自动控制原理实验报告73809

合集下载

自动控制原理的实训报告

自动控制原理的实训报告

一、实训目的本次实训旨在通过实际操作和实验,加深对自动控制原理的理解,掌握控制系统分析和设计的基本方法,提高动手能力和分析问题、解决问题的能力。

通过实训,使学生能够:1. 理解自动控制系统的基本组成和原理;2. 掌握典型控制系统的时域响应和频域响应分析方法;3. 学会使用实验设备进行控制系统实验,并能够分析实验结果;4. 培养团队协作和沟通能力。

二、实训仪器与设备1. 自动控制原理实验台;2. 信号发生器;3. 数据采集器;4. 计算机;5. 控制系统模拟软件。

三、实训内容1. 控制系统结构分析通过实验台搭建一个典型的控制系统,分析其结构,包括各个环节的功能和相互关系。

2. 时域响应实验对搭建的控制系统进行阶跃响应实验,记录并分析系统的输出波形,计算超调量、上升时间、调节时间等性能指标。

3. 频域响应实验对搭建的控制系统进行频率特性实验,记录并分析系统的幅频特性、相频特性,绘制Bode图。

4. 控制系统设计根据实验结果,对控制系统进行设计,包括PID参数整定、控制器设计等。

四、实验过程1. 搭建控制系统根据实验要求,搭建一个典型的控制系统,包括控制器、执行器、被控对象等环节。

2. 进行阶跃响应实验使用信号发生器产生阶跃信号,输入到控制系统中,记录输出波形,并计算超调量、上升时间、调节时间等性能指标。

3. 进行频率特性实验使用信号发生器产生不同频率的正弦信号,输入到控制系统中,记录输出波形,并绘制Bode图。

4. 控制系统设计根据实验结果,对控制系统进行设计,包括PID参数整定、控制器设计等。

五、实验结果与分析1. 阶跃响应实验通过阶跃响应实验,可以分析系统的稳定性和动态性能。

例如,超调量反映了系统的振荡程度,上升时间反映了系统的响应速度,调节时间反映了系统达到稳态所需的时间。

2. 频率特性实验通过频率特性实验,可以分析系统的频率响应特性。

例如,幅频特性反映了系统对不同频率信号的放大倍数,相频特性反映了系统对不同频率信号的相位延迟。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告一、实验目的。

本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。

二、实验原理。

PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。

比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。

PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。

三、实验装置。

本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。

四、实验步骤。

1. 将PID控制器与被控对象连接好,并接通电源。

2. 调节PID控制器的参数,使其逐渐接近理想状态。

3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。

4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。

五、实验结果与分析。

经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。

因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。

六、实验总结。

通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。

同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。

七、实验心得。

本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。

只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。

八、参考文献。

[1] 《自动控制原理》,XXX,XXX出版社,2010年。

[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。

实验报告-自动控制原理

实验报告-自动控制原理
________________________________________________________________________________
________________________________________________________________________________
〖分析பைடு நூலகம்:______________________________________________________________________
_______________________________________________________________________________
说明:特征参数为比例增益K和微分时间常数T。
1)R2=R1=100KΩ, C2=0.01µF,C1=1µF;特征参数实际值:K=______,T=________。
波形如下所示:
2)R2=R1=100KΩ, C2=0.01µF,C1=0.1µF;特征参数实际值:K= 1,T=0.01。
波形如下所示:
四、实验心得体会
实验报告
班级
姓名
学号
所属课程
《自动控制原理》
课时
2
实践环节
实验3控制系统的稳定性分析
地点
实字4#318
所需设备
电脑、工具箱
一、实验目的
1.观察系统的不稳定现象。
2.研究系统开环增益和时间常数对稳定性的影响
3.学习用MATLAB仿真软件对实验内容中的电路进行仿真。
2、实验步骤
_______________________________________________________________________________

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本概念和实验操作方法,加深对自动控制原理的理解和应用。

实验仪器与设备,本次实验所需仪器设备包括PID控制器、温度传感器、电磁阀、水槽、水泵等。

实验原理,PID控制器是一种广泛应用的自动控制设备,它通过对比设定值和实际值,根据比例、积分、微分三个控制参数对控制对象进行调节,以实现对控制对象的精确控制。

实验步骤:1. 将温度传感器插入水槽中,保证传感器与水温充分接触;2. 将水泵接通,使水槽内的水开始循环;3. 设置PID控制器的参数,包括比例系数、积分时间、微分时间等;4. 通过调节PID控制器的参数,使得水槽中的水温稳定在设定的目标温度;5. 观察记录PID控制器的输出信号和水温的变化情况;6. 分析实验结果,总结PID控制器的控制特性。

