基于单片机电子秤硬件电路设计
基于STM32F1单片机的电子秤设计
基于STM32F1单片机的电子秤的设计1.本文概述随着技术的进步和电子技术的普及,电子秤已成为日常生活和工业生产中不可或缺的工具。
与传统的机械秤相比,电子秤具有更高的测量精度、更强的功能性和更广泛的应用范围。
本文旨在设计一种基于STM32F1单片机的电子秤。
该设计不仅专注于电子秤的称重和单位转换等基本功能,而且通过使用STM32F1微控制器,赋予电子秤更智能的功能,如数据存储、传输和用户界面交互。
文章首先介绍了STM32F1单片机的特点和适用性,然后详细阐述了电子秤的设计原理、硬件选择和软件实现。
本文还包括对系统的测试结果和分析,以验证设计的有效性和可靠性。
通过本文的研究和设计,有望为电子秤领域提供一种创新实用的解决方案。
2.系统设计原则在这种电子秤的设计中,STM32F1微控制器作为核心控制器,其重要性体现在以下几个方面:处理能力:STM32F1系列微控制器基于ARM CortexM3内核,具有强大的处理能力和高效的能耗比。
其最大工作频率可达72MHz,足以处理电子秤所需的复杂计算和数据传输任务。
集成:该系列微控制器集成了丰富的外围接口,如ADC(模数转换器)、UART(通用异步收发器)、I2C(集成电路总线)等。
这些接口对电子秤的设计至关重要。
稳定性和可靠性:STM32F1微控制器具有优异的抗干扰能力和稳定性,适用于工业应用,确保了电子秤在复杂环境中的准确性和可靠性。
电子秤的核心部件是传感器,用于将物体的重量转换为电信号。
在该设计中,选择了压力传感器作为主要测量元件。
传感器的工作原理是基于弹性变形。
当物体受到压力时,传感器内部的电阻应变计变形,从而改变电阻值并通过惠斯通电桥将其转换为电压信号。
信号放大和滤波:传感器输出的模拟信号通常较弱,需要通过信号放大器进行放大。
为了提高信号质量,设计了滤波电路来去除噪声,保证信号的准确性。
模数转换:通过STM32F1微控制器内置的ADC将放大后的模拟信号转换为数字信号,使微控制器易于处理和计算。
基于单片机的实用电子秤设计
基于单片机的实用电子秤设计一、硬件设计1、传感器选择电子秤的核心部件之一是称重传感器。
常见的称重传感器有电阻应变式、电容式等。
在本设计中,我们选用电阻应变式传感器,其原理是当物体的重量作用在传感器上时,传感器内部的电阻应变片会发生形变,从而导致电阻值的变化。
通过测量电阻值的变化,就可以计算出物体的重量。
2、信号放大与调理传感器输出的信号通常比较微弱,需要经过放大和调理才能被单片机处理。
我们使用高精度的仪表放大器对传感器输出的信号进行放大,并通过滤波电路去除噪声干扰,以提高测量的准确性。
3、单片机选型单片机是整个电子秤系统的控制核心。
考虑到性能、成本和开发难度等因素,我们选用 STM32 系列单片机。
STM32 系列单片机具有丰富的外设资源、较高的运算速度和良好的稳定性,能够满足电子秤的设计需求。
4、显示模块为了直观地显示测量结果,我们选用液晶显示屏(LCD)作为显示模块。
LCD 显示屏具有功耗低、显示清晰、视角广等优点。
通过单片机的控制,可以在 LCD 显示屏上实时显示物体的重量、单位等信息。
5、按键模块为了实现电子秤的功能设置,如单位切换、去皮、清零等,我们设计了按键模块。
按键模块通过与单片机的连接,将用户的操作指令传递给单片机进行处理。
6、电源模块电源模块为整个电子秤系统提供稳定的电源。
我们使用线性稳压器将输入的电源电压转换为适合各个模块工作的电压,以确保系统的正常运行。
二、软件算法1、重量计算算法根据传感器的特性和放大调理电路的参数,我们可以建立重量与传感器输出信号之间的数学模型。
通过对传感器输出信号的采集和处理,利用数学模型计算出物体的实际重量。
2、滤波算法为了消除测量过程中的噪声干扰,提高测量的稳定性和准确性,我们采用数字滤波算法对采集到的信号进行处理。
常见的数字滤波算法有中值滤波、均值滤波等。
在本设计中,我们选用中值滤波算法,其原理是对连续采集的若干个数据进行排序,取中间值作为滤波后的结果。
基于单片机的电子秤的方案设计
目录
01 一、引言
03 三、硬件设计
02 二、总体设计 04 四、软件设计
目录
05 五、调试与优化
07 参考内容
06 六、应用前景
一、引言
随着科技的不断发展,智能化和数字化逐渐成为测量与控制领域的主流趋势。 其中,电子秤作为一种高精度的测量设备,在贸易结算、工业生产等领域具有广 泛的应用。基于单片机的电子秤因其具有体积小、成本低、易于集成等优点,越 来越受到人们的。本次演示将介绍一种基于单片机的电子秤设计方案,以期为相 关领域的工程技术人员提供参考。
4、数据显示:将重量数据显示 在显示模块上。
5、报警提示:如遇超重或欠重 情况,系统会进行报警提示。
6、数据存储:可预留数据存储接口,方便用户对重量数据进行存储或传输。
五、总结
本次演示介绍了基于51单片机的电子秤设计,通过利用电阻应变式传感器进 行重量检测,经过51单片机处理后将重量数据显示出来。这种设计具有精度高、 稳定性好、使用方便等优点,可广泛应用于各种场合的重量检测。随着技术的不 断发展,我们有理由相信,以51单片机为核心的电子秤设计将会有更广阔的应用 前景。
3、采用软件滤波算法,减少外界干扰对测量精度的影响;
4、对程序进行优化,提高数据 处理速度和准确性。
经过调试与优化后,电子秤的性能得到了显著提升,测量精度得到了提高。
六、应用前景
基于单片机的电子秤具有广泛的应用前景。在实际应用中,该电子秤可应用 于贸易结算、工业生产、食品药品等行业。同时,由于其体积小、成本低等优点, 可以方便地集成到各种称重系统中。
Байду номын сангаас
二、电子秤的工作原理
电子秤是利用传感器测量物体的重量,并将重量转换为电信号,再通过信号 处理电路进行处理,最终以数字形式显示出来。51单片机作为一种通用的微控制 器,可以方便地对电子秤进行控制和数据处理。
一种基于STC89C52单片机的便携式电子秤设计
一种基于STC89C52单片机的便携式电子秤设计电子秤在日常生活中广泛应用,尤其在超市、货运、厨房等场景中起到了不可或缺的作用。
本文将介绍一种基于STC89C52单片机的便携式电子秤设计,以满足人们对便携、精确、易用的电子秤的需求。
1. 简介电子秤是一种利用传感器测量物体重量的设备。
传统的机械秤存在读数不准确、不易携带等问题,而基于单片机的电子秤则具备了更高的精确度和便携性。
