正确安装热电偶

正确安装热电偶
正确安装热电偶

正确安装热电偶,

防止热处理设备温度显示超差

第一,在热处理炉中安装热电偶要考虑四要素(测量范围、准确度、温场分布、炉内气氛)。

第二,选定型号、分度号和相应材料保护套管的热电偶。应尽可能让热电偶工作端的温度代表被加热物的温度或使热电偶工作端处于有代表性的均匀温场中。

第三,实施安装

1、箱式电阻炉热电偶的安装

①热电偶不能安装在温场的死角区域,要方便更换和维修。一般安装在顶部中间后三分之一处,插入深度大于200mm,接近被加热零件的真实温度。安装热电偶的孔和热电偶保护管之间的空隙,一定要用绝缘物密封,以减小热电偶工作端的热交换,否则测出的实际温度较仪表显示温度偏低。

②如果是盐炉,安装热电偶时,必须远离加热电极,以免影响测量准确度。

2、窖式加热炉热电偶的安装

①热电偶同样不能安装在死角,保证方便更换的同时,一般安装在两侧中间后三分之一处,插入深度大于200mm,若插入深度大于1m 时,要选择垂直插入,并固定,否则影响仪表示值的准确。

②设备上安装空隙,同样要密封。

3、井式炉热电偶的安装

①根据井式炉底部温度偏低,上部温度不均勾特点,安装热电偶要尽

量对称或呈九十度夹角安装在腰部。

②如果是深井式炉,应安装二支或三支热电偶。

4、敞开式淬火炉或回火炉热电偶的安装

①可用埋入式热电偶测量热处理介质的温度,300℃以下选择热电阻,300℃以上选择电偶。

②外套管可选用石墨或氧化锆等耐腐蚀材料,内套管装两层,以保护热电偶。

第四,热电偶与控温仪表的连接

①热电偶、补偿导线和测量仪表三者的极性要正极接正极,负极接负极。

②补偿导线如遇动力电缆时,两者应交叉走线,避免平行,防止感应电流影响温度的显示。

热电偶安装手册(中英文)

WR系列热电偶 WR Series Thermocouple WZ系列热电阻 WR Series Thermocouple 使用安装手册Installation & Operation Manual 安徽天康(集团)股份有限公司Anhui Tiankang (Group) Shares Co., Ltd

目录 Index 1、概述General Description (1) 2、工作原理Operation Theory (1) 3、结构Configuration (2) 4、主要技术参数Main Technical Parameters (3) 5、安装及使用Installation & Operation (5) 6、可能发生的故障及维修Possible Troubles & Maintenance (7) 7、运输及储存Transportation & Storage (8) 8、订货须知Notices in Ordering (8) 9、型号命名Type Naming (9)

1、概述General Description 工业用热电偶作为温度测量和调节的传感器,通常与显示仪表等配套,以直接测量各种生产过程中-40~1600℃液体、蒸汽和气体介质以及固体表面温度; As sensor for temperature measuring and regulation, industrial-purpose thermocouple is usually connected with display meter and other meters to directly measure temperature of liquid, vapor, gas and solid surface ranging from -40℃to 1600℃. 工业用热电阻作为温度测量和调节的传感器,通常与显示仪表等配套,以直接测量各种生产过程中-200~500℃液体、蒸汽和气体介质以及固体表面温度。 As sensor for temperature measuring and regulation, industrial-purpose thermal resistance is usually connected with display meter and other meters to directly measure temperature of liquid, vapor, gas and solid surface ranging from -200℃to 500℃. 2、工作原理Operation Theory1 热电偶工作原理Operation Theory of Thermocouple 热电偶工作原理是基于两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。 热电偶由两根不同导线(热电极)A和B组成,它们的一端T1是互相焊接的,形成热电偶的测量端T1(也称工作端)。将它插入待测温度的介质中;而热电偶的另一端T0(参比端或自由端)则与显示仪表相连,如果热电偶的测量端与参比端存在温度差,则显示仪表将指出热电偶产生的热电动势。 热电偶的热电动势随着测量端温度的升高而增大,它的大小只与热电偶的材料和热电偶两端的温度有关,而与热电级的长度、直径无关。 Thermocouple is based on physical phenomenon that two conductor of different materials is connected to form return circuit, when temperature on both contact is different, it results in thermoelectric potential in return circuit. 热电阻工作原理Operation Theory of Thermal Resistance 热电阻是利用金属导体或半导体有温度变化时本身电阻也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地绕在绝缘材料作成的骨架上,当被测介质有温度梯度时,则所测得的温度是感温元件所在范围内介质层的平均温度。 制造热电阻的材料应具有以下特点:大的温度系数,大的电阻率,稳定的化学物理性能和良好的复现性等。在现有的各种纯金属中,铂、铜和镍是制造热电阻的最合适的材料。其中铂因具有易于提纯,在氧化性介质中具有高的稳定性以及良好的复现性等显著的优点,而成为制造热电阻的理想材料。 It is based on that temperature change of material results in change of its resistance. When resistance value changes, the working instrument will display relevant temperature. 3、结构Configuration 感温元件直径及材料Diameter & Material of Thermal Elements 热电偶Thermocouple

