我国航天测控系统体制与技术现状以及发展

合集下载

智能测控工程在航空航天领域的发展与应用

智能测控工程在航空航天领域的发展与应用

智能测控工程在航空航天领域的发展与应用在当今科技飞速发展的时代,航空航天领域的进步无疑是人类探索未知、追求梦想的璀璨成果之一。

而智能测控工程作为其中的关键技术,正发挥着日益重要的作用,为航空航天事业的发展提供了强大的支持和保障。

航空航天领域对于测控技术的需求极为严格和复杂。

从航天器的发射、运行,到飞行器的导航、控制,每一个环节都离不开精准、可靠的测控系统。

智能测控工程凭借其先进的技术手段和强大的功能,有效地满足了这些需求,并不断推动着航空航天技术的革新。

在航天器的发射阶段,智能测控系统能够对火箭的各项参数进行实时监测和分析。

例如,通过传感器获取火箭的加速度、温度、压力等数据,并迅速传输到地面控制中心。

地面工作人员可以根据这些数据及时调整发射策略,确保火箭按照预定轨迹升空,从而提高发射的成功率和安全性。

在航天器的运行过程中,智能测控工程更是发挥着不可或缺的作用。

它能够对航天器的轨道、姿态、能源等进行精确测量和控制。

通过卫星通信技术,将航天器上的信息实时回传至地面,地面控制中心可以根据这些数据对航天器进行远程操控和管理。

同时,智能测控系统还能够对航天器所处的空间环境进行监测,如磁场、辐射等,为航天器的正常运行提供环境保障。

飞行器的导航和控制也是智能测控工程的重要应用领域。

在现代航空领域,飞机的自动驾驶系统、导航系统等都依赖于智能测控技术。

通过卫星定位、惯性导航等多种手段,实现对飞机位置、速度、高度等参数的精确测量,并根据预设的航线和飞行规则进行自动控制。

这不仅提高了飞行的安全性和准确性,还减轻了飞行员的工作负担。

智能测控工程在航空航天领域的发展得益于多种先进技术的融合。

传感器技术的不断进步使得能够获取更加丰富和精确的测量数据。

例如,高精度的加速度传感器、陀螺仪、压力传感器等为测控系统提供了可靠的数据源。

同时,通信技术的发展也为测控数据的传输提供了更高速、更稳定的通道。

从早期的无线电通信到如今的卫星通信、激光通信等,数据传输的速率和质量不断提升,确保了地面控制中心能够及时获取和处理航天器和飞行器的信息。

2024-2024年中国航空航天产业现状及发展趋势分析

2024-2024年中国航空航天产业现状及发展趋势分析

一、中国航空航天产业现状
1、发展历程
中国航空航天产业的发展可以追溯至20世纪70年代,当时国家对航
空事业进行了计划引导和大力发展。

其中,大力推进了民用航空事业的发展,但迄今民用航空事业仍然是航空航天产业的重要组成部分,使航空航
天产业日趋成熟。

随着中国综合国力的日益提高,中国航空航天产业也日渐完善,已成
为目前全球重要的航空航天产业之一、在过去15年中,中国航空航天产
业发展迅速,其中大量重大技术创新、企业发展、应用示范和行业等突出
亮点,尤其是民用航空事业的发展催生了行业变革。

2、发展现状
进入21世纪以来,中国航空航天产业发展已达到历史最高水平,实
现了由航空航天技术引领、创新型产业发展的跨越式发展。

中国航空产业
离不开计划引导、政策支持、技术突破和市场特征共同作用。

目前,中国航空航天产业已成为全球最大的综合性航空航天产业之一,成为全球最具活力的航空航天发展动力,为国家经济发展做出了积极贡献。

2023年,中国航空航天产业实现增加值超过6666.66亿元。

到2023年,产业增加值突破11.2万亿元,实现近5倍的增长,连续5年保持20%以上增长速度。

从主要指标来看,航空运营总量为929.1万架次,累计完
成。

航空测控技术的发展趋势与策略研究

航空测控技术的发展趋势与策略研究

航空测控技术的发展趋势与策略研究航空测控技术在航空航天领域发挥着至关重要的作用,它涉及到飞行器的导舩、通信、控制等多个方面,直接影响着飞行器的飞行安全和航行效率。

随着航空航天技术的快速发展和应用需求的不断提升,航空测控技术也在不断创新和改进。

本文将对航空测控技术的发展趋势进行研究,并提出相应的策略,以期为相关领域的研究和应用提供参考。

一、航空测控技术的发展趋势1. 智能化随着人工智能、大数据和云计算等技术的不断发展,航空测控技术也在向智能化方向发展。

智能化的航空测控系统能够更好地适应复杂多变的飞行环境,并能够通过数据分析和学习不断提升性能和适应性,提高系统的智能化水平,实现真正意义上的“智能飞行”。

2. 高精度在飞行器导航和控制领域,对测控系统的精度要求越来越高,特别是在卫星导航系统和精密制导武器等领域,高精度的测控技术能够大幅提高导航和打击的精度,保障飞行器的飞行安全和作战效果。

3. 自主化自主化的航空测控技术是当前的发展趋势之一。

通过引入自主决策和执行机制,航空测控系统能够在一定程度上降低对地面指挥控制的依赖,能够更加灵活地适应飞行任务的变化和紧急情况的处理,提高航空器的自主飞行和作战能力。

4. 多元化未来的航空测控技术将朝着多元化发展,涉及到多种导航和控制手段的融合应用,包括卫星导航、惯性导航、地面雷达引导等多种手段,以提高系统的稳定性和适应性,保障航空器的飞行安全。

二、发展趋势所带来的挑战1. 技术集成航空测控技术的智能化和多元化发展在一定程度上增加了系统的复杂程度,需要更多的技术集成和协同运作,提高系统的整体性能和可靠性,但这也给技术研发和系统集成带来了挑战。

2. 数据安全智能化的航空测控系统需要大量的数据支持,但与此同时也面临着数据安全的挑战,包括数据泄露、网络攻击等问题,如何确保数据的安全性和保密性将是未来系统设计和应用中的一大难题。

3. 国际标准航空测控技术的发展需要更多的国际合作和标准统一,但不同国家和地区的技术标准和法规存在差异,这将增加航空测控技术的应用成本和风险,如何通过国际合作推动航空测控技术的全球统一将是一个长期的挑战。

测控技术与仪器的发展现状及趋势

测控技术与仪器的发展现状及趋势

测控技术与仪器的发展现状及趋势摘要随着国家工业化进程的不断推进,测控技术与仪器在智能自动化生产中占据着不可以替代的作用,测控技术在我国的开始较早,但是发展却是缓慢,知道近些年才开始了对测控技术的深入研究。

基于此背景,本文介绍了测控技术的发展现状和趋势,根据现状进一步了解测控技术,期待我国的测控技术尽快与国际先进技术接轨。

关键词:测控技术,发展现状,发展趋势引言随着我国综合实力的不断增强,在各个领域都取得了重大的发展,逐步走向了世界舞台的中央,在很多领域都做出了举世瞩目的成就。

在这种一片向好的趋势下,测控技术与仪器的发展迎来了春天。

随着智能化的进步,测控技术的发展和运用,不仅提升了生产效率,而且节省了大量的人力物力,为企业节省了大量的成本,使得企业纷纷投入对测控技术的研究,更加促使了测控技术的发展。

1测控技术的简介测控技术是基于传感器、信号处理、控制理论和控制工程等多种学科技术建立起来的一种技术,在实现“测”的同时,还要实现“控”的目的。

测控技术主要是利用传感器和数据采集设备对待测参数进行分析处理,ARM、DSP、上位机等设备对处理的信号所产生的命令进行执行,从而实现“测”和“控”的功能。

在实际的生产中,测控技术与计算机技术相结合,其结合所形成的计算机测控技术,具有操作简单、功能齐全并且具有很友好的人机交互界面,因此,受到了很多的科研工作者的喜爱,在实际生产和科研项目中得到了广泛的应用,这就更加的促进了测控技术的发展。

2国内发展现状2.1测控技术与仪器的历史在古代,我国就开始了对测控技术与仪器开始了研究,但是由于当时的环境和技术的限制,是的我国的测控技术的发展并不能在国际上处于领先的地位。

