高中物理电场和磁场
高中物理电场与磁场

知识梳理一、电场的基本性质1.电场力的性质库仑定律:F=kQ1Q2/r2;电场力:F=qE..注意电场强度只与源处电荷有关;与检验电荷无关..电场线形象直观地反映电场的强弱与方向..疏密表示电场的强弱;而切线方向表示电场的方向..2.电场能的性质1电势与电势差:UAB=W/q;电势高低与零势点选择有关;但电势差与零势点选择无关..2电势的变化规律:沿着场线的方向;电势是逐渐降低的..3电场力做功特点:电场力做功与路径无关;只与初末位置有关..电场力做功;电势能减少;外力克服电场力做功;电势能增加..3.电容1两个公式:C=Q/U ;C= εrS/4πkd前者是定义式;后者是平行板电容器的决定式..2平行板内部电场是匀强电场..二、带电粒子在电场的特点1.平衡:与其它力一起参与力的合成;合力为零;则物体处于平衡状态..2.加速运动:初速度与电场平行时..3.偏转:初速度与电场垂直时..三、电流与电荷在磁场中受力及运动1.磁感应强度B=F/IL ;注意磁场产生的两种方式:磁铁产生与电流产生..2.磁场方向a.用小磁针N极受力方向判定..b.用右手法则判定电流产生的磁场..3.磁感应线;其为闭合的曲线;比较于电场线不同..4.安培力1公式:F=BIL..2方向:左手定则;注意将安培力比较于电场力:电荷只要放在电场中就一定受到电场力作用;而电流处于磁场中;受的安培力与放置位置有关;导线与磁场垂直时;安培力最大..5.洛仑兹力1公式:F=qvB;判定方向注意电荷正负..2特点:永不做功;电场力与洛仑兹力的大小与方向上的不同..命题预测考查电场力方向与电场方向关系;洛仑兹力的大小与速度的关系;安培力的大小与电流强度的关系;及这些力与其它力使物体平衡、作匀速直线运动;是命题热点..运用功能关系处理带电粒子在电场及磁场中速度大小问题;考查电场力做功与路径无关;及洛仑兹力不做功的特点;也是命题热点之一..地磁场是命题的一个热点;它涉及地理、生物、物理知识;还涉及学生空间想象能力..例题精析题型一电场、磁场的概念例1如果空间某一区域中存在有电场或磁场中的一种;则下列说法正确的是设放人的电荷质量很小A.如果存在的是电场;则在某处放入电荷;该电荷不一定会运动B.如果存在的是磁场;则放人电荷时;该电荷不会做圆周运动C.如果存在磁场;则放入通电直导体后;该直导体一定受到安培力的作用D.如果存在电场;在某处放入一电荷后经过一段时间后;该电荷的电势能会增加解析电场对电荷作用是没有条件的;而磁场对电荷或电流作用是有条件的;磁场只对运动电荷作用;且电荷速度方向不与磁场平行;而磁场对通电直导体的作用也是直导体不与磁场平行..答案B点评理解概念与公式定律;要充分理解其条件..题型二电场力、电场方向与平衡条件的应用例2如图7-1所示;带电量为q的小球质量为m;用一细线系在O点;整个放置在水平匀强电场中;静止时小球与竖直线的夹角为θ..下列说法正确的是A.小球带正电荷;电场强度大小是E=mgtanθ/qB.小球带正电荷;电场强度大小是 E=mgcosθ/qC.若细线断开;则小球作平抛运动D.以上说法都不对..解析因为小球平衡;所以球受的合力为零..小球受力分析如图7—2所示;电场力一定向右;所以小球带正电..列方程有:Tcosθ=mg;Tsinθ=qE所以E=mgtanθ/q答案A点评要会判定电场力与电场方向关系;会对物体进行受力分析;列出相应的平衡方程..题型三电场力做功与路径无关及洛仑兹力不做功;场力做功与电势能变化关系例3带电量为q的粒子;不计重力的作用;当它以初速度v分别自电场与磁场中的A点往宽度为L的电场与磁场中射入;最后都从相应高度的B 处射出..下列说法正确的是A.电荷从两个场中出来的速度大小一样大B.电荷在电场中出来时的速度要变大C.电荷在磁场中的运动轨迹是抛物线D.从A到B过程中;电场对电荷做功为qEL解析电荷在电场与磁场中都受到力的作用;电场力对电荷做功;洛仑兹力不做功;所以A错..由力可知;电场力对电荷做正功;且W=Fscosθ中..s是在力的方向的位移;应为h;根据动能定理;电荷的速度增大;所以B对D 错..电荷受洛仑兹力作用做圆周运动;不是平抛运动;C错..答案B点评掌握电场力与洛仑兹力的特点; 区分粒子在其中的运动轨迹的不同..题型四电场线、电场力做功与电势及电势能的变化例4在固定的等量异种电荷连线上;a点是连线的中点;如图7-5所示;静止a点的点电荷在电场力作用下向b点运动..在运动过程中;以下判定正确的是A.点电荷的速度越来越大B.点电荷的加速度不变C.点电荷的电势能越来越大D.点电荷通过的各点电势越来越高解析根据电场线的特点;沿电场线电势逐渐降低;所以D不正确..由于放入a处的电荷静止时从a运动到b;说明该电荷是正电荷;且电场力一直做正功;所以电势能减少;C不正确..根据动能定理;可知速度越来越大;所以A正确..加速度的大小由合外力决定;合外力F=qE;根据等量异种电荷的电场线特点;可知E是变化的;故B不正确..答案A点评要充分利用几种常见的电场线特点进行电势的分析;要运用动能定理判定粒子的速度变化;要学会根据运动状态的动态变化判定粒子的一些性质..摸拟操练1.如图7-6所示;在点电荷Q的电场中;已知a、b两点在同一等势面上;c、d两点在同一等势面上;无穷远处电势为零..甲、乙两个带粒子经过a点时动能相同; 甲粒子的运动轨迹为acb;乙粒子的运动轨迹为adb..判定错误的是A.甲粒子经过c点与乙粒子经过d点时的动能相等B.甲、乙两粒子带异种电荷C.甲粒子经过c点时的电势能小于乙粒子经过d点时的电势能D.两粒子经过b点时具有相同的动能2.在赤道上空;水平放置一根通以由西向东的电流的直导线;则此导线A.受到竖直向上的安培力B.受到竖直向下的安培力C.受到由南向北的安培力D.受到由西向东的安培力3.关于磁场和磁感线的描述;下列说法正确的是A.磁感线就是细铁屑连成的曲线B.磁感线可以形象地描述各点的磁场的强弱和方向;磁感线上每一点的切线方向都和小磁针在该点静止时N极所指的方向一致C.异名磁极相互吸引;同名磁极相互排斥;任何时候都是成立的D.磁感线总是从磁极的N极出发;到S极终止4.有一电场的电场线如图7—7 所示;场中A、B两点电场强度的大小和电势分别用EA 、EB和UA、UB表示;则5.两个完全相同的金属小球带有异种电荷;其电量之比是1:7;当它们互相接触后再置于原来的位置上;它们的作用力是原来的倍6.条形磁铁放在水平桌面上;它的上方靠S极一侧吊挂一根与它垂直的导电棒;图7—8中只画出此棒的截面图;并标出此棒中的电流是流向纸内的;在通电的一瞬间可能产生的情况是A.磁铁对桌面的压力减小B.磁铁对桌面的压力增大C.磁铁不受摩擦力D.磁铁受向左的摩擦力7.如图7-9所示;绝缘光滑半圆环轨道放在竖直向下的匀强磁场中;在与环心等高处放有一质量为m、带电+q的小球;由静止开始沿轨道运动;下述说法正确的是A.小球在运动过程中机械能守恒B.小球经过环的最低点时速度最大C.小球经过环的最低点时对轨道压力为2mgD.小球经过环的最低点时对轨道压力为3mg答案点拨1.A 根据等势线及物体作曲线运动的条件进行判定2.A 根据地磁场方向与安培力左手法则进行判定3.B4.D 电场线的疏密表示电场的强弱;而沿电场线的方向电势逐渐降低5.B根据同种物质接触;电荷先中和后平分的原则及库仑定律求解6.A 画出磁铁磁感应线;分析电流受力.应用牛顿第三定律7.D 根据洛仑兹力不做功及圆周运动规律。
高中电磁学知识点整理