热电偶测温不准解决方案总结

热电偶测温不准解决方案 总结 Prepared on 22 November 2020

热电偶测温不准解决方案总结 热电偶作为工业测温中最广泛使用的温度传感器之一,在水泥厂和钢铁厂使用的很多,主要用在链篦机和回转窑上等设备上。这次在现场就用到了三种型号的热电阻,分别是K,N和S型的。经过一段时间的使用,发现并不是很理想。经检测,链篦机的一些风箱现场实际温度比中控显示低50℃左右,由此可见热电偶出现测温不准问题还是很常见的。 造成热电偶失准的常见原因: ◆的补偿导线接反。这主要是安装时出现的问题,负责接线的人员一 时的粗心造成,属人为因数。当出现热电偶的接反情况时,中控画 面的显示通常比实际值偏大或偏小。 ◆补偿电阻故障。此类故障表现为热电偶接上后温度显示值缓慢上升 或下降。 ◆的补偿导线绝缘层被磨破,造成信号回路接地。这主要是因为补偿 导线较硬,而且在接线盒内又未被安放平整,处理故障时多次旋拧 接线盒盖碰到补偿导线而将其磨破。此类故障反映在中控画面上其 温度示值一般偏小。 ◆接线盒内接线端子接触不良。因补偿导线和热电偶的导线都比较 硬,所以现场检修时紧固接线比较困难,有时候开始把导线拧紧了 但过段时间随着导线的变形又松了。此类故障反映在操作员控制站 上的温度示值为无显示或显示值超量程。

◆热电偶的头部严重磨损。由于链篦机和回转窑内的粉尘和烟气对热 电偶的头部包括护套管冲刷后严重磨损,将护套管改由耐磨钢材料 制成后,才消除了此类故障隐患。 ◆信号屏蔽系统DCS柜内接地不良。由于热电偶出来的信号时mv级信 号,因此很容易在传到中控时受到干扰,此类故障极容易造成电荷在 信号线上积累,引起信号漂移或晃动。 这次这边的问题主要出现在补偿导线上。 下面对热电偶补偿导线作一个详细的解释: 要了解热电偶的温度补偿问题,就要从热电偶的原理作手,对于已选定的热电偶,当参比端温度恒定时,则总的热电动势就成测量端温度的单值函数。即一定的热电势对应着一定的温度,而热电偶的分度表中,参比端温度均为0度。但在应用现场,参比端温度千差万别,不可能都恒定在0度,这就会产生测量误差,这就是热电偶要进行温度补偿的原因。由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。 热电偶测温使用补偿线时,必须注意以下几点: 1.补偿导线必须与相应型号的热电偶配用;

