自动控制原理实验教程及实验报告

合集下载

自动控制原理实验报告(一、二阶系统的电子模拟及时域响应的动态测试等三个实验)

自动控制原理实验报告(一、二阶系统的电子模拟及时域响应的动态测试等三个实验)

自动控制原理实验报告作者姓名学科专业机械工程及自动化班级学号X X年10月27日实验一一、二阶系统的电子模拟及时域响应的动态测试一、实验目的1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2、学习在电子模拟机上建立典型环节系统模型的方法。

3、学习阶跃响应的测试方法。

二、实验内容1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。

2、建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。

三、实验原理1、一阶系统阶跃响应性能指标的测试系统的传递函数为:()s()1C s KR s Ts φ=+()=模拟运算电路如下图:其中21R K R =,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.25,0.5,1。

记录实验数据,测量过度过程的性能指标,其中按照经验公式取3s t T=2、二阶系统阶跃响应性能指标的测试系统传递函数为:令ωn=1弧度/秒,则系统结构如下图:二阶系统的模拟电路图如下:在实验过程中,取22321,1R C R C ==,则442312R R C R ζ==,即4212R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,1;记录所测得的实验数据以及其性能指标,其中经验公式为3.5%100%,s net σζω=⨯=.四、试验设备:1、HHMN-1型电子模拟机一台。

2、PC机一台。

3、数字万用表一块。

4、导线若干。

五、实验步骤:1、熟悉电子模拟机的使用,将各运算放大器接成比例器,通电调零。

2、断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。

3、将D/A输出端与系统输入端Ui连接,将A/D1与系统输出端UO连接(此处连接必须谨慎,不可接错)。

实验报告-自动控制原理

实验报告-自动控制原理
________________________________________________________________________________
________________________________________________________________________________
〖分析பைடு நூலகம்:______________________________________________________________________
_______________________________________________________________________________
说明:特征参数为比例增益K和微分时间常数T。
1)R2=R1=100KΩ, C2=0.01µF,C1=1µF;特征参数实际值:K=______,T=________。
波形如下所示:
2)R2=R1=100KΩ, C2=0.01µF,C1=0.1µF;特征参数实际值:K= 1,T=0.01。
波形如下所示:
四、实验心得体会
实验报告
班级
姓名
学号
所属课程
《自动控制原理》
课时
2
实践环节
实验3控制系统的稳定性分析
地点
实字4#318
所需设备
电脑、工具箱
一、实验目的
1.观察系统的不稳定现象。
2.研究系统开环增益和时间常数对稳定性的影响
3.学习用MATLAB仿真软件对实验内容中的电路进行仿真。
2、实验步骤
_______________________________________________________________________________

自动控制实训实验报告

自动控制实训实验报告

一、实验目的1. 熟悉并掌握自动控制系统的基本原理和实验方法;2. 理解典型环节的阶跃响应、频率响应等性能指标;3. 培养动手能力和分析问题、解决问题的能力。

二、实验原理自动控制系统是指利用各种自动控制装置,按照预定的规律自动地完成对生产过程或设备运行状态的调节和控制。

本实验主要研究典型环节的阶跃响应和频率响应。

1. 阶跃响应:当系统受到一个阶跃输入信号时,系统输出信号的变化过程称为阶跃响应。

阶跃响应可以反映系统的稳定性、快速性和准确性。

2. 频率响应:频率响应是指系统在正弦输入信号作用下的输出响应。

频率响应可以反映系统的动态性能和抗干扰能力。

三、实验仪器与设备1. 自动控制实验箱;2. 双踪示波器;3. 函数信号发生器;4. 计算器;5. 实验指导书。

四、实验内容与步骤1. 阶跃响应实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入阶跃信号,观察并记录阶跃响应曲线。

(3)分析阶跃响应曲线,计算系统的超调量、上升时间、调节时间等性能指标。

2. 频率响应实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入正弦信号,改变频率,观察并记录频率响应曲线。

(3)分析频率响应曲线,计算系统的幅频特性、相频特性等性能指标。

3. 系统校正实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入阶跃信号,观察并记录未校正系统的阶跃响应曲线。

(3)根据期望的性能指标,设计校正环节,并搭建校正电路。

(4)输入阶跃信号,观察并记录校正后的阶跃响应曲线。

(5)分析校正后的阶跃响应曲线,验证校正效果。

五、实验结果与分析1. 阶跃响应实验(1)实验结果:根据示波器显示的阶跃响应曲线,计算得到系统的超调量为10%,上升时间为0.5s,调节时间为2s。

(2)分析:该系统的稳定性较好,但响应速度较慢,超调量适中。

2. 频率响应实验(1)实验结果:根据示波器显示的频率响应曲线,计算得到系统的幅频特性在0.1Hz到10Hz范围内基本稳定,相频特性在0.1Hz到10Hz范围内变化不大。

北京理工大学自动控制原理实验报告

北京理工大学自动控制原理实验报告

本科实验报告实验名称:控制理论基础实验实验时间:课程名称:控制理论基础任课教师:实验地点:实验教师:实验类型:□原理验证□综合设计学生姓名:□自主创新组号:学号/班级:学院:同组搭档:专业:成绩:实验1控制系统的模型建立一、实验目的1、掌握利用MATLAB建立控制系统模型的方法。

2、掌握系统的各种模型表述及相互之间的转换关系。

3、学习和掌握系统模型连接的等效变换。

二、实验原理1、系统模型的MATLAB描述系统的模型描述了系统的输入、输出变量以及内部各变量之间的关系,表征一个系统的模型有很多种,如微分方程、传递函数模型、状态空间模型等。

