遗传学名词解释

1、外显子:把基因内部的转译部分即在成熟mRNA中出现的序列叫外显子。
2、复等位基因:在种群中,同源染色体的相同座位上,可以存在两个以上的等位基因,构成一个等位基因系列,称为复等位基因。
3、F因子 :又叫性因子或致育因子,是一种能自我复制的、微小的、染色体外的环状DNA分子,大约为大肠杆菌全长的2%,F因子在大肠杆菌中又叫F质粒。
4、母性影响:把子一代的表型受母本基因型控制的现象叫母性影响。
5、伴性遗传:在性染色体上的基因所控制的性状与性别相连锁,这种遗传方式叫伴性遗传。 
6、杂种优势:指两个遗传组成不同的亲本杂交产生的杂种一代在生长势、生活力、繁殖力、抗逆性以及产量和品质等性状上比双亲优越的现象。
2、隔裂基因 :真核类基因的编码顺序由若干非编码区域隔开,使阅读框不连续,这种基因称为隔裂基因,或者说真核类基因的外显子被不能表达的内含子一一隔开,这样的基因称为隔裂基因。
3、细胞质遗传:在核外遗传中,其中由细胞质成分如质体、线粒体引起的遗传现象叫细胞质遗传。
4、同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。
5、转座因子:指细胞中能改变自身位置的一段DNA序列。
6、基因工程:狭义的遗传工程专指基因工程,更确切的讲是重组DNA技术,它是指在体外将不同来源的DNA进行剪切和重组,形成镶嵌DNA分子,然后将之导入宿主细胞,使其扩增表达,从而使宿主细胞获得新的遗传特性,形成新的基因产物。
2、转导:以噬菌体为媒介,将细菌的小片断染色体或基因从一个细菌转移到另一细菌的过程叫转导。
3、假显性:(pseudo-dominant):一个显性基因的缺失致使原来不应显现出来的一个隐性等位基因的效应显现了出来,这种现象叫假显性。
4、跳跃基因(转座因子):指细胞中能改变自身位置的一段DNA序列。
5、核外遗传:由核外的一些遗传物质决定的遗传方式称核外遗传或非染色体遗传。
1、常染色质与异染色质 :着色较浅,呈松散状,分布在靠近核的中心部分,是遗传的活性部位。着色较深,呈致密状,分布在靠近核内膜处,是遗传的惰性部位。又分结构异染色质或组成型异染色质和兼性异染色质。前者存在于染色体的着丝点区及核仁组织区,后者在间期时仍处于浓缩状态,
2、等显性(并显性,共显性):指在F1杂种中,两个亲本的性状都表现出来的现象。
3、限性遗传与从性遗传:限性遗传(sex-limited inheritance):是指位于Y染色体(XY型)或W染色体(ZW型)上的基因所控制的遗传性状只限