热电偶的检定方法

K分度号铠装热电偶校验方法: 1、经外观检查合格的新制热电偶,在检定示值前,应在最高检定点温度下,退火2 h 后,随炉冷却至250℃以下,使用中的热电偶不退火。 2、热电偶的测量端应处于检验炉最高温区中心;标准热电偶应与管式炉轴线位置一致。 3、检验炉炉口沿热电偶束周围,用绝缘耐火材料堵好。 4、检定顺序,由低温向高温逐步升温检定,炉温偏离检定点温度不应超过±5℃。 5、当炉温升到检定点温度,炉温变化小于0.2℃/min时,可以开始读取数据和测量信号。 6、读数应迅速准确,时间间隔应相近,测量读数不应小于4次,测量炉炉温度变化不大于±0.25℃。 7、测量时将所有测量数据填写在工作用热电偶检定记录表上(见附表) 8、详细请参见《JJG351--96工作用廉金属热电偶检验规程》。 在线取出热电偶操作方法 1、常温下直接取出热电偶即可。 2、高温下不能直接取出热电偶,高温下每取出10cm等待5分钟直至全部取出。 3、将取出的热电偶拿到校验炉进行校验,并把校验结果填入工作用热电偶检定记录表。 网带表面温度测量方法: 测量时网带上需无产品 1、把铠装热电偶端头用扎丝固定在网带中间,开动网带以正常速度前进。 2、向前行进2.5m后停止网带,在离铠装热电偶端头2m的位置再加扎丝固定后继续开启网 带前进。在后面可以视铠装热电偶行进情况在适当位置加扎丝固定。 3、当网带行进到氧化第一区位置时,停止网带5分钟待仪表显示数稳定后读出数据记录到 表格上,同时也读出该温区仪表显示值记录到表格。 4、按上面方法测量其它区温度并记录表格中。 5、测量完毕后抽出铠装热电偶和除去网带上残留的扎丝。

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

热电偶安装和插入深度要求详细说明

热电偶安装和插入深度要求详细说明 热电偶工业测量仪表的一种产生,它的测温范围广泛,它的连接方式多样,它的安装简单方便?热电偶作为主要测温手段,用途十分广泛,因而对固定装置和技术性能有多种要求,因此热电偶的固定装置分为六种:无固定装置式、螺纹式、固定法兰式、活动法兰式、活动法兰角尺形式、锥形保护管式六种。正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。 热电偶是由两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当两个接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶安装要求:应注意有利于测温准确,安全可考及维修方便,而且不影响设备运行和生产操作.要满足以上要求,为了使热电偶和热电阻的测量端与被测介质 之间有充分的热交换,应合理选择测点位置,尽量避免在阀门,弯头及管道和设备的死角附近装设热电偶或热电阻. 带有保护套管的热电偶和热电阻有传热和散 热损失,为了减少测量误差,热电偶和热电阻应该有足够的 热电偶插入深度要求: (1)对于测量管道中心流体温度的热电偶,一般都应将其测量端插入到管道中心 处(垂直安装或倾斜安装).如被测流体的管道直径是200毫米,那热电偶或热电 阻插入深度应选择100毫米; (2)对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套对流 体的阻力和防止保护套在流体作用下发生断裂,可采取保护管浅插方式或采用热套式热电偶.浅插式的热电偶保护套管,其插入主蒸汽管道的深度应不小于75mm;热套式热电偶的标准插入深度为100mm; (3)假如需要测量是烟道内烟气的温度,尽管烟道直径为4m,热电偶或热电阻插 入深度1 m即可. (4)当测量原件插入深度超过1m时,应尽可能垂直安装,或加装支撑架和保护套管.