实验结果与分析:经过实验操作,我们成功地将水槽中的水温控制在了设定的目标温度范围内。

在调节PID控制器参数的过程中,我们发现比例系数的调节对控制效果有着明显的影响,适当增大比例系数可以缩小温度偏差,但过大的比例系数也会导致控制系统的超调现象;积分时间的调节可以消除静差,但过大的积分时间会导致控制系统的超调和振荡;微分时间的调节可以抑制控制系统的振荡,但过大的微分时间也会使控制系统的响应变慢。

结论:通过本次实验,我们深入理解了PID控制器的工作原理和调节方法,掌握了自动控制原理的基本概念和实验操作方法。

我们通过实验操作和数据分析,加深了对自动控制原理的理解和应用。

总结:自动控制原理是现代控制工程中的重要内容,PID控制器作为一种经典的控制方法,具有广泛的应用前景。

通过本次实验,我们不仅学习了自动控制原理的基本知识,还掌握了PID控制器的调节方法和控制特性。

这对我们今后的学习和工作都具有重要的意义。

自动控制实验报告(全)

自动控制实验报告(全)

自动控制原理实验报告册院系:班级:学号:姓名:目录实验五采样系统研究 (3)实验六状态反馈与状态观测器 (9)实验七非线性环节对系统动态过程的响应 (14)实验五 采样系统研究一、实验目的1. 了解信号的采样与恢复的原理及其过程,并验证香农定理。

2. 掌握采样系统的瞬态响应与极点分布的对应关系。

3. 掌握最少拍采样系统的设计步骤。

二、实验原理1. 采样:把连续信号转换成离散信号的过程叫采样。

2. 香农定理:如果选择的采样角频率s ω,满足max 2ωω≥s 条件(max ω为连续信号频谱的上限频率),那么经采样所获得的脉冲序列可以通过理想的低通滤波器无失真地恢复原连续信号。

3. 信号的复现:零阶保持器是将采样信号转换成连续信号的元件,是一个低通滤波器。

其传递函数:se Ts--14. 采样系统的极点分布对瞬态响应的影响:Z 平面内的极点分布在单位圆的不同位置,其对应的瞬态分量是不同的。

5. 最小拍无差系统:通常称一个采样周期为一拍,系统过渡过程结束的快慢常采用采样周期来表示,若系统能在最少的采样周期内达到对输入的完全跟踪,则称为最少拍误差系统。

对最小拍系统时间响应的要求是:对于某种典型输入,在各采样时刻上无稳态误差;瞬态响应最快,即过渡过程尽量早结束,其调整时间为有限个采样周期。

从上面的准则出发,确定一个数字控制器,使其满足最小拍无差系统。

三、实验内容1. 通过改变采频率s s s T 5.0,2.0,01.0=,观察在阶跃信号作用下的过渡过程。

被控对象模拟电路及系统结构分别如下图所示:图中,1)(/)()(==z E z U z D ,系统被控对象脉冲传递函数为:T T Ts e z e s s e Z z U z Y z G -----=⎥⎦⎤⎢⎣⎡+-==)1(4141)()()( 系统开环脉冲传递函数为:T T w e z e Z G z D z G ----===)1(4)()()(系统闭环脉冲传递函数为:)(1)()(z G z G z w w +=Φ在Z 平面内讨论,当采样周期T 变化时对系统稳定性的影响。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1. 熟悉并掌握TD-ACC+( TD-ACS设备的使用方法及各典型环节模拟控制电路的构成方法。

2. 熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。

对比差异、分析原因。

3. 了解参数变化对典型环节动态特性的影响。

二.实验设备PC机一台,TD-ACC+( TD-ACS实验系统一套。

三.实验内容1. 比例环节2. 积分环节3. 比例积分环节4. 惯性环节5. 比例微分环节6. 比例积分微分环节四、实验感想在本次实验后,我了解了典型环节的时域响应方面的知识,并且通过实践,实现了时域响应相关的操作,感受到了实验成功的喜悦。

实验二、线性系统的矫正一、目的要求1.掌握系统校正的方法,重点了解串联校正。

2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数、仪器设备PC机一台,TD-ACC+或TD-ACS)教学实验系统一套三、原理简述所谓校正就是指在使系统特性发生变接方式可分为馈回路之内采用的测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3.串联校正环节的理论推导四、实验现象分析校正前:校正后:校正前:校正后:六、实验心得次实验让我进一步熟悉了TD-ACC实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。