高中电磁学知识点整理电磁学是物理学中的一门重要学科,它研究的是电荷和电流所产生的电场和磁场的性质以及它们之间的相互作用。
在高中物理学中,电磁学也是一个重要的知识点,下面将对高中电磁学的一些重要内容进行整理。
1. 电场和电势电场是指电荷周围空间中的物理量,它代表了电荷对周围空间的影响。
电势是指单位正电荷在电场中所具有的势能,它是描述电场强度的一种物理量。
电场和电势是电学中的基本概念,掌握它们对理解电学的其他知识点具有重要意义。
2. 磁场和磁感线磁场是由电荷或运动电荷所产生的物理量,它代表了磁性物质在磁场中所受到的力的大小和方向。
磁感线是描述磁场的一种图像,它代表了磁场的强度和方向。
掌握磁场和磁感线的概念对于理解电磁学的其他知识点也非常重要。
3. 安培环路定理安培环路定理是电学中的一个重要定理,它描述了电流在磁场中所受到的力的大小和方向。
根据安培环路定理可以推导出电磁感应定律,它是电磁学中的另一个重要定理。
4. 法拉第电磁感应定律法拉第电磁感应定律是电磁学中的一个基本定律,它描述了磁场变化时电场的产生。
根据法拉第电磁感应定律可以推导出电磁波的产生,电磁波是一种具有电场和磁场的波动现象,是电磁学中的另一个重要知识点。
5. 磁场的感应磁场的感应是指磁性物质在外加磁场作用下所产生的磁化现象。
磁场的感应是电磁学中的一个重要概念,它涉及到磁性物质的性质和磁场的作用。
6. 磁场对电荷的影响磁场对电荷的影响是电磁学中的一个重要现象,它描述了电荷在磁场中所受到的力的大小和方向。
磁场对电荷的影响是电磁学中的一个基本现象,它涉及到电荷和磁场之间的相互作用。
7. 电磁波的特性电磁波是电磁学中的一个重要知识点,它具有许多特性,如波长、频率、速度等。
电磁波在现代通讯和科技领域中有着广泛的应用,掌握电磁波的特性对于理解现代技术有着重要意义。
8. 电磁学的应用电磁学在现代科技领域中有着广泛的应用,如电磁感应、电动力学、电磁波等。
高中物理电学公式大全