这里主要介绍系统传递函数(TF)模型、零极点增益(ZPK)模型和状态空间(SS)模型的MATLAB描述方法。

1)传递函数(TF)模型传递函数是描述线性定常系统输入-输出关系的一种最常用的数学模型,其表达式一般为在MATLAB中,直接使用分子分母多项式的行向量表示系统,即num=[bm,bm-1,…b1,b0]den=[an,an-1,…a1,a0]调用tf函数可以建立传递函数TF对象模型,调用格式如下:Gtf=tf(num,den)Tfdata函数可以从TF对象模型中提取分子分母多项式,调用格式如下:[num,den]=tfdata(Gtf)返回cell类型的分子分母多项式系数[num,den]=tfdata(Gtf,'v')返回向量形式的分子分母多项式系数2)零极点增益(ZPK)模型传递函数因式分解后可以写成式中,z1,z2,…,z m称为传递函数的零点,p1,p2,…,p n称为传递函数的极点,k为传递系数(系统增益)。

在MATLAB中,直接用[z,p,k]矢量组表示系统,其中z,p,k分别表示系统的零极点及其增益,即:z=[z1,z2,…,zm];p=[p1,p2,…,pn];k=[k];调用zpk函数可以创建ZPK对象模型,调用格式如下:Gzpk=zpk(z,p,k)同样,MATLAB提供了zpkdata命令用来提取系统的零极点及其增益,调用格式如下:[z,p,k]=zpkdata(Gzpk)返回cell类型的零极点及增益[z,p,k]=zpkdata(Gzpk,’v’)返回向量形式的零极点及增益函数pzmap可用于求取系统的零极点或绘制系统得零极点图,调用格式如下:pzmap(G)在复平面内绘出系统模型的零极点图。

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

自控原理课程实验报告

自控原理课程实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。

3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。

二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。

本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。

2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。

3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。

三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。

(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。

(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。

(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。

(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。

(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。

2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。

(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。

3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。

(2)根据仿真结果,优化系统参数,提高系统性能。

四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。

自动控制原理实验报告

自动控制原理实验报告

实验报告课程名称: 自动控制原理 实验项目: 典型环节的时域相应 实验地点: 自动控制实验室实验日期: 2017 年 3 月 22 日(5)理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。

② 取R0 = 200K ;R1 = 200K 。

2.积分环节 (I) (1)方框图(2)传递函数: TS S Ui S Uo 1)()(=(3)阶跃响应: )0(1)(≥=t t Tt Uo 其中 C R T 0=(4)模拟电路图(5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。

② 取R0 = 200K ;C = 2uF 。

3.比例积分环节 (PI) (1)方框图:模拟电路图:②取 R0=R1=200K ;C=2uF 。

+Uo10VU o(t)2 1U i(t ) 00 .tUo无穷U o(t)21U i(t )0 .2st理想阶跃响应曲线实测阶跃响应曲线① 取R0 = R2 = 100K ,R3 = 10K ,C = 1uF ;R1 = 100K 。

② 取R0=R2=100K ,R3=10K ,C=1uF ;R1=200K 。

6.比例积分微分环节 (PID) (1)方框图:(2)传递函数: (3)阶跃响应: (4)模拟电路图:Uo无穷U o(t)2 1U i(t )0 .4stUo10VUo(t)2 1U i(t )0 .4stKp+ U i(S)1 Ti S+U o(S)+ +Td S(5)理想与实际阶跃响应曲线对照:①取 R2 = R3 = 10K,R0 = 100K,C1 = C2 = 1uF;R1 = 100K。

②取 R2 = R3 = 10K,R0 = 100K,C1 = C2 = 1uF;R1 = 200K。

四、实验步骤及结果波形1.按所列举的比例环节的模拟电路图将线接好。

检查无误后开启设备电源。

2.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

自动控制原理实验实训报告 .docx

自动控制原理实验实训报告 .docx

自动控制原理实验实训报告 .docx【导言】自动控制原理实验实训是控制科学与工程专业的必修课程,是学生进行理论学习与实践操作结合的一个重要环节。

本次实训学习了控制系统的基本概念、控制器的类型以及控制系统的建模和分析方法,并通过实现传感器数据采集、信号控制和反馈调节等操作,掌握了控制系统的工作原理和实现方式。

本报告将对本次实训中的实验操作、实验结果和实验体会进行详细记录和总结。

【实验操作】1.传感器场景仿真实验本实验通过MATLAB仿真软件,实现了对不同场景下传感器采集数据的比较分析。

实验过程中需要设置不同的传感器样本数据和处理方式,并利用MATLAB的数据处理工具对数据进行处理分析,从而得出传感器对于不同场景下数据采集的适用性和准确性。

2.直流电动机速度调节实验本实验通过实现电动机的速度控制,实现对电动机的运行状态的控制调节。

实验需要完成对AC220V电源、TG-01速度控制器以及直流电动机的连接和调试,并通过电动机的运行状态和速度,实现对控制器的参数设置和调节操作。

4.磁悬浮控制实验本实验实现了对磁悬浮平台的控制和调节,并通过数据反馈实现了对磁悬浮平台的稳定运行。

通过对控制器的参数调节和磁悬浮平台的反馈数据分析,加深了对磁悬浮控制原理的理解和掌握程度。

本次实验操作中,通过对控制器的操作和数据反馈的分析,加深了对自动控制的认识和掌握程度,提高了对控制系统的工作原理和实现方式的理解。

同时,实验操作中也存在一些问题和不足,例如实验操作过程的不稳定性和实验数据分析的不准确性等问题。

需要在今后的学习和实践中,加强对理论知识和实验操作技能的学习和掌握,提高实验操作的准确性和稳定性,从而更好地掌握自动控制原理的知识和技能。

自控制原理实验报告(3篇)

自控制原理实验报告(3篇)

第1篇一、实验目的1. 理解自控制原理的基本概念和基本方法。

2. 掌握典型控制系统的组成和基本工作原理。

3. 学习使用实验仪器,进行控制系统模拟实验。

4. 分析和评估控制系统的性能指标,提高对控制系统设计和优化的认识。

二、实验仪器与设备1. EL-AT-III型自动控制系统实验箱一台2. 计算机一台3. 万用表一个三、实验原理1. 自控制原理基本概念:自控制原理是研究如何利用反馈信息来控制系统的行为,使其达到预定的目标。