实验三、线性系统的频率响应分析、实验目的1 .掌握波特图的绘制方法及由波特图来确定系统开环传函2 .掌握实验方法测量系统的波特图。

、实验设备PC机一台,TD-ACC系列教学实验系统一套三、实验原理及内容(一)实验原理1 .频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(3由0变至%)而变化的特性。

频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

自控原理课程实验报告

自控原理课程实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。

3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。

二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。

本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。

2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。

3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。

三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。

(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。

(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。

(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。

(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。

(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。

2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。

(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。

3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。

(2)根据仿真结果,优化系统参数,提高系统性能。

四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告本实验为基于微处理器的温度控制系统的设计与实现。

实验目的是通过实践掌握基于微处理器的控制系统设计和实现方法,了解数字信号处理的基本原理和应用。

本报告将分为实验原理,系统设计,实验步骤,实验结果和结论等几个部分进行详细阐述。

一、实验原理数字信号处理的基本原理是将模拟信号经过采样、量化和编码后转换为数字信号,并在数字领域中对其进行处理。

在本实验中,采用的是基于单片机控制的数字温度控制系统。

该系统的设计要求基于以往的温度控制系统,并具备更过的实用价值和工程性能。

系统的基本原理如下:1.数字信号采样该系统通过传感器来采集温度值,并将其转化为数字信号,实现了数字化控制。

系统在稳态时,通过采用PID控制方法来对温度进行控制。

2.温度控制方法对于本实验中开发的系统,采用的是基于PID控制算法的控制方法。

PID即比例积分微分控制算法,它是一种最常用的控制算法,具备响应速度快、稳态误差小等优点。

PID控制算法的主要原理是,通过比例、积分和微分三个控制系数对输出进行调节,使系统的响应速度更快,而且在稳态时误差非常小。

3.系统设计本实验系统的设计通过单片机的程序控制,主要包含三部分:硬件设计、软件设计和温控系统设计。

二、系统设计1.硬件设计本实验采用的是基于AT89S52单片机的数字温度控制系统,其硬件电路主要包括以下模块:(1)单片机控制器:采用AT89S52单片机;(2)温度传感器:采用DS18B20数字温度传感器;(3)电源模块:采用稳压电源,提供系统所需电压。

2.软件设计本实验采用的是基于C语言开发的程序控制系统,该软件具备以下功能模块:(1)数据采集:通过程序控制读取温度传感器数值;(2)控制算法:实现PID控制算法的程序设计;(3)控制输出:将PID算法结果通过程序输出到负载端。

3.温控系统设计本实验设计的数字温度控制系统,其温控系统设计主要包括以下几个方面:(1)温度检测:系统通过DS18B20数字温度传感器检测环境温度。

《自动控制原理》实验报告讲述

《自动控制原理》实验报告讲述

《自动控制原理》实验报告姓名:学号:班级:11电气1班专业:电气工程及其自动化学院:电气与信息工程学院2013年12月目录实验一、典型环节的模拟研究实验二、二阶系统的阶跃响应分析实验三、线性系统的稳态误差分析实验四、线性系统的频率响应分析实验一典型环节的模拟研究1.1 实验目的1、熟悉并掌握TD-ACS设备的使用方法及各典型环节模拟电路的构成方法。

2、熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。

3、了解参数变化对典型环节动态特性的影响。

1.2 实验设备PC机一台,TD-ACS实验系统一套。

1.3 实验原理及内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。

1. 比例环节(P)(1) 方框图:如图1.1-1 所示。

图1.1-1(2) 传递函数:Uo(S)/Ui(S)=K(3) 阶跃响应:Uo(t)=K(t≥0)其中K=R1/R0(4) 模拟电路图:图1.1-2注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。

以后的实验中用到的运放也如此。

(5) 理想与实际阶跃响应对照曲线:①取R0 = 200K;R1 = 100K。

理想阶跃响应曲线实测阶跃响应曲线2.积分环节(I)(1) 方框图:如右图1.1-3 所示。

图1.1-3(2) 传递函数:错误!未找到引用源。

(3) 阶跃响应:Uo(t) = 错误!未找到引用源。

(t 0) 其中T=R0C(4) 模拟电路图:如图1.1-4 所示。

图1.1-4(5) 理想与实际阶跃响应曲线对照:①取R0 = 200K;C = 1uF。

3.比例积分环节(PI)(1)方框图:如图1.1-5 所示。

图1.1-5(2) 传递函数:错误!未找到引用源。

(3)阶跃响应:Uo(t)=K+t/T(t) (t 0) 其中K=Ri/Ro; T=RoC(4) 模拟电路图:见图1.1-6图1.1-6(5) 理想与实际阶跃响应曲线对照:①取R0 = R1 = 200K;C = 1uF。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。