高中物理电学公式大全一、电场。
1. 库仑定律。
- 公式:F = k(Q_1Q_2)/(r^2)(k = 9.0×10^9N· m^2/C^2)- 适用条件:真空中的点电荷。
2. 电场强度。
- 定义式:E=(F)/(q)(q为试探电荷,F是试探电荷在电场中所受的力)- 点电荷的电场强度:E = k(Q)/(r^2)(Q为场源电荷)- 匀强电场:E=(U)/(d)(U为电场中两点间的电势差,d为沿电场方向的距离)3. 电势差。
- 定义式:U_AB=frac{W_AB}{q}(W_AB是电荷q从A点移动到B点电场力做的功)4. 电场力做功。
- W = qU(q为电荷电量,U为电势差)- 特点:电场力做功与路径无关,只与初末位置的电势差有关。
5. 电势能。
- E_p = qφ(q为电荷电量,φ为电势)- 电场力做功与电势能变化关系:W_AB=E_pA-E_pB二、电路。
1. 欧姆定律。
- 部分电路欧姆定律:I=(U)/(R)(I为电流,U为电压,R为电阻)- 闭合电路欧姆定律:I=(E)/(R + r)(E为电源电动势,R为外电路电阻,r为电源内阻)- 路端电压:U = E - Ir2. 电阻定律。
- R=ρ(l)/(a)(ρ为电阻率,l为导体长度,a为导体横截面积)3. 焦耳定律。
- Q = I^2Rt(Q为电热,I为电流,R为电阻,t为时间)- 纯电阻电路(Q = W):Q=UIt=frac{U^2}{R}t = I^2Rt- 非纯电阻电路(Q≠ W):W = UIt,Q = I^2Rt,W>Q,P_总=UI,P_热=I^2R三、磁场。
1. 磁感应强度。
- 定义式:B=(F)/(IL)(F为通电导线在磁场中所受的安培力,I为电流强度,L为导线长度,B的方向为小磁针静止时N极所指方向)- 当B与I垂直时F = BIL;当B与I夹角为θ时F = BILsinθ2. 洛伦兹力。
- f = qvB(q为带电粒子电量,v为粒子速度,B为磁感应强度)- 当B与v垂直时;当B与v夹角为θ时f = qvBsinθ- 带电粒子在匀强磁场中做匀速圆周运动:qvB = mfrac{v^2}{r},可得r=(mv)/(qB),周期T=(2π m)/(qB)四、电磁感应。
求高中物理电场,磁场所有公式