其基本原理是:通过将系统的输出信号反馈到输入端,与输入信号进行比较,产生误差信号,然后根据误差信号调整系统的控制策略,以达到控制目标。

2. 典型控制系统组成:典型控制系统通常由控制器、被控对象、反馈环节和执行机构组成。

3. 控制系统模拟实验:利用实验箱和计算机,通过模拟电路搭建典型控制系统,进行实验研究。

四、实验内容1. 实验一:典型环节及其阶跃响应- 实验目的:掌握控制模拟实验的基本原理和一般方法,掌握控制系统时域性能指标的测量方法。

- 实验步骤:1. 搭建一阶系统的模拟电路。

2. 通过计算机等测量仪器,测量系统的输出,得到系统的动态响应曲线及性能指标。

3. 改变系统的参数,分析参数对系统性能的影响。

2. 实验二:二阶系统阶跃响应- 实验目的:了解二阶系统的阶跃响应特性,掌握二阶系统的性能指标。

- 实验步骤:1. 搭建二阶系统的模拟电路。

2. 通过计算机等测量仪器,测量系统的输出,得到系统的阶跃响应曲线及性能指标。

3. 分析二阶系统的性能指标,如上升时间、超调量、调节时间等。

3. 实验三:连续系统串联校正- 实验目的:学习连续系统串联校正方法,提高控制系统的性能。

- 实验步骤:1. 搭建连续系统的模拟电路。

2. 分析系统的性能指标,确定校正方法。

3. 通过计算机等测量仪器,测量校正后的系统输出,评估校正效果。

五、实验结果与分析1. 实验一:通过搭建一阶系统的模拟电路,测量系统的输出,得到系统的动态响应曲线及性能指标。

自动控制原理实验教程及实验报告

自动控制原理实验教程及实验报告

实验三 典型环节(或系统)的频率特性测量一、实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。

2.学习根据实验所得频率特性曲线求取传递函数的方法。

二、实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。

2.用实验方法完成典型二阶系统开环频率特性曲线的测试。

3.根据测得的频率特性曲线求取各自的传递函数。

4.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。

三、实验步骤1.利用实验设备完成一阶惯性环节的频率特性曲线测试。

在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。

为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。

仍以一阶惯性环节为例,此时将Ui 连到实验箱 U3单元的O1(D/A 通道的输出端),将Uo 连到实验箱 U3单元的I1(A/D 通道的输入端),并连好U3单元至上位机的并口通信线。

接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。

界面上的操作步骤如下:①按通道接线情况完成“通道设置”:在界面左下方“通道设置”框内,“信号发生通道”选择“通道O1#”,“采样通道X ”选择“通道I1#”,“采样通道Y ”选择“不采集”。

②进行“系统连接”(见界面左下角),如连接正常即可按动态状态框内的提示(在界面正下方)“进入实验模式”;如连接失败,检查并口连线和实验箱电源后再连接,如再失败则请求指导教师帮助。

③进入实验模式后,先对显示进行设置:选择“显示模式”(在主界面左上角)为“Bode”。

④完成实验设置,先选择“实验类别”(在主界面右上角)为“频域”,然后点击“实验参数设置”,在弹出的“频率特性测试频率点设置”框内,确定实验要测试的频率点。

注意设置必须满足ω<30Rad/sec 。

⑤以上设置完成后,按“实验启动”启动实验。

界面中下方的动态提示框将显示实验测试的进展情况,从开始测试直至结束的过程大约需要2分钟。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告姓名:学号:班级:实验一 一、二阶系统的电子模拟及时域响应的动态测试一、 实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2. 学习在电子模拟机上建立典型环节系统模型的方法。

3. 学习阶跃响应的测试方法。

二、 实验内容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。

2.建立二阶系统的电子模型,并记录在不同的阻尼比ζ时的阶跃响应曲线,并测定其超调量δ%及过渡过程时间Ts 。

三、 实验原理1.一阶系统系统传递函数为: 模拟运算电路如图1-1所示:图 1-1其中R1=R2,T=R2·C 其中电阻电容的具体取值见表1-12. 二阶系统系统传递函数为: 模拟运算电路如图1-2所示:图1-2其中R2·C1=1,R3·C2=1,R4/R3=ξ21各元器件具体取值如图1-2所示。

222()()()2n n nC s s R s S S ωζωωΦ==++()()()1C s Ks R s TS Φ==+四、实验数据1.一阶系统1)数据表格(取5%误差带,理论上Ts=3T)表1-1T/s 0.25 0.5 1 R2(R1)/Ω250k 500k 1MC/μF 1 1 1Ts实测/s 0.74 1.46 2.99Ts理论/s 0.75 1.5 3 阶跃响应曲线图1-3 图1-4 图1-5 2)响应曲线图1-3 (T=0.25)图1-4 (T=0.5)图1-5 (T=1)2. 二阶系统 1)数据表格表1-2说明:(1)0﹤ζ﹤1,为欠阻尼二阶系统,超调量理论计算公式2/1%100%eπζζσ--=⨯(2)取5%误差带,当ζ值较小(0﹤ζ﹤0.7)采用近似公式 进行估算;当ζ值较大(ζ﹥0.7)采用近似公式 7.145.6-=ξsT 进行估算.2)响应曲线图1-6 (ζ=0.25)ζ0.25 0.5 0.7 1.0 /rad/s 1 1 1 1 R 4/M Ω 2.0 1.0 0.7 0.5 C2/μF 1.0 1.0 1.0 1.0 σ%实测 43.77 16.24 4.00 0.02 σ%理论 44.43 16.30 4.600 Ts 实测/s 13.55 5.47 3.03 4.72 Ts 理论/s 14 7 5 4.75 阶跃响应曲线图1-6图1-7图1-8图1-9ns T ξω5.3=图1-7 (ζ=0.5)图1-8 (ζ=0.7)图1-9 (ζ=1)五、 误差分析1. 对一阶系统阶跃响应实验当T=0.25 时, 1.3%%10075.074.0-75.0=⨯=误差。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。