2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。

4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。

5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。

6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。

二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。

自动控制原理实验报告

自动控制原理实验报告

一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。

2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。

3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。

二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。

实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。

2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。

3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。

三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。

2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。

3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。

六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。

2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。

3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。

自动控制实验报告

自动控制实验报告

自动控制实验报告自动控制实验报告「篇一」一、实验目的1、掌握直流稳压电源的功能、技术指标和使用方法;2、掌握任意波函数新号发生器的功能、技术指标和使用方法;3、掌握四位半数字万用表功能、技术指标和使用方法;4、学会正确选用电压表测量直流、交流电压。

二、实验原理(一)GPD—3303型直流稳压电源主要特点:1、三路独立浮地输出(CH1、CH2、FIXED)2、 CH1、CH2稳压值0―32 V,稳流值0―3。

2A3、两路串联(SER/IEDEP),两路并联(PARA/IEDEP)(二)RIGOL DG1022双通道函数/任意波函数信号发生器主要特点1、双通道输出,可实现通道耦合,通道复制2、输出五种基本波形:正弦波、方波、锯齿波、脉冲波、白噪声,并内置48种任意波形三、实验仪器1、直流稳压电源1台2、数字函数信号发生器1台3、数字万用表1台4、电子技术综合试验箱1台四、实验数据记录与误差分析1、直流电压测量(1)固定电源测量:测量稳压电源固定电压2.5V、3.3V、5V;误差分析:E1=|2.507—2.5|÷2。

5×100%=0.28%E2=|3.318—3。

3|÷3.3×100%=0.55%E3=|5.039—5|÷5×100%=0.78%(2)固定电源测量:测量实验箱的固定电压±5V、±12V、—8V;误差分析:E1=|5.029—5|÷5×100%=0.58%E2=|5.042—5|÷5×100%=0.84%E3=|11.933—12|÷12×100%=0.93%E3=|11.857—12|÷12×100%=0.56%E3=|8.202—8|÷8×100%=2.5%(3)可变电源测量;误差分析:E1=|6.016—6|÷6×100%=0.27%E2=|12.117—12|÷12×100%=0.98% E3=|18.093—18|÷18×100%=0.51%(4)正、负对称电源测量;2、正弦电压(有效值)测量(1)正弦波fs=1kHz;(2)正弦波fs=100kHz;3、实验箱可调直流信号内阻测量4、函数信号发生器内阻(输出电阻)的测量;自动控制实验报告「篇二」尊敬的各位领导、同事:大家好!在过去的一年多里,因为有公司领导的关心和指导,有热心的同事们的努力配合和帮助,所以能较圆满的完成质检部门的前期准备工作和领导交代的其他工作,作为质检专责我的主要工作职责就掌握全厂的工艺,负责全厂的质量工作,审核化验结果,并定期向上级领导做出汇报,编写操作规程并组织实施,编写质量和实验室的管理制度以及实验设备的验收等工作。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验目的本次自动控制原理实验的目的是通过对传统反馈控制系统的模拟和实现,了解并掌握基本的控制原理和控制器设计方法,进一步深化对自动控制理论的理解。

实验装置本次实验使用的是一台水位控制系统,该系统由电源、电机、计量储水罐、信号检测器、PID控制器、水泵等组成。

电源将电能转换为机械能,通过水泵将水流入到计量储水罐中,信号检测器对储水罐中的水位进行检测并反馈给PID控制器,PID控制器对信号进行处理并控制电机的转速,从而实现对水位的控制。