2. 设计原理该电子秤的设计原理是利用压力传感器测量物体受力变化,然后将受力信号通过模拟电路转换为电压信号,再由单片机进行模拟数字转换(ADC)并进行计算,最终得出物体的重量。
3. 硬件设计3.1 单片机选择本设计采用STC89C52单片机作为主控芯片,其具备高性能、低功耗的优势,并且具备8位数据总线、32KB的闪存等特点,非常适用于小型应用。
3.2 传感器选择为了实现高精度的重量测量,我们选用了一款高精度的压力传感器。
该传感器具备良好的线性度和稳定性,能够准确地测量重量变化。
3.3 电路设计电路设计包括模拟电路和数字电路两部分。
模拟电路将传感器输出的模拟信号转换为电压信号,再经过条件放大后输入到单片机的模拟转换电路。
数字电路主要由单片机、LCD显示屏和按键等组成,实现数据处理和人机交互功能。
4. 软件设计4.1 硬件初始化在软件设计中,首先需要对硬件进行初始化设置。
通过配置单片机的GPIO口、中断、计时器等功能来实现对各个硬件模块的控制。
4.2 模拟转换和数据处理通过单片机提供的模拟数字转换(ADC)功能,将模拟电压信号转换为数字信号。
然后,通过数据处理算法对数字信号进行滤波和校准,得出准确的重量数据。
4.3 显示和人机交互使用LCD显示屏来展示测量结果,并增加按键功能,方便用户进行重量锁定、切换单位等操作。
同时,还可以通过串口通信将数据传输到其他设备。
5. 功能拓展在基本功能实现的基础上,可以对电子秤进行一些功能扩展。
例如,增加存储功能,记录每次测量的重量数据;增加串口通信功能,方便与其他设备进行数据交互;增加温湿度传感器等,实现多功能集成。
基于单片机的智能电子秤设计
基于单片机的智能电子秤设计摘要随着电子技术的广泛应用,市场上使用的传统称重工具已经不能满足人们的要求。
因此,为了改变传统称重工具在使用上存在的问题,在本设计中把智能化、自动化、人性化使用在了电子称重的控制系统中。
本设计是基于52单片机的智能电子秤的设计,设计分为压力传感模块、信号转换模块、人机交换模块和输出显示模块。
设计电路中运用电阻应变式传感器、A/D转换器、键盘和LCD显示器等四大器件。
工作原理是采用电阻式应变传感器采集被测物体质量的模拟量,再经放大电路输出到A/D转换器,转换成便于处理的数字信号输出到52单片机中进行处理后把数字信号输送到显示电路中,最后由显示电路显示测量结果。
此电子秤俱备了性能价格比高、功能多元化、功耗低、系统设计简单、使用方便直观、测量准确、速度快、自动化程度高等特点。
本系统以AT89C52单片机为主控芯片,由称重电路、显示电路、报警电路、键盘电路等构成智能称重系统电路板,从而实现自动称重系统的各种功能。
此设计所完成的电子秤很大程度上满足了应用需求。
关键词:AT89C52;称重传感器;A/D转换器;LCD显示器AbstractWith the application of micro-electronics technology, tradition ponderation instrument used in market has been not satisfaction with human requirements already. In order to make up for the traditional apparatus shortcoming, we improve the apparatus's control system with intelligence and automation. This design is the design of the intelligent electronic scale based on 52 single chip microcomputer, the design is divided into pressure sensing module, a signal conversion module, man-machine interface module and output module. The resistance strain sensor, A/D converter, keyboard and LCD display device using four circuit design. The working principle is simulated using the amount of resistance strain sensor mass, the amplifying circuit output to A/D converter, converted into digital signal output to facilitate processing to 52 SCM processed transports the digital signal to the display circuit, the display circuit to display the measurement results, this apparatus have many characteristic such as having more function, consume less energy, small and move easily, low price, measure precisely, the speed is quick, automatic work without people and so on.The system is mainly controlled by the micro-controller AT89S52, the periphery is consist of the circuit of clock and calendar, the circuit of measure height and weight, the circuit of display and print, all of these comprise the circuit board of the intelligent apparatus of height and weight. It can achieve all function of the apparatus.Keywords: AT89C52; ponderation–sensor; A/D converter; LCD Display设计说明本文主要是基于单片机电子秤的控制部分的设计及理论分析,并阐述了电路的各个部分的功能和程序原理。