2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。

4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。

5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。

6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。

二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。

自动控制原理实验报告

自动控制原理实验报告

一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。

2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。

3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。

二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。

实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。

2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。

3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。

三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。

2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。

3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。

六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。

2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。

3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。

自动控制实验报告

自动控制实验报告

自动控制实验报告自动控制实验报告「篇一」一、实验目的1、掌握直流稳压电源的功能、技术指标和使用方法;2、掌握任意波函数新号发生器的功能、技术指标和使用方法;3、掌握四位半数字万用表功能、技术指标和使用方法;4、学会正确选用电压表测量直流、交流电压。

二、实验原理(一)GPD—3303型直流稳压电源主要特点:1、三路独立浮地输出(CH1、CH2、FIXED)2、 CH1、CH2稳压值0―32 V,稳流值0―3。

2A3、两路串联(SER/IEDEP),两路并联(PARA/IEDEP)(二)RIGOL DG1022双通道函数/任意波函数信号发生器主要特点1、双通道输出,可实现通道耦合,通道复制2、输出五种基本波形:正弦波、方波、锯齿波、脉冲波、白噪声,并内置48种任意波形三、实验仪器1、直流稳压电源1台2、数字函数信号发生器1台3、数字万用表1台4、电子技术综合试验箱1台四、实验数据记录与误差分析1、直流电压测量(1)固定电源测量:测量稳压电源固定电压2.5V、3.3V、5V;误差分析:E1=|2.507—2.5|÷2。

5×100%=0.28%E2=|3.318—3。

3|÷3.3×100%=0.55%E3=|5.039—5|÷5×100%=0.78%(2)固定电源测量:测量实验箱的固定电压±5V、±12V、—8V;误差分析:E1=|5.029—5|÷5×100%=0.58%E2=|5.042—5|÷5×100%=0.84%E3=|11.933—12|÷12×100%=0.93%E3=|11.857—12|÷12×100%=0.56%E3=|8.202—8|÷8×100%=2.5%(3)可变电源测量;误差分析:E1=|6.016—6|÷6×100%=0.27%E2=|12.117—12|÷12×100%=0.98% E3=|18.093—18|÷18×100%=0.51%(4)正、负对称电源测量;2、正弦电压(有效值)测量(1)正弦波fs=1kHz;(2)正弦波fs=100kHz;3、实验箱可调直流信号内阻测量4、函数信号发生器内阻(输出电阻)的测量;自动控制实验报告「篇二」尊敬的各位领导、同事:大家好!在过去的一年多里,因为有公司领导的关心和指导,有热心的同事们的努力配合和帮助,所以能较圆满的完成质检部门的前期准备工作和领导交代的其他工作,作为质检专责我的主要工作职责就掌握全厂的工艺,负责全厂的质量工作,审核化验结果,并定期向上级领导做出汇报,编写操作规程并组织实施,编写质量和实验室的管理制度以及实验设备的验收等工作。

自动控制实践实验报告

自动控制实践实验报告

一、实验目的1. 理解自动控制系统的基本概念和原理;2. 掌握自动控制系统的基本分析方法;3. 培养动手操作能力和实验技能;4. 提高对自动控制系统的设计、调试和优化能力。

二、实验原理自动控制系统是一种利用反馈控制原理,使被控对象的输出量能够跟踪给定输入量的系统。

本实验主要研究线性定常系统的稳定性、动态性能和稳态性能。

三、实验设备1. 自动控制实验台;2. 实验仪器:信号发生器、示波器、信号调理器、数据采集卡等;3. 实验软件:MATLAB/Simulink。

四、实验内容1. 系统搭建与调试(1)搭建实验台,连接实验仪器;(2)设置信号发生器,产生不同频率、幅值的信号;(3)调整信号调理器,对信号进行放大、滤波等处理;(4)将处理后的信号输入实验台,观察系统的响应。

2. 稳定性分析(1)根据实验数据,绘制系统的伯德图;(2)根据伯德图,判断系统的稳定性;(3)通过改变系统参数,观察对系统稳定性的影响。

3. 动态性能分析(1)根据实验数据,绘制系统的阶跃响应曲线;(2)根据阶跃响应曲线,分析系统的上升时间、超调量、调节时间等动态性能指标;(3)通过改变系统参数,观察对系统动态性能的影响。

4. 稳态性能分析(1)根据实验数据,绘制系统的稳态误差曲线;(2)根据稳态误差曲线,分析系统的稳态性能;(3)通过改变系统参数,观察对系统稳态性能的影响。

五、实验结果与分析1. 系统搭建与调试通过搭建实验台,连接实验仪器,观察系统的响应,验证了实验系统的可行性。

2. 稳定性分析根据伯德图,判断系统在原参数下的稳定性。

通过改变系统参数,观察对系统稳定性的影响,得出以下结论:(1)系统在原参数下稳定;(2)减小系统参数,系统稳定性提高;(3)增大系统参数,系统稳定性降低。

3. 动态性能分析根据阶跃响应曲线,分析系统的动态性能指标:(1)上升时间:系统在给定输入信号作用下,输出量达到稳态值的80%所需时间;(2)超调量:系统在达到稳态值时,输出量相对于稳态值的最大偏差;(3)调节时间:系统在给定输入信号作用下,输出量达到稳态值的95%所需时间。

自动控制原理实习报告

自动控制原理实习报告

实习报告:自动控制原理实验一、实验背景及目的随着现代工业的快速发展,自动控制技术在各个领域中的应用越来越广泛。

自动控制原理实验是电气工程及其自动化专业的一门重要实践课程,旨在让学生了解和掌握自动控制理论的基本原理和方法,培养学生的动手能力和实际问题解决能力。

本次实验主要涉及电动调节阀和PID控制器的相关知识。

二、实验内容及步骤1. 电动调节阀篇(1)了解电动调节阀的结构特点和工作原理。

电动调节阀主要由电动执行器与调节阀阀体构成,通过接收工业自动化控制系统的信号,来驱动阀门改变阀芯和阀座之间的截面积大小,控制管道介质的流量、温度、压力等工艺参数,实现远程自动控制。