热电偶的安装方法

正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。安装不正确,热导率和时间滞后等误差,它们是热电偶在使用中的主要误差。 1、安装不当引入的误差 如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度超过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。 2、绝缘变差而引入的误差 如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。 3、热惰性引入的误差 由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,最有效的办法是尽量减小热端的尺寸。使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

温度传感器的结构和安装方法精编版

热电偶的结构 热电偶前端接合的形状有3种类型,如图2.5所示。可根据热电偶的类型、线径、使用温度,通过气焊、对焊、电阻焊、电弧焊、银焊等方法进行接合。 在工业应用中为了便于安装及延长热电偶的使用寿命,通常使用外加套管的方式。套管一般分为保护管型和铠装型。 1.带保护管的热电偶 是将热电偶的芯线以及绝缘管插入保护管使用的热电偶。保护管在防止芯线氧化、腐蚀的同时,还可以保持热电偶的机械强度。保护管有多种类型,常用的如下表所示。

氮化硅管 1400 1600 与碳化硅管大致相同,适用于熔融铝 Si3N4 2.铠装型热电偶 铠装热电偶的测量原理与带保护管的热电偶相同。它使用纤细的金属管(称为套管)作为上图中绝缘管(陶瓷)的替代品,并使用氧化镁(MgO)等粉末作为绝缘材料。由于其外径较细且容易弯曲,所以最适合用来测量物体背面与狭小空隙等处的温度。此外,与带保护管的热电偶相比,其反应速度更为灵敏。铠装热电偶的套管外径范围较广,可以拉长加工为8.0mmф到0.5mmф的各种尺寸。芯线拉伸得越细,常用温度上限越低。如K型热电偶,套管外径0.5mmф的常用温度上限是600℃,8.0mmф的是1050℃。 热电阻的结构 如下图所示,热电阻的元件形状有3种,目前陶瓷封装型占主导地位。陶瓷封装型用于带保护管的热电阻以及铠装热电阻。陶瓷与玻璃封装型的铂线裸线直径为几十微米左右,云母板型的约为0.05mm。引线则使用比元件线粗很多的铂合金线。

热电阻元件的种类 带保护管的热电阻图例 温度传感器的安装方法 1. 安装实例和测量误差 热电偶和热电阻在设备中的安装方法和测量误差如下图所示。安装时要注意机械强度,特别是高温中保护管的变形。另外,为了避免保护管的热损失对元件温度的影响,需要考虑流向和保护管的外形、插入长度、保温、隔热等问题。

热电偶使用方法

文档说明:MAXIM6675是MAXIM公司推出的具有冷端补偿的单片K型热电偶数字转换器。本文主要介绍了MAX6675的特性和工作原理, 详细阐述了该芯片在铝水平温度测量仪中的应用,给出了与89C51单片机的接口电路和程序设计。 K型热电偶是工业生产中最常用的温度传感器,具有结构简单、制造容易、使用方便、测温范围宽等特点。目前,在以K型热电偶为测温元件的工业测温系统中,热电偶输出的热电势信号必须经过中间转换环节,才能输入基于单片机的嵌入式系统。中间转换环节包括信号放大、冷端补偿、线性化及数字化等几个部分,实际应用中,由于中间环节较多,调试较为困难,系统的抗干扰性能往往也不理想。在铝水平温度测量仪的研制中,我们采用了MAXIM公司新近推出的MAX6675,它是一个集成了热电偶放大器、冷端补偿、A/D转换器及SPI串口的热电偶放大器与数字转换器,可以直接与单片机接口,大大简化系统的设计,保证了温度测量的快速、准确。 1 MAX6675特性 1.1 特性 MAX6675是具有冷端补偿和A/D转换功能的单片集成K型热电偶变换器,测温范围0℃~1024℃,主要功能特点如下: ·直接将热电偶信号转换为数字信号 ·具有冷端补偿功能 ·简单的SPI串行接口与单片机通讯 ·12位A/D转换器、0.25℃分辨率 ·单一+5V的电源电压 ·热电偶断线检测 ·工作温度范围-20℃~+85℃ 1.2 引脚功能 MAX6675采用SO-8封装形式,有8个引脚,脚1(GND)接地,脚2(T-)接热电偶负极,脚3(T+)接热电偶正极,脚4(VCC)电源端,脚5(SCK)串行时钟输入端,脚6(CS)片选端,使能启动串行数据通讯,脚7(SO)串行数据输出端,脚8(NC)未用。在VCC和GND之间接0.1μF电容。 MAX6675的引脚如图1所示。 1.3 工作原理 MAX6675是一复杂的单片热电偶数字转换器,其内部结构如图2所示。主要包括:低噪声电压放大器A1、电压跟随器A2、冷端温度补偿二极管、基准电压源、12位AD 转换器、SPI串行接口、模拟开关及数字控制器。 其工作原理如下:K型热电偶产生的热电势,经过低噪声电压放大器A1和电压跟随器A2放大、缓冲后,得到热电势信号U1,再经过S4送至ADC。。对于K型热电偶,电压变化率为(41μV/℃),电压可由如下公式来近似热电偶的特性。 U1=(41μV/℃)×(T-T0) 上式中,U1为热电偶输出电压(mV),T是测量点温度;T0是周围温度。 在将温度电压值转换为相应的温度值之前,对热电偶的冷端温度进行补偿,冷端温度即是MAX6675周围温度与0℃实际参考值之间的差值。通过冷端温度补偿二极管,产生补偿电压U2经S4输入ADC转换器。 U2=(41μV/℃)×T0 在数字控制器的控制下,ADC首先将U1、U2转换成数字量,即获得输出电压U0的数据,该数据就代表测量点的实际温度值T。这就是MAX6675进行冷端温度补偿和测量温度的原理。