高中物理电场、磁场所有公式高中物理电场、磁场所有公式:1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/Am2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);1.[感应电动势的大小计算公式]:1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}3)E m=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。
(4)其它相关内容:自感/日光灯。
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R 总3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/24.理想变压器原副线圈中的电压与电流及功率关系U1/U2=n1/n2; I1/I2=n2/n2; P入=P出5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻);6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
高中物理电场磁场的重要知识点

高中物理电场磁场的重要知识点高中物理中,电场和磁场是非常重要的两个主题。
理解电场和磁场的基本概念,以及它们在物理学中的应用是学生掌握高中物理的关键之一。
在这篇文章中,我们将为您介绍电场和磁场的重要知识点,包括数学公式和物理概念。
一、电场1. 电场力电场力是指电荷在电场中所受到的力。
电荷在电场中的受力方向与电场方向相反。
$$\vec{F}=q\vec{E}$$其中,$\vec{F}$ 表示电场力,$q$ 表示电荷,$\vec{E}$ 表示电场矢量。
2. 电场强度电场强度是电场力作用于单位电荷所产生的效应。
电场强度的大小与电场力成正比,与电荷的大小无关。
$$E=\frac{F}{q}$$其中,$E$ 表示电场强度,$F$ 表示电场力,$q$ 表示电荷。
3. 电势差电势差是指单位电荷在电场中移动时所具有的势能变化。
电势差可以用电场强度来表示。
$$V=\frac{W}{q}$$其中,$V$ 表示电势差,$W$ 表示电荷所受的做功,$q$ 表示电荷。
4. 电势能电势能是指电荷在电场中所具有的势能。
电势能可以用电势差来表示。
$$U=qV$$其中,$U$ 表示电势能,$q$ 表示电荷,$V$ 表示电势差。
5. 高斯定理高斯定理是电场中电荷与电场之间的关系。
高斯定理表明,电场强度在空间中的分布与电荷的分布有关。
$$\oiint\vec{E}\cdot \vec{n}\mathrm{d} S=\frac{Q}{\epsilon_{0}}$$其中,$\oiint$ 表示对某一闭合曲面上的积分,$\vec{E}$ 表示电场矢量,$\vec{n}$ 表示垂直于曲面的单位矢量,$\mathrm{d} S$ 表示曲面元素的微小面积,$Q$ 表示被积电荷,$\epsilon _{0}$ 表示真空中的介电常数。
二、磁场1. 磁场力磁场力是指磁场中带电粒子受到的力。
磁场力的作用方向垂直于带电粒子的速度和磁场方向。
$$\vec{F}=q\vec{v}\times \vec{B}$$其中,$\vec{F}$ 表示磁场力,$q$ 表示电荷,$\vec{v}$ 表示速度,$\vec{B}$ 表示磁感应强度。
高中物理电场与磁场题解技巧

高中物理电场与磁场题解技巧在高中物理学习中,电场与磁场是一个非常重要的内容,也是学生们普遍感到困惑的难点之一。
本文将为大家介绍一些解决电场与磁场问题的技巧,帮助学生们更好地理解和应用相关知识。
一、电场问题解题技巧1. 确定电场的性质:在解决电场问题时,首先需要明确电场的性质。
例如,题目中给出了电场的电势分布图,我们可以根据电势的变化情况来判断电场的性质。
若电势随距离增加而减小,则电场是向外的;若电势随距离增加而增大,则电场是向内的。
2. 利用电场的叠加原理:当存在多个电荷时,可以利用电场的叠加原理来求解电场的强度。
具体方法是将各个电荷的电场矢量相加,得到总电场的矢量。
在实际操作中,可以将电场矢量进行分解,再根据三角形法则或平行四边形法则进行合成。
举例来说,假设有两个点电荷Q1和Q2,分别位于坐标原点和点P(x,y)上。
要求点P处的电场强度E,可以先求出Q1和Q2分别在点P处产生的电场强度E1和E2,然后将两个矢量相加得到总电场强度E。
3. 利用高斯定律:在某些情况下,可以利用高斯定律来简化电场问题的求解。
高斯定律表明,通过任意闭合曲面的电场通量等于该曲面内的电荷代数和与真空介电常数的乘积。
当问题具有一定的对称性时,可以选择合适的高斯面,使得电场与法线方向相同或相反,从而简化计算。
此外,高斯定律还可以用于求解无限长直线电荷和均匀带电球面等问题。
二、磁场问题解题技巧1. 利用安培环路定理:在解决磁场问题时,可以利用安培环路定理来求解磁场的强度。
安培环路定理表明,通过任意闭合回路的磁场环流等于该回路内的总电流代数和的乘积。
在应用安培环路定理时,需要注意选择合适的回路,使得回路上的磁场和电流方向相同或相反。
通过计算回路上的磁场环流,可以求解出磁场的强度。
2. 利用比奥萨伐尔定律:比奥萨伐尔定律是描述通过导线产生的磁场的规律。
该定律表明,通过导线的磁场强度与电流强度成正比,与导线与磁场的夹角成正比。
在应用比奥萨伐尔定律时,可以利用右手定则来确定磁场的方向。
高中物理电场知识点汇总