于雄性或雌性上表现的现象。从性遗传(sex-influenced inheritance):指常染色体上的基因控制的性状在表型上受个体性别影响的现象。
4、连锁群:存在于一个染色体上的各个基因经常表现相互联系,并同时遗传于后代,这种存在于一个染色体上在遗传上表现一定程度连锁关系的一群基因叫连锁群。
5、性导:利用F∕因子形成部分二倍体叫做性导(sex-duction)。
6、遗传工程:狭义的遗传工程专指基因工程,更确切的讲是重组DNA技术,它是指在体外将不同来源的DNA进行剪切和重组,形成镶嵌DNA分子,然后将之导入宿主细胞,使其扩增表达,从而使宿主细胞获得新的遗传特性,形成新的基因产物。
1、核型与核型分析 :通常把有丝分裂中期染色体的形态、大小和数目称为核型,通过细胞学观察,取得分散良好的细胞分裂照片,就可测定染色体数目、长度、着丝粒位置、臂比、随体有无等特征,对染色体进行分类和编号,这种测定和分析称为核型分析。
2、位置效应:基因由于变换了在染色体上的位置而带来的表型效应改变的现象。
3、平衡致死品系:两个连锁的隐性致死基因,以相斥相的形式存在于一对同源染色体上,由于倒位抑制交换作用,永远以杂合状态保存下来,表型不发生分离的品系叫做平衡致死品系,也叫永久杂种(permanenthybrid)。
4、基因突变:是染色体上一个座位内的遗传物质的变化,从一个基因变成它的等位基因。也称点突变。从分子水平上看,基因突变则为DNA分子上具有一定遗传功能的特定区段内碱基或碱基顺序的变化所引起的突变,最小突变单位是一个碱基对的变化,是产生新基因的源泉,生物进化的重要基础,诱变育种的理论依据。
2、基因工程遗传工程:狭义的遗传工程专指基因工程,更确切的讲是重组DNA技术,它是指在体外将不同来源的DNA进行剪切和重组,形成镶嵌DNA分子,然后将之导入宿主细胞,使其扩增表达,从而使宿主细胞获得新的遗传特性,形成新的基因产物。
6、部分二倍体:含一个亲本的全部基因组和另一亲本部分基因组的合子叫部分二倍体或部分合子。
1、细胞质遗传:在核外遗传中,其中由细胞质成分如质体、线粒体引起的遗传现象叫细胞质遗传。
2、移码突变:在DNA复制中发生增加或减少一个或几个碱基对所造成的突变。
4、镶嵌显性:指在杂种的身体不同部位分别显示出显性来的现象
5、表型模写(拟表型):有时环境因子引起的表型改变和某基因突变引起的表现型改变很相似,这叫表型模拟或拟表型。
6、从性遗传:指常染色体上的基因控制的性状在表型上受个体性别影响

的现象。
6、母性影响:把子一代的表型受母本基因型控制的现象叫母性影响。
3、等位基因:等位基因是指位于同源染色体上,占有同一位点,但以不同的方式影响同一性状发育的两个基因。
4、染色体周史: 通过减数分裂,染色体数目从2n→n,通过精卵受精结合,染色体数目又从n→2n,这种染色体数目从2n n的变化过程和规律就是染色体周史。
2、重组DNA技术: 它是指在体外将不同来源的DNA进行剪切和重组,形成镶嵌DNA分子,然后将之导入宿主细胞,使其扩增表达,从而使宿主细胞获得新的遗传特性,形成新的基因产物。
遗传(heredity):指生物亲代与子代相似的现象,即生物在世代传递过程中可以保持物种和生物个体各种特性不变;
变异(variation):指生物在亲代与子代之间,以及在子代与子代之间表现出一定差异的现象。
遗传学(Genetics)是研究生物遗传和变异的科学,遗传与变异是一对矛盾对立统一的两个方面,遗传是相对的、保守的,而变异是绝对的、发展的,没有遗传就没有物种的相对稳定,也就不存在变异的问题‘没有变异特征物种将是一成不变的,也不存在遗传的问题。
原核细胞:各种细菌、蓝藻等低等生物有原核细胞构成,统称为原核生物。
真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。
染色质:在细胞尚未进行分裂的核中,可以见到许多由于碱性染料而染色较深的、纤细的网状物,这就是染色质。
染色体:含有许多基因的自主复制核酸分子。细菌的全部基因包容在一个双股环形DNA构成的染色体内。真核生物染色体是与组蛋白结合在一起的线状DNA双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。
染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。
着丝点:在细胞分裂时染色体被纺锤丝所附着的位置。一般每个染色体只有一个着丝点,少数物种中染色体有多个着丝点,着丝点在染色体的位置决定了染色体的形态。
细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。其中有丝分裂过程分为:
(1)DNA合成前期(G1期);(2)DNA合成期(S期);
(3)DNA合成后期(G2期);(4)有丝分裂期(M期)。
同源染色体:生物体中,形态和