相反,国外一些发展较晚的国家,由于很早的意识到了测控技术与仪器的重要性,对该技术投入了大量的人力物力进行研究。

新中国成立之后,工业技术开始了快速的发展,目前我所研究的控制与仪器的前身也就是精密仪器的前生,就是在当时所诞生的。

飞行测控发展现状及未来趋势分析

飞行测控发展现状及未来趋势分析

飞行测控发展现状及未来趋势分析飞行测控是航空航天领域中至关重要的一环,它涉及到飞行器的测量和控制,旨在确保航空器在飞行过程中的安全、稳定和顺利。

在飞行测控的发展中,各种先进技术被广泛应用,从而为未来提供更加高效准确的测控手段。

目前,飞行测控领域已经取得了突破性的进展。

首先,随着无人机技术的飞速发展,飞行测控技术也得到了显著的提升。

无人机的飞行测控需要高精度的定位、导航和遥测技术,以实现无人机的自主飞行和精确控制。

其次,航天器的测控需求也越来越多样化和复杂化。

从地球到太空的测量和控制要求提高了对环境、力学和动力学的精确测量和控制技术。

此外,航空器的故障诊断和故障处理也成为飞行测控领域的重要研究方向。

未来的飞行测控趋势将是更加智能化、自动化和数字化。

首先,随着人工智能和大数据技术的不断发展,飞行测控系统将实现更高级的自主决策和控制功能。

通过分析和处理海量的数据,并应用机器学习和深度学习算法,飞行测控系统可以自动识别和判断飞行器的运行状态,从而提供更加准确和及时的测量和控制。

其次,飞行测控系统将更加注重信息安全和保护。

随着网络攻击技术的不断发展,保护测控系统中的关键信息和数据安全将成为飞行测控领域的重要任务。

未来的飞行测控系统将采用更加严谨的信息安全技术,确保飞行器和地面测控站之间的数据传输和通信的安全可靠。

最后,飞行测控将更加数字化,实现全程数字化的测控过程。

通过将传感器、测量设备和控制系统的数据接口进行标准化和互联互通,飞行测控系统可以实现全程数字化的测量和控制。

这种数字化的测控过程将大大提高测控效率和精度,为航空航天领域提供更好的服务。

然而,在飞行测控发展的过程中,还存在一些挑战需要解决。

首先,大规模无人机系统的测控是一个复杂的问题。

如何实现对成百上千架无人机的精确测量和控制,以及如何解决无人机之间的协调和冲突问题,是当前亟待解决的难题。

其次,飞行测控系统的可靠性和稳定性也需要进一步提高。

在航空航天领域,一次小小的故障可能导致严重的后果,因此需要对飞行测控系统进行全面的可靠性评估和优化,以确保其稳定运行。

航空航天工程师的航天器遥测和控制系统

航空航天工程师的航天器遥测和控制系统

航空航天工程师的航天器遥测和控制系统航天器遥测和控制系统是航空航天工程师在航天器飞行中至关重要的组成部分。

它不仅能够监测航天器的各种参数,还能实现对航天器的远程操作和控制。

本文将介绍航天器遥测和控制系统的基本原理、应用以及发展趋势。

一、航天器遥测和控制系统的基本原理航天器遥测和控制系统基于遥测技术,通过测量和传输航天器上各种传感器采集的数据,实时监测航天器的运行状态。

同时,它还可以接收地面指令,控制航天器的姿态、航向和速度等参数。

航天器遥测和控制系统由传感器、遥测数据传输模块、指令接收模块和执行机构等组成。

传感器是航天器遥测和控制系统中最基础的部分,它能够感知航天器上各种物理量,如温度、压力、姿态等。

传感器将采集到的数据转化为电信号,并通过遥测数据传输模块传送给地面控制中心。

遥测数据传输模块是连接航天器和地面控制中心的纽带,它可以通过无线电或卫星通信等方式将传感器采集到的数据传输回地面。

遥测数据传输模块可以实现高速、可靠的数据传输,保证航天器上各个部分数据的实时更新。

指令接收模块是地面控制中心向航天器发送指令的接收装置。

通过接收地面发出的指令,指令接收模块可以将指令传递给执行机构,实现对航天器各个部分的控制。

执行机构是根据接收到的指令实现对航天器姿态、航向和速度等参数的调整。

执行机构通过控制航天器上的发动机、推力装置等来实现对航天器运动状态的控制和调节。

二、航天器遥测和控制系统的应用航天器遥测和控制系统广泛应用于各类航天任务中,包括卫星发射、航天器在轨运行以及返回舱的控制等。

它可以监测航天器的运行状态,及时发现并修正运行中的异常情况,确保航天任务的圆满完成。

在卫星发射过程中,航天器遥测和控制系统可以实时监测发射过程中的各种参数,如推力、姿态和温度等。

通过对这些参数的监测,航天工程师可以及时调整发射参数,确保卫星顺利进入预定轨道。

在航天器在轨运行过程中,航天器遥测和控制系统则起到了关键的作用。

它可以实时监测航天器的各项性能指标,如电力系统、姿态控制系统和燃料消耗等。

我国载人航天器测控与通信技术发展

我国载人航天器测控与通信技术发展

㊀V o l .31㊀N o .6㊀166㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀航㊀天㊀器㊀工㊀程S P A C E C R A F TE N G I N E E R I N G ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第31卷㊀第6期㊀2022年12月我国载人航天器测控与通信技术发展陈晓光㊀易予生㊀丁凯(北京空间飞行器总体设计部,北京㊀100094)摘㊀要㊀梳理了我国神舟载人飞船㊁天舟货运飞船和空间站的测控与通信技术设计状态和发展历程,提出了我国载人航天器测控与通信系统逐步小型化㊁集成化㊁通用化㊁高性能的发展趋势.结合未来载人航天新阶段测控与通信技术的需求,给出了未来载人航天器测控与通信可重构㊁智能化㊁批产化㊁一体化发展的重点方向和关键技术.关键词㊀载人航天器;空间站;地基测控;天基测控;出舱通信中图分类号:V 448㊀㊀文献标志码:A ㊀㊀D O I :10 3969/ji s s n 1673G8748 2022 06 020D e v e l o p m e n t o fT T &CC o m m u n i c a t i o n sT e c h n o l o g yf o rC h i n aM a n n e dS pa c e c r a f t C H E N X i a o g u a n g ㊀Y IY u s h e n g㊀D I N G K a i (B e i j i n g I n s t i t u t e o f S p a c e c r a f t S y s t e m E n g i n e e r i n g ,B e i j i n g 100094,C h i n a )A b s t r a c t :T h e d e s i g n s t a t u s a n dd e v e l o p m e n t o fC h i n a sS h e n z h o um a n n e ds pa c e c r a f t ,T i a n z h o u c a r g o s p a c e c r a f t a n ds p a c es t a t i o n T T&C (t e l e m e t r y ,t r a c k i n g an dc o mm a n d )c o mm u n i c a t i o n s t e c h n o l o g y a r es u r v e y e d .T h ed e v e l o p m e n t t r e n do fm a n n e ds pa c e c r a f tT T&Cc o mm u n i c a t i o n s s y s t e m ,w h i c hi s g r a d u a l l y m i n i a t u r i z e d ,i n t e g r a t e d ,u n i v e r s a la n dh i g h Gp e r f o r m a n c ei si n t r o Gd u c e d .C o mb i n e dw i t h t h e r e q u i r e m e n t s o fT T &Cc o m m u n i c a t i o n s t e c h n o l o g y i n t h e n e ws t a ge of f u Gt u r em a n n e d s p a c e ,t h e k e y d i r e c t i o n s a n d t e c h n o l og i e s f o r th e r e c o n fi g u r a b l e ,i n t e l l i g e n t ,b a t c h p r o d u c Gt i o n a n d i n t e g r a t e d d e v e l o p m e n t o f f u t u r em a n n e d s pa c e c r a f tT T &Cc o m m u n i c a t i o n a r e g i v e n .K e y w o r d s :m a n n e ds p a c e c r a f t ;s p a c es t a t i o n ;g r o u n d Gb a s e d T T&C ;s p ac e Gb a s ed T T&C ;E V A c o mm u n i c a t i o n s收稿日期:2022G10G08;修回日期:2022G12G10基金项目:中国载人航天工程作者简介:陈晓光,男,硕士,研究员,研究方向为载人航天器系统设计和测控通信.E m a i l :s u n r i s e 77@s i n a .c o m .㊀㊀载人航天器测控与通信技术包括测控技术及数据传输技术两部分.载人航天器入轨后,由器上测控与通信分系统和地面站系统㊁中继卫星系统一起,共同建立器地无线测控㊁测量及对地数据传输㊁中继数据传输通信链路,完成对载人航天器状态采集㊁轨道测量㊁运行控制㊁载荷数据下传地面等功能.载人航天器测控与通信系统是航天器在轨与地面沟通和数据传输通信的重要生命线,为载人航天器在轨正常工作提供各项信道保障条件[1G2].㊀㊀近年来,随着微电子㊁软件无线电等技术的发展,涌现了大量应用于测控与通信领域的新技术㊁新产品㊁新思路,呈现出一些新变化㊁新趋势[3G5].本文在梳理和总结我国载人飞船㊁货运飞船㊁空间站测控与通信技术发展现状的基础上,结合测控与通信技术的发展历程,总结提炼了载人航天器测控㊁导航㊁数传㊁星间等方面的发展趋势.最后,归纳并给出了未来载人航天器对测控与通信技术的需求,以及测控与通信技术未来发展的重点方向和关键技术.1㊀测控与通信技术发展现状载人航天测控与通信的主要任务是在天基中继卫星㊁导航星座㊁陆基测控站和海基测控船支持下,完成载人航天器(载人飞船㊁货运飞船㊁空间站)的跟踪测轨㊁遥测遥控㊁中继通信㊁高速数传㊁图像通信㊁话音通信㊁交会对接通信㊁出舱活动通信等功能,见图1.图1㊀载人航天器测控与通信系统F i g 1㊀M a n n e d s p a c e c r a f tT T&Cc o mm u n i c a t i o n s s ys t e m ㊀㊀由图1可知:通过对地测控与通信链路,实现天地遥测㊁遥控㊁话音数据的上下行传输;通过中继链路,实现天基遥测和指令数据㊁图像㊁话音㊁试验数据㊁延时数据㊁平台状态信息的传输;通过我国北761㊀㊀第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀陈晓光等:我国载人航天器测控与通信技术发展斗(B D)星座,实现定位和测速;通过遥控指令系统,完成整器指令分发与执行;通过空空通信链路,实现目标飞行器㊁追踪飞行器之间的指令㊁遥测㊁定位数据及遥操作图像数据的传输;通过出舱通信链路及舱内外无线通信链路,实现航天员与空间站之间的话音及遥测数据传输.1 1㊀地基测控系统载人航天器地基测控系统主要采用统一S频段测控体制.如图2所示,统一S频段测控集跟踪㊁测距㊁测速㊁遥测㊁遥控等功能于一体,设备简单,可靠性高,测量精度适中,已在我国载人航天器中得到广泛应用.