高中物理电场知识点汇总物理概念和术语是学习物理学的基础,只有熟练掌握才能抓住问题的实质和关键。
下面是小编为大家整理的有关高中物理电场知识点汇总,希望对你们有帮助!高中物理电场知识点汇总1重要性:电场和磁场是高中物理研究的两个很主要的内容,因为这两个领域可以包含力学、运动学的绝大部分内容,所以电场在高考中的地位是很高的。
作用主要就是联系运动学、力学、磁场、能量的纽带。
它们一起混合起来进行考试是高考物理大题的常用考察方式。
点电荷电场线口诀:光芒四射正点电——正点电荷的电场线均匀射向四面八方。
万箭齐中负点电——负点电荷的电场线从四面八方指向负点电荷。
等量同号蝶双飞——等量同性电荷的电场线形状像“蝶双飞”等量异号灯一盏——等量异性电荷的电场线形状像“一盏灯笼”电场口诀:电场选择不头疼,抓住线面不放松,电场中有等势面,与它垂直画场线,方向由高指向低,面密线密是特点。
电场强度是矢量,疏密表示弱和强,线面越密场越强,场强力强a也强,力的方向看正负,正同负反要记清,场强计算三公式,条件记清用对路。
电势高低看走向,沿线越走势越低。
AB之间电势差,电势A减电势B。
势能变化看做功,正减负增一根筋。
高中物理电场知识点汇总21电荷及电荷守恒自然界中存在两种电荷———正电荷与负电荷规定:用丝绸摩擦过的玻璃棒带正电;用毛皮摩擦过的橡胶棒带负电。
电荷的多少叫电量。
自然界中最小的带电单元称基元电荷e=1.6×10-19C。
电荷与电荷之间通过电场发生相互作用,同种电荷相斥,异种电荷相吸。
使物体带电叫起电,使物体带电的方式有三种:摩擦起电、接触起电和感应起电。
2电荷守恒定律电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分。
3库仑定律1、点电荷:没有大小的带电体称点电荷,它是一种理想模型。
2、适用条件:真空中的点电荷.点电荷是一种理想化的模型。
如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少。
高中物理电场与磁场知识点

高中物理电场与磁场知识点高中物理中的电场与磁场,那可真是让我又爱又恨!想当年,为了搞清楚这些知识点,我可是费了好大一番功夫。
先来说说电场。
电场这玩意儿,看不见摸不着,却有着神奇的力量。
就好比有个神秘的魔法师,在空间中施了魔法,让电荷们有了各种奇妙的表现。
比如库仑定律,描述两个点电荷之间的相互作用力。
当时老师在黑板上写公式,F = k q1 q2 / r²,我就在想,这几个字母凑一块,咋就能算出力的大小呢?后来做了好多题目,才慢慢理解其中的奥妙。
还记得有一次做实验,探究平行板电容器的电容。
那两块平行的金属板,接上电源,然后测量电荷量和电压的变化。
我瞪大眼睛,紧紧盯着电表的指针,心里那个紧张啊,生怕自己读错了数。
结果手一抖,还真读错了一个,被同组的小伙伴笑话了好久。
再说说电场强度 E ,它就像是电场这个魔法师的魔力强度指标。
电场线的疏密程度代表着电场强度的大小,想象一下,那些电场线密密麻麻的地方,电场的力量就强大得很呢。
说到磁场,那更是有趣。
磁场就像是个看不见的大迷宫,磁力线在里面弯弯绕绕。
安培定则,也就是右手螺旋定则,判断电流产生的磁场方向。
我一开始总是用错手,不是右手搞成左手,就是手指绕错方向。
有一次考试,就因为这个,丢了好多分,回家被老妈唠叨了半天。
还有那个洛伦兹力,带电粒子在磁场中运动时受到的力。
我就想象着一个个小粒子在磁场里像调皮的孩子,被磁场这个“大人”拽着改变方向。
有一次做物理题,是关于电子在磁场中做圆周运动的,我算了半天,算出的半径总是不对。
后来才发现,自己把速度的方向搞错了,真是哭笑不得。
电磁感应现象也是个神奇的存在。
闭合回路中的磁通量发生变化,就会产生感应电流。
记得有一次,老师拿着一个线圈,在磁铁旁边快速移动,小灯泡突然就亮了起来。
那一刻,我真切感受到了电磁感应的神奇,眼睛都亮了。
学习电场与磁场的过程中,我也犯过不少迷糊。
有时候做练习题,一道题能琢磨半天,草稿纸用了一张又一张,还是没搞明白。
高中物理电场公式大全_电场磁场公式