基于单片机的电子秤设计
目录摘要 (1)ABSTRACT...................................................... 错误!未定义书签。
1绪论......................................................... 错误!未定义书签。
2系统方案论证与选型 . (4)2.1 控制器部分 (5)2.2 数据采集部分 (5)2.2.1传感器的选择 (5)2.2.2放大电路选择 (8)2.2.3A/D转换器的选择 (11)2.2.4键盘处理部分方案论证 (12)2.3显示电路部分的选择 (13)2.4超量程报警部分选择 (13)3硬件电路设计 (14)3.1 AT89S52的最小系统电路 (15)3.1.1单片机芯片AT89S52介绍 (15)3.1.2.单片机管脚说明 (16)3.1.3 AT89S52的最小系统电路构成 (18)3.2 电源电路设计 (18)3.3 数据采集部分电路设计 (19)3.3.1 传感器和其外围以及放大电路设计 (19)3.3.2 A/D转换芯片与AT89S52单片机接口电路设计 (22)3.3.3 测量算法 (25)3.4显示电路与AT89S52单片机接口电路设计 (25)3.5键盘电路与AT89S52单片机接口电路设计 (27)3.6报警电路的设计 (29)4系统软件设计 (29)4.1主程序设计 (30)4.2 子程序设计 (31)4.2.1 A/D转换启动及数据读取程序设计 (31)4.2.2数制转换子程序设计 (31)4.2.3显示子程序设计 (33)4.2.4 键盘扫描子程序的设计 (33)4.2.5报警子程序的设计 (35)设计总结 (36)致谢 ........................................................ 错误!未定义书签。
参考文献. (37)附录 (38)基于单片机的电子秤设计摘要随着微电子技术的应用,市场上使用的传统称重工具已经满足不了人们的要求。
基于单片机的智能电子秤控制系统的设计
基于单片机的智能电子秤控制系统的设计智能电子秤控制系统是一种集成数字电子技术、传感技术、自动控制技术于一体的高精度、高可靠性的电子秤系统。
本文将介绍基于单片机的智能电子秤控制系统的设计原理及实现方法。
一、系统设计原理基于单片机的智能电子秤控制系统主要由称重传感器、AD转换模块、单片机、LCD显示模块和通信接口模块等组成。
其工作原理如下:1. 称重传感器智能电子秤的核心部件是称重传感器,用于将物体的重量转换为电信号。
常用的称重传感器有应变式、电阻式、电容式等。
它们能够根据物体的质量变化而改变输出电信号,作为下一步处理的输入信号。
2. AD转换模块AD转换模块用于将模拟信号转换为数字信号,通过单片机进行处理。
通过AD转换模块,可以将称重传感器输出的模拟信号转换为单片机可以理解的数据,为后续的数据处理提供基础。
3. 单片机单片机是整个智能控制系统的核心,负责接收AD转换模块的信号,并进行数据处理,并通过LCD显示模块将结果实时显示出来。
同时,单片机还可以通过通信模块与其他设备进行数据交互。
4. LCD显示模块LCD显示模块用于将称重结果以数字形式显示出来,提供直观的测量结果给用户。
5. 通信接口模块通信接口模块允许智能电子秤与其他设备进行数据交互,如与计算机进行连接,实现数据的上传和下载。
二、系统设计方法基于单片机的智能电子秤控制系统的设计可以按照以下步骤进行:1. 硬件设计根据系统的功能需求,选择适当的称重传感器和AD转换模块,并通过电路设计将其与单片机和LCD显示模块进行连接。
此外,根据实际需求选择合适的通信接口模块。
2. 软件设计编写单片机的控制程序,包括AD转换的初始化和读取、数据处理、LCD显示等功能。
根据实际需求,可以添加一些额外的功能,如单位选择、重量校准等。
3. 系统测试将硬件和软件进行组装后,进行系统测试。
通过放置不同重量的物体进行秤量,检查显示结果的准确性和稳定性。
同时,测试通信功能是否正常工作。
单片机电子秤毕业设计
单片机电子秤毕业设计毕业设计题目:基于单片机的电子秤设计与实现一、设计要求:1.设计并实现一款能够准确测量物体质量的电子秤,使用单片机进行控制与数据处理。
2.电子秤应具备高精度、高稳定性和可靠性等特点。
3.电子秤的测量范围应足够大,能够适用于不同质量的物体。
4.电子秤的设计应尽可能简洁、实用、易于操控和维护。
二、设计方案:1.传感器选择:使用称重传感器作为负载传感器,可选用应变片式传感器或压阻式传感器。
2.信号放大与转换:将传感器测得的微小变化信号通过专用放大电路进行放大,并转换为0-5V或0-3.3V的直流电压信号。
3.单片机控制与显示:使用适当的单片机进行控制与数据处理,可选用常见的51单片机或STM32系列单片机,并通过数码管、液晶显示屏或LED显示屏等显示当前测量的质量值。
4.按键与操作:通过按键实现归零、单位选择、累计等基本操作实现。
5.通信接口:可选用串口或IIC总线等通信模式,将测量结果实时传输到上位机或其他设备。
6.电源系统:使用稳压电源保证整个系统的稳定工作。
三、设计流程:1.硬件设计:a.选择合适的电子元件,包括称重传感器、单片机、显示器、按键、通信模块等。
b.设计传感器接口电路,包括信号放大与转换电路。
c.设计按键与控制电路,将按键输入与单片机相连接,实现操作控制功能。
d.设计显示电路,将单片机输出与显示设备相连接,实现结果显示功能。
e.设计电源电路,保证整个系统的稳定工作。
2.软件设计:a.编写初始化程序,对单片机进行初始化设置。
b.编写按键扫描程序,实现按键输入的检测和处理。
c.编写称重传感器读取程序,实时读取称重传感器输出的模拟电压信号。
d.编写质量计算程序,根据传感器输出的模拟电压信号进行质量计算,并实现单位选择功能。
e.编写显示程序,将计算得到的质量值进行显示。
f.编写通信程序,如果需要与上位机或其他设备进行通信,则需要编写相应的通信协议和数据传输程序。
四、测试与调试:1.对硬件进行连接并进行通电测试,确保电子秤的各个部分能够正常工作。
基于单片机电子秤硬件电路设计
基于单片机电子秤硬件电路设计根据设计要求与设计思路,此电路由一块AT89S52、按键输入电路、时钟电路、复位电路、LCD显示段码驱动电路、LCD显示位码驱动电路、12位LCD显示器电路、蜂鸣器电路。
图3.1硬件电路设计框图在本系统中用于称量的主要器件是称重传感器(一次变换元件),称重传感器在受到压力或拉力时会产生电信号,受到不同压力或拉力是产生的电信号也随着变化,而且力与电信号的关系一般为线性关系。
