中两个顶点之间的最短路径。

常用的算法有Dijkstra算法和Floyd-Warshall算法。

5. 拓扑排序(Topological Sorting):拓扑排序是一种对有向无环图进行排序的算法。

离散数学_第7章 图论 -1-2图的基本概念、路和回路

离散数学_第7章 图论 -1-2图的基本概念、路和回路
解:G的图形如图7.1.2所示。
图 7.1.2
由于在不引起混乱的情况下,图的边可以用有序对或无序 对直接表示。因此,图可以简单的表示为:
G=V, E,其中:V是非空的结点集。 E是边的有序对或无序对组成的集合。
按照这种表示法,例7.1.1中的无向图可以简记为: G=V, E,其中:V=a,b,c,d
第9章 图论
7.1.1 图的基本概念
定义7.1.1 一个图G是一个三元组V(G),E(G),G
其中:V(G)是非空结点集合。
E(G)是边集合。
G是从边集E到结点的无序对或有序对集合上的函数。
1)若边e所对应的结点对是无序对(a, b) ,则称e是无向边。
这时统称e与两个结点a和b互相关联。
2)若边e所对应的结点对是有序对〈a, b〉,则称e是有向边。
E=(a,b), (b,c), (a,c), (a,a)
第9章 图论
图G的结点与边之间的关
• 邻系接点: 同一条边(有向边或无向边)相关联的两个端点。
(称其中的一个结点是另一个结点的邻接点的结点。
• 邻接边: 关联同一个结点的两条边。(称其中的一条边是另 一条边的邻接边。并称这两条边相互邻接。)
a叫边e的始点,b叫边e的终点,统称为e的端点。
非标定图:顶点不标定名字的图。 e1
e1
标定图:顶点标定名字的图。
v1 e2 v2
n阶图:具有n个结点的图。 无向图:每一条边都是无向边的图。
e3 e4
有向图:每一条边都是有向边的图。 v5
混合图:既有有向边,又有无向边的图。 e7
e5 e6 e4 d
第7章 图论
• 7.1 图的基本概念 • 7.2 路与回路 以及图的连通性 • 7.3 图的矩阵表示 • 7.4 欧拉图与汉密尔顿图 • 7.5 平面图(含二部图及匹配) • 7.6 树与生成树 • 7.7 根树及其应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单向连通
弱连通
定理(强连通判别法) D强连通当且仅当D中存在经 过每个顶点至少一次的回路 定理(单向连通判别法) D单向连通当且仅当 D中存 在经过每个顶点至少一次的路
13
1.3 带权图、最短路径、图着色

带权图与最短路径 图着色问题
14
最短路径
带权图G=<V,E,w>, 其中w:ER. eE, w(e)称作e的权. 若e=(vi,vj), 记w(e)=wij . 若vi,vj不相邻, 记wij =. 路L的权: L的所有边的权之和, 记作w(L). u和v之间的最短路径: u和v之间权最小的路.
按通畅性要求由高到低: 通路 > 迹 > 路
按可能的复杂或曲折程度由高到低:路 > 迹 >通路
2
路与回路

试分别画出:
一条通路 一条非通路的迹 一条非迹的路 从中直观感受一下路、迹和通路对通畅程度的
不同要求
路与回路实例
4
路与回路(续)
说明: 表示方法 ① 用顶点和边的交替序列(定义), 如=v0e1v1e2…elvl ② 用边的序列, 如=e1e2…el ③ 简单图中, 用顶点的序列, 如=v0v1…vl ④ 非简单图中,可用混合表示法,如=v0v1e2v2e5v3v4v5 环是长度为1的圈, 两条平行边构成长度为2的圈. 在无向简单图中, 所有圈的长度3; 在有向简单图 中, 所有圈的长度2.
1.2 路、回路、图的连通性
路,通路,迹 无向图的连通性
无向连通图, 连通分支
有向连通图
弱连通图, 单向连通图, 强连通图
点割集与割点 边割集与割边(桥)
1
路与回路
定义 给定图G=<V,E>(无向或有向的),G中顶点与边的交 替序列=v0e1v1e2…elvl, (1) 若i(1il), vi1, vi是ei的端点(对于有向图, 要求vi1是始点, vi是终点), 则称为路, v0是路的起点, vl是路的终点, l为路的 长度. 又若v0=vl,则称为回路. (2) 若路(回路)中所有顶点(对于回路, 允许v0=vl)各异,则称为 通路(圈). (3) 若路(回路)中所有边各异, 则称为迹(闭迹). 路中不含重复顶点,则一定不含重复边。通路一定是迹。
例1