高中物理电场公式大全_电场磁场公式电场是高中物理教学中的重点和难点,学生更需要关注电场相关的公式,下面给大家带来的高中物理电场公式,希望对你有帮助。
高中物理电场公式1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB 两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的电场线分布要求熟记〔见图[第二册P98]; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面; (6)电容单位换算:1F=106μF=1012PF; (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J。
高考物理电场与磁场公式总结-最新学习文档

高考物理电场与磁场公式总结高考物理电场公式1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109Nm2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-QuAb (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ε:介电常数)14.带电粒子在电场中的加速(V0=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度V0进入匀强电场时的偏转(不考虑重力作用的情况下)类平抛运动;垂直电场方向:匀速直线运动L=V0t,平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m强调:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线分布要求熟记,见课本。
高中物理磁场和电场的知识点

高中物理磁场和电场的知识点1.磁场1磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场.2磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.3磁现象的电本质:一切磁现象都可归结为运动电荷或电流之间通过磁场而发生的相互作用.4安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体.5磁场的方向:规定在磁场中任一点小磁针N极受力的方向或者小磁针静止时N极的指向就是那一点的磁场方向.2.磁感线1在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.2磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.3几种典型磁场的磁感线的分布:①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度1定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/A?m.2磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向.3磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比.4磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:1地磁场的N极在地球南极附近,S极在地球北极附近.2地磁场B的水平分量Bx总是从地球南极指向北极,而竖直分量By则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.3在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.5.安培力1安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度.2安培力的方向由左手定则判定.3安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零.6.洛伦兹力1洛伦兹力的大小f=qvB,条件:v⊥B.当v∥B时,f=0.2洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功.3洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定.4在磁场中静止的电荷不受洛伦兹力作用.7.带电粒子在磁场中的运动规律在带电粒子只受洛伦兹力作用的条件下电子、质子、α粒子等微观粒子的重力通常忽略不计,1若带电粒子的速度方向与磁场方向平行相同或相反,带电粒子以入射速度v做匀速直线运动.2若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动.①轨道半径公式:r=mv/qB②周期公式:T=2πm/qB8.带电粒子在复合场中运动1带电粒子在复合场中做直线运动①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解.②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解.2带电粒子在复合场中做曲线运动①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动.处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解.②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解.③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“最大”、“最高”“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解.1.两种电荷1自然界中存在两种电荷:正电荷与负电荷.2电荷守恒定律2.库仑定律1内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.2适用条件:真空中的点电荷.点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少.3.电场强度、电场线1电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性.2电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式:E=F/q方向:正电荷在该点受力方向.3电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:①电场线是起始于正电荷或无穷远处,终止于负电荷或无穷远处;②电场线的疏密反映电场的强弱;③电场线不相交;④电场线不是真实存在的;⑤电场线不一定是电荷运动轨迹.4匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线.5电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和.4.电势差U:电荷在电场中由一点A移动到另一点B时,电场力所做的功WAB与电荷量q的比值WAB/q叫做AB两点间的电势差.公式:UAB=WAB/q电势差有正负:UAB=-UBA,一般常取绝对值,写成U.5.电势φ:电场中某点的电势等于该点相对零电势点的电势差.1电势是个相对的量,某点的电势与零电势点的选取有关通常取离电场无穷远处或大地的电势为零电势.因此电势有正、负,电势的正负表示该点电势比零电势点高还是低.2沿着电场线的方向,电势越来越低.6.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电势为零处电场力所做的功ε=qU7.等势面:电场中电势相等的点构成的面叫做等势面.1等势面上各点电势相等,在等势面上移动电荷电场力不做功.2等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面.3画等势面线时,一般相邻两等势面或线间的电势差相等.这样,在等势面线密处场强大,等势面线疏处场强小.8.电场中的功能关系1电场力做功与路径无关,只与初、末位置有关.计算方法有:由公式W=qEcosθ计算此公式只适合于匀强电场中,或由动能定理计算.2只有电场力做功,电势能和电荷的动能之和保持不变.3只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变.9.静电屏蔽:处于电场中的空腔导体或金属网罩,其空腔部分的场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.10.带电粒子在电场中的运动1带电粒子在电场中加速带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量.2带电粒子在电场中的偏转带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动.垂直于场强方向做匀速直线运动3是否考虑带电粒子的重力要根据具体情况而定.一般说来:①基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力但不能忽略质量.②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力.4带电粒子在匀强电场与重力场的复合场中运动由于带电粒子在匀强电场中所受电场力与重力都是恒力,因此可以用两种方法处理:①正交分解法;②等效“重力”法.11.示波管的原理:示波管由电子枪,偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX′上加扫描电压,同时加在偏转电极YY′上所要研究的信号电压,其周期与扫描电压的周期相同,在荧光屏上就显示出信号电压随时间变化的图线.12.电容定义:电容器的带电荷量跟它的两板间的电势差的比值[注意]电容器的电容是反映电容本身贮电特性的物理量,由电容器本身的介质特性与几何尺寸决定,与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关。
高中物理-第一篇 专题三 第9讲 磁场