(1)载波调制体制.统一S频段测控采用频分复用调制体制,每个基带信号先调制到自身的副载波上,几个已调副载波合并之后,再对主载波进行角度调制.一般来说,地(海)面站上/下行载波都采用调相体制(P M/P M),航天器上的测控与通信设备采用相参工作体制;或者,地面站采用上行载波调频,下行载波调相体制(F M/P M),航天器上的测控与通信设备采用非相参体制.(2)测距㊁测速体制.纯侧音测距体制或伪随机码(P N码)测距体制,或音码混合体制.采用侧音测距时,最高侧音用来保精度,低侧音用来解距离模糊.测速采用连续播双程相干多普勒测速技术,载波同步后从载波或伪码中提取出多普勒频移进行测速.(3)遥控遥测体制.对上行遥控副载波进行脉冲编码(P C M)/相移键控(P S K)调制,或P C M/多频移键控(M F S K)调制,或P C M/幅移键控(A S K)调制等.编码遥测采用对下行遥测副载波进行P C M/ P S K调制,或P C M/差分相移键控(D P S K)调制.话音㊁数据㊁图像对通信副载波进行P S K或D P S K 调制.图2㊀载人航天器统一S频段测控系统F i g 2㊀U S BT T&Cs y s t e mo fm a n n e d s p a c e c r a f t1 2㊀天基测控系统中继卫星系统作为天基测控通信网,能够有效扩大中㊁低轨道飞行器测控㊁通信覆盖范围;中继终端设备利用我国第2代数据中继卫星系统支持,完成天地双向高速数据传输[6].中继天线终端主要实现功能包括:捕获并跟踪中继卫星信标信号;在中继卫星的可视弧段通过中继信道向地面传输数据;在中继卫星的可视弧段通过中继信道接收地面上行数据;完成规定的前向和返向信道数据处理;进行伪码测距[7G8].天链中继卫星系统利用地球同步轨道上的2~3颗中继卫星实现对载人航天器的跟踪㊁测控㊁通信甚至导航[9],如图3所示.体制上采用扩频测控体制,同时还有高数据率数传体制.采用P C M㊁偏移四相相移键控(O Q P S K)及P C M㊁码分多址(C D M A)㊁二相相移键控(B P S K)数据传输体制,跟踪导航统一采用单通道单脉冲测角㊁伪码测距的单站定轨体制,并利用星本体测控数据提高用户的跟踪导航精度,采用I,Q双通道调制,I路传送短P N码,Q路传送长P N码,短码引导长码捕获来解决无模糊测距和快速捕获问题.861㊀航㊀天㊀器㊀工㊀程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀31卷㊀图3㊀载人航天器天基测控系统F i g 3㊀S p a c eGb a s e dT T&Cs y s t e mo fm a n n e d s p a c e c r a f t ㊀㊀2008年9月,神舟七号载人飞船首次使用天链一号01星进行天基测控和跟踪,传回的视频图像清晰,话音质量好,数据可靠,成功实现了我国天基信息传输的重大突破;2011年10月,天链一号01星和02星形成的双星系统,圆满完成神舟八号飞船和天宫一号目标飞行器的交会对接任务,极大地扩展了可数传和测控的轨道弧段,并首次实现同一波束内双目标的捕获跟踪和中继数传;2012年6月,神舟九号载人飞船发射升空,3名航天员成功完成与天宫一号的自动和手动对接任务,并进驻天宫一号,实现了多项首创.在轨13天中,大量数据㊁图像㊁音频㊁电邮及神舟G天宫组合体的测控等信息,通过中继卫星系统高质量地传到地面指控中心,为此次任务的圆满完成提供了有力的保障.1 3㊀导航定位系统载人航天器目前可同时处理我国B D二代卫星定位系统㊁G P S和格洛纳斯(G L O N A S S)卫星定位系统信号,并使用B D+G P S㊁G P S+G L O N A S S进行兼容定位,实现了全部B D和G P S卫星正常跟踪,在进行绝对定位解算前,优先选择B D导航卫星观测量.设备内部对导航处理板进行热备份,B DGG P S导航板采用B D+G P S兼容方式,处理B D卫星B1㊁B3频点和G P S卫星L1频点信号;全球导航定位系统(G N S S)导航板采用G P S+G L O N A S S兼容方式,处理G P S卫星L1和G L O N A S S卫星L1信号.系统框图如图4所示.在交会对接和撤离阶段,追踪飞行器B DGG P S兼容机通过空空通信设备获取目标飞行器原始测量数据,经过差分解算计算出2个飞行器间的相对位置和相对速度.绝对定位精度(3轴,1σ)不大于15m,绝对测速精度(3轴,1σ)不大于0 25m/s.相对测量模式分为载波固定解㊁双差伪距㊁位置差分3种.图4㊀载人航天器定位系统F i g 4㊀P o s i t i o n i n g s y s t e mo fm a n n e d s p a c e c r a f t1 4㊀空空通信系统空空通信子系统实现与来访飞行器间的数据交换,同时满足目标飞行器(天宫一号㊁天宫二号㊁天和核心舱)对追踪飞行器(载人飞船㊁货运飞船㊁光学舱)交会对接通信支持.在交会对接段与来访飞行器的空空通信设备建立双向空空通信链路,并实现手控遥操作任务.空空通信机根据距离远近具备961㊀㊀第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀陈晓光等:我国载人航天器测控与通信技术发展大㊁小功率切换功能.空空交会对接模式可分为自动交会对接㊁手动遥操作及径向对接3种工作模式.自动交会对接和径向交会对接模式时,双向数据传输速率较低,空空通信采用扩频方式进行通信,空空通信机a/b采用双机热备份方式工作.手控遥操作通信模式下,双向数据传输速率较高,空空通信采用非扩频方式进行通信,空空通信机a/b采用双机发射冷备份方式工作.1 5㊀出舱通信系统在神舟七号飞船航天员出舱活动时,出舱通信子系统提供了超高频(UH F)的无线通信功能,实现了无线状态下出舱航天员与舱内航天员㊁出舱航天员与地面的双向通话及生理遥测数据的传输.空间站出舱通信方案在我国载人航天工程二期出舱方案基础上,重点解决了航天员在舱外跨小区切换和功率的远近效应问题.航天员在舱外活动时,通过在舱内配置出舱通信处理器㊁舱外配置的UH F收发天线与出舱航天服通信设备建立无线双向链路,传输数据包括语音㊁遥测信息等,并实现对舱外活动100%的无线通信覆盖,如图5所示.图5㊀神舟七号和空间站航天员出舱F i g 5㊀A s t r o n a u tE V Ai nS h e n z h o uG7a n dC h i n aS p a c eS t a t i o n1 6㊀图像话音系统我国载人航天工程一期和二期的图像话音设备采用了类似电路交换的设备进行切换,设备种类多,系统复杂,使用不便.鉴于地面因特网通信技术的发展,分组交换技术已经取代电路交换技术,具有切换时间快等很多突出优点,图像话音数据可在因特网上传输㊁处理和交换,再考虑到航天员信息服务㊁显示㊁空间站信息管理等需要,设计了高速通信网,传输图像㊁话音㊁空间站信息㊁航天员办公数据等中高速数据,另外还传输系统网综合数据和舱间通信的数据,以作为系统网的备份.载人空间站舱内㊁外摄像机采用集成化㊁网络化的设计思想,将图像(含伴音)采集㊁压缩编码及网络通信功能集于一身,不需要为摄像机配置专门的图像编码及网络通信接口设备.摄像机内部完成图像模拟信号的模拟/数字(A/D)变换㊁编码压缩,形成数字图像及伴音数据后,通过以太网通信模块的以太网接口直接与通信网交换机连接,实现摄像机的网络接入.载人航天器话音通信采用集中式的话音处理方案,由话音处理器实现所有话音终端的接入㊁管理㊁通信等功能,完成天地会议通话㊁专用通话㊁出舱通信㊁舱内会议等多种模式的话音通信.中继K a频段单址(K S A)信道㊁U S B链路㊁数传链路传输天地话音,互为备份.U S B上㊁下行链路提供2条高级多带激励(AM B E)体制话音通路,包括1路任务话和1路专用话,合计32k b i t/s.中继链路由于带宽允许,提供3条高级语音编码(A A C)体制的话音,包括1路任务话和2路专用话,合计576k b i t/s.2㊀载人航天测控与通信技术发展特点根据载人航天任务需求,载人航天器测控与通信系统的发展分为3个阶段.第一阶段为U S B地基测控;第二阶段为地基测控为主,天基测控为辅;第三阶段为基于天基测控的天地一体化网络通信,地基测控为辅.第一阶段,从神舟一号至神舟五号.从1992年载人航天工程立项至神舟五号载人飞船,测控与通信系统仅有地基测控,采用U S B统一测控体制,同时包括天地话音通信㊁图像传输㊁着落信标机等产品,本阶段测控覆盖率仅为16%.第二阶段,从神舟六号至神舟十一号,以及天宫一号和天宫二号.从神舟六号开始搭载海事终端,神舟七号搭载我国第1套中继终端,首次在国内实现了基于中继卫星系统的天基测控,测控覆盖率在071㊀航㊀天㊀器㊀工㊀程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀31卷㊀神舟七号达到了44%.随着我国中继卫星系统的建设,在天宫二号时实现了3颗中继卫星的覆盖,测控覆盖率达到了88%.第三阶段,从天舟一号至空间站建成,包括神舟十二号及后续载人飞船㊁天舟一号至后续货运飞船㊁天和核心舱㊁问天实验舱㊁梦天实验舱及后续的光学实验舱.从天舟一号开始,到空间站三舱,以及后续的光学实验舱,测控与通信系统采用天地一体化网络通信,并首次在国内实现了基于I P 网络的天地通信,实现天地话音㊁图像和载荷数据的网络传输,实现空间站三舱㊁天舟货运飞船㊁光学实验舱的在轨组网通信.表1总结了载人航天器测控与通信技术的发展特点.表1㊀载人航天器测控与通信技术的发展特点T a b l e 1㊀D e v e l o p m e n t c h a r a c t e r i s t i c s o fm a n n e d s p a c e c r a f t T T &Cc o m m u n i c a t i o n s t e c h n o l o g y功能测控技术技术特点应用航天器地基测控㊀统一载波S 频段,遥控为P C M GP S K GP M ,遥测为C M GD P S K GP M ,测距为3~110k H z ㊀分立器件㊁直插元件,遥测16k b i t /s,质量5 1k g㊀神舟一号~神舟八号㊁天宫一号㊁天宫二号㊀集成芯片㊁表贴元件,采用了E S A 标准频率流程,遥测16~64k b i t /s 自适应,采用小型化设计,质量2 5k g㊀神舟九号~神舟十四号㊁天舟一号~天舟四号㊁天和核心舱㊁问天实验舱㊁梦天实验舱数传㊀S 频段㊀两路768k b i t /s 数据分别为图像话音数据的I 支路㊁飞船平台数据的Q 支路㊀神舟一号~神舟十四号㊁天舟一号~天舟四号天基测控㊀S 链路㊁K a 链路:由高速通信处理器㊁中继综合单元㊁K a接收组件㊁K a 发射组件及中继天线组成,中继天线共用1套展开及伺服机构㊀S 前向:U Q P S K+扩频,传输速率2k b i t /s ;S 返向B P S K+扩频,传输速率20k b i t /s ;K a 前向:S Q P S K ,传输速率50k b i t /s ;K a 返向:S Q P S K ,传输速率1 6M b i t /s ㊀神舟七号~神舟十四号㊀S 前向:U Q P S K+扩频,传输速率2k b i t /s ;S 返向:B P S K+扩频,传输速率20k b i t /s ;K a 前向:S Q P S K ,传输速率5M b i t /s ;K a 返向:S Q P S K ,传输速率144M b i t /s㊀天舟一号~天舟四号㊀S 前向:U Q P S K+扩频,传输速率2k b i t /s ;S 返向:B P S K+扩频,传输速率32k b i t /s ;K a 前向:S Q P S K ,传输速率10M b i t /s ;K a 返向:S Q P S K 和8P S K ,传输速率1 2G b i t /s㊀天和核心舱㊁问天实验舱㊁梦天实验舱(使用二代中继卫星)卫星导航系统㊀接收G P S 导航卫星信号㊀G P S :L 1频段㊀神舟一号~神舟七号㊀兼容B D ,G P S ,G L O N A S S 导航卫星系统㊀B D :B 1,B 3频段;G P S :L 1频段;G L O N A S S :L 1频段㊀神舟八号~神舟十四号㊁天舟一号~天舟四号㊁天和核心舱㊁问天实验舱㊁梦天实验舱空空通信系统㊀自动交会对接㊁手控遥操作㊁径向交会对接㊁前向交会对接及转位㊀扩频模式为B P S K 调制,传输速率为2 8k b i t /s和28k b i t /s ;非扩频模式为D Q P S K 调制,传输速率为3 55625M b i t /s 和5 725M b i t /s ㊀神舟八号~神舟十四号㊁天舟一号~天舟四号㊁天和核心舱㊁问天实验舱㊁梦天实验舱出舱通信系统㊀UH F 无线通信:舱通信处理器+舱内外出舱通信天线㊀UH F 无线通信(点对点通信)㊀神舟七号㊀前返向频分㊁码分体制,采用内㊁外环联合功率控制及R a k e 接收技术㊀天和核心舱㊁问天实验舱㊁梦天实验舱图像话音系统㊀M P E G 2/M P E G 4图像压缩算法/H 264编码㊀标清图像:M P E G 2图像压缩算法,单幅768k b i t /s图像(含伴音);话音采用集中混音策略,任务话㊁专用话㊀神舟一号~神舟六号㊀标清图像:M P E G 4图像压缩算法,单幅768k b i t /s图像(含伴音)或双幅384k b i t /s 图像(含伴音);图像编码器集中处理,统一调度,进行 6选2 或 6选1 图像切换;话音采用集中混音策略,任务话㊁专用话㊁协同话㊀神舟七号~神舟十四号㊀高清图像:采用H 264编码;舱内外摄像机采用集成化㊁网络化设计,集成图像采集㊁压缩编码;话音采用集中混音策略,任务话㊁专用话㊁协同话及在轨拨号的I P 电话㊀天舟一号~天舟四号㊁天和核心舱㊁问天实验舱㊁梦天实验舱㊀㊀(1)载人航天测控与通信系统的发展方向具有小型化㊁集成化㊁通用化㊁高性能的特点.