2 1 2 1
2
1 2 3 2
1
2 1
1
2 1 2 3 1
2
1 2 3 2
1
4 1 2
2 1
1
2
16

例2
1 2 2 1 1 2 1 2 3 2 1 2 2 1
3 3
1
1
2 3
2 4 3 1 2
17

例3 学生会下设6个委员会, 第一委员会={张, 李, 王}, 第二委 员会={李, 赵, 刘}, 第三委员会={张, 刘, 王}, 第四委员会={赵, 刘, 孙}, 第五委员会={张, 王}, 第六委员会={李, 刘, 王}. 每个 月每个委员会都要开一次会, 为了确保每个人都能参加他所 在的委员会会议, 这6个会议至少要安排在几个不同时间段?

通分支, 其个数记作p(G)=k. G是连通图 p(G)=1
8
点割集
记 Gv: 从G中删除v及关联的边 GV : 从G中删除V 中所有的顶点及关联的边 Ge : 从G中删除e GE: 从G中删除E中所有边 定义 设无向图G=<V,E>, V V, 若p(GV )>p(G)且
V V , p(GV )=p(G), 则称V 为G的点割集.
若{v}为点割集, 则称v为割点.
9
点割集实例
例 {v1,v4}, {v6}是点割集, v6是割点. {v2,v5}不是点割集
10
边割集
定义 设无向图G=<V,E>, E E, 若p(GE )>p(G)且E E , p(GE )=p(G), 则称E 为G的边割集. 若{e}为边割集, 则称e 为割边或桥. 在上一页的图中,{e1,e2},{e1,e3,e5,e6},{e8}等是边割集, e8是桥,{e7,e9,e5,e6}不是边割集 说明:Kn无点割集 n阶零图既无点割集,也无边割集. 若G连通,E 为边割集,则p(GE )=2 若G连通,V 为点割集,则p(GV )2
6
路与回路(续)
定理 在n阶图G中,若从顶点u到v(uv)存在通 路,则从u到v存在长度小于等于n1的路. 推论 在n阶图G中,若从顶点u到v(uv)存在通 路,则从u到v存在长度小于等于n1的通路.
定理 在一个n阶图G中,若存在v到自身的回路,则 一定存在v到自身长度小于等于n的回路. 推论 在一个n阶图G中,若存在v到自身的回路,则 存在v到自身长度小于等于n的圈.
7
无向图的连通性
设无向图G=<V,E>, u与v连通: u与v间有路,记为uv. 规定u与自身总连 通. 连通关系 R={<u,v>| u,v V且uv}是V上的等价关系
连通图:任意两点都连通的图. 平凡图是连通图.
连通分支: V关于连通关系R的等价类的导出子图 设V/R={V1,V2,…,Vk}, G[V1], G[V2], …,G[Vk]是G的连
例 L1=v0v1v3v5, w(L1)=10,
L2=v0v1v4v5, w(L2)=12,
L3=v0v2v4v5, w(L3)=11.
15
着色
定义 设无向图G无环, 对G的每个顶点涂一种颜色, 使相邻的顶点涂不同的颜色,称为图G的一种点着 色,简称着色.若能用k种颜色给G的顶点着色, 则 称G是k-可着色的. 图的着色问题: 用尽可能少的颜色给图着色.
v1 1
v2 2 v3 3 4 v6
2
v5
1 v4
至少要4个时段 第1时段:一,四 第2时段:二,五 第3时段:三 第4时段:六
18
5
路与回路(续)

在两种意义下计算圈的个数 ① 定义意义下 在无向图中, 一个长度为l(l3)的圈看作2l个不同的 圈. 如v0v1v2v0 , v1v2v0v1 , v2v0v1v2, v0v2v1v0 , v1v0v2v1 , v2v1v0v2看作6个不同的圈. 在有向图中 , 一个长度为 l(l3)的圈看作 l个不同的 圈. ② 同构意义下 所有长度相同的圈都是同构的, 因而是1个圈.
11
有向图的连通性
设有向图D=<V,E> u可达v: u到v有路. 规定u到自身总是可达的. 可达具有自反性和传递性
D弱连通(连通): 基图为无向连通图 D单向连通: u,vV,u可达v 或v可达u D强连通: u,vV,u与v相互可达
强连通单向连通弱连通
12
有向图的连通性(续)

强连通
相关文档
最新文档