热电偶的正确使用

热电偶的正确使用 2007-07-17 15:01 热电偶的正确使用 正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。安装不正确,热导率和时间滞后等误差,它们是热电偶在使用中的主要误差。 1 安装不当引入的误差 如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度超过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。 2 绝缘变差而引入的误差 如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。 3 热惰性引入的误差 由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,最有效的办法是尽量减小热端的尺寸。使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。 4 热阻误差 高温时,如保护管上有一层煤灰,尘埃附在上面,则热阻增加,阻碍热的传导,这时温度示值比被测温度的真值低。因此,应保持热电偶保护管外部的清洁,以减小误差 热电偶极性判断方法 2007-07-17 14:59

温度传感器的结构和安装方法

温度传感器的结构和安 装方法 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

热电偶的结构 热电偶前端接合的形状有3种类型,如图所示。可根据热电偶的类型、线径、使用温度,通过气焊、对焊、电阻焊、电弧焊、银焊等方法进行接合。 在工业应用中为了便于安装及延长热电偶的使用寿命,通常使用外加套管的方式。套管一般分为保护管型和铠装型。 1.带保护管的热电偶 是将热电偶的芯线以及绝缘管插入保护管使用的热电偶。保护管在防止芯线氧化、腐蚀的同时,还可以保持热电偶的机械强度。保护管有多种类型,常用的如下表所示。 材质 常用 温度℃最高使用 温度℃ 概要 金属保护管SUS304850950 适用于高温、酸性、碱性环境, 不适用于氧化性、还原性气体环境 SUS316850950比SUS304在高温中的耐蚀性好 SUS301S10001100Ni、Cr的含量高,耐热性强 SandviRP410501200 27Cr钢,适用于高温环境, 不适用于氧化性、还原性气体 Kanthal A-1 11001350Cr24%、%的耐热钢、在高温中机械强度高 镍铬合金11001250 Ni80%、Cr20%、适用于氧化环境,不适用于硫化、

还原性气体环境 非金属保护管石英管QT10001050抗热冲击性强,但机械强度低 陶瓷管 PT2 14001450氧化铝质,气密性优 高铝管 PT1 15001550同上,抗热冲击性弱 刚玉管 PT0 16001750高纯度铝管,抗热冲击性最弱 碳化硅管 SiC 1250 1550 1350 1600 抗热冲击性强,但气密性差 在双保护管的外管上使用 氮化硅管 Si3N4 14001600与碳化硅管大致相同,适用于熔融铝 2.铠装型热电偶 铠装热电偶的测量原理与带保护管的热电偶相同。它使用纤细的金属管(称为套管)作为上图中绝缘管(陶瓷)的替代品,并使用氧化镁(MgO)等粉末作为绝缘材料。由于其外径较细且容易弯曲,所以最适合用来测量物体背面与狭小空隙等处的温度。此外,与带保护管的热电偶相比,其反应速度更为灵敏。铠装热电偶的套管外径范围较广,可以拉长加工为ф到ф的各种尺寸。芯线拉伸得越细,常用温度上限越低。如K型热电偶,套管外径ф的常用温度上限是600℃,ф的是1050℃。 热电阻的结构