(2)导航接收机的从单频到多频,从以G P S 为主份转换为B D 为主份.171㊀㊀第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀陈晓光等:我国载人航天器测控与通信技术发展(3)在对地数据传输通信方面,数据传输在数据率㊁传输频段㊁设备集成度等方面均取得了较大的进展.速率由低向高㊁单通道向双通道发展㊁分立单机向集成化发展㊁空间站中继数传达到1 2G b i t/s.(4)测控与通信系统为增加鲁棒性,普遍采用了自主管理设计,当诊断出信道或基带因空间环境影响出现故障时进行自主复位或断电操作,使系统能够快速㊁自主恢复,减少了地面人为干预,提升了效率.(5)高速测控与通信㊁B D短报文㊁二代测控中继终端㊁在无地面干预自主测控技术,均已在载人航天器中得到应用验证.3㊀载人航天测控与通信技术发展趋势为满足载人航天发展新阶段对测控与通信技术的需求,载人航天测控与通信技术有以下发展趋势.(1)批产化㊁通用化.通过测控通信产品的标准化㊁模块化,以满足测控通信产品状态统一和批产化的需求.在批生产方面,需要由分立单机装配方式向采用先进构架㊁集成统一单板和无缆化装配方式转换,如采用统一功能板,通过配备不同软件来实现各种功能[10].(2)测控管理自主化㊁高效化.通过无依托自主测控㊁星间数据交互等有效测控手段,满足大规模多航天器的高效测控管理需求.(3)数字化㊁小型化.采用先进的数字技术降低成本,用软件技术实现相关功能,借用先进的工业技术成果,使设备集成度更高㊁性价比更高㊁成本更低.(4)通过推动以激光㊁K a频段高速数据传输为代表的先进技术应用,满足提升通信性能的需求.4㊀发展建议在载人航天测控与通信技术发展趋势牵引下,后续重点研究的几项测控与通信领域关键技术如下.(1)应答机抗干扰抗截获技术.充分利用在研载人航天器,推进扩跳频应答机在轨验证,建立型谱.开展宽带扩跳频技术研究,提升抗干扰性能.(2)导航接收机抗干扰技术.开展高精度抗干扰㊁干扰检测等技术攻关.(3)多模通用化测控终端设计技术.开展 技术状态系列化,硬件平台通用化,特殊模块组合化 先进硬件技术研究工作,应用软件无线电技术,形成多功能㊁多体制㊁通用化的多模测控终端工程化产品.(4)一体化通信架构技术.开展先进通信系统架构研究,基于标准化㊁通用化通信接口及平台处理模块,实现具有可重构㊁智能化能力的批产化一体通信产品.(5)新体制高速数传技术.针对Q/K a频段开展16A P S K/32A P S K高阶调制技术研究,实现自适应编码调制(AM C)技术,完成在轨载人航天器与地面数据传输平均速率最大化.参考文献(R e f e r e n c e s)[1]张越,洪家财.G N S S星间测控技术发展现状与趋势[J].电子测量技术,2018,41(23):117G122Z h a n g Y u e,H o n g J i a c a i.D e v e l o p m e n t t r e n d so fG N S S i n t e rGs a t e l l i t e st e c h n o l o g i e s[J].E l e c t r o n i c M e a s u r eGm e n tT e c h n o l o g y,2018,41(23):117G122(i nC h i n e s e) [2]单长胜,李于衡,孙海忠.中继卫星支持海量航天器在轨测控技术[J].中国空间科学技术,2017,37(1):89G96S h a nC h a n g s h e n g,L i Y u h e n g,S u nH a i z h o n g.T r a c k i n g a n dd a t a r e l a y s a t e l l i t e s y s t e mf o r h u g e n u m b e r s a t e l l i t e c o n t r o l[J].C h i n e s e S p a c e S c i e n c ea n d T e c h n o l o g y,2017,37(1):89G96(i nC h i n e s e)[3]闫林林.卫星测控数传一体化的设计与实现[D].南京:南京理工大学,2018Y a nL i n l i n.D e s i g na n dr e a l i z a t i o nt h eT T&Ca n dd a t a t r a n s m i s s i o n i n t e g r a t e ds y s t e mo f s a t e l l i t e s[D].N a n j i n g: N a n j i n g I n s t i t u t e o fT e c h n o l o g y,2018(i nC h i n e s e) [4]罗大成,刘岩,刘延飞,等.星间链路技术的研究现状与发展趋势[J].电讯技术,2014,54(7):1016G1024L u o D a c h e n g,L i u Y a n,L i u Y a n f e i,e ta l.P r e s e n t s t a t u s a n dd e v e l o p m e n t t r e n d s o f i n t e rGs a t e l l i t e l i n k[J].T e l e c o mm u n i c a t i o nE n g i n e e r i n g,2014,54(7):1016G1024(i nC h i n e s e)[5]C l a r k GJ,E d d y W,J o h n s o nS K,e ta l.A r c h i t e c t u r e f o rc o g n i t i v en e t w o r k i n g w i t h i n N A S A sf u t u r es p a c e c o mm u n i c a t i o n s i n f r a s t r u c t u r e[C]//P r o c e e d i n g so f t h e 34t hA I A AI n t e r n a t i o n a lC o n f e r e n c eo nS p a c eO p e r a t i o n s.W a s h i n g t o nD.C.:A I A A,2016:1G10[6]李佩珊.一体化测控通信传输体制研究[D].成都:电子科技大学,2016L i P e i s h a n.R e s e a r c ho nt h e i n t e g r a t e dT T&Ca n dc oGmm u n i c a t i o n t r a n s m i s s i o ns y s t e m[D].C h e n g d u:U n iGv e r s i t y o fE l e c t r o n i cS c i e n c ea n dT e c h n o l o g y o fC h i n a,2016(i nC h i n e s e)[7]I s r a e lDJ,H e c k l e rG W,M e n r a dRJ,e t a l.E n a b l i n g c o mm u n i c a t i o na n d n a v i g a t i o nt e c h n o l o g i e sf o rf u t u r e271㊀航㊀天㊀器㊀工㊀程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀31卷㊀n e a r e a r t hs c i e n c em i s s i o n s[C]//P r o c e e d i n g so f I n t e rGn a t i o n a lC o n f e r e n c eo nS p a c e O p e r a t i o n s,2016.W a s hGi n g t o nD.C.:A I A A,2016:1G9[8]雷厉.航天测控通信技术发展态势与展望[J].电讯技术,2017,57(12):1464G1470L e i L i.D e v e l o p m e n t s t a t u sa n dt r e n d so f s p a c eT T&C a n d c o mm u n i c a t i o n t e c h n o l o g y[J].T e l e c o mm u n i c a t i o n E n g i n e e r i n g,2017,57(12):1464G1470(i nC h i n e s e) [9]蒋罗婷.国外小卫星测控通信网发展现状和趋势[J].电讯技术,2017,57(11):1341G1348J i a n g L u o t i n g.D e v e l o p m e n t a n d t r e n d s o f f o r e i g n T T&Ca n d c o mm u n i c a t i o nn e t w o r k s f o r s m a l l s a t e l l i t e s [J].T e l e c o mm u n i c a t i o n E n g i n e e r i n g,2017,57(11):1341G1348(i nC h i n e s e)[10]饶启龙.航天测控技术及其发展发向[J].信息通信技术,2011,5(3):77G83R a oQ i l o n g.S u r v e y o nd e e p s p a c eT T&Ca n d c o mm uGn i c a t i o n t e c h n o l o g y[J].I n f o r m a t i o na n dC o mm u n i c aGt i o n sT e c h n o l o g i e s,2011,5(3):77G83(i nC h i n e s e)(编辑:夏光)371㊀㊀第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀陈晓光等:我国载人航天器测控与通信技术发展。