由于称重传感器一般的输出范围为0~20mV,对A/D转换或单片机的工作参数来说不能使A/D转换和单片机正常工作,所以需要对输出的信号进行放大。
由于传感器输出的为模拟信号,所以需要对其进行A/D转换为数字信号以便单片机接收。
单片机根据称重传感器输出的电信号和速度传感器输出的速度信号计算出物体的重量。
在本系统中,硬件电路的构成主要有以下几部分: AT89C52的最小系统构成、电源电路、数据采集、人-机交换电路等。
3.1 AT89S52的最小系统电路3.1.1单片机芯片AT89S52介绍单片机采用MCS-51系列单片机。
由ATMEL公司生产的AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。
使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。
在单芯片上,拥有灵巧的8 位CPU 和在线系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、有效的解决方案。
AT89S52具有以下标准功能: 8k字节Flash,256字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。
空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。
基于单片机的电子秤设计
2
软件设计
软件设计
电子秤的软件部分主要负责处理重量信息、控制显示屏、存储数据等。以下是一个基本的 软件设计流程
系统初始化:在系统启动时,进行必要的初始化操作,如设定初始重量为0、 清空显示屏等 重量采集:通过传感器和信号调理器采集物品的重量信息,然后传递给单片机
数据处理:单片机对采集到的重量信息进行处理,如滤波、校准等
软件设计
1 显示控制:将处理后的重量信息显示在显示屏上。可以通过编程控制显示屏的亮度和对比度等参数 2 数据存储:将重量信息存储在存储器中,以便于后续的数据分析或传输到计算机
3 通讯控制:如果需要,可以通过蓝牙、Wi-Fi等接口将重量信息传输到其他设备
4
异常处理:在称重过程中,可能会遇到各种异常情况,如传感器故障、电量不足等。软件需要能够识别 这些异常并采取相应的处理措施,如发出警报或停止称重
的电子秤系统
根据实际需求和应用场景,还可 以进一步拓展其功能和应用范围
-
感谢您的观看
Thanks
基于单片机的电子秤设计
2020-xx-xx
-
硬件设计
目录
软件设计
基于单片机的广泛应用于各种嵌入式系
统中
设计一个基于单片机的电子秤, 不仅可以实现对物品的精确称 重,还可以通过编程实现各种
智能化的功能
本文将详细介绍一种基于单片 机的电子秤设计方案
1
硬件设计
硬件设计
电子秤的硬件部分主要 由以下几个部分组成
硬件设计
负责采集物品的重量信息。通常使用应变片或电容式传感器 对传感器采集的原始信号进行放大、滤波等处理,以便于单片机读取和处理 作为系统的控制核心,接收来自信号调理器的重量信息,进行处理后通过串口或LCD显示屏输出 用于显示物品的重量信息。可以是液晶显示屏(LCD)或发光二极管(LED)显示屏 用于存储重量信息或其他数据。可以是内置的Flash存储器或外接的SD卡等 为整个系统提供稳定的电源。通常采用USB供电或内置电池供电 如蓝牙、Wi-Fi等,用于将重量信息传输到计算机或其他设备
基于单片机的智能电子秤设计
基于单片机的智能电子秤设计随着人们对健康、饮食和运动的重视越来越深,计算体重的电子秤已成为现代家庭必备的健康产品之一。
电子秤的设计早已从早期的机械式缓慢演变为现代的数字化电子秤,随着科学技术的不断进步,电子秤的功能也得到了比较大的提升。
本文将介绍一种基于单片机的智能电子秤设计,使得电子秤具有更加智能化的功能。
一、设计原理单片机是一种高度集成、可编程的微型计算机,它具有多种接口和控制功能,非常适合用于小型计算机系统的控制和通讯处理。
本文采用ATmega8单片机,最大工作频率为16MHz,它是一种低功耗、高性能的单片机。
智能电子秤的基本原理是在称重传感器所测得的重量数据的基础上,使用单片机将其数据收集、处理,并输出显示。
本文的电子秤设计基于16 位高精度AD采集芯片HX711,采用负压力式力传感器作为测量重量的传感器,能够精确测量物体的重量。
由于电子秤测量出的重量数据单位是数字,因此只有通过单片机实现数据的处理,才能使得电子秤具有更加智能化的功能。
二、设计方法(一)硬件设计1、称重传感器负压力式力传感器是一种灵敏度更高、稳定性更好的传感器,比其它传感器更适合于电子秤的设计。
我们使用HX711芯片进行AD采集,能够提供24位的数据输出,可以极大地提高精度和稳定性。
2、按键开关电子秤需要设置一个方便顾客使用的开关,按下即可开启或关闭电子秤。
我们采用截止开关电阻,即编写程序时在输入中识别此开关,实现开启关闭功能。
3、数码管数码管用于显示测得的重量数据,包括整数部分和小数部分。
本文采用共阴极的 4 位7 段数码管,尺寸为0.56英寸,它需要多路并联才能通过ATmega8单片机输出控制信号。
4、外设根据需要,我们可以为电子秤添加一些外设,比如LCD显示屏,蜂鸣器等。
(二)软件设计基于单片机的智能电子秤设计必须编写针对ATmega8单片机的程序。
我们采用keil C语言编写程序。
编写程序时需要注意以下几个方面:1、定义AD采样量和检测量我们需要正确设置AD采样量和检测量的量程参数,以确保重量数据的可靠性和准确性。
基于单片机的电子秤设计
基于单片机的电子秤设计随着科技的不断发展,电子秤在日常生活和工业生产中发挥着越来越重要的作用。
传统的电子秤往往采用复杂的电路和机械结构,使得其体积大、成本高、可靠性差。
为了解决这些问题,本文将介绍一种基于单片机的电子秤设计方案。
一、系统设计方案基于单片机的电子秤主要由传感器、信号处理电路、单片机和显示模块组成。
其中,传感器负责采集物体的重量信息,信号处理电路则对传感器输出的信号进行放大和滤波,单片机对处理后的信号进行读取和计算,并将结果传输给显示模块。
二、硬件设计1、传感器电子秤的传感器部分通常采用应变片式或电容式传感器。
其中,应变片式传感器具有精度高、稳定性好的优点,但其输出信号较小,需要经过放大处理;电容式传感器则具有响应速度快、过载能力强的优点,但其精度和稳定性相对较差。
因此,在选择传感器时需要根据实际需求进行权衡。