J型热电偶采集模块使用说明

J型热电偶采集模块使用说明 一.概述 8通道模拟量热电偶信号混合型采集模块,采用最新技术和进口原装芯片.具有精度高,性能稳定,抗干扰强,隔离,高速经济的特点,能在恶劣环境下运行. RS485接口,支持Modbus RTU ,DECON标准协议,停止位和波特率随意设置,是PLC控制系统扩展热电偶采集的最佳选择.可以直接连接PLC、DCS 以及国内外各种组态软件(亚控组态力控组态MCGS等等)。 二.技术指标 型号:TDAM7018 通道数: 8通道 信号类型:K,J,E,R,S,N,T,B,钨铼(2000多度)等型热电偶,通过软件设置各通讯输入类型 电流采集范围:±20mA, 0-20 mA, 4-20Ma 电压采集范围:±1000mV或±10V ±5V,±100mV,±500mV, ±1V 精度:0.1级 分辩率: 24位 扫描周期:100ms 采样频率:AD采样频率每通道1000次/秒,数据刷新3次/秒 通讯接口:RS485接口.光电隔离,ESD保护. 标准协议:MODBUS-RTU DECON协议 工作电源:9-36VDC 功耗: 1.0W 冷端补偿误差: <±1℃. 环境温度:温度-20~70℃ 相对湿度:≤85% RH 无凝结 通讯距离:1200米,可加中继延长 安装方式:DIN35mm标准导轨卡装或螺钉固定. 产品外观尺寸:100*70*26MM 含端子尺寸:120*70*26MM 三.功能和特点 z8路差分输入:提供高过压保护和传感器断线检测功能;抗干扰强隔离,高速经济,使用范围广. z采样频率: AD采样频率每通道1000次/秒,数据刷新3次/秒 z通讯接口: RS485接口. 隔离电压: 3000 VDC. z RS485通信: 光电隔离,ESD保护.通信部分电源隔离,信号采用高速光耦光电隔离,使通信更稳定可过压过流保护,TVS管保护,全方位保护通信芯片! z标准协议: 支持DCON和Modbus RTU协议,停止位和波特率随意设置,是PLC控制系统扩展模拟量或热电偶采集的最佳选择. z业界独创1: 采用PT1000作为冷端补偿,冷端补偿温度精度更高,性能更稳定,模块内置测温元件,自动完成热电偶冷端温度补偿; z业界独创2: 唯一能采2000多度的钨铼型热电偶 z热电偶输入过压保护:±220V. 输入阻抗: 20兆欧姆. z电源输入端: 具有直流滤波器功能,抗干扰能力强,适用于恶劣环境下运行.

热电偶测温原理及冷端温度补偿方法

热电偶测温原理及冷端温 度补偿方法 Prepared on 22 November 2020

热电偶测温原理及冷端温度补偿方法 院系:化工学院化机系 班级: 姓名: 学号: 热电偶测温原理及冷端温度补偿方法热电偶温度计是以热电效应为基础的测温仪表,温精确度高,显示仪表配合,广泛用来测量气体、蒸汽、液体等介质-200℃~16000℃范围内的温度,殊情况下可测-2700℃~28000℃,态响应快,惯性小,械强度高,压性能好,高温可达28000℃,震性能好,且便于信号的远距离传送和实现多点切换测量,自动记录和集中控制,能稳定、测量精度高、准确可靠、使用寿命长、结构简单、制造容易、装配简单、更换方便和使用维护方便,测量范围广,可作为标准计量,量值传递之用,以在科学研究和工业生产中应用广泛,为测温仪表,建筑环境与设备工程中应用也非常广泛。 热电偶测温的测温系统的热电偶温度计由热电偶、电测仪表和连接导线组成。测温原理基于物理学中“热电效应”现象,是把任意两种不同的导体(或半导体)连接成闭合回路,果两个接点的温度不同,回路中就会产生热电势,热电流,就是“热电效应”。热电偶温度计就是利用该原理,两种不同的金属材料一端焊接而成