结构相同的一对染色体。
异源染色体:生物体中,形态和结构不相同的各对染色体互称为异源染色体。
无丝分裂:也称直接分裂,只是细胞核拉长,缢裂成两部分,接着细胞质也分裂,从而成为两个细胞,整个分裂过程看不到纺锤丝的出现。在细胞分裂的整个过程中,不象有丝分裂那样经过染色体有规律和准确的分裂。
有丝分裂:包含两个紧密相连的过程:核分裂和质分裂。即细胞分裂为二,各含有一个核。分裂过程包括四个时期:前期、中期、后期、末期。在分裂过程中经过染色体有规律的和准确的分裂,而且在分裂中有纺锤丝的出现,故称有丝分裂。
单倍体:具有一组基本染色体数的细胞或者个体。
二倍体:具有两组基本染色体数的细胞或者个体。
联会:减数分裂中,同源染色体的配对过程。
胚乳直感:植物经过了双受精,胚乳细胞是3n,其中2n来自极核,n来自精核,如果在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感。
果实直感:植物的种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状,称为果实直感。
测交:杂种一代与隐性纯合体的杂交
回交:杂种后代与亲本之一的杂交
自交:同株花朵间或同一朵花内雌雄配子的受精结合
多因一效:多个基因影响同一性状
一因多效:一个基因同时影响多个性状
复等位基因:是指在同源染色体的相同位点上,存在3个或3个以上的等位基因,这种等位基因在遗传学上称为复等位基因。
非等位基因间的相互作用:
l 基因互作:在生物性状遗传中,有的单位性状是由两对或两对以上的基因控制的,这种n对基因共同作用决定一个单位性状发育的遗传现象就叫做基因互作。
各种互作方式:
互补作用:当只有一对基因是显性,或两对基因都是隐性时,则表现为另一性状。这种基因互作的类型称为互补作用
积加作用:两种显性基因同时存在时产生一种性状,单独存在时能分别表现相似的性状,两种显性基因均不存在时又表现第三种性状,这种基因互作称为积加作用。
重叠作用:不同对基因互作时,对表现型产生相同的影响,F2产生15:1的比例,这种基因互作称为重叠作用。
显性上位作用:两对独立遗传基因共同对一对性状发生作用,而且其中一对基因对另一对基因的表现有遮盖作用,这种情形称为上位性;后者被前者所遮盖,称为下位性。
隐性上位作用:在两对互作的基因中,其中一对隐性基因对另一对基因起上位性作用,称为隐性上位作用。
上位作用和显性作用不同,上位作用发生

于两对不同等位基因之间,而显性作用则发生于同一对等位基因的两个成员之间。
抑制作用:在两对独立基因中,其中一对显性基因,本身并不控制性状的表现,但对另一对基因的表现有抑制作用,称为抑制基因。
抑制基因本身不能决定性状,而显性上位基因除遮盖其他基因的表现型外,本身还能决定性状。
缺失:染色体的某一区段丢失了。断片:缺失的区段无着丝粒。顶端缺失:缺失的区段为某臂的外端,某一整臂缺失了就成为顶端着丝点染色体。中间缺失:缺失的区段为某臂的内段。重复:染色体多了自己的某一区段。顺接重复:某区段按照自己在染色体上的正常直线顺序重复。反接重复:某区段在重复时颠倒了自己在染色体上的正常直线顺序。重复区段内不能有着丝粒,否则重复染色体就变成双着丝粒的染色体,就会继续发生结构变异,很难稳定成型。重复和缺失总是伴随出现的。某染色体的一个区段转移给同源的另一个染色体之后,它自己就成为缺失染色体了。倒位:染色体某一区段的正常直线顺序颠倒了。臂内倒位(一侧倒位):倒位区段在染色体的某一个臂的范围内。臂间倒位(两侧倒位):倒位区段内有着丝粒,即倒位区段涉及染色体的两个臂。易位:某染色体的一个区段移接在非同源的另一个染色体上。相互易位:两个非同源染色体都折断,而且这两个折断的染色体及其断片交换地重接(常见)。简单易位(转移):某染色体的一个臂内区段,嵌入非同源染色体的一个臂内(少见)。整倍体:体细胞染色体数为染色体组整倍数的个体。多倍体:三倍和三倍以上的整倍体。染色体组的最基本的特征:同一个染色体组的各个染色体的形态、结构和连锁群都彼此不同,但它们却构成一个完整而协调的体系;缺少其中的任何一个都会造成不育或性状的变异。同源组:同源多倍体的体细胞内同源染色体数不是成对出现,而是三个或三个以上成一组。二倍体基因型:AA, Aa, aa同源三倍体:AAA, AAa, Aaa, aaa三式 复式 单式 零式。同源四倍体:AAAA,AAAa,AAaa,Aaaa,aaaa 四式 三式 复式 单式 零式
联会特点: 同源组的同源染色体常联会成多价体。但是,在任何同源区段内只能有两条染色体联会,而将其他染色体的同源区段排斥在联会之外。因此,每两个染色体之间的只是局部联会,交叉较少,联会松弛,就有可能发生提早解离。单倍体:具有配子染色体数(n)的个体。单元单倍体:玉米的单倍体是一倍体(n= x=10)。 多元单倍体:普通烟草的单倍体是
二倍体(n=2x=TS=24)普通小麦的单倍体是三倍体(n=3x=ABD=21)在单倍体孢母细胞内,各个染色体组都是单个的,只