分析国内测控技术与仪器发展现状以及趋势

分析国内测控技术与仪器发展现状以及趋势

分析国内测控技术与仪器发展现状以及趋势随着我国“工业4.0”及“中国制造2025”战略思想的提出,实现工业产业自动化、智能化已然成为我国新的发展方向。

测控技术作为自动化技术应用的驱动力量,其在我国未来工业发展中将发挥巨大作用。

鉴于此,本文即主要分析了国内测控技术与仪器发展之现状,进而浅论其发展趋势。

标签:测控技术;测控仪器;现状;趋势0 引言随着大众物质需求及消费水平的全面提升,工业制造迎来了新的发展契机与挑战。

现代工业需要进一步解放生产力并切实提升生产效率才能契合时代发展新要求,才能全面提升产业效益。

自动化及智能化技术的深入应用,已然成为全球工业发展的重要趋势。

在工业自动化及智能化建设过程中,有效运用测控技术与测控仪器则至关重要。

测控仪器在自动化、智能化生产中的地位,就好比人的眼睛一般,优质的测控仪器能够准确锁定的测控目标并及时反馈测控信息。

而测控技术则又是实现自动化、智能化控制的驱动力量。

总言之,切实发展测控技术并提升测控仪器的精密性,无疑是现代工业的重要课题。

1 测控技术的发展现状分析自古以来,测控技术都在人类生活生产中发挥出了重大的作用。

在古代生产活动,测控技术的应用主要由人工实施,譬如在古代航海中人们使用罗盘测控航行方向,在日常生活中运用日晷测控时间等测控技术的应用中人工则占据主要地位。

然而随着现代科学技术的发展,测控进入也随之进入全面的发展阶段,尤其在信息技术广泛运用以来,测控技术更是日新月异,据实际而言,现代测控技术已然成为融合了电子、光学、信息技术、机械技术等多元化科技为一体的综合型技术,其在社会生产及人们日常生活中都得到了广泛的运用,小到热水器对水温的测控,大到卫星火箭发射的测控,都有着现代测控技术的缩影。

随着我国经济的快速增长,我国工业生产实力也得到了显著的提升,现目前我国在测控技术的应用及发展上取得了突破性进展,譬如纳米搠源技术的应用极大的提升了测控精度,三维精密跟踪测角系统建立极大的提升了测控的广度,而半导体激光测量技术的应用又有效增强了测控效率,热变形仿真、力变仿真等技术的应用与发展又为我国工业生产拓宽了道路。

航天测控系统

航天测控系统

航天测控系统1.定义2.发展概况3.系统组成4.航天测控网5.总体设计6.总体设计中必须解决的问题7.电子测控系统8.航天电子测控系统的新发展9.计算系统10.测控的其他应用11.展望1.定义对运行中的航天器(运载火箭、人造地球卫星、宇宙飞船和其他空间飞行器)进行跟踪、测量和控制的大型电子系统。

2.发展概况中国航天测控系统也是在航天事业的发展中逐步臻于完善的。

在大陆上已经建立了多个测控站和一个测控通信中心。

为了扩展观测范围,还建造了海上测量船,以便驶往远洋对航天器进行跟踪观测。

在整个测控系统中使用了多台计算机,并有贯通各个测控站、测量船和测控中心的通信网络。

3.系统组成①跟踪测量系统:跟踪航天器,测定其弹道或轨道。

②遥测系统:测量和传送航天器内部的工程参数和用敏感器测得的空间物理参数。

③遥控系统:通过无线电对航天器的姿态、轨道和其他状态进行控制。

④计算系统:用于弹道、轨道和姿态的确定和实时控制中的计算。

⑤时间统一系统:为整个测控系统提供标准时刻和时标。

⑥显示记录系统:显示航天器遥测、弹道、轨道和其他参数及其变化情况,必要时予以打印记录。

⑦通信、数据传输系统:作为各种电子设备和通信网络的中间设备,沟通各个系统之间的信息,以实现指挥调度。

4. 航天测控网各种地面系统分别安装在适当地理位置的若干测控站(包括必要的测量船和测控飞机)和一个测控中心内,通过通信网络相互联接而构成整体的航天测控系统。

5.总体设计航天测控系统总体设计属于电子系统工程问题。

对整个系统来说,首先考虑的是航天任务的要求,可以针对某一个任务,也可以兼顾多个任务,从较长远的发展要求来设计。

航天测控系统的中心问题是从地面和航天器整体出发,实现信息获取,即将航天器的飞行和工作数据发回地面,并用计算机进行计算、决策和实时反馈来控制航天器飞行的轨道和姿态。

6.总体设计中必须解决的问题在总体设计中必须解决的问题有:①全系统所要具备的功能和实现这些功能的手段;②测控站布局的合理性;③控制的适时性和灵活性;④各种设备的性能、速度和精度;⑤长期工作的可靠性;⑥最低的投资和最短的建成时间。

航空航天技术的发展现状与未来发展趋势

航空航天技术的发展现状与未来发展趋势

航空航天技术的发展现状与未来发展趋势近年来,随着科技的不断进步和人们对空中交通的要求与日俱增,航空航天技术发展迅速并逐渐成为人类社会前进的重要推动力。

本文将就航空航天技术的发展现状和未来发展趋势进行探讨。

一、航空航天技术的发展现状1. 飞行器制造技术的进步随着制造技术的革新和材料科学的突破,飞行器制造技术不断改进。

由传统的铝合金材料发展到复合材料和先进的3D打印技术应用,这为飞行器在稳定性、燃料效率和舒适性方面都带来了显著的提升。

2. 自动化飞行系统的应用自动化飞行系统是近年来航空领域的重要突破,它极大地增强了飞行安全性和操作效率。

自动驾驶技术不仅应用于商业航班,而且在军事和科研领域也发挥着重要作用。

预计未来还将进一步发展出自主飞行的无人机和载人航天飞行器。

3. 航空航天发动机的创新航天技术的发展除了制造技术的进步外,推动力系统的创新也是关键因素。

燃料经济性、推力和减少对环境的污染是发动机设计的主要考虑因素。

航空领域正在积极研究使用更为环保的燃料,如生物燃料和氢燃料电池等,以减少对大气的污染和气候变化的影响。

二、航空航天技术的未来发展趋势1. 超音速和超超音速客机的发展目前,超音速飞行仅限于军事和科研领域,但随着技术的进步,超音速和超超音速客机将逐渐进入商业领域。

这将使长途飞行时间大幅缩短,提高旅行效率,但同时也需要克服飞行速度带来的挑战,如噪音和空气阻力的问题。

2. 空天交通的发展随着城市化进程的加速和人口的增长,地面交通压力将进一步增加。

因此,空天交通将成为解决未来交通问题的有效手段。

无人机和飞行车辆的商业化应用将逐渐普及,并开辟了其他科技公司和航空航天企业参与的新领域。

3. 太空探索与移民人类对太空探索的热情从未减退,随着技术的进步,太空探索将进入新的发展阶段。

除了继续深入探索太阳系和外星行星外,人类甚至开始考虑在其他天体上建立永久居住点。

目前,一些私人公司已经开始了私人太空旅行和太空移民的计划,这将给人类带来更大的空间和发展机遇。

测控技术的发展与趋势

测控技术的发展与趋势

测控技术的发展与趋势测控技术的发展趋势测控技术是一门以电路和计算机为基础的新技术。

21世纪的测量和控制将是一个发达的系统概念。

信息交流与共享的主题也是测控系统的发展方向。

因此,通过建立网络来形成和使用测控系统已成为现代测控技术的发展趋势。

1.现代测控技术现状20世纪70年代以来,测量技术不断进步,出现了很多智能仪表,这些仪表在微电子的基础上,与计算机相结合,使得基于仪表的测量技术渐渐演变,成为一门包含机械、电子、计算机的独立的学科。