实验步骤1. 确定实验参数在进行实验之前,首先需要确定实验的一些参数,如PID控制器的比例系数、积分系数以及微分系数等。

这需要根据具体实验情况进行设定,以确保控制系统具有良好的稳定性和响应能力。

2. 实施控制将水泵开启,令水流入计量储水罐中,同时PID控制器对信号进行处理,调节电机的转速以控制水位。

实验过程中需要注意及时进行系统动态的监控和调整,以确保控制系统的稳定性和故障排除。

3. 结束实验并分析结果实验结束后,需要对实验结果进行分析,包括控制系统的响应速度、稳定性以及对参数的灵敏度等。

通过对实验数据的收集和分析,可以进一步提高对自动控制理论的理解和应用能力。

实验结果分析本次实验中,我们实现了对水位的控制,并对PID控制器的参数进行了设定和调整。

实验结果表明,我们所设计的控制系统具有较好的稳定性和响应能力,并且对参数的灵敏度较高。

同时,通过实验数据的分析,我们也发现了一些问题和不足之处,如控制系统的动态响应速度过慢等,这需要我们在实际应用中加以改进和完善。

结论本次自动控制原理实验通过实现对水位的控制,进一步加深了对自动控制理论的理解,掌握了基本的控制原理和控制器设计方法。

同时,通过实验数据的分析和总结,也为今后在自动控制领域的实际应用提供了一定的参考和指导。

自动控制原理实习报告

自动控制原理实习报告

实习报告:自动控制原理实验一、实验背景及目的随着现代工业的快速发展,自动控制技术在各个领域中的应用越来越广泛。

自动控制原理实验是电气工程及其自动化专业的一门重要实践课程,旨在让学生了解和掌握自动控制理论的基本原理和方法,培养学生的动手能力和实际问题解决能力。

本次实验主要涉及电动调节阀和PID控制器的相关知识。

二、实验内容及步骤1. 电动调节阀篇(1)了解电动调节阀的结构特点和工作原理。

电动调节阀主要由电动执行器与调节阀阀体构成,通过接收工业自动化控制系统的信号,来驱动阀门改变阀芯和阀座之间的截面积大小,控制管道介质的流量、温度、压力等工艺参数,实现远程自动控制。

(2)学习电动调节阀的调节稳定性和调节性能。

电动调节阀具有调节稳定,调节性能好等特点。

其结构特点包括:伺服放大器采用深度动态负反馈,可提高自动调节精度;电动操作器有多种形式,可适用于4~20mA DC或0~10mA DC;可调节范围大,固有可调比为50,流量特性有直线和等百分比;电子型电动调节阀可直接由电流信号控制阀门开度,无需伺服放大器;阀体按流体力学原理设计的等截面低流阻流道,额定流量系数增大30%。

(3)了解电动调节阀的分类及适用场合。

电动调节阀一般可分为单座式和双座式结构。

电动单座式调节阀适用于对泄漏要求严格,阀前后压差低及有一定粘度和含纤维介质的工作场合;电动双座式调节阀具有不平衡力小,允许压差大,流通能力大等待点,适用于泄漏量要求不严格的场合。

2. PID控制器篇(1)了解PID控制器的组成及作用。

PID控制器由比例控制、积分控制和微分控制组成。

比例控制是利用输入信号和参考信号的偏差量来控制;微分控制是利用输入信号的变化频率来控制;积分控制是利用输入信号的积分量来控制。

PID控制器能够通过设置比例、积分和微分三种参数来调节系统输出。

(2)学习PID控制器的开发现状。

PID控制器自发明以来已有近70年的历史,其结构简单、稳定性好、运行可靠、调节方便,已成为工业控制技术中的领先技术之一。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告摘要:本实验通过对自动控制原理的研究与实践,旨在深入了解自动控制系统的基本原理,以及相关的实验应用。

通过实验的设计与实施,我们在实践中学习了控制系统的结构、传递函数、稳定性、稳态误差等内容,并通过使用PID控制器对物理实验系统进行控制,从而对自动控制系统有了更加深入的理解。

引言:自动控制原理是现代工程控制领域的基础理论之一,在工业、交通、通信等领域都有广泛的应用。

自动控制原理实验是培养学生工程实践能力和动手能力的重要实践环节。

本实验通过对自动控制原理相关实验的设计与实践,让我们深入了解了自动控制系统的基本原理,并通过实际操作对理论知识进行了实际应用。

实验目的:1. 了解自动控制系统的基本结构和原理;2. 学习如何建立传递函数,并分析系统的稳定性;3. 熟悉PID控制器的参数调节方法;4. 掌握如何利用PID控制器对物理实验系统进行控制。

