【精品】第六章岩石风化工程地质研究

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章岩石风化工程地质研究

本章概述

介绍基本概念,影响岩石风化因素,风化壳及分带标志和方法,岩石风化防护措施。

重难点

本章教与学两方面没有难度,主要问题是实际工作中风化岩分带的标准很难把握,带有很大的不确定性,最好配合现场考察进行教学。

第一节概述

组成地壳的岩石其形成环境是十分复杂的。在内力和外力地质作用下,深埋于地下的岩石可能处于地壳表层,进入与成岩环境不同的新环境中,必然通过原岩的变异,才能适应新的环境.

岩石在各种风化营力作用下,所发生的物理和化学变化的过程称为岩石风化)(RockWeathering).它包括岩石所感受的风化作用及其所产生的结果两个方面.与其它动力地质作用相比较,引起岩石风化的营力很多,但主要的是太阳热能、水溶液(地表、地下及空气中

的水)、空气(0

2及C0

2

等)及生物有机体等。按照风化营力及其引起的岩石变异的方式不同,

风化作用一般分为物理风化、化学风化和生物风化三种。生物风化既有物理的也有化学的作用。因此,风化作用主要是物理风化和化学风化两种。

物理风化是由于温度的变化(特别是昼夜的温变)、水的冻融、干湿交替、盐类结晶、矿物水化和植物根劈等作用下所产生的应力,引起岩石的机械破碎,而不伴随化学成分和矿物成分的

显著变化,其结果既破坏了岩石的结构构造,降低了岩石的强度,又为化学风化打开了方便之门.这种作用主要发生在干寒地区,如我国北方、西北的干旱寒冷及高山寒冷地区,岩石的风化深度较小,一般小于10m.

岩石在氧、水溶液及有机体等作用下所发生的一系列复杂的化学反应,引起其结构构造、矿物成分和化学成分发生变化的过程,称为化学风化。其实质是原岩中较活泼的元素发生迁移,较稳定的元素残留原地,原生矿物不断变异,与新环境相适应的次生矿物不断形成的过程。在风化过程中,化学反应的方式较复杂,有氧化、还原、溶解、结晶、水化,水解、碳酸化、硫酸化、去碳、中和等作用。在自然界中,化学风化是多种方式综合作用的结果,其中以水化、溶解、水解和氧化作用最为常见。化学风化多以水为介质,其影响深度与地下水的循环交替条件极为密切。岩石一般风化深度为数十米,大者可达100余米,因而工程上的实际意义也较大。

遭受风化的岩石圈表层叫做风化壳(weatheredcrust),它是原岩在一定的地质历史时期各种因索综合作用的产物。

风化岩石与原岩比较,已产生了一系列的变化,从工程地质观点出发,这些变化主要表现在以下几个方面:

(1)岩体的结构构造发生变化,即其完整性遭到削弱和破坏风化作用不仅使岩体原有裂隙扩大,还形成新的风化裂隙,同时因活动性元素的迁移,使原岩孔隙增大.总之,岩石风化后其空隙性增大,块度变小,原岩破碎成块石、碎石、砂粒,粉粒及粘粒.这种变化使原岩的结晶联结削弱以致丧失,成为水胶联结甚至无联结状态,使完整性较好、坚固性较高的岩体,变成破碎松软、性质易变的土体。

(2)岩石的矿物成分和化学成分发生变化风化过程中,原岩中的矿物逐渐解体变异,活动性较强的元素不断随水迁移流失;同时,由于风化营力所携带的新元素的参与,形成了新的次生矿物。如绿泥石,绢云母等鳞片状矿物,细分散的高岭石,蒙脱石,水云母等粘士矿物,铁、铝、硅的氧化物或氢氧化物。这些次生矿物不仅在晶系特点、晶粒大小、结晶程度均与原生矿物不同,而且还增加了水及有机组分。

(3)岩石的工程地质性质恶化岩石风化后,由于岩石的矿物成分、化学成分和结构构造发生变化,而导致岩石工程地质性质上的一系列变化。如力学强度降低,压缩性可以从基本不可压缩的基岩,变为压缩性颇大的粘性土;透水性发生畸变,在完整风化剖面上,遭受中等风化的岩石其渗透系数比下伏新鲜岩石成倍增加;表层遭受强烈风化的岩石,其渗透系数又降低;岩石彻底风化后所形成的次生矿物,其抗水性降低,亲水性增高,对水的敏感性加大,易于崩解、膨胀和软化.

总之,风化后的岩石在工程建筑上的优良性质削弱了,不良性质则增加了,使工程地质条件大为恶化。

实践证明,岩石风化是地壳表层大陆化时期较为普遍的动力地质作用,它与工程选址布局、岩(土)体稳定、地基处理、施工方法、施工期限、工程造价等关系极为密切。当在岩石风化强烈、风化深度较大的地区建筑大型工程(如高坝)时,不得不采取大量的挖方措施,清除(部分或全部)风化岩石,将大坝基础置于稳定可靠的基岩之上,或者进行加固或防渗处理。这样必然大大增加造价,又延误工期.有时采取降低工程设计规模,以便与地基状态相适应。如安徽省青弋江陈村水库,其坝基为志留系砂页岩,原拟100m高的混凝土重力坝建在新鲜岩石之上。后因风化壳很厚,开挖及回填工程均较大,经方案的技术,经济比较后,将坝高降低到75m,并以风化岩石为坝基。许多道路及露天矿采坑边坡变形破坏往往与岩石风化有关。如河北省迁安县大石河露天铁矿采坑,由黑云母斜长片麻岩组成,采矿过程中发生多处边坡崩滑,其中规模较大、变形体高达20m以上者,多为强烈风化岩石。在某些花岗岩地区修建地下洞室时,因对岩石风化估计不足而发生洞口坍塌,造成人身事故,又延误工期。风化也使某些作为建筑材料的岩石适用性下降。所以,在工程地质勘察中,岩石风化的研究常是重要的课题之一。