能以单价体出现,故高度不育,几乎完全不能产生种子。
单体的存在往往是许多动物的种性,许多昆虫(蝗虫、蟋蟀)的雌性为 XX型(即2n),雄性为XO型(即2n–l) 。缺体一般来源于单体(2n–1)的自交,缺体几乎都是活力较差和育性较低的。可育的缺体一般都各具特征,如小麦,据此可进行基因定位。四体:绝大多数四体(2n+2)是从三体的子代群体内分离出来的。四体的同源染色体数为偶数,在后期Ⅰ容易发生2/2均衡分离,故四体远比三体稳定。四体的基因分离与同源四倍体的某一同源组一样。
染色体结构变异包括缺失、重复、倒位、易位四类;染色体结构变异可分为四种类型。①缺失(deletion):失去了部分染色体片段;②重复(duplication):增加部分染色体片段;③倒位(inversion):染色体片段作180℃的颠倒再重接在染色体上;④易位(translocation):两条非同源染色体之间发生部分片段的交换。一对同源染色体其中一条是正常的而另一条发生了结构变异,含有这类染色体的个体或细胞称为结构杂合体(structural heterozygote)。
缺失:1。顶端缺失(terminal deletion) 顶端发生缺失。由于丢失了端粒,故一般很不稳定,常和其他染色体断裂片段愈合形成双着丝点染色体或易位;也可能自身首尾相连,形成环状染色体。双着丝点染色体在有丝分裂中都可形成断裂融合桥(breakage fusion bridge),由于分裂时桥的断裂点不稳定,可造成新的重复和缺失。2)中间缺失(interstitial deletion)染色体中部缺失了一个片段。这种缺失较为稳定,故较常见。3,假显性(pesudo-dominance)如果缺失的部分包括某些显性基因,那么同源染色体上与这一缺失相对位置上的隐性基因就得以表现,这一现象称为假显性。如果蝇的缺刻翅遗传。缺失的应用 作为一种研究手段用来探测某些调控元件和蛋白质的结合位点,如E.coli的复制起始区的分析等。利用假显性原理可以进行基因的缺失定位(deletion mapping)。重复的类型1)、顺接重复(tandem duplication)重复片段与原有片段毗邻且方向相同。2)、反接重复(reverse duplication)重复片段与原有片段毗邻但方向相反。3)、异位重复(displaced duplication)重复片段位于染色体其它位置或其它染色体上。二倍体和单倍体 大多数真核生物是二倍体(diploid)。单倍体(haploid)含有配子染色体数目。由二倍体产生的单倍体也称为一倍体(monoploid)。雄性蜜蜂、黄蜂、蚁都是一倍体。单倍体一般可由无融合生殖产生,也可通过花粉和花药培养来获得。单倍体植株矮小,生活力很弱,而且完全不育。单倍体通过染色体加倍,可获得纯合的二倍体。染色体组(X):在二倍体生物的配子中所包含的形态