实验原理与方法:1. 实验装置搭建:我们搭建了一个简单的电路系统,包括输入信号源、控制器、执行器和输出传感器。

通过控制器对执行器的控制,实现对输出信号的调节。

2. 传递函数建立:使用系统辨识方法,通过对输入和输出信号的采集,建立系统的传递函数。

经过数据处理和分析,得到系统的传递函数表达式。

3. 稳定性分析:对系统的传递函数进行稳定性分析,包括零极点分析和Nyquist稳定性判据。

根据分析结果,判断系统的稳定性。

4. PID参数调节:根据传递函数和系统要求,使用PID控制器对系统进行调节。

根据实际情况进行参数调节,使得系统的响应达到要求。

实验结果与讨论:我们通过以上方法,成功地建立了控制系统的传递函数,并进行了稳定性分析。

通过对PID控制器参数的调节,使系统的稳态误差达到了要求。

通过实验,我们深刻理解了自动控制系统的基本原理,并学会了如何应用具体方法进行实际操作。

实验结论:通过自动控制原理的实验研究,我们对控制系统的基本原理有了更加深入的了解。

实践中,我们通过搭建实验装置、建立传递函数、进行稳定性分析和PID参数调节等实验操作,使得理论知识得到了更加全面的应用和巩固。

自动控制原理实验报告

自动控制原理实验报告

《自动控制原理》实验报告姓名:学号:专业:班级:时段:成绩:工学院自动化系实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验原理1.比例环节的传递函数为K R K R R RZ ZsG 200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK 图形如图1-3所示。

三、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。

① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+=s s G 和15.01)(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1图1-3 比例环节的模拟电路及SIMULINK 图形⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=四、实验结果及分析① 仿真模型及波形图1)(1=s G 和2)(1=s G② 仿真模型及波形图11)(1+=s s G 和15.01)(2+=s s G 11)(1+=s s G 15.01)(2+=s s G③ 积分环节ss G 1)(1=④微分环节⑤比例+微分环节(PD)⑥比例+积分环节(PI)五、分析及心得体会实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和ω对二阶系统性能的影响。

n3.熟练掌握系统的稳定性的判断方法。

二、基础知识及MATLAB函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本知识,了解控制系统的结构和工作原理,以及掌握控制系统的设计和调试方法。

实验仪器,本次实验所使用的仪器有PID控制器、执行器、传感器等。

实验原理,自动控制系统是指通过传感器采集被控对象的信息,经过控制器处理后,通过执行器对被控对象进行调节,以达到设定的控制目标。

其中PID控制器是通过比较被控对象的实际值和设定值,计算出误差,并根据比例、积分、微分三个参数来调节执行器输出的控制信号,使被控对象的实际值逐渐趋近设定值的一种控制方式。

实验步骤:1. 将PID控制器与执行器、传感器连接好,并确认连接正确无误。

2. 设置被控对象的设定值,并观察实际值的变化情况。

3. 调节PID控制器的参数,观察被控对象的响应情况,找到最佳的控制参数组合。

4. 对不同类型的被控对象进行实验,比较不同参数组合对控制效果的影响。

实验结果与分析:通过实验我们发现,合适的PID参数组合能够使被控对象的实际值快速稳定地达到设定值,并且对不同类型的被控对象,需要调节的参数组合也有所不同。

在实际工程中,需要根据被控对象的特性和控制要求来选择合适的PID参数,并进行调试和优化。

结论:本次实验使我们进一步了解了自动控制原理,掌握了PID控制器的基本原理和调试方法,对控制系统的设计和调试有了更深入的理解。

同时也认识到在实际工程中,需要根据具体情况来选择合适的控制方法和参数,进行调试和优化,以达到最佳的控制效果。

通过本次实验,我们对自动控制原理有了更深入的认识,对控制系统的设计和调试方法有了更加清晰的理解,相信这对我们今后的学习和工作都将有所帮助。

自动控制原理_实验报告

自动控制原理_实验报告

一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。

二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。

三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。

它主要由控制器、被控对象和反馈环节组成。

控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。

1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。

比例环节的响应特性为输出信号与输入信号成线性关系。

(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。

积分环节的响应特性为输出信号随时间逐渐逼近输入信号。

(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。

比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。

2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。

PID控制器可以实现对系统的快速、稳定和精确控制。

四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。

2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。

二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。

2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。

3. 将编写好的代码上传至Arduino UNO开发板。

4.将电源适配器连接至系统,确保实验装置正常供电。

5.启动实验系统并观察电机的转动情况。

6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。

五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。

通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。

2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。

这也是导致实际转动角度与目标角度存在差异的一个重要原因。

3.电源适配器的稳定性对电机的转动精度也有一定的影响。

六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。

同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。

为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。

实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-150-100-5050实验一 典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。

实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。

2、 积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1T=0.033与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。