(2)电子枪的加速电压U;
答案
eB2R2 2m
电子在电子枪中加速,由动能定理得 eU=12mv2 联立解得 U=eB2m2R2
(3)若保持电子枪与AO平行,将电子枪在纸面内向下平移至距AO为
R 2
(3)粒子速度方向的偏转角等于其轨迹的对应圆心角(如图甲,α1=α2).
3.带电粒子在磁场中运动的多解成因 (1)磁场方向不确定形成多解; (2)带电粒子电性不确定形成多解; (3)速度不确定形成多解; (4)运动的周期性形成多解.
例3 (2022·宁夏六盘山高级中学检测)如图所示,在直角坐标系xOy内,
基本 公式
qvB=mvr2
重要 结论
r=mqBv,T=2qπBm,T=2vπr
(1)轨迹上的入射点和出射点的速度垂线的交点为圆心,如图(a) (2)轨迹上入射点速度垂线和两点连线中垂线的交点为圆心,如 图(b) 圆心的 (3)沿半径方向距入射点距离等于r的点,如图(c)(当r已知或可算) 确定
半径的
极值问题 高考预测 专题强化练
考点一
磁场的基本性质 安培力
1.磁场的产生与叠加
2.安培力的分析与计算 方向 直导线
左手定则 F=BILsin θ,θ=0时F=0,θ=90°时F=BIL
大小 导线为曲线时 等效为ac直线电流
受力分析 根据力的平衡条件或牛顿运动定律列方程
例1 (2022·河北邯郸市高三期末)如图所示,M、N和P是以MN为直径的
P为圆心、半径R= mv0 的 向不同 qB
临界条件
圆上)
平移圆 (轨迹圆的所有圆心在一条直线上)
粒子的入射 将半径为R=
高中物理-专题四第1课时 电场和磁场基本问题