2、信号处理电路信号处理电路主要包括放大器和滤波器两部分。
放大器用于将传感器输出的微弱信号进行放大,以便于后续处理;滤波器则用于去除信号中的噪声和干扰。
此外,还需要设计适当的电源电路,为整个系统提供稳定的电源。
3、单片机单片机是整个系统的核心,负责对传感器输出的信号进行读取和计算。
本设计采用AT89C51单片机,该单片机具有价格低、性能稳定、易于编程等优点。
4、显示模块显示模块用于将单片机的计算结果直观地展示给用户。
本设计采用LED数码管作为显示器件,具有简单易用、成本低等优点。
三、软件设计软件部分主要包括数据采集、数据处理和数据显示三个模块。
数据采集模块负责读取传感器的输出信号;数据处理模块则对采集到的数据进行滤波、放大和计算;数据显示模块则将处理后的结果通过LED数码管展示给用户。
此外,还需要设计适当的延时和去抖动算法,以提高系统的稳定性和精度。
四、测试与结论为了验证本设计的有效性,我们对基于单片机的电子秤进行了测试。
测试结果表明,该电子秤的测量精度和稳定性均得到了较好的实现,同时具有体积小、成本低、可靠性高等优点。
基于单片机的智能电子秤设计
基于单片机的智能电子秤设计在现代社会,电子秤作为一种重要的测量工具,广泛应用于商业、工业、农业以及日常生活等各个领域。
随着科技的不断发展,人们对电子秤的功能和性能提出了更高的要求,智能电子秤应运而生。
智能电子秤不仅能够准确测量物体的重量,还具备了数据处理、存储、传输以及智能化控制等功能,为人们的生产和生活带来了极大的便利。
本文将介绍一种基于单片机的智能电子秤设计方案。
一、系统总体设计本智能电子秤系统主要由称重传感器、信号调理电路、单片机、显示模块、键盘模块以及通信模块等部分组成。
称重传感器负责将物体的重量转换为电信号,信号调理电路对传感器输出的微弱信号进行放大、滤波等处理,以提高信号的质量。
单片机作为系统的核心,负责对处理后的信号进行采集、计算和处理,并控制其他模块的工作。
显示模块用于实时显示物体的重量和相关信息,键盘模块用于输入操作指令,通信模块则用于将测量数据传输到上位机或其他设备。
二、硬件设计1、称重传感器称重传感器是电子秤的关键部件,其性能直接影响测量精度。
本设计选用电阻应变式称重传感器,该传感器具有精度高、稳定性好、结构简单等优点。
电阻应变式称重传感器的工作原理是基于电阻应变效应,当传感器受到外力作用时,其弹性体发生变形,从而导致粘贴在弹性体上的电阻应变片的电阻值发生变化。
通过测量电阻应变片电阻值的变化,即可得到外力的大小。
2、信号调理电路由于称重传感器输出的信号非常微弱,通常只有几毫伏到几十毫伏,且含有大量的噪声和干扰,因此需要经过信号调理电路进行放大、滤波等处理。
信号调理电路主要由放大器、滤波器和基准电源等组成。
放大器采用高精度仪表放大器,能够将传感器输出的微弱信号放大到适合单片机处理的范围。
滤波器采用低通滤波器,用于滤除信号中的高频噪声和干扰。
基准电源为整个电路提供稳定的参考电压,以保证测量精度。
3、单片机单片机是整个系统的控制核心,本设计选用 STM32F103 系列单片机。
STM32F103 系列单片机具有高性能、低功耗、丰富的外设资源等优点,能够满足智能电子秤的设计要求。
基于51单片机的电子秤的设计
摘要本设计是基于单片机的称重仪,它的硬件电路设计包括单片机最小系统、A/D转换器、称重传感器、语音电路、LED显示电路、±5V稳压电源电路等几部分设计内容。
其中压力传感器输出响应的模拟电压信号,经过模/数转换(A/D变换)后就得到数字量D。
但是,数字量D并不是重物的实际重量值W,W 需要由数字量D在控制器内部经过一系列的运算——即数据处理才能得到。
整个设计系统由Atmel公司生产51系列89S51单片机进行控制;软件实现功能开机检测,主要是开机后自动逐个扫描LED数码管,以防止某段数码管损坏造成视觉误差;出于人性化考虑我们还可以增加语音电路,实现自动语音播报重量。
关键词:称重仪;单片机;LED目录摘要 (1)Abstract....................错误!未定义书签。
目录. (1)第1章绪论 (3)1.1 课题背景 (3)1.2课题目的与意义 (4)1.3课题设计要求 (6)1.4称重仪的国内外现状 (4)本章小结 (7)第2章称重仪的总系统设计与各模块方案选型 (7)12.1 称重仪的总系统框图 (7)2.2称重仪的主控制系统设计 (8)2.2.1 称重仪的主控制系统结构 (8)2.2.2 称重仪的主控制系统工作原理 (8)2.3 称重仪各模块的方案选型 (9)2.3.1 电源模块方案选型 (9)2.3.2 数据采集模块方案选型 (9)2.3.3 主控制器模块方案选型 (10)2.3.4 数据显示模块方案选型 (10)2.3.5 报警模块方案选型 (11)本章小结 (11)第3章称重仪的各单元电路设计 (11)3.1 所用单片机的简介 (11)3.1.1单片机的最小系统设计 (12)3.2 电源电路设计 (12)3.3 称重传感器电路设计 (13)3.3.1传感器的工作原理···········错误!未定义书签。
基于单片机的智能电子秤设计
基于单片机的智能电子秤设计基于单片机的智能电子秤设计1.引言1.1 写作目的本文档旨在详细介绍基于单片机的智能电子秤的设计过程和实现原理,以供参考使用。
1.2 文档范围本文档涵盖了该电子秤设计的各个方面,包括硬件设计、软件开发、功能实现等内容。
1.3 读者对象本文档适用于有一定电子秤设计经验和单片机编程基础的工程师和技术人员。
2.设计需求分析2.1 功能需求2.1.1 重量测量功能2.1.2 单位切换功能2.1.3 数据存储功能2.2 性能需求2.2.1 量程2.2.2 精度2.2.3 响应时间2.3 界面需求2.3.1 显示界面2.3.2 操作界面3.系统结构设计3.1 硬件设计3.1.1 传感器选型3.1.2 模拟信号采集电路设计3.1.3 单片机选型3.2 软件设计3.2.1 系统初始化3.2.2 重量测量算法设计3.2.3 单位切换功能设计3.2.4 数据存储功能设计4.硬件设计详解4.1 传感器选型原因4.2 模拟信号采集电路设计原理4.3 单片机选型原因5.软件设计详解5.1 系统初始化流程图5.2 重量测量算法详解5.3 单位切换功能设计原理5.4 数据存储功能设计原理6.功能实现与测试6.1 功能实现步骤6.2 测试用例设计与测试结果7.结果分析与改进7.1 分析测试结果7.2 改进方案附件:1.电子秤硬件电路图2.电子秤软件源代码法律名词及注释:1.单片机:指一种实现逻辑运算和控制功能的集成电路。