3、 惯性环节if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1520惯性环节传递函数为:K = R f /R 1,T = R f C,(1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf ,0.1μf )时的输出波形。

利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。

T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较小,所以读数时误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。

K=1时波形即为(1)中T0.1时波形K=2时,利用matlab 仿真得到如下结果: t s(5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大K 理论值为2,实验值4.30/2.28,1TS K)s (R )s (C +-=相对误差为(2-4.30/2.28)/2=5.7% 与理论值较为接近。

4、 二阶振荡环节令R 3 = R 1,C 2 = C 11KTSS T 1)s (R )s (C 22++=T = R 1C 1,K = R 2/R 1n ω= 1/T = 1/R 1C 1ξ= 1/2K = R 1/2R 2(1) 取R 1 = R 3 = 100K,C 1 = C 2 = 1μf 既令T = 0.1秒,调节R 2分别置阻尼 比ξ= 0.1,0.5,1○1R2=500k,ξ=0.1时, n ω=10;matlab 仿真结果如下:超调量M p 理论值为e^(-ξ*π/(1-ξ^2)^0.5)=73%,实验值为(3.8-2.28)/2.28=66.7%与理论值较为接近.过渡过程时间理论值(计算时的估计公式)t s =4/(ξ*n ω)=4s ,由matlab 仿真得t s =2.89s ,实验值为3.1s,与仿真得到的理论值相对误差为(3.1-2.89)/2.89=7.2%较为接近。

○2R2=100k, ξ=0.5,n ω=10 ;matlab 仿真结果如下:超调量M p 理论值为e^(-ξ*π/(1-ξ^2)^0.5)=16%,实验值为(2.8-2.28)/2.28=22.8%与理论值较为接近过渡过程时间理论值(计算时的估计公式)t s =4/(ξ*n ω)=0.8s ,由matlab 仿真得t s =0.525s ,实验值为0.59,与仿真得到的理论值相对误差为(0.59-0.525)/0.525=12.4%较为接近。

○3 R2=50k, ξ=1,n ω=10;matlab 仿真结果如下:超调量M p 理论值为0,实验值为(2.28-2)/2.28=12.3%,与理论值吻合。

过渡过程时间理论值,由matlab 仿真得t s =0.48s ,实验值为0.40,与仿真得到的理论值相对误差为(0.48-0.40)/0.48=20%较为接近。

(2)取R 1 = R 3 = 100K,C 1 = C 2 =0.1μf 既令T = 0.01秒,重复进行上述测试。

○1R2=500k,ξ=0.1时, n ω=100;matlab 仿真结果如下: 超调量M p 理论值为e^(-ξ*π/(1-ξ^2)^0.5)=73%,实验值为(3.8-2.28)/2.28=66.7%与理论值较为接近.过渡过程时间理论值(计算时的估计公式)t s =4/(ξ*n ω)=0.4s ,由matlab 仿真得t s =0.29s ,实验值为0.30,与理论值相对误差为(0.30-0.29)/0.29=3.4%较为接近。

○2R2=100k,ξ=0.5时, n ω=100;matlab 仿真结果如下:超调量M p 理论值为e^(-ξ*π/(1-ξ^2)^0.5)=16%,实验值为(2.8-2.28)/2.28=22.8%与理论值较为接近过渡过程时间理论值(计算时的估计公式)t s =4/(ξ*n ω)=0.08s ,由matlab 仿真得t s =0.0525s ,实验值为0.05,与仿真得到的理论值相对误差为(0.0525-0.05)/0.0525=4.8%较为接近。

○3 R2=50k, ξ=1,n ω=10;matlab 仿真结果如下:超调量M p 理论值为0,实验值为(2.28-2)/2.28=12.3%,与理论值吻合。

过渡过程时间理论值,由matlab 仿真得t s =0.048s ,实验值为0.04,与仿真得到的理论值相对误差为(0.048-0.04)/0.048=16.7%较为接近。

六、思考题1、根据实验结果,分析一阶系统t s 与T,K 之间的关系。

参数T 的物理意义? T 越大,ts 越大,ts 与K 无关。

T 反映了系统的瞬态响应速度。

2、根据实验结果,分析二阶系统t s ,M p ,与n ω,ξ之间的关系。

参数n ω,ξ的物理意义? 超调量只与ξ有关,ξ越小,超调量越大;调节时间与n ω*ξ有关,乘积越大,调节时间越小;n ω*ξ反映了系统阶跃响应的衰减程度,n ω反映了阶跃响应的振荡快慢程度。