为工程建设而进行的岩石风化工程地质研究的目的有以下几点;①根据岩石风化的程度及其空间分布,选择最适于修建建筑物的位址,对各种工程建筑物进行合理布局;②根据风化岩石的物理力学性质与建筑物类型、等级、荷载性质及大小的适应性,确定地基中需要挖除的风化岩石的厚度,即确定合理的建基面高程;③根据岩石风化速度、风化程度及各风化带岩石的物理力学性质,确定基坑、路堑、船闸及露天矿采坑合理的稳定边坡角;④根据风化产物的特性(破碎程度、坚固性等)及场地工程地质条件,选择地下洞室施工开挖的设备和方法,确定对已风化岩石的处理措施;⑤根据岩石风化速度、风化营力、风化作用类型及影响岩石风化的因素等,确定基坑、路堑保持开敞状态的安全期限,选择防止岩石风化的措施。

第二节影响岩石风化的因素

本节概述

岩石风化程度及速度,风化壳厚度及风化产物的性质,不仅在不同地区有所不同,即使在同一地区,甚至在同一建筑场地的一定范围内也有明显的差异.这是由于气候、岩性、地质构造、地形,水文地质条件等因素的影响所致。所以,岩石风化是多种因素综合作用的复杂过程。

一、气候的影响

气候是控制风化营力的性质及强度的主要因素。反映气候特点的气象要素很多,其中对岩石风化影响较大的主要是温度和雨量。在昼夜温差及冷热更替频率较大的地区,有利于物理风化作用。温度的高低,不仅直接影响岩石热胀冷缩和水的物理状态,而且对矿物在水中的溶解度、生物的新陈代谢、各种水溶液的浓度和化学反应的速度都有很大的影响.降雨为岩石化学风化提供了必需的水溶液,降雨量大小控制着风化营力的性质和强度,影响风化作用的类型及岩石风化的速度。在降雨量小而蒸发量大的干旱地区,即使易溶解矿物,亦因溶液易达饱和而不能完全溶解,从而限制了元素的迁移,影响岩石的彻底风化。在潮湿多雨地区,风化营力得以不断补充,又有利于生物的繁殖,岩石风化程度较强,风化速度较快,风化深度亦较大.

由温度、降雨量等要素组成的气候类型是很复杂的,不同气候条件下风化作用的类型和强度、风化产物的性质等均不相同。我国地域辽阔,地势复杂,气候类型较多,既有受纬度控制的区域性气候带,也有因地势及其它因素控制的局部性气候带,因而受气候控制的岩石风化作用也具有区域分带现象。从工程建筑来看,应以湿热气候区的岩石风化问题作为研究重点.

二、岩性的影响

岩石的抗风化能力与其形成环境、矿物成分及结构构造关系极为密切。

如前所述,岩石风化发生于地壳表层,当成岩环境与地表环境差异愈大时,原岩风化变异愈强烈,即岩石的抗风化能力愈弱。

岩石抗风化能力的大小,主要决定于组成岩石的矿物成分.不同矿物具有不同的结晶格架,由其化学活泼性所决定的抗风化能力亦不相同。在地表环境下,常见造岩矿物的抗风能力是不同的,其相对稳定性如表5-1所示。一般情况下,矿物在风化过程中的稳定性由大到小的顺序是:氧化物〉硅酸盐〉碳酸盐和硫化物.当岩石中不稳定矿物含量较多时,其抗风化能力较弱;相反,当岩石中含稳定和极稳定矿物较多时,其抗风化能力较强.

一般认为:岩浆岩矿物在风化环境中的稳定性顺序,恰与其在鲍文反应系列中的顺序相反。因此,岩浆岩抗风化能力由大到小的顺序是:酸性岩(花岗岩)〉中性岩(闪长岩、安山岩)〉基性岩(玄武岩)>超基性岩(橄榄岩).

表5-1常见造岩矿物的抗风化稳定性

上述稳定性系列也适用于变质作用成因的同样的矿物.因而,在一般情况下,变质岩的抗风化能力从大到小的顺序是。浅变质岩>中等变质岩>深变质岩.

大多数沉积岩是由前一旋回的风化产物组成的,在其成岩过程中可能只受到较轻微的变质和改造,它的形成环境比岩浆岩、变质岩更接近地表。一般说沉积岩的抗风化能力比岩浆岩及变质岩高,最终的化学变化较小。但是沉积岩的风化问题比较复杂,其主要矿物是前一旋回的风化次生矿物,如粘土矿物、绿泥石、石英及钙—镁碳酸盐。这些矿物颗粒大都极细,比表面积大,因表面效应较强,易遭水化、水解及淋滤作用,以恢复它们对新环境的平衡关系.实践证明:沉积岩中的粘土岩,页岩、粉砂质粘土岩、粘土质粉砂岩等风化厚度虽不大,但风化速度却很快。

相关文档
最新文档