、结构和功能都彼此不同的一组染色体。是多倍体物种染色体的组成成员,是一个完整而协调的体系,缺少其中的任何一个都会造成不育或性状的变异。多倍体:三倍和三倍以上的多倍体 统称为多倍体。同源多倍体:增加的染色体组来自同一物种,一般由二倍体的染色体直接加倍而来。异源多倍体:增加的染色体组来自不同物种,一般由不同种、属间的杂交种染色体加倍而来。
具有3套以上相同染色体组的细胞或个体称为同源多倍体,通常是由同一物种的染色体加倍而成。同源四倍体(AAAA):与其原来的二倍体相比,茎粗叶大,花器、果实、种子等也大些,叶色也较深。但也出现叶子皱缩、分蘖减少、生长缓慢、成熟延迟及育性降低等不良反应。同源三倍体(AAA):其主要特点是高度不育,基本上不结种子。但许多三倍体植物都具有很强的生活力,营养器官十分繁茂。
基因突变:一个基因变为它等位基因的现象。基因突变在自然界中广泛存在,在自然条件下发生的突变称为自发突变,在人工诱导下发生的突变称为诱发突变。突变体(或突变型):因基因突变而表现突变性状的细胞或个体。基因突变率:突变个体数占观察
个体数的比值。同一突变可以在同种生物的不同个体间多次发生,称为突变的重演性。
复等位基因:等位基因在两个以上时称为复等位基因。A、a1、a2、……an彼此组成一对等
位基因,它们全体组成复等位基因。亲缘关系相近的物种因遗传基础比较近似,往往发生相似的基因突变,称突变的平行性。如水稻有玻璃质、粉质、腊质变异类型,而玉米、高粱、大麦等都有此类变异。条件致死突变:是指在某些条件下能成活,在另一些条件下是致死的突变。如噬菌体的温度敏感型在30℃左右可成活,但在42℃左右或低于30℃时是致死突变。
致死突变:能导致生物体死亡的突变。若在杂合体就有致死效应,称为显性致死;若在纯合体才有致死效应;称为隐性致死,如植物的白花苗。外照射:即放射源与接受照射的物体之间要保持一定的距离,让射线从物体之外透入物体之内,在体内诱发基因突变。x射线、γ射线和中子都适用于外照射。内照射:即用浸泡或注射的方法,使放射源渗入生物体内,在体内放出b射线进行诱变。辐射剂量:单位质量被照射的物质所吸收的能量数值。
基因突变率与被辐射物吸收的能量成正比,而与放射源放出的能量无关。即基因突变率与辐射剂量成正比,而不受辐射强度影响。辐射强度:是指一个放射源在单位时间内有多少个原子衰变。单位是微居里。1微居里=3.7× 104个核衰变/秒。合适的辐射剂量

可根据“活、变、优”三原则灵活选择。活:后代有一定成活率;变:成活植株中有较大变异效应;优:产生的变异中有较多有利变异。
细胞质遗传:由细胞质基因所决定的遗传现象和遗传规律。也称为非孟德尔遗传,核外遗传。母性影响:正交和反交的结果不一样,子代的表型受到母亲基因型的影响而和母
亲的表型一致的现象。第八章 遗传学中所指的群体,是指组成群体的个体是进行有性繁殖的,能够进行基因交流(重组和交换)。这种群体又叫做孟德尔群体。孟德尔群体所包含的基因总量称为基因库,群体的所有个体享有一个共同的基因库。最大的孟德尔群体可以是一个物种。如果群体中任一个体都有同等的机会与群体中的其他异性个体进行交配,这种交配称为随机交配。基因频率:群体内某基因数占该位点上全部等位基因总数的比率。一般,A的频率用p、a的频率用q表示。基因型频率:群体内某基因型数占全部基因型总数的比率。一般,AA的频率用D、Aa的频率用H、aa的频率用R表示。在一个随机交配的大群体里,在没有其它因素干扰的情况下,基因频率和基因型频率世代相传是不会发生变化的。这即遗传平衡定律 一、定律的要点 ㈠、在一个随机交配的大群体里,在没有其它因素干扰的情况下,基因频率和基因型频率在各代保持不变。㈡、在任何一个大群体里,不管基因频率和基因型频率如何,只要经过一代的随机交配,这个群体就能达到平衡(成为平衡群体)。
㈢、在平衡状态下,基因频率和基因型频
率始终具有如下关系:D = p2 H = 2pq R = q2
遗传漂变:在小型群体内,由于个体之间不能充分随机交配,使得群体基因频率随
机增减的现象。一般地说,一个群体越小,遗传漂变的作用就越大;当群体很大时,遗传漂变的作用就消失了。

相关文档
最新文档