2.模拟信号:指连续变化的信号,对应于实际的物理量。
3.数字信号:指以离散的数值表示的信号。
4.量程:指传感器所能测量的最大范围。
5.精度:指测量结果与真实值之间的误差大小。
6.响应时间:指系统从输入信号出现到输出结果可用的时间。
全文结束\。
基于51单片机的电子秤的设计
基于51单片机的电子秤的设计一、设计要求和总体方案(一)设计要求设计一款基于 51 单片机的电子秤,能够实现以下功能:1、测量范围:0 5kg。
2、测量精度:01g。
3、具备数码管显示功能,能够实时显示测量的重量值。
4、具有去皮功能,方便测量容器的重量。
(二)总体方案本电子秤主要由传感器、信号调理电路、A/D 转换电路、51 单片机、数码管显示电路和按键电路等组成。
传感器将物体的重量转换为电信号,经过信号调理电路进行放大和滤波处理后,送入 A/D 转换电路转换为数字信号。
51 单片机对数字信号进行处理和计算,得到物体的重量值,并通过数码管显示电路进行显示。
按键电路用于实现去皮等功能。
二、硬件设计(一)传感器选择选用电阻应变式传感器,它具有精度高、稳定性好、测量范围广等优点。
当物体放在传感器上时,传感器的电阻值会发生变化,通过测量电阻值的变化可以得到物体的重量。
(二)信号调理电路由于传感器输出的信号比较微弱,需要经过信号调理电路进行放大和滤波处理。
放大电路采用仪表放大器,它具有高共模抑制比、低噪声等优点。
滤波电路采用无源 RC 滤波器,去除信号中的高频噪声。
(三)A/D 转换电路选用 ADC0809 作为 A/D 转换芯片,它是 8 位逐次逼近型 A/D 转换器,具有转换速度快、精度高等优点。
(四)51 单片机选择AT89C51 单片机作为控制核心,它具有性能稳定、价格低廉、编程简单等优点。
(五)数码管显示电路采用共阳数码管进行显示,通过 74HC573 锁存器驱动数码管。
(六)按键电路使用独立按键实现去皮、清零等功能。
三、软件设计(一)主程序流程主程序首先进行系统初始化,包括初始化单片机的 I/O 口、A/D 转换芯片等。
然后进入循环,不断读取 A/D 转换的结果,并进行数据处理和计算,得到物体的重量值,最后将重量值发送到数码管显示。
(二)数据处理算法采用线性拟合的方法对 A/D 转换的结果进行处理,得到与重量值对应的数字量。
基于单片机电子秤硬件电路设计
基于单片机电子秤硬件电路设计根据设计要求与设计思路,此电路由一块AT89S52、按键输入电路、时钟电路、复位电路、LCD显示段码驱动电路、LCD显示位码驱动电路、12位LCD显示器电路、蜂鸣器电路。
图3.1硬件电路设计框图在本系统中用于称量的主要器件是称重传感器(一次变换元件),称重传感器在受到压力或拉力时会产生电信号,受到不同压力或拉力是产生的电信号也随着变化,而且力与电信号的关系一般为线性关系。
由于称重传感器一般的输出范围为0~20mV,对A/D转换或单片机的工作参数来说不能使A/D转换和单片机正常工作,所以需要对输出的信号进行放大。
由于传感器输出的为模拟信号,所以需要对其进行A/D转换为数字信号以便单片机接收。
单片机根据称重传感器输出的电信号和速度传感器输出的速度信号计算出物体的重量。
在本系统中,硬件电路的构成主要有以下几部分: AT89C52的最小系统构成、电源电路、数据采集、人-机交换电路等。
3.1 AT89S52的最小系统电路3.1.1单片机芯片AT89S52介绍单片机采用MCS-51系列单片机。
由ATMEL公司生产的AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。
使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。
在单芯片上,拥有灵巧的8 位CPU 和在线系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、有效的解决方案。
AT89S52具有以下标准功能: 8k字节Flash,256字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。
空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。
单片机电子秤硬件电路设计方案
基于单片机电子秤硬件电路设计根据设计要求与设计思路,此电路由一块AT89S52、按键输入电路、时钟电路、复位电路、LCD显示段码驱动电路、LCD显示位码驱动电路、12位LCD显示器电路、蜂鸣器电路。
图3.1硬件电路设计框图在本系统中用于称量的主要器件是称重传感器<一次变换元件),称重传感器在受到压力或拉力时会产生电信号,受到不同压力或拉力是产生的电信号也随着变化,而且力与电信号的关系一般为线性关系。
由于称重传感器一般的输出范围为0~20mV,对A/D转换或单片机的工作参数来说不能使A/D转换和单片机正常工作,所以需要对输出的信号进行放大。
由于传感器输出的为模拟信号,所以需要对其进行A/D转换为数字信号以便单片机接收。
单片机根据称重传感器输出的电信号和速度传感器输出的速度信号计算出物体的重量。
在本系统中,硬件电路的构成主要有以下几部分: AT89C52的最小系统构成、电源电路、数据采集、人-机交换电路等。
3.1 AT89S52的最小系统电路3.1.1单片机芯片AT89S52介绍单片机采用MCS-51系列单片机。
由ATMEL公司生产的AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。
使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。
在单芯片上,拥有灵巧的8 位CPU 和在线系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、有效的解决方案。
AT89S52具有以下标准功能: 8k字节Flash,256字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。
空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM 内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。
基于单片机的电子秤设计
基于单片机的电子秤设计一、引言二、设计要求与整体方案(一)设计要求1、测量范围:能够满足常见物品的质量测量,通常为 0 10kg 或更大。