3、对于图1-5所示系统,若将其反馈极性改为正反馈;或将其反馈回路断开,这时的阶跃响应应有什么特点?试从理论上进行分析(也可在实验中进行观察)变成正反馈或将其反馈回路断开,理论上阶跃响应的大小不断增加,实际中受制于运放的最大输出电压的影响,阶跃响应快速上升,最后达到一个很大的幅值。

4、根据所学习的电模拟方法,画出开环传递函数为)1S T 2S T )(1S T (K)s (G 22221+ξ++=的单位反馈系统的模拟线路图,并注明线路图中各元件参数(用R 、C 等字符表示)和传递函数中参数的关系。

易知将一个一阶惯性环节与图1-5所示电路串联起来后,再加一个单位反相比例环节即可实现,电路图如下其中应有R3=R1,C2=C1,于是K=Rf/R1,T1=Rf*C,T2=R1*C1,ζ=R1/(2*R2)。

实验二开环零点及闭环零点作用的研究实验电路图见附件(a)选择T=3.14s,K=3.14,T(S)=L(S)/1+L(S)=3.14/3.14S^2+S+3.14利用MATLAB仿真如下Mp:理论值1.6 实际值1.7 相对误差6.25%tp:理论值3.26 实际值 2.9 相对误差11.0%ts:理论值23 实际值 24.2 相对误差5.2%(b) Td=0.033T(S)=L(S)/1+L(S)=1.0362S+3.14/3.14S^2+4.1762S+3.14 利用MATLAB仿真Mp:理论值1.065 实际值1.15 相对误差8.0% tp:理论值3.68 实际值3.6 相对误差2.2%ts:理论值5.77 实际值6.0 相对误差4.0%(c) T(S)=L(S)/1+L(S)=3.14/3.14S^2+4.1762S+3.14利用MATLAB仿真Mp:理论值1.06 实际值1.08 相对误差2.0%tp:理论值4.12 实际值4.3 相对误差4.4%ts:理论值6.09 实际值6.2 相对误差1.8%比较实验二、三,知开环零点加快了瞬态响应;比较实验一、三,知闭环零点改善了整体的闭环性能,其主要原因是改变了阻尼比。

由实验结果可知,增加比例微分环节后系统的瞬态响应改善了,其根本在于增大了阻尼比。

而第二个实验中由于引进了开环零点,所以其性能与第三个不一样。

实验心得及体会提前预习,熟悉电路图,设计好参数对完成实验有很大的帮助,可以起到事半功倍的效果,要养成提前预习的习惯。

思考题为什么说系统的动态性能是由闭环零点,极点共同决定的?从时域和频域的关系来看,极点的位置决定了系统的响应模态,而零点的位置决定了每个模态函数的相对权重。

实验三控制系统稳定性研究一、实验数据本实验的线路图如下,其中R11=R12=R21=R31=100K,1.对于方案一,取R13=R22=1M,C1=1μ,C2=10μ,R3=100K,C3=1μ,由实验现象得知,对任意α∈(0,1),系统均稳定,且α越大,响应速度越快,幅值也越大。

对于方案二,C3=1μ,知对于任意α系统仍稳定,且α越大,响应速度越快,幅值也越大。

方案三中R32=1M,C3=1μ,当输出呈现等幅振荡时,α=0.0192. 对于第一组,由实验可知对任意α∈(0,1)系统均稳定,且α越大,响应速度越快,幅值也越大。

第二组中,当输出呈现等幅振荡时,α=0.5103. 仍选择以上电路,要使T=RC=0.5s,可选取R=500K,C=1μ。

而由以上传a=1时,R13=R22=R32=500K,C1=C2=C3=1μ。

实验测得当输出开始呈现缓慢衰减,K=809.1Hz。

a=2时,R13=1M,R22=500K,R32=250K,C1=C2=C3=1μ。

实验测得当输出开始呈现缓慢衰减,K=924.1Hz。

a=5时,R13=250K,C1=10μ,R22=500K,C2=1μ,R32=100K,C3=1μ。

此时发现对任意α∈(0,1)系统均稳定。

二、数据处理1.对于前三个方案,由Hurwitz判据易知α=1.22,11.1,0.0242时系统临界稳定。

而实验中α不可能大于1,故前两个实验中系统均稳定,而第三个实验中测得α=0.019,与理论值相对误差为(0.0242-0.019)/0.0242=21.4%。

相关文档
最新文档