2、测控技术的发展在追求仪表智能化的同时,现代测控技术也在不断提高其稳定性、可靠性和适应性。

相应地,随着技术的发展,大量高新技术科研成果被应用于测控技术领域,测控技术的技术指标和功能不断提高。

作为代表,测控仪器单元的小型化、智能化越来越明显。

测控技术的两个方面,一个是测一个是控。

“测”是依靠传感器和信号传输电路,即测控电路;“控”则是依靠现代计算机的计算处理能力,根据数据得出相应结果,通过反馈等方式控制整个系统。

计算机已成为测控技术的支柱。

因此,网络技术自然成为测控技术满足实际需求的关键支撑。

然而,不可否认的是,测控电路仍然是测控技术发展的基础和另一个重要的发展方向。

3.测控技术发展趋势现代科学技术的融入不但使现代测控技术在各方面得到广泛应用,而且加快了现代测控技术的发展,形成了现代测控技术朝微型化、集成化、远程化、网络化、虚拟化等方向发展。

同时,现代测控技术是一门实践性非常强的技术,既包括硬件、软件的设计,又包括系统的集成,随着其在国防、工业、农业等领域应用的深度和广度的扩大,它将为提高生产效率、改进技术水平做出巨大的贡献。

新型传感器技术、现代测控总线技术、虚拟仪器技术、远程测控技术、测控系统集成技术等,都是这门涉及广泛的学科的发展趋势和方向。

新型传感器技术正朝着小型化、数字化、集成化、智能化、网络化、光纤传感器和生物传感器方向发展。

传感器是信息时代的三大支柱之一,目前新的智能化传感器层出不穷,微处理器和网络与传感器的融合技术快速发展,新型传感器在测量仪器仪表、测控系统中的应用日益广泛和深入,可以说,新型传感器技术的发展对现代测控技术的发展起到了很好的推动作用,新型传感器技术是现代测控技术的一个重要组成部分。

中国航天产业的现状与未来发展趋势

中国航天产业的现状与未来发展趋势

中国航天产业的现状与未来发展趋势中国航天产业是中国国力的重要体现之一,随着我国经济不断发展,中国航天也蓬勃发展。

这篇文章将要阐述中国航天产业的现状与未来发展趋势。

一、中国航天产业的现状中国航天的历史可以追溯到20世纪50年代,当时国家开始实行“两弹一星”的计划,这是我国航天发展的基础。

目前,中国航天已经具备了较为完备的航天产业链和良好的技术积累。

我国已成功地完成了载人航天、深空探测、卫星导航等多个航天领域的重大任务,成为了国际上航天领域的重要一员。

随着近年来的不断发展,中国航天产业已经逐渐成为了一个综合性产业。

目前,中国航天产业主要包括航天科技集团、中国航发、中国电子科技集团等。

这些公司在航天发射、卫星制造及应用等方面都取得了重大进展,实现了航天技术的重大跨越。

在发射领域,我国航天已经拥有了多款商业火箭,比如长征系列火箭、快舟系列火箭等,这些火箭已经成为了中国发射市场的主力军。

此外,我国运载能力也在不断提高,2020年我国成功实现了“一箭八星”的发射,这在世界航天史上都是一个重大突破。

在卫星制造与应用方面,我国的卫星制造技术已经逐渐接近国际先进水平。

比如,嫦娥探月、天眼等航天项目都是该领域的代表作。

此外,我国还致力于发展卫星应用领域,主要包括气象卫星、通信卫星、地球观测卫星、导航卫星等。

二、中国航天产业发展趋势虽然中国航天产业已经取得了很大的进展,但仍面临着很多的挑战。

未来,中国航天产业需要在以下几个方面加强发展:1、进一步提升技术水平。

虽然我国在航天产业中已经取得了一些重大成果,但是与国际领先水平相比,我国航天技术仍存在不小的差距。

因此,在未来几年内,我国需要进一步提高航天技术水平,增强自主创新能力。

只有在这方面取得了重大进展,才能在国际航天领域中占据更好的地位。

2、加快商业化进程。

近年来,我国正在加速推动航天产业的商业化进程。

未来,我国需要尽快探索和建立一套以市场为导向的商业化模式,缩小我国与国际航天大国之间的差距。

论测控技术与仪器发展现状

论测控技术与仪器发展现状

论测控技术与仪器发展现状测控技术是现代科学技术发展的重要组成部分,它在工业自动化、仪器仪表、信息技术等领域起到至关重要的作用。

随着科技的不断进步和社会的不断发展,测控技术和仪器的发展也日新月异。

本文将从测控技术和仪器发展的现状出发,探讨其在各个领域中的应用和未来发展趋势。

一、测控技术的发展现状1. 智能化水平不断提升随着人工智能、云计算、大数据等新一代信息技术的发展,测控技术的智能化水平不断提升。

传感器、执行器、控制器等硬件设备不断更新换代,软件算法也得到了长足的发展。

智能化测控系统能够更加准确地感知和控制物理过程,提高了生产效率和产品质量。

2. 网络化与通信技术的广泛应用随着互联网技术的普及和发展,网络化与通信技术在测控系统中得到了广泛的应用。

传统的仪器仪表不再是简单的单一设备,而是通过网络和通信技术与其他设备进行连接和数据交换,实现信息的共享和协同控制。

这种网络化的测控系统大大提高了生产过程的自动化程度和智能化水平。

3. 多元化应用场景显著增加随着科学技术的不断进步,测控技术在各个领域的应用场景也显著增加。

除了传统的工业自动化领域,测控技术还广泛应用于航空航天、医疗健康、环境监测、农业生产等领域。

这些新的应用场景为测控技术的发展提供了广阔的空间和巨大的市场需求。

1. 传感器技术不断创新传感器作为测控系统中的核心设备,其技术不断创新。

传感器技术在材料、结构、工艺等方面取得了显著的进步,使得传感器具有了更高的精度、更强的抗干扰能力和更长的使用寿命。

新型传感器的出现也拓展了测控仪器的应用领域,如图像传感器、生物传感器等。

2. 仪器仪表自动化水平提升传统的仪器仪表主要依靠人工进行数据采集和处理,其自动化水平较低。

随着先进的自动化技术的引入,各类仪器仪表的自动化水平得到了显著提升。

部分仪器仪表甚至能够实现远程监控和控制,使得操作更加便捷和高效。

3. 标准化与智能化的趋势明显随着测控仪器的广泛应用,标准化和智能化的趋势变得越发明显。

我国航天测控系统的现状与发展

我国航天测控系统的现状与发展

维普资讯
第1 0期
于志 坚 :我 国航 天测控 系统 的现 状与 发展
4 3
主干信 道的集 话音 、数 据 、图像 传输 于一体 的 大型
备与 国际联 网 ,进行 国际测 控合作 的能 力 。 3 )测控 网络 管 理 网管 中心设 在 西 安 卫 星测 控 中心 ,具 备对 测控设 备 的远程监 视能 力和 一定 的 控 制功能 ,负责 整个测 控 网的 日常管理 。测 控资源
科研 试验 通信 专 用 网。新 航 天测 控 网可 靠性 更 高 、
及 重 点 技 术 进 行 了分 析 探 讨 。
[ 键词 ] 航天;测控系统;总体设计;发展 关 [ 中图分 类号 ] V4 . 482 [ 文献 标 识码 ] A [ 文章 编号 ] 1 9 14 2 6 0 04 — 5 0 — 72(0 )1 — 02 0 0 0
领域 首 次提 出 了测控 网 的概念 ,并按 测控 网进行 了 规划 设计 ,根 据 当时 我 国的 国情 提 出 了测控 设备 布 局适 应 多场 区 、多射 向 、多弹道 飞行 试验特 点 和不 同发 射倾 角 、不 同运行 轨道 卫星测 控要 求 的发展思 路 ,确定 在 已有 的测控 、通信 能力 的基 础上 ,远 近 结 合 、全 面规 划 、箭 星兼顾 、综合 利用 ,逐 步建成
个布 局合 理 、工 作 协 调 、适 应 性 强 的 航 天 测 控 网 。遵 从 上述原 则 ,于 7 0年代末 8 代 初 ,初 步 0年
ቤተ መጻሕፍቲ ባይዱ
形 成 了我 国 的近地 轨道 卫星测 控 网和地 球 同步通信
卫 星测 控 系 统 。18 9 8年 近地 轨 道 卫 星 测 控 网完 成 了我 国第 一颗 太 阳 同步 轨 道 卫 星—— “ 云 一 号” 风