2、精度要求:达到一定的测量精度,如 01g 或更高。
3、显示功能:清晰显示测量结果,包括质量数值和单位。
4、稳定性:在不同环境条件下保持测量结果的稳定性和可靠性。
(二)整体方案本设计采用单片机作为核心控制单元,结合称重传感器、信号调理电路、A/D 转换电路、显示模块和电源模块等组成电子秤系统。
称重传感器将物体的质量转换为电信号,经过信号调理电路进行放大、滤波等处理后,由 A/D 转换电路将模拟信号转换为数字信号,单片机对数字信号进行处理和计算,最终将测量结果通过显示模块显示出来。
三、硬件设计(一)称重传感器选择合适的称重传感器是电子秤设计的关键。
常见的称重传感器有电阻应变式、电容式等。
电阻应变式传感器具有精度高、稳定性好等优点,被广泛应用于电子秤中。
其工作原理是当物体加载在传感器上时,弹性体发生形变,粘贴在弹性体上的电阻应变片也随之产生电阻变化,通过测量电阻变化即可得到物体的质量。
(二)信号调理电路由于称重传感器输出的信号较弱且存在干扰,需要经过信号调理电路进行处理。
信号调理电路通常包括放大器、滤波器等。
放大器用于将传感器输出的微弱信号放大到适合 A/D 转换的范围;滤波器用于去除信号中的噪声和干扰,提高信号的质量。
(三)A/D 转换电路A/D 转换电路将模拟信号转换为数字信号,以便单片机进行处理。
选择 A/D 转换器时需要考虑其分辨率、转换速度、精度等参数。
常见的 A/D 转换器有 ADC0809、ADS1115 等。
(四)单片机单片机作为电子秤的控制核心,负责处理和计算测量数据,并控制整个系统的工作。
选择单片机时需要考虑其性能、资源、成本等因素。
常见的单片机有 STM32、51 单片机等。
(五)显示模块显示模块用于显示测量结果,常见的有液晶显示屏(LCD)和数码管。
基于单片机的电子秤硬件系统设计
基于单片机的电子秤硬件系统设计电子秤是一种测量物体质量的设备,其中使用了单片机作为控制核心。
在电子秤的硬件系统设计中,需要考虑到如下几个方面:传感器选择、信号调理、数据处理、显示和输出。
首先,在电子秤硬件系统中,传感器是非常重要的组成部分,它用于测量物体的质量。
常见的传感器有压力传感器和负载传感器。
在选择传感器时,需要考虑到所测量物体的质量范围和精度要求。
对于低质量范围和较高精度要求的电子秤,可以选用压力传感器;对于高质量范围和较低精度要求的电子秤,可以选用负载传感器。
其次,信号调理是将传感器采集到的模拟信号进行放大、滤波和变换等处理,以提高信号质量和满足系统要求。
在电子秤中,可以使用运放进行信号放大,使用滤波电路滤除杂散信号,并使用模数转换器将模拟信号转换为数字信号。
然后,数据处理是电子秤硬件系统中的核心部分,通过单片机对采集到的模拟信号进行处理,并计算出物体的质量。
在数据处理过程中,需要进行模数转换、滤波处理、数据校验和质量计算等操作。
单片机的计算能力和存储空间可以根据实际需求选择,以满足对数据处理的要求。
接下来,显示是电子秤硬件系统中的重要组成部分,用于显示物体的质量。
一般采用液晶显示屏或数码管进行显示,可以在显示屏上显示物体的质量数值,并可以进行单位选择和重量校准等功能。
最后,输出是电子秤硬件系统中的辅助部分,可根据需要输出物体的质量数据。
常见的输出方式有串口输出和打印输出,可以将质量数据传输给上位机进行处理或直接打印出来。
综上所述,基于单片机的电子秤硬件系统设计需要考虑传感器的选择、信号调理、数据处理、显示和输出等方面。
只有在这些方面都充分考虑和合理设计,才能实现一个可靠、精确的电子秤系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机电子秤硬件电路设计根据设计要求与设计思路,此电路由一块AT89S52、按键输入电路、时钟电路、复位电路、LCD显示段码驱动电路、LCD显示位码驱动电路、12位LCD显示器电路、蜂鸣器电路。
图3.1硬件电路设计框图在本系统中用于称量的主要器件是称重传感器(一次变换元件),称重传感器在受到压力或拉力时会产生电信号,受到不同压力或拉力是产生的电信号也随着变化,而且力与电信号的关系一般为线性关系。
由于称重传感器一般的输出范围为0~20mV,对A/D转换或单片机的工作参数来说不能使A/D转换和单片机正常工作,所以需要对输出的信号进行放大。
由于传感器输出的为模拟信号,所以需要对其进行A/D转换为数字信号以便单片机接收。
单片机根据称重传感器输出的电信号和速度传感器输出的速度信号计算出物体的重量。
在本系统中,硬件电路的构成主要有以下几部分: AT89C52的最小系统构成、电源电路、数据采集、人-机交换电路等。
3.1 AT89S52的最小系统电路3.1.1单片机芯片AT89S52介绍单片机采用MCS-51系列单片机。
由ATMEL公司生产的AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。
使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。
在单芯片上,拥有灵巧的8 位CPU 和在线系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、有效的解决方案。
AT89S52具有以下标准功能: 8k字节Flash,256字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。
空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。
而且,它还具有一个看门狗(WDT)定时/计数器,如果程序没有正常工作,就会强制整个系统复位,还可以在程序陷入死循环的时候,让单片机复位而不用整个系统断电,从而保护你的硬件电路。
AT89S52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,2个16位可编程定时计数器,2个全双工串行通信口,片上Flash允许程序存储器在系统可编程,亦适于常规编程器。
其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。
其芯片引脚图如上图所示。
图3.2 AT89S52引脚图3.1.2.单片机管脚说明VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH 进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH 编程和校验时接收高八位地址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