的,接的一端叫测量端(也叫热端或工作端),未焊接的一端叫参考端(也叫冷端或自由端),如果参考端的温度恒定不变,热电势的大小和方向就只与这两种材料的特性和测量端的温度有关,热电势和温度之间有一个固定的函数关系,用这个关系,要测量出热电势的大小,配以测量毫伏级电势信号的仪表或变送器就实现了温度的测量或温度信号的变换。 在进行温度测量时,热电偶热端插入被测温的设备或管道中,其热端感受被测介质的温度,冷端置于恒定的温度之下,用连接导线连接电气测量仪表。根据热电偶基本定律之一的中间导体定律,热电偶回路中接入第三种金属材料时,要该材料两个接点的温度相同,电偶所产生的热电势将保持不变,不受第三种金属接入回路中的影响。因此,热电偶测温时,接入测量仪表,得热电动势后,可知道被测介质的温度。 热电偶测温系统的冷端温度补偿方法:由热电偶测温原理可知,电势的大小与热电偶两端的温度有关。只有当热电偶冷端温度保持不变时,电势才是被测温度的单值函数。因此,准确地测量温度,须使其参考端温度恒定,电偶冷端最好应保持0℃,般固定在0℃,在现场条件下使用的仪表则难以实现,此必须对其参考端进行温度补偿修正,确保温度测量的准确性。 工业上常用的各种热电偶的温度———热电势关系曲线(或数据)是在冷端温度为0℃时得到的,它配套的仪表也是依据这一关系进行刻度的。但在实际应用中,冷端温度往往高于0℃,不稳

热电偶基本原理和使用方法

热电偶基本原理和使用方法 常用热电偶分度号有 S、B、K、E、T、J等,这些都是标准化热电偶。其中K型也即镍铬一镍硅热电偶,它 是一种能测量较高温度的廉价热偶。由于这种合金具有较好的高温抗氧化性,可适用于氧化性或中性介质中。它可长期测量 1000 度的高温,短期可测到 1200 度。它不能用于还原性介质中,否则,很快腐蚀,在此情况下只能用于500度以下的测量。它比 S型热偶要便宜很多,它的重复性很好,产生的热电势大,因而灵敏度很高,而且它的线性很好。虽然其测量精度略低,但完全能满足工业测温要求,所以它是工业上最常用的热电偶。 概述: 作为工业测温中最广泛使用的温度传感器之一——热电偶,与铂热电阻一起,约占整个温度传感器总量的 60%热电偶通常和显示仪表等配套使用,直接测量各种生产过程中-40?1800C范围内的液体、蒸气和气 体介质以及固体的表面温度。 热电偶工作原理: 两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿 端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: (1)热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数; (2)热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; (3)当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。 热电偶的基本构造: 工业测温用的热电偶,其基本构造包括热电偶丝材、绝缘管、保护管和接线盒等。 一、常用热电偶丝材及其性能 1、铂铑10—铂热电偶(分度号为S,也称为单铂铑热电偶) 该热电偶的正极成份为含铑 10%的铂铑合金,负极为纯铂;它的特点是: (1)热电性能稳定、抗氧化性强、宜在氧化性气氛中连续使用、长期使用温度可达1300C,超达1400C 时,即使在空气中、纯铂丝也将会再结晶,使晶粒粗大而断裂;