航空航天技术的现状与未来发展趋势研究

航空航天技术的现状与未来发展趋势研究

航空航天技术的现状与未来发展趋势研究随着科技的不断发展,航空航天技术也在不断提高。

如今,我们已经可以自主探测火星、拥有高超音速飞行器、进行太空站逗留等。

然而,这只是航空航天技术的一个缩影。

本文将分别对航空航天技术的现状以及未来发展趋势进行探讨。

一、航空航天技术的现状1.1 现状在航空领域,我们已经拥有了翼型设计、飞行控制技术、低功率电子设备、燃油效率的提高等方面的重大进展。

这些成就使得飞行器的安全性能和燃油效率得到了大幅提高。

同时,商业化航空服务的兴起,大众空中旅游需求的增加,对于民用航空器的研究和开发也提供了更多的发展空间。

在航天领域,我们拥有了较高的技术水平和成熟的技术,可以实现载人航天、火星探索、月球探索等多项任务。

此外,卫星技术和无人机技术得到了广泛的运用,如实时监控、全球导航、物流配送等方面。

总体来说,航空航天技术在人类历史上创造了奇迹,为人类的探索与发展做出了极为重要的贡献。

1.2 程度不一的发展虽然航空航天技术在某些领域取得了较高的技术水平和成熟的方案,但是在更多的领域中,如超音速、太空探索、地球科学等领域还有很大的提升空间。

并且,一些在研发阶段的技术难度仍然高居不下。

例如:超低空飞行器、高超音速飞行器、反应推进飞行器、太空电梯等。

此外,由于技术资源和资金等方面的各种限制,航空航天技术的发展程度也存在很大的差异。

例如一些发展中国家的航天技术相对较为薄弱,难以跨越重重的技术和资金限制,自主开展研究和实践。

二、航空航天技术的未来发展趋势2.1 航空技术未来,航空技术的发展趋势将会有以下几个方向:1)具有较低排放的环保型发动机2)更加节能的飞行器设计及制造,如更多的复合材料应用、新型氢燃料等3)自主飞行系统的快速发展,如航空器自动驾驶和无人机技术的变革进展4)基于无人机,实现无人驾驶小型地面车辆快递与物流配送2.2 航天技术未来,航天技术的发展趋势也将有以下几个方向:1)火星探测与太空旅游的迅速发展,如火星样品采集返回和太空旅游2)太阳系探索的继续深入探讨和研究3)已经实现的载人飞行项目,继续发展,如天宫空间站和载人登月”。

我国航天测控系统的现状与发展

我国航天测控系统的现状与发展

一、我国航天测控系统的现状
我国航天测控系统由地面测控站、轨道测量与计算技术、数据传输等多个环 节组成。目前,我国已经建立了一套完整的航天测控体系,为我国的航天事业提 供了强有力的支持。
地面测控站是我国航天测控系统的核心组成部分,主要负责对航天器进行跟 踪、测量和控制。我国已经建立了多个地面测控站,基本覆盖了全球范围。这些 测控站采用了先进的测量和数据处理技术,具备高精度、高稳定性和高效率的特 点。
四、前航天测控技术的现状与前 景
目前,前航天测控技术已经取得了长足的发展和进步。在卫星通信、导航和 探测等方面,前航天测控技术已经具有较高的精度和稳定性。随着科技的不断进 步和应用需求的不断增长,前航天测控技术将迎来新的发展机遇和挑战。
未来,前航天测控技术将朝着更高精度、更远距离、更快速度和更高稳定性 等方向发展。同时,随着人工智能、大数据等技术的不断应用,前航天测控技术 将实现更加智能化、自主化和远程化的控制和管理。此外,随着深空探测的不断 深入,
3、加强人才培养,建立完善的人才培养机制。通过设立奖励机制、提供良 好的工作环境等措施,吸引更多的人才参与航天测控系统的研究和开发。同时加 强对现有人才的培训和提升,提高整个团队的技术水平。
4、加强国际合作,借鉴国际先进经验和技术。通过参加国际会议、加强技 术交流等方式,了解国际航天测控系统的发展动态和技术趋势,促进我国航天测 控系统的长足发展。
1、早期阶段:在卫星通信和航天技术发展的早期阶段,人们主要依靠雷达 和无线电通信技术对航天器进行测控。这种方法虽然可以实现一定精度的测量
和控制,但受到天气、地形等因素的影响较大,精度和稳定性都不够理想。
2、卫星测控阶段:随着卫星通信和航天技术的不断发展,人们开始利用卫 星进行前航天测控。这一阶段的技术手段主要包括遥测、遥控和遥感。遥测可以 实时获取航天器的轨道和姿态信息,遥控可以实现对于航天器的精确控制,遥感 则可以获取航天器

航空测控技术的发展趋势与策略研究

航空测控技术的发展趋势与策略研究

航空测控技术的发展趋势与策略研究随着科技的不断发展,航空测控技术在航空航天领域扮演着越来越重要的角色。

航空测控技术的发展不仅关乎航空器的安全性和性能,更与国家的国防安全和科技实力息息相关。

本文将对航空测控技术的发展趋势进行分析,探讨未来的发展方向,并提出相应的策略建议。

一、航空测控技术的发展趋势1. 自主导航与自主控制技术随着人工智能和自主飞行技术的不断发展,未来航空器将越来越依赖自主导航和自主控制技术。

这将使航空器能够在更复杂的环境下进行飞行,提高飞行的安全性和稳定性。

航空测控技术需要不断突破,以满足未来自主飞行技术的需求。

2. 高精度定位技术在航空测控技术中,高精度定位技术是至关重要的。

只有在准确的位置信息下,航空器才能够实现精确的飞行和导航。

未来航空测控技术的发展将聚焦在提高定位精度、减小误差范围和提高环境适应能力等方面。

3. 通信与数据链技术航空器需要与地面测控中心进行实时通信和数据传输,因此通信与数据链技术将会成为未来航空测控技术的重要方向。

高速、稳定的数据传输和通信技术将大大提升航空器的实时性和可靠性。

4. 智能监测与诊断技术航空器的安全性和可靠性是航空测控技术的核心关注点之一。

未来的航空测控技术将会着重发展智能监测和诊断技术,以实现对航空器各系统的实时监测和故障诊断,提前预警并采取相应措施,保障航空器的安全飞行。

1. 加强基础研究与技术突破在航空测控技术的发展中,基础研究和技术突破是至关重要的。

政府和企业应当加大对基础研究和前沿技术的投入,培养更多的科研人才,推动科研成果的转化和应用。

2. 推动产学研合作加强产学研合作,将科研成果转化为实际的应用技术,加速航空测控技术的应用和推广。

政府应该出台相应政策,鼓励企业和高校科研机构之间的合作,促进科研成果的产业化。

3. 完善相关标准和规范航空测控技术的发展需要有相关的标准和规范加以引导和监管。

政府和相关部门应当在技术标准、飞行规章等方面进行规范和监管,确保技术的安全可靠性。

2024航天思想汇报

2024航天思想汇报

2024航天思想汇报摘要2024年是航天领域发展的关键一年,为了更好地推动航天事业的发展,本文将分析当前航天技术发展的现状,探讨未来航天技术的趋势,展望航天行业的发展前景,并提出我国在航天领域的发展思路和战略。

一、航天技术发展现状当前,我国航天技术已经取得了许多重要进展,如我国自主研发的“神舟”系列飞船成功实施多次载人飞行任务,我国的火箭技术也在不断进步,实现了一系列重大发射任务。

此外,我国还在着手研发深空探测器等项目,为航天技术的发展奠定了坚实基础。

二、未来航天技术的趋势未来,随着科技的不断发展和航天技术的不断创新,航天领域将呈现出一些明显的趋势。

其中,可以预见的是航天器的自主能力将会进一步提升,对于环境适应性和智能化的要求也将更高。

此外,航天技术与其他领域的融合发展也将成为未来航天技术发展的重要趋势。

三、航天行业发展前景航天行业在未来将会迎来更广阔的发展前景。

随着人类对太空的探索逐渐深入,航天技术在科研、商业和军事等领域的应用也将会更加广泛。

由此可以预见,航天行业将成为未来科技发展的重要引擎,为人类社会的进步做出更大的贡献。

四、我国航天发展思路和战略为了更好地推动航天事业的发展,我国应当坚持自主创新,不断提升航天技术的核心竞争力。

同时,我国还应当加强国际合作,吸收先进技术和经验,促进我国航天技术的快速发展。

此外,我国还应当注重人才培养,为航天事业输送更多拔尖人才,推动航天事业的不断进步。

结语综上所述,2024年是我国航天事业发展的关键时刻,我们应当坚定信心,不断探索,努力推动航天技术的发展,为推动我国航天事业迈向更高水平做出更大的努力。

以上为2024航天思想汇报的内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.概述航天测控网是指对航天器进行测量控制的专用网络,其主要任务是对上升段运载器进行测量,对故障火箭实施安全控制;对航天器轨道和姿态进行测量和控制,对航天器遥测进行接收处理,对航天器进行遥控,接收载人航天器图像,进行上下话音通信等;为有效载荷提供相关参数。

航天测控网的中枢是航天指挥控制中心,不管是地基,还是天基,所有的测控资源都由中心来计划、控制和使用。

我国先后建成了超短波近地卫星测控网、C频段卫星测控网和S 频段航天测控网,可为中低轨、地球同步轨道等多种航天器提供测控支持,圆满完成了各次航天飞行的测控任务。

根据我国航天发展中长期发展规划,我国现有C、S两大骨干测控网面临着以下四个方面的新挑战。

首先是测控网精度。

根据现有测控设备精度和定轨方法,航天器空间定位位置精度可达十米至百米量级。

未来的对地观测等新型卫星要求定轨精度在米级以内,甚至厘米量级。

其次是测控网的覆盖能力。

当前测控网对中低轨道航天器的覆盖率在10%~20%,随着载人航天工程的发展,要求轨道覆盖率在80%以上,尤其在空间交会对接过程中,要求不间断的监视。

只有高覆盖率才能保证载人航天任务的安全、可靠。

第三,多星管理能力随着我国小卫星、卫星星座的发展,测控网将面临着需测控支持的卫星数目多、多颗星同时过境、卫星相继过境间隔时间缩短等新形势。

这就要求测控网具有较强的多星测控、管理能力。

第四,高数据率。

以往的航天测控任务,前向链路(上行遥控、数据注人等少和返向链路(下行遥测、数传等)的数据传输速率均在几十至几兆以内。

以后的观测卫星、空间站的码速率将达百兆量级以上。

2.我国航天测控技术现状和面临的任务2.1我国航天测控技术现状40多年来,为了配合我国的航天试验任务,测控和沟通测控系统的通信技术有了长足的发展。

在测控系统总体设计、测控网和测控中心的建设、测量数据的实时和事后分析以及跟踪测量和指令控制设备技术等方面都跨入了当今世界先进行列。

我国航天测控网由发射和测控中心、若干陆地固定和机动测控站及航天测量船组成。

已由UHF、S、C三个频段TTC设备组成的航天测控系统,具备完成第二代卫星、载人航天工程的测控支持能力。

在执行历次卫星发射试验任务中,证明其有很高的总体效能。

我国航天测控网的主要特点是统一规划,设站较少,效益高;网中各固定站可以根据需要合理组合,综合利用;各车载、船载站可以根据需要灵活配置,机动使用;多数测控设备可以箭、星通用;数据格式及接口实现了标准化、规范化。