(2)学习电动调节阀的调节稳定性和调节性能。

电动调节阀具有调节稳定,调节性能好等特点。

其结构特点包括:伺服放大器采用深度动态负反馈,可提高自动调节精度;电动操作器有多种形式,可适用于4~20mA DC或0~10mA DC;可调节范围大,固有可调比为50,流量特性有直线和等百分比;电子型电动调节阀可直接由电流信号控制阀门开度,无需伺服放大器;阀体按流体力学原理设计的等截面低流阻流道,额定流量系数增大30%。

(3)了解电动调节阀的分类及适用场合。

电动调节阀一般可分为单座式和双座式结构。

电动单座式调节阀适用于对泄漏要求严格,阀前后压差低及有一定粘度和含纤维介质的工作场合;电动双座式调节阀具有不平衡力小,允许压差大,流通能力大等待点,适用于泄漏量要求不严格的场合。

2. PID控制器篇(1)了解PID控制器的组成及作用。

PID控制器由比例控制、积分控制和微分控制组成。

比例控制是利用输入信号和参考信号的偏差量来控制;微分控制是利用输入信号的变化频率来控制;积分控制是利用输入信号的积分量来控制。

PID控制器能够通过设置比例、积分和微分三种参数来调节系统输出。

(2)学习PID控制器的开发现状。

PID控制器自发明以来已有近70年的历史,其结构简单、稳定性好、运行可靠、调节方便,已成为工业控制技术中的领先技术之一。

自控实验报告终极版

自控实验报告终极版

自动控制原理课程设计实验报告一、 实验目的1、了解自动控制原理的数学和系统稳定验证的方法。

2、了解自动控制系统的放大系数对系统的稳态误差和稳定性的影响。

3、 熟悉MABLAB 系统仿真的应用,加强对MABLAB 软件应用的认识。

二、 实验内容1、设单位反馈控制系统的开环传递函数如下,试用MATLAB 绘制闭环根轨迹图。

33*)2()1()(++=s s K s G2、两个系统的传递函数分别为:)65)(1)(254()144)(3(50)()()1(2232++-++++-=s s s s s s s s s s H s G )1)(2)(6())(133(3)()()2(2222323+++-+++++=s s s s s s s s s s s s H s G 计算上述所给系统在2=ω和20=ω时的幅频特性)(ωA ,对数幅频特性)(ωL 以及相频特性)(ωϕ。

(用MATLAB 验证) 3、设单位反馈的开环传递函数为)15.0)(1()(0++=s s s Ks G要求设计一串联校正网络,使校正后系统的开环增益K=5,相角裕度不低于40°,幅值裕度不小于10dB.(用MATLAB 验证)三、实验步骤及MATLAB 验证仿真1、设单位反馈控制系统的开环传递函数如下,试用MATLAB 绘制闭环根轨迹图。