P3口也可作为AT89S52的一些特殊功能口,如下表所示:表3.1 P3.0口引脚功能表P3口同时为闪烁编程和编程校验接收一些控制信号。
RST:复位输入。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。
如想禁止ALE的输出可在SFR8EH地址上置0。
此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。
另外,该引脚被略微拉高。
如果微处理器在外部执行状态ALE禁止,置位无效。
/PSEN:外部程序存储器的选通信号。
在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。
但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。
/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。
注意加密方式1时,/EA将内部锁定为RESET;当/EA 端保持高电平时,此间内部程序存储器。
在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。
XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2:来自反向振荡器的输出。
3.1.3 AT89S52的最小系统电路构成AT89S52单片机的最小系统由时钟电路、复位电路、电源电路及单片机构成。
单片机的时钟信号用来提供单片机片内各种操作的时间基准,复位操作则使单片机的片内电路初始化,使单片机从一种确定的初态开始运行。
单片机的时钟信号通常用两种电路形式得到:内部振荡方式和外部振荡方式。
在引脚XTAL1和XTAL2外接晶体振荡器(简称晶振)或陶瓷谐振器,就构成了内部振荡方式。
由于单片机内部有一个高增益反相放大器,当外接晶振后,就构成了自激振荡器并产生振荡时钟脉冲。
当MCS-5l系列单片机的复位引脚RST(全称RESET)出现2个机器周期以上的高电平时,单片机就执行复位操作。
如果RST持续为高电平,单片机就处于循环复位状态。
根据应用的要求,复位操作通常有两种基本形式:上电复位和上电或开关复位。
上电复位要求接通电源后,自动实现复位操作。
上电或开关复位要求电源接通后,单片机自动复位,并且在单片机运行期间,用开关操作也能使单片机复位。
单片机的复位操作使单片机进入初始化状态,其中包括使程序计数器PC=0000H,这表明程序从0000H地址单元开始执行。
系统复位是任何微机系统执行的第一步,使整个控制芯片回到默认的硬件状态下。
51单片机的复位是由RESET引脚来控制的,此引脚与高电平相接超过24个振荡周期后,51单片机即进入芯片内部复位状态,而且一直在此状态下等待,直到RESET引脚转为低电平后,才检查EA引脚是高电平或低电平,若为高电平则执行芯片内部的程序代码,若为低电平便会执行外部程序。
3.2 电源电路设计根据设计需要,本系统中需要设计两种不同级别的电源,即传感器需要+12V 的电源,而系统其他芯片使用的是+5V电源。
考虑本次设计的实际要求,使系统稳定工作,提高产品的性价比,电源电路的设计决定采用如下方案:图3.3 电源电路图220V的交流电经过变压器后输出15V的电压,经整流滤波电路后,通过LM7812和LM7905进行DC/DC变换得到+12V和+5V、-5V供器和系统的其他芯片使用。
在变压器的原边加入熔断保护装置和MFC网络,使得系统获得的电源更稳定,效果更好,且电路短路时,熔断装置会迅速切断电源,保护其他电路元件不被损坏,供电电路如图3.3所示。
3.3 数据采集部分电路设计数据采集部分电路包括传感器输出信号放大电路、A/D转换器与单片机接口电路。
3.3.1 传感器和其外围以及放大电路设计传感器实际上是一种将质量信号转变为可测量的电信号输出的装置。
用传感器首先要考虑传感器所处的实际工作环境,这点对正确使用传感器至关重要,它关系到传感器能否正常工作以及它的安全和使用寿命,乃至整个衡器的可靠性和安全性。
因此传感器外围电路的抗干扰能力是数据采集部分电路设计的关键环节。
传感器检测电路的功能是把电阻应变片的电阻变化转变为电压输出,由于惠斯登电桥具有很多优点,如可以抑制温度变化的影响,可以抑制侧向力干扰,可以比较方便的解决称重传感器的补偿问题等,又因为全桥式等臂电桥的灵敏度最高,各臂参数一致,各种干扰的影响容易相互抵消,所以在本设计中选用最终方案我们选择的是上海开沐自动化有限公司生产的NS-TH1系列称重传感器,额定载荷20Kg,该称重传感器均采用全桥式等臂电桥。
由于传感器输出的电压信号很小,是mV级的电压信号,因此为了提高系统的抗干扰能力,在传感器外围电路的设计过程中,增加了由普通运放设计的差动放大器增益调节电阻Rg选用10K 电阻,是为了满足系统抗干扰的要求而设计。
其电路图如3.2所示。
图3.2传感器和其外围电路图这是一个电阻应变片式称重传感器,将电阻应变片贴在金属的弹性体(即力敏感器)上,并连接成一差动全桥电路。
电阻应变片实心轴沿轴向线应变为:l ll∆=ε(3-1)实心轴沿圆周向线应变为:r rr ∆=ε (3-2)金属材料的电阻相对变化公式为:()[]εεπμK E R dRR R =++=≈∆21 (3-3)把3-1、3-1代入3-3可以得到其输出电压为:()AE F U μ+=12kU0 (3-4)其中F 为压力(即重物重量)A 为受力面积E 为弹性材料的弹性模量。
如果在电阻的两侧都加入应变片,则其输出为Fh Eb lkUkU U 2006==ε (3-5)SP20C-G501的输出电压为1-5V 相应压力为1-50KPa 。
供电电流变动会直接影响传感器的输出电压,因此希望电流变动要小。
此外,增大或减小驱动电流可调整输出电压,但电流过小,输出电压降低同时抗噪声能力减弱;电流过大,会使传感器发热等,将对传感器特性影响加大。
因此在电路中使用1mA 的驱动电流。
即使用的电流为1mA 左右。
电路中,采用通用运算放大器LM324,由稳态二极管VS 提供2.5V 的输出电压经电阻R 2和R 3分压得到基准电压,作为运放A 1输入电压,并供给1mA 的电流。
传感器的驱动电流流过基准电阻R 4,其上的压降等于输入电压。