我国航天测控系统体制与技术现状以及发展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.概述

航天测控网是指对航天器进行测量控制的专用网络,其主要任务是对上升段运载器进行测量,对故障火箭实施安全控制;对航天器轨道和姿态进行测量和控制,对航天器遥测进行接收处理,对航天器进行遥控,接收载人航天器图像,进行上下话音通信等;为有效载荷提供相关参数。航天测控网的中枢是航天指挥控制中心,不管是地基,还是天基,所有的测控资源都由中心来计划、控制和使用。

我国先后建成了超短波近地卫星测控网、C频段卫星测控网和S 频段航天测控网,可为中低轨、地球同步轨道等多种航天器提供测控支持,圆满完成了各次航天飞行的测控任务。

根据我国航天发展中长期发展规划,我国现有C、S两大骨干测控网面临着以下四个方面的新挑战。首先是测控网精度。根据现有测控设备精度和定轨方法,航天器空间定位位置精度可达十米至百米量级。未来的对地观测等新型卫星要求定轨精度在米级以内,甚至厘米量级。其次是测控网的覆盖能力。当前测控网对中低轨道航天器的覆盖率在10%~20%,随着载人航天工程的发展,要求轨道覆盖率在80%以上,尤其在空间交会对接过程中,要求不间断的监视。只有高覆盖率才能保证载人航天任务的安全、可靠。第三,多星管理能力随着我国小卫星、卫星星座的发展,测控网将面临着需测控支持的卫星数目多、多颗星同时过境、卫星相继过境间隔时间缩短等新形势。这就要求测控网具有较强的多星测控、管理能力。第四,高数据率。以往的航天测控任务,前向链路(上行遥控、数据注人等少和返向链路(下行遥测、数传等)的数据传输速率均在几十至几兆以内。以后的观测卫星、空间站的码速率将达百兆量级以上。

2.我国航天测控技术现状和面临的任务

2.1我国航天测控技术现状

40多年来,为了配合我国的航天试验任务,测控和沟通测控系统的通信技术有了长足的发展。在测控系统总体设计、测控网和测控中心的建设、测量数据的实时和事后分析以及跟踪测量和指令控制设备技术等方面都跨入了当今世界先进行列。

我国航天测控网由发射和测控中心、若干陆地固定和机动测控站及航天测量船组成。已由UHF、S、C三个频段TTC设备组成的航天测控系统,具备完成第二代卫星、载人航天工程的测控支持能力。在执行历次卫星发射试验任务中,证明其有很高的总体效能。我国航天测控网的主要特点是统一规划,设站较少,效益高;网中各固定站可以根据需要合理组合,综合利用;各车载、船载站可以根据需要灵活配置,机动使用;多数测控设备可以箭、星通用;数据格式及接口实现了标准化、规范化。目前,已形成了以高精度测量带和中精度测控网交叉兼容,以测控中心和多种通信手段相联接的,具有中国特色的陆海基航天测控网,能为各种射向、各种轨道的航天器发射试验和在轨运行提供测控支持,具备国际联网共享测控资源的能力。

2.2未来我国航天事业发展对飞行器测控技术的需求

根据我国航天活动中长期发展规划,在卫星应用与科学探测领域,将继续发展环境与灾害监测、地球资源探测、气象探测、海洋探测、卫星通信等系列卫星,辅以各类科学试验和空间科学探测卫星;在载人航天领域,将进行航天员出舱活动、无人交会对接和载人交会对接试验,陆续建设我国的空间实验室和空间站等;在月球与深空探测领域将逐步实施绕月探测、月面软着陆与月面巡视勘察、自动采样返回以及火星、小行星等深空探测计划。航天活动的持续发展给航天测控系统带来了新的挑战和发展机遇。新的测控需求突出表现在:

1)高的轨道覆盖率

在载人飞船工程第二步任务中,航天员出舱活动和空间交会对接要求高轨道覆盖率;为提高传输型卫星的利用率和探测信息的时效性,要求高轨道覆盖率;亚轨道飞行器,其轨道机动具有变轨时间突发性和变轨位置的随意性,要求高轨道覆盖率;在月球探测的转移轨道段,要求全程几乎连续的轨道覆盖。