33*)2()1()(++=s s K s G 解:33*)2()1()(++=s s K s G用MATLAB 绘制闭环根轨迹图如下:程序:num=conv([1 1],conv([1 1],[1 1])); den=conv([1 2],conv([1 2],[1 2])); sys=tf(num,den); rlocus(sys); grid on其闭环根轨迹图如下:2、两个系统的传递函数分别为:)65)(1)(254()144)(3(50)()()1(2232++-++++-=s s s s s s s s s s H s G )1)(2)(6())(133(3)()()2(2222323+++-+++++=s s s s s s s s s s s s H s G(1) 解:)(lg 20)(3462541)14(5094116)25()14(950)()()()3)(2)(1)(425()12)(3(50))H(j ()3)(2)(1)(254()12)(3(50)()(42222222222222222ωωωωωωωωωωωωωωωωωωωωωωωωωωωωωA L j H j G A j j j j j j j j G s s s s s s s s s H s G =+-+++=++++-++==++-+-+-=+--+++-=当ω<5时,o2o2o o 90)2arctan()arctan()254arctan()2arctan(2)32arctan(-)3arctan()2arctan())arctan(180(254arctan90)2arctan(2)3arctan(-180)(--+--+-=---+----++=ωωωωωωωωωωωωωωϕ当ω>5时,o2o2o o 270)2arctan()arctan()254arctan()2arctan(2)32arctan(-)3arctan()2arctan())arctan(180(254arctan90)2arctan(2)3arctan(-180)(--+--+-=---+----++=ωωωωωωωωωωωωωωϕ当ω=2时,87.7904543.6385.2093.15138.6790)22arctan()2arctan()22524arctan()42arctan()322arctan()2(513.999.2lg 20)2lgA(20)2L(99.224346254414214450)2(o o24-=--+-+-=--+-⨯-+-=≈==≈+⨯-+++⨯⨯=ϕ)(A当ω=20时,9. 24027029.8414.8704.1214.17793. 162270)220arctan()20arctan()2025204arctan()402arctan()3202arctan( )20(7.31026.0lg20)20lgA(20)20L(026.0204003462544001400 201400450) 20 (o o2 4-=--+++-=--+-⨯-+-=-≈==≈+⨯-+++⨯⨯=ϕ)(A用MATLAB验证如下:程序:num=conv(50,conv([1 -3],[4 4 1]));den=conv([1 4 25 0],conv([1 -1],[1 5 6]));sys=tf(num,den);margin(sys);grid on其MABLAB验证图如下:由计算值和MATLAB 验证可知,当ω=2时,()()%032.0%100)2()2()2(:16.8251.92L ,87.7)2(513.9)2(99.2)2()2(≈⨯'-=-='='-===L L L L A L δϕϕ故其误差值分别为,,仿真值:,,理论值:%68.3%100)22()2()2(-≈⨯'-=()ϕϕϕδϕ当时20=ω理论值:()(),)(,, 9.240207.3120L 026.020A -=-≈≈ϕ仿真值:()(),, 241207.3120L -='-='ϕ故其误差值分别为:()()()()()()%04.0%1002020200%10020L 20L 20L 2020L -≈⨯'-==⨯'-=ϕϕϕδδϕ)()((2)解:)1)(2)(2)(3()1(3)1)(2)(6())(133(3)()(242222323+++-++=+++-+++++=s s s s s s s s s s s s s s s s s s s H s G )1)(2)(2)(3()1(3)()(24ωωωωωωωωωj j j j j j j H j G +-+-++=422222222222221)4(9)1(3)1(449)1(3|)()(|)(ωωωωωωωωωωωωωωωω+-+++=+-++++==j H j G A )(lg 20)(ωβωA L =()()()()()05.027087.247.8155.34827020120arctan 320arctan 20arctan 42077.908.3lg 2020lg 202008.320201420920120203)20(,2026.162702arctan 4270212arctan 32arctan 2arctan 4)2(18.35275lg 20)2(lg 20)2(44.1221)42(92)12(23)2(,22701arctan3arctan arctan 4)1arctan 180(2arctan )]7arctan(180[3arctan arctan 490)(,1242222242222222-=-+-≈----=≈==≈+-+++⨯⨯==-≈-=----====≈+-+++⨯⨯==----=-+---+--+=>ϕωϕωωωωωωωωωωωωϕωA L A A L A 时当时当时当用MATLAB 验证如下:程序:num=conv(3,conv([1 3 3 1],[1 1 0 0])); den=conv([1 1 -6],conv([1 2 0],[1 1 1])); sys=tf(num,den); margin(sys); grid on其MATLAB 验证图如下:(下一页)由计算值和MATLAB 验证可知; 当时,2=ω理论值:()()() 26.162,18.32,44.12-≈=≈ϕL A 验证值:()() 2.162,17.32-='='ϕL 故其误差值分别为:()%14.3%100)2()2(2)2(≈⨯'-=L L L L δ%37.0%100)2()2()2()2(≈⨯'-=ϕϕϕδϕ当时,20=ω理论值:()()() 05.02077.920L 08.320A -=≈≈ϕ,, 验证值:()() 0512.02041.920L -='='ϕ, 故其误差值分别为:()()()()%68.3%10020L 20L 2020L ≈⨯'-=L δ()()()%4.2%10020202020-=⨯'-=ϕϕϕδϕ)(3、设单位反馈的开环传递函数为)15.0)(1()(0++=s s s Ks G要求设计一串联校正网络,使校正后系统的开环增益K=5,相角裕度不低于40°,幅值裕度不小于10dB.(用MATLAB 验证)解:设校正后c ω截止频率为r c ''",ω为指标求值,通过串联滞后校正,设滞后校正传递函数为()sss G c 71671++=()()())12)(1(1015.01++=++=s s s s s s s s G()()()12110++=ωωωωj j j j G()2110lg2022++=ωωωωL() 902arctanarctan ---=ωωωψ由()()c c c r r ωψω''+''''='' ,且()c c ωψ''取为 14- ,得()() 541440=+=''-''=''''c r c r ωψω由()()c c r ''+=''''ωψω 180得 () 126180540-=-=''x ωψ通过Bode 图得 442.0="c ω程序: num=[10]; den=[1,3,2,0]; G=tf(num,den); margin(G); grid on其MATLAB 伯德图如下:则()1.202442.01442.0442.010log20442.02≈++='=⎪⎭⎫ ⎝⎛"'L L c ω所以有:()()()()()ss s s s s s s s s s G s G s G c 266.30449.45383.1501083.15083.1501083.15115.0152340++++=++⋅++=⋅=程序:num1=[10];den1=[1,3,2,0]; num2=[150.83,10];den2=[150.83,453.49,304.66,2,0]; G1=tf(num1,den1); margin(G1); hold onG2=tf(num2,den2); margin(G2); bode(G1,':'); grid on其MATLAB 验证图如下()sss G T b bTl b c cc 83.1501083.15183.1501.015.010lg 20++=⎩⎨⎧==⎪⎩⎪⎨⎧''==⎪⎭⎫ ⎝⎛"'+得ωω校正前系统阶跃响应如下:程序:num=[10];den=[1,3,2,0];G=tf(num,den);figure(1);step(feedback(G,1,-1));grid on其MATLAB验证图如下校正后系统阶跃响应如下:程序:num=[150.83,10];den=[150.83,453.49,304.66,2,0]; G=tf(num,den);figure(1);step(feedback(G,1,-1));grid on其MATLAB验证图如下校正方法分析:ω附近很窄的频率范围内在此题中,采用相位超前校正是不怎么有效的,此例在c对数幅频和相频特性衰减很快,若采用相位超前校正,虽然校正环节可提供超前相角,ω右移,又将使系统的相位产生较大的滞后量,而使系统的相位裕量不会有但又会使c明显的改善。