目前,已形成了以高精度测量带和中精度测控网交叉兼容,以测控中心和多种通信手段相联接的,具有中国特色的陆海基航天测控网,能为各种射向、各种轨道的航天器发射试验和在轨运行提供测控支持,具备国际联网共享测控资源的能力。

2.2未来我国航天事业发展对飞行器测控技术的需求根据我国航天活动中长期发展规划,在卫星应用与科学探测领域,将继续发展环境与灾害监测、地球资源探测、气象探测、海洋探测、卫星通信等系列卫星,辅以各类科学试验和空间科学探测卫星;在载人航天领域,将进行航天员出舱活动、无人交会对接和载人交会对接试验,陆续建设我国的空间实验室和空间站等;在月球与深空探测领域将逐步实施绕月探测、月面软着陆与月面巡视勘察、自动采样返回以及火星、小行星等深空探测计划。

航天活动的持续发展给航天测控系统带来了新的挑战和发展机遇。

新的测控需求突出表现在:1)高的轨道覆盖率在载人飞船工程第二步任务中,航天员出舱活动和空间交会对接要求高轨道覆盖率;为提高传输型卫星的利用率和探测信息的时效性,要求高轨道覆盖率;亚轨道飞行器,其轨道机动具有变轨时间突发性和变轨位置的随意性,要求高轨道覆盖率;在月球探测的转移轨道段,要求全程几乎连续的轨道覆盖。

2)更高的轨道精度在对地观测卫星和海洋卫星等近地轨道卫星、导航卫星、绕月探测卫星等提出高精度的航天器轨道测量和定位精度的同时空间交会对接、卫星星座、月球着陆探测还提出了航天器间相对位置精度的更高要求。

3)更高的数据传输速率随着对地观察类卫星的大量应用,测控网需要高速率的数据传输能力,测控通信业务传输速率将突破300Mb/s。

4)更多的测控目标和更复杂的测控任务随着航天技术的发展,卫星应用领域不断扩展,未来一段时间内将有大量军事卫星和民用卫星发射入轨,由多颗卫星组成的卫星星座的应用使得卫星在轨数量激增。

同时,在传统单颗卫星的测控任务外,对多星的同时测控支持、多星及星座在轨运行管理等增加了航天测控网的负担和操作复杂性。

5)远的测控距离我国确定开展以月球探测为主的深空探测任务,使得航天测控的距离拓展至40×104km的月球。

遥远的距离带来了巨大的时延,使信号微弱,并限制了深空数据传输速率,这些困难使得测控系统必须尽可能地采用最先进的技术,不断提高通信链路和测控精度。

6)更低的测控成本随着航天测控网规模的日益庞大,长期使用后维护费用占的比例很大,航天器在轨寿命的延长使得运行控制费用不断累积,这些都使降低航天测控任务的总费用成为国际航天界的重要课题。

3.我国航天测控系统的发展趋势3.1由陆海基测控网向天地一体化综合测控网过渡目前的天基测控系统主要有两类:一类是跟踪与数据中继卫星系统(TDRSS),是以数据中继为主要技术手段的综合航天测控系统;另一类是导航定位系统,可为航天器和地面目标提供高精度定位测速和定时能力。

我国航天测控网的主要发展途径是建立数据中继卫星系统,充分利用GPS/GLONASS和我国发展中的北斗全球卫星导航定位系统,优化地面测控站布局,逐步由陆海基测控网向天基为主、天地结合的一体化综合测控网发展。

卫星发射段、高轨卫星和小卫星的长期管理由地基设备为主完成;中低轨航天器的长期管理则由天基系统为主、地基设备为辅。

利用以数据中继卫星系统为主建设的天地一体化测控网,不仅能有效地提高网的测控覆盖率、定轨精度、火箭全程测量和同时对多目标的测控能力,而且能够完成各类对地观测卫星的高速实时数据传输的任务。

考虑到急需和现实可能性,我国TDRSS应分步发展。

第一步以现有卫星平台为基础,以S、Ka固面抛物面天线作星间通信天线,尽快研制和发射一个试验和试用型数据中继卫星。

在此基础上再以大卫星平台、可展开式大口径天线为基础研制和发射第二代数据中继卫星,由两颗在轨工作星和一个地面终端站构成高性能实用型系统。

同时开拓系统新的应用领域。

建立以卫星导航定位系统为基础的外弹道测量(遥测)系统。

改造装载GPS/GLONASS/北斗终端的S频段车载遥测站,组成一体化的遥外测综合测量设备;同时加强在测姿、测轨方面的应用,提高飞行器自主测量能力,简化地面测控网。

关于火箭飞行安全及卫星、飞船的实时控制问题,天地之间也要有一个合理的分工,充分发挥卫星自主能力不断提高的技术潜力,以便对地面控制能力和测控系统规模有一个明确的建设思路。

3.2补充完善适于小卫星、星座及组网的测控手段小卫星是当今世界航天领域发展的热点,也是我国重点发展应用的我国航天测控系统体制与技术现状以及发展装备指挥技术学院曲卫贾鑫[摘要]本文首先综述了我国航天测控网的发展过程和现状,然后根据我国航天发展的总体规划,探讨了航天测控网所面临的挑战和问题以及我国航天事业发展对飞行器测控技术的需求,并对我国地基、天基、深空探测测控通信系统发展以及重点技术进行了深入的分析探讨。

[关键词]航天测控TDR SS综合测控网481——一类航天器。

可以设想,未来十年我国在轨运行小卫星的数量将占卫星总数的一半以上,有单星、星座和编队飞行卫星群等。

小卫星测控的关键是攻克多星测控管理和小型化的地面高效综合设备技术,希望能通过更合理地使用测控资源和在尽量降低运作费用的前提下,实现对多星发射时入轨段和早期轨道段的测控支持,具备在轨运行段对较多卫星的综合管理能力。

由于我国在轨运行的小卫星较少,而且从重量、体积、自主功能和结构设计等方面还不完全具有现代小卫星的特征,近期仍可应用常规的TTC方案。

因此发展小卫星测控的总体思路应是:充分发挥现有测控网的作用,避免重复投入,以首先实现对信息获取(对地观测)小卫星及星座的测控支持为突破口,研究未来大型小卫星网的测控和管理技术;对目前网内部分主站进行适应性配套改造,同时研制必要的机动型小卫星地面高效综合测控设备,共用互补,天基和地基协调配套发展,中心透明工作方式和单站直接操作方式相结合,提高测控网的综合性能。

在轨运行仍采用现有S频段测控网或以该网为后盾,提高测控站的自动化程度,对测控站和卫星控制中心各类软件的调度性能作进一步开发、优化,强化网管中心的调度功能,使其具有支持50颗左右在轨卫星测控的能力。

改造部分现有设备,使其符合CCSDS建议的标准,适应多用户、多数据类型的任务;提高数据通信系统的适应能力,沟通并完善与用户数据通信的接口,真正赋予用户直接了解、应用和操作所属星上有效载荷的能力,为战时快速反应提供可能性。

3.3建立空间信息资源应用管理网络系统航天系统是高投入、高风险、高回报的系统,如果能有效地克服目前各类卫星系统以单用户为背景的条块分割现象,形成卫星系统信息的综合利用和共享,将大大提高航天系统的整体效益,对国民经济建设和国防事业都将具有重要意义。

因此产生了天基综合信息网的概念。

建设中国的天基综合信息网,应从国情出发,采用由简单到复杂、由初级到高级的发展思路,主要把所有已发射和即将发射的卫星及地面系统综合利用起来,尽快构成可实现资源共享的网络。

受客观因素制约,初期的数据处理和联网还只能在地面完成。

在我国跟踪与数据中继卫星发射以后,各卫星系统获取的信息可实时汇集到同一中心并使卫星工作效率、工作范围及信息的时效性大大提高。

我国的空间资源地面站子系统和信息综合处理管理中心,将获取的信息集中管理,按权限打包分发,并逐步实现复杂的多种信息融合处理,提高空间信息系统所获信息的时间分辨率、目标分辨率和识别能力。

这样既可以避免重复投资,又能充分发挥航天系统和测控网的利用率和效益,实现包括测控信息在内的空间信息资源的共享,建成面向用户进行全方位信息服务的空间资源综合处理管理网络系统。

3.4建设和完善空间目标监视系统空间目标监视系统的作用是监测空间目标,并进行某些状态如轨道参数、辐射特征和形态特征评估,提供目标的空间态势,为相关系统提供满足要求的目标信息。

在我国航天测控网的基础上,与国内的空间目标侦察监视系统和人卫观测系统相配合,进行统筹规划和有针对性的设备研制,逐步建成包括星载空间监视网、陆基空间雷达监视网和光电监测网组成的完整的空间目标监视系统,是紧迫、必要和可行的。

需要解决的技术重点在于对目标的精密定轨与预报,难点在于大气模型的动态监测。

4.我国航天测控技术的发展航天测控技术是对航天器进行跟踪、测量、控制的综合专用技术,涉及跟踪、遥测、遥控、轨道动力学、计算机、数据处理、监控显示和通信等诸多专业技术领域。

相关文档
最新文档