正确安装热电偶

正确安装热电偶, 防止热处理设备温度显示超差 第一,在热处理炉中安装热电偶要考虑四要素(测量范围、准确度、温场分布、炉内气氛)。 第二,选定型号、分度号和相应材料保护套管的热电偶。应尽可能让热电偶工作端的温度代表被加热物的温度或使热电偶工作端处于有 代表性的均匀温场中。 第三,实施安装 1、箱式电阻炉热电偶的安装 ①热电偶不能安装在温场的死角区域,要方便更换和维修。一般安装在顶部中间后三分之一处,插入深度大于200mm,接近被加热零件的真实温度。安装热电偶的孔和热电偶保护管之间的空隙,一定要用绝缘物密封,以减小热电偶工作端的热交换,否则测出的实际温度较仪表显示温度偏低。 ②如果是盐炉,安装热电偶时,必须远离加热电极,以免影响测量准确度。 2、窖式加热炉热电偶的安装 ①热电偶同样不能安装在死角,保证方便更换的同时,一般安装在两侧中间后三分之一处,插入深度大于200mm,若插入深度大于1m 时,要选择垂直插入,并固定,否则影响仪表示值的准确。 ②设备上安装空隙,同样要密封。 3、井式炉热电偶的安装 ①根据井式炉底部温度偏低,上部温度不均勾特点,安装热电偶要尽 量对称或呈九十度夹角安装在腰部。

②如果是深井式炉,应安装二支或三支热电偶。 4、敞开式淬火炉或回火炉热电偶的安装 ①可用埋入式热电偶测量热处理介质的温度,300℃以下选择热电阻,300℃以上选择电偶。 ②外套管可选用石墨或氧化锆等耐腐蚀材料,内套管装两层,以保护热电偶。 第四,热电偶与控温仪表的连接 ①热电偶、补偿导线和测量仪表三者的极性要正极接正极,负极接负极。 ②补偿导线如遇动力电缆时,两者应交叉走线,避免平行,防止感应电流影响温度的显示。

热电偶测温基本原理

A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1) 在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3 ) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补

热电偶测量温度原理.

1、2两点的温度不同时,回路中就会产生热电势,因而?就有电流产生,电流表就会?发生偏转,这一现象称为热?电效应(塞贝克效应),产生的电势、电流分别叫热电?势、热电流。 热电偶温度计属于接触式温度测量仪表。是根据热电效应即塞贝克效应原理来测量温度的,是温度测量仪表中常用的测温元件。将不同材料的导体A、B接成闭合回路,接触测温点的一端称测量端,一端称参比端。若测量端和参比端所处温度t和t0 不同,则在回路的A、B之间就产生一热电势EAB(t,t0 ),这种现象称为塞贝克效应,即热电效应。EAB大小随导体A、B的材料和两端温度t和t0 而变,这种回路称为原型热电偶。在实际应用中,将A、B的一端焊接在一起作为热电偶的测量端放到被测温度t处,而将参比端分开,用导线接入显示仪表,并保持参比端接点温度t0稳定。显示仪表所测电势只随被测温度而t变化。 第一节热电偶的测温原理 在1821年德国医生塞贝克在实验中发现热电效应以来,经珀尔帖、汤姆逊以及开尔文等科学家的大量研究,热电效应理论得到了不断的发展,并日趋完善。热电偶是热电效应的具体应用之一,它在温度测量中得到了广泛的应用,热电偶具有结构简单、容易制造、使用方便和测量精度高等优点。可用于快速测温、点温测量和表面测量等,但是热电偶也存在着不足的地方,如使用的参考端温度必须恒定,否则将歪曲测量结果;在高温或长期使用中,因受被测介质或气氛的作用(如氧化、还原等)而发生劣化,降低使用寿命。尽管如此,热电偶仍在工业生产和科研活动中起着举足轻重的作用。下面我们从三个热电效应的阐述中来讨论热电偶的测温原理。 一、塞贝克效应和塞贝克电势 热电偶为什么能用来测量温度呢?这就是从热能和电能的相互转化的热电现象说起。在1821年,塞贝克通过实验发现一对异质金属A、B组成的闭合回路(如图1-1)中,如果对

相关文档
最新文档