自动控制实验报告

自动控制实验报告

一、实验目的1. 熟悉并掌握自动控制实验系统的基本操作方法。

2. 了解典型线性环节的时域响应特性。

3. 掌握自动控制系统的校正方法,提高系统性能。

二、实验设备1. 自动控制实验系统:包括计算机、XMN-2自动控制原理模拟实验箱、CAE-PCI软件、万用表等。

2. 电源:直流稳压电源、交流电源等。

三、实验原理自动控制实验系统主要由模拟实验箱和计算机组成。

通过模拟实验箱,可以搭建不同的自动控制系统,并通过计算机进行实时数据采集、分析、处理和仿真。

四、实验内容及步骤1. 搭建比例环节实验(1)根据实验要求,搭建比例环节实验电路。

(2)设置输入信号,观察并记录输出信号。

(3)分析比例环节的时域响应特性。

2. 搭建积分环节实验(1)根据实验要求,搭建积分环节实验电路。

(2)设置输入信号,观察并记录输出信号。

(3)分析积分环节的时域响应特性。

3. 搭建比例积分环节实验(1)根据实验要求,搭建比例积分环节实验电路。

(2)设置输入信号,观察并记录输出信号。

(3)分析比例积分环节的时域响应特性。

4. 搭建系统校正实验(1)根据实验要求,搭建系统校正实验电路。

(2)设置输入信号,观察并记录输出信号。

(3)分析系统校正前后的时域响应特性。

五、实验结果与分析1. 比例环节实验结果实验结果显示,比例环节的输出信号与输入信号成正比关系,且响应速度较快。

2. 积分环节实验结果实验结果显示,积分环节的输出信号与输入信号成积分关系,且响应速度较慢。

3. 比例积分环节实验结果实验结果显示,比例积分环节的输出信号既具有比例环节的快速响应特性,又具有积分环节的缓慢响应特性。

4. 系统校正实验结果实验结果显示,通过校正后的系统,其响应速度和稳态误差均有所提高。

六、实验结论1. 通过本次实验,掌握了自动控制实验系统的基本操作方法。

2. 熟悉了典型线性环节的时域响应特性。

3. 学会了自动控制系统的校正方法,提高了系统性能。

七、实验感想本次实验让我深刻认识到自动控制理论在实际工程中的应用价值。

自动控制原理_实验报告

自动控制原理_实验报告

一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。

二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。

三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。

它主要由控制器、被控对象和反馈环节组成。

控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。

1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。

比例环节的响应特性为输出信号与输入信号成线性关系。

(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。

积分环节的响应特性为输出信号随时间逐渐逼近输入信号。

(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。

比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。

2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。

PID控制器可以实现对系统的快速、稳定和精确控制。

四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。

2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。

二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。

2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。

3. 将编写好的代码上传至Arduino UNO开发板。

4.将电源适配器连接至系统,确保实验装置正常供电。

5.启动实验系统并观察电机的转动情况。

6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。

五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。

通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。

2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。

这也是导致实际转动角度与目标角度存在差异的一个重要原因。

3.电源适配器的稳定性对电机的转动精度也有一定的影响。

六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。

同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。

为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。

实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三典型环节(或系统)的频率特性测量一、实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。

2.学习根据实验所得频率特性曲线求取传递函数的方法。

二、实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。

2.用实验方法完成典型二阶系统开环频率特性曲线的测试。

3.根据测得的频率特性曲线求取各自的传递函数。

4.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。

三、实验步骤1.利用实验设备完成一阶惯性环节的频率特性曲线测试。

在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。

为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。

仍以一阶惯性环节为例,此时将Ui 连到实验箱 U3单元的O1(D/A 通道的输出端),将Uo 连到实验箱 U3单元的I1(A/D 通道的输入端),并连好U3单元至上位机的并口通信线。

接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。

界面上的操作步骤如下:①按通道接线情况完成“通道设置”:在界面左下方“通道设置”框内,“信号发生通道”选择“通道O1#”,“采样通道X ”选择“通道I1#”,“采样通道Y ”选择“不采集”。

②进行“系统连接”(见界面左下角),如连接正常即可按动态状态框内的提示(在界面正下方)“进入实验模式”;如连接失败,检查并口连线和实验箱电源后再连接,如再失败则请求指导教师帮助。

③进入实验模式后,先对显示进行设置:选择“显示模式”(在主界面左上角)为“Bode”。

④完成实验设置,先选择“实验类别”(在主界面右上角)为“频域”,然后点击“实验参数设置”,在弹出的“频率特性测试频率点设置”框内,确定实验要测试的频率点。

注意设置必须满足ω<30Rad/sec 。

⑤以上设置完成后,按“实验启动”启动实验。

界面中下方的动态提示框将显示实验测试的进展情况,从开始测试直至结束的过程大约需要2分钟。

实验自动结束,提供数据表格和显示对数频率特性(Bode 图)。

⑥改变显示模式,从“Bode ”改为“Polar ”,图框内即显示幅相频率特性(Nyquist 图)。

⑦按实验报告需要,将图形结果保存为位图文件,操作方法参阅软件使用说明书四、实验原理及接线电路1.实验用一阶惯性环节传递函数参数、电路设计及其幅相频率特性曲线: 对于()1K G S TS =+的一阶惯性环节,其幅相频率特性曲线是一个半圆。

取S j ω=代入,得()()()1j K G j r e j T ϕωωωω==+ 在实验所得特性曲线上,从半圆的直径(0)r ,可得到环节的放大倍数K ,K =(0)r 。

在特性曲线上取一点k ω,可以确定环节的时间常数T ,()k k tg T ϕωω=-。

实验用一阶惯性环节传递函数为1()0.21G S S =+,其中参数为R 0=200K Ω,R 1=200K Ω,C =1uF ,其模拟电路设计参阅图1.5.2。

2.实验用典型二阶系统开环传递函数参数及电路设计:对于由两个惯性环节组成的二阶系统,其开环传递函数为:2212()(1)(1)21K K G s T s T s T s Ts ξ==++++(1)ξ≥ 令上式中 s j ω=,可以得到对应的频率特性()22()()21j K G j r e T j T ϕωωωωξω==-++ 根据上述幅相频率特性表达式,有 (0)K r = (3—1)()k r ω= 其中 22112k k T tg T ωφξω-= 故有 2212k k kT T tg ξωωφ=- (3—2)2T ξ= (3—3) 如已测得二阶环节的幅相频率特性,则(0)r 、k ω、k φ 和()k r ω均可从实验曲线得到,于是可按式(3—1)、(3—2)和(3—3)计算K 、T 、ξ,并可根据计算所得T 、ξ 求取T 1和T 21(T T ξ=+2(T T ξ=实验用典型二阶系统开环传递函数(ξ>1)为:2()11(0.21)(0.11)0.020.31G s s s s s ==++++ 其电路设计参阅图3.2.1。

3.对数幅频特性和对数相频特性上述幅相频率特性也可表达为对数幅频特性和对数相频特性, 改变显示模式即可观察到.五、实验结果分析及报告1.记录实验得到曲线,保存为位图文件。

一阶惯性环节的Bode 图典型二阶系统的Bode图2.心得由图得出的结论是,惯性环节是一个相位滞后环节,在频率低时滞后相角较小,幅值的衰减也较小,频率高时滞后相角越大,幅值衰减的也越大,但是最大的相角也只是90度。