2)更高的轨道精度

在对地观测卫星和海洋卫星等近地轨道卫星、导航卫星、绕月探测卫星等提出高精度的航天器轨道测量和定位精度的同时空间交会对接、卫星星座、月球着陆探测还提出了航天器间相对位置精度的更高要求。

3)更高的数据传输速率

随着对地观察类卫星的大量应用,测控网需要高速率的数据传输能力,测控通信业务传输速率将突破300Mb/s。

4)更多的测控目标和更复杂的测控任务

随着航天技术的发展,卫星应用领域不断扩展,未来一段时间内将有大量军事卫星和民用卫星发射入轨,由多颗卫星组成的卫星星座的应用使得卫星在轨数量激增。同时,在传统单颗卫星的测控任务外,对多星的同时测控支持、多星及星座在轨运行管理等增加了航天测控网的负担和操作复杂性。

5)远的测控距离

我国确定开展以月球探测为主的深空探测任务,使得航天测控的距离拓展至40×104km的月球。遥远的距离带来了巨大的时延,使信号微弱,并限制了深空数据传输速率,这些困难使得测控系统必须尽可能地采用最先进的技术,不断提高通信链路和测控精度。

6)更低的测控成本

随着航天测控网规模的日益庞大,长期使用后维护费用占的比例很大,航天器在轨寿命的延长使得运行控制费用不断累积,这些都使降低航天测控任务的总费用成为国际航天界的重要课题。

3.我国航天测控系统的发展趋势

3.1由陆海基测控网向天地一体化综合测控网过渡

目前的天基测控系统主要有两类:一类是跟踪与数据中继卫星系统(TDRSS),是以数据中继为主要技术手段的综合航天测控系统;另一类是导航定位系统,可为航天器和地面目标提供高精度定位测速和定时能力。我国航天测控网的主要发展途径是建立数据中继卫星系统,充分利用GPS/GLONASS和我国发展中的北斗全球卫星导航定位系统,优化地面测控站布局,逐步由陆海基测控网向天基为主、天地结合的一体化综合测控网发展。卫星发射段、高轨卫星和小卫星的长期管理由地基设备为主完成;中低轨航天器的长期管理则由天基系统为主、地基设备为辅。

利用以数据中继卫星系统为主建设的天地一体化测控网,不仅能有效地提高网的测控覆盖率、定轨精度、火箭全程测量和同时对多目标的测控能力,而且能够完成各类对地观测卫星的高速实时数据传输的任务。考虑到急需和现实可能性,我国TDRSS应分步发展。第一步以现有卫星平台为基础,以S、Ka固面抛物面天线作星间通信天线,尽快研制和发射一个试验和试用型数据中继卫星。在此基础上再以大卫星平台、可展开式大口径天线为基础研制和发射第二代数据中继卫星,由两颗在轨工作星和一个地面终端站构成高性能实用型系统。同时开拓系统新的应用领域。建立以卫星导航定位系统为基础的外弹道测量(遥测)系统。改造装载GPS/GLONASS/北斗终端的S频段车载遥测站,组成一体化的遥外测综合测量设备;同时加强在测姿、测轨方面的应用,提高飞行器自主测量能力,简化地面测控网。关于火箭飞行安全及卫星、飞船的实时控制问题,天地之间也要有一个合理的分工,充分发挥卫星自主能力不断提高的技术潜力,以便对地面控制能力和测控系统规模有一个明确的建设思路。

3.2补充完善适于小卫星、星座及组网的测控手段

小卫星是当今世界航天领域发展的热点,也是我国重点发展应用的

我国航天测控系统体制与技术现状以及发展

装备指挥技术学院曲卫贾鑫

[摘要]本文首先综述了我国航天测控网的发展过程和现状,然后根据我国航天发展的总体规划,探讨了航天测控网所面临的挑

战和问题以及我国航天事业发展对飞行器测控技术的需求,并对我国地基、天基、深空探测测控通信系统发展以及重点技术进行了

深入的分析探讨。

[关键词]航天测控TDR SS综合测控网

481

——

相关文档
最新文档