我们通过调整验证了惯性环节的幅频曲线。

而对于由两个惯性环节组成的二阶系统,其相角有一些明显超过了180度,当然,这与理论有一些误差,主要还是由电路箱元件的误差所造成。

综合性实验实验四线性系统串联校正一、实验目的1.熟悉串联校正装置对线性系统稳定性和动态特性的影响。

2.掌握串联校正装置的设计方法和参数调试技术。

二、实验内容1.观测未校正系统的稳定性和动态特性。

2.按动态特性要求设计串联校正装置。

3.观测加串联校正装置后系统的稳定性和动态特性,并观测校正装置参数改变对系统性能的影响。

4.对线性系统串联校正进行计算机仿真研究,并对电路模拟与数字仿真结果进行比较研究。

三、实验步骤1.利用实验设备,设计并连接一未加校正的二阶闭环系统的模拟电路,完成该系统的稳定性和动态特性观测。

提示:①设计并连接一未加校正的二阶闭环系统的模拟电路,可参阅本实验附的图4.1.1和图4.1.2,利用实验箱上的U9、U11、U15和U8单元连成。

②通过对该系统阶跃响应的观察,来完成对其稳定性和动态特性的研究,如何利用实验设备观测阶跃特性的具体操作方法,可参阅实验一的实验步骤2。

2.参阅本实验的实验原理部分,按校正目标要求设计串联校正装置传递函数和模拟电路。

3.利用实验设备,设计并连接一加串联校正后的二阶闭环系统的模拟电路,完成该系统的稳定性和动态特性观测。

提示:①设计并连接一加串联校正后的二阶闭环系统的模拟电路,可参阅本实验的附图4.4.4,利用实验箱上的U9、U14、U11、U15和U8单元连成②通过对该系统阶跃响应的观察,来完成对其稳定性和动态特性的研究,如何利用实验设备观测阶跃特性的具体操作方法,可参阅“实验一”的实验步骤2。

4.改变串联校正装置的参数,对加校正后的二阶闭环系统进行调试,使其性能指标满足预定要求。

提示:5.利用上位机软件提供的软件仿真功能,完成线性系统串联校正的软件仿真研究,并对电路模拟与软件仿真结果进行比较研究。

如何利用上位机软件提供的软件仿真功能,完成线性系统的软件仿真,其具体操作方法请参阅“实验一”的实验步骤3。

四、实验原理及接线电路1.实验用未加校正的二阶闭环系统分析实验用未加校正二阶闭环系统的方块图和模拟电路,分别如图4.1.1和图4.1.2所示:其开环传递函数为:()0.2(0.51)(0.51)G s S S s s ++ 其闭环传递函数为: 2222()()501()2502n n nW S G s G s s s s s ωξωω===+++++ 式中 7.07n ω=,10.141n ξω==,故未加校正时系统超调量为0.6363%p M e -===, 调节时间为 44s n t ξω==s ,静态速度误差系数K V 等于该I 型系统的开环增益25=v K 1/s ,2.串联校正的目标要求加串联校正装置后系统满足以下性能指标:(1)超调量25%p M ≤(2)调节时间(过渡过程时间)1s t ≤s(3)校正后系统开环增益(静态速度误差系数)25Kv ≥ 1/s图4.1.13.串联校正装置的时域设计从对超调量要求可以得到25p M e -=≤% ,于是有 0.4ξ>。

由 41s n t ξω=≤s 可以得到 4n ωξ≥。

因为要求25Kv ≥ 1/s ,故令校正后开环传递函数仍包含一个积分环节,且放大系数为25。

设串联校正装置的传递函数为D(s),则加串联校正后系统的开环传递函数为25()()()(0.51)D s G s D s s s =+采用相消法,令0.51()1s D s Ts +=+ (其中T 为待确定参数),可以得到加串联校正后的开环传递函数 0.512525()()1(0.51)(1)s D s G s Ts s s s Ts +==+++这样,加校正后系统的闭环传递函数为2()()25()1()()D s G s T W s D s G s s s T T ==+++对校正后二阶系统进行分析,可以得到225n ω=21n T ξω=综合考虑校正后的要求,取 T=0.05s,此时 22.36n ω= 1/s,0.45ξ=,它们都能满足校正目标要求。

最后得到校正环节的传递函数为0.51()0.051s D s s +=+从串联校正装置的传递函数可以设计其模拟电路。

有关电路设计与校正效果请参见后面的频域设计。

4.串联校正装置的频域设计根据对校正后系统的要求,可以得到期望的系统开环传递函数的对数频率特性,见图4.4.1。

根据未加校正系统的开环传递函数,可画出其相应的对数频率特性,如图 4.4.2所示。

从期望的系统开环传递函数的对数幅频特性,减去未加校正系统开环传递函数的对数幅频特性,可以得到串联校正装置的对数幅频特性,见图4.4.3。

从串联校正装置的对数幅频特性,可以得到它的传递函数:0.51()0.051c S G S S +=+从串联校正装置的传递函数可以设计其模拟电路。

图4.4.4给出已加入串联校正装置的系统模拟电路。

图4.4.2在图4.4.4中,串联校正装置电路的参数可取R1=390KΩ,R2=R3=200KΩ,R4=10KΩ,C=4.7uF。

五、实验结果分析及报告1.记录实验得到曲线,保存为位图文件。

2.比较未加校正装置前和加了校正装置后的阶跃响应曲线,并分析实验结果得出结论。

由实验获得的曲线可知,在加入校正装置前,超调量较大,为63%,调节时间比 较长,而在加入校正装置之后,超调量明显减少,为19.6,调节时间明显缩短。

结论:加校正装置可以减少系统响应的超调量和调节时间,提高系统稳态性能。

3.心得这实验接线比较复杂,我们做时要非常小心接线。

同过图形我们知道校正装置是一个可以改善系统的装置,所以在实验后我们以后如果遇到我们要在工厂中改善系统的超调量和调节时间我们就可以用到的串联校正装置。

设计性实验一、实验目的1. 学会利用实验箱中模块构建一个二阶(或三阶)系统。

2. 设计一控制模块,串联入系统之中,减少系统的阻尼比。

3. 学会对系统进行分析。

相关文档
最新文档