专题四电场和磁场第1课时电场和磁场基本问题1.电场强度的三个公式(1)E=Fq是电场强度的定义式,适用于任何电场。
电场中某点的场强是确定值,其大小和方向与试探电荷q无关,试探电荷q充当“测量工具”的作用。
(2)E=k Qr2是真空中点电荷所形成的电场场强的决定式,E由场源电荷Q和场源电荷到某点的距离r决定。
(3)E=Ud是场强与电势差的关系式,只适用于匀强电场。
注意:式中d为两点间沿电场方向的距离。
2.电场能的性质(1)电势与电势能:φ=E p q。
(2)电势差与电场力做功:U AB=W ABq=φA-φB。
(3)电场力做功与电势能的变化:W=-ΔE p。
3.等势面与电场线的关系(1)电场线总是与等势面垂直,且从电势高的等势面指向电势低的等势面。
(2)电场线越密的地方,等差等势面也越密。
(3)沿等势面移动电荷,电场力不做功,沿电场线移动电荷,电场力一定做功。
4.带电粒子在磁场中的受力情况(1)磁场只对运动的电荷有力的作用,对静止的电荷无力的作用。
(2)洛伦兹力的大小和方向:F洛=q v B sin θ。
注意:θ为v与B的夹角。
F的方向由左手定则判定,四指的指向应为正电荷运动的方向或负电荷运动方向的反方向。
5.洛伦兹力做功的特点由于洛伦兹力始终和速度方向垂直,所以洛伦兹力永不做功。
1.主要研究方法(1)理想化模型法。
如点电荷。
(2)比值定义法。
如电场强度、电势的定义方法,是定义物理量的一种重要方法。
(3)类比的方法。
如电场和重力场的类比;电场力做功与重力做功的类比;带电粒子在匀强电场中的运动和平抛运动的类比。
2.静电力做功的求解方法(1)由功的定义式W=Fl cos α来求。
(2)利用结论“电场力做功等于电荷电势能变化量的负值”来求,即W=-ΔE p。
(3)利用W AB=qU AB来求。
3.电场中的曲线运动的分析采用运动合成与分解的思想方法。
4.匀强磁场中的圆周运动解题关键找圆心:若已知进场点的速度和出场点,可以作进场点速度的垂线,依据是F洛⊥v,与进出场点连线的垂直平分线的交点即为圆心;若只知道进场位置,则要利用圆周运动的对称性定性画出轨迹,找圆心,利用平面几何知识求解问题。
高中物理电场磁场知识点总结

点电荷 等量异种电荷 等量同种电荷
静电平衡 (静电屏蔽)
电容器 (动态问题)
同名磁极相互排斥,异名磁极相互吸引Fra bibliotek库仑定律
磁体(qm)
磁场强度 H
磁体(qm)
分子 电流
B 0H
变化的电场 运动电荷(q、v) 右手螺旋定则 磁感应强度 B
Iq t
(I、L)通电导线
右手螺旋定则 Bk I r
磁感线 安培定律
f qvB
左手定则
运动电荷(q、v⊥)
只 有
磁
I nqSv∥,F Nf
场
左手定则 F IL B
通电导线(I、L⊥)
同向电流相互吸引,反向电流相互排斥
组
产源
磁场 运动 电荷 Q
受体
合
场
复
合
分布
电场线
线你由 面密高 垂我指 直密低
等势面
q
电势能 Ep
通电导线 平衡、运动
运动电荷(v∥B) 匀速直线运动
运动电荷(v⊥B) 匀速圆周运动
速度选择器
质谱仪 磁流体发电机 电磁流量计
霍尔效应 回旋加速器
加减速直线运动 偏转类平抛运动
示波管 (结构、图像)
交变电场 (直线、偏转)
示波管结构图像交变电场直线偏转磁流体发电机电磁流量计霍尔效应静电平衡静电屏蔽电荷q电场强度e电势差u电势静电力f静电力的功w电势能ep电场线等势面电场电荷q分布abababab受体磁场运动电荷qvil通电导线磁感应强度b磁体qm磁场强度h分子电流变化的电场右手螺旋定则右手螺旋定则安培定律库仑定律同名磁极相互排斥异名磁极相互吸引通电导线il同向电流相互吸引反向电流相互排斥磁体qm运动电荷qv通电导线平衡运动运动电荷vb匀速直线运动运动电荷vb匀速圆周运动回旋加速器质谱仪速度选择器电容器动态问题地磁场通电直导线条形磁铁蹄形磁铁通电螺线管通电圆环点电荷等量异种电荷等量同种电荷加减速直线运动偏转类平抛运动
高中物理《电场和磁场》复习

此公式,点击右键、“切换域代码”,即可进入编辑状态。
修改后再点击右键、“切换域代码”,即可退出编辑状态。
1
专题三 电场和磁场
第6讲 第7讲
带电粒子在电场中的运动 带电粒子在磁场及复合场中的运动
带电粒子
全国课标卷
20,广东卷 15, 18,全国课标Ⅱ 安徽 19,海南卷 16, ,福建卷 22, 24,广东卷 21, 江苏卷 9,全国 安徽卷 15,福建 大纲卷 17 重庆 卷 22,全国大纲 卷 21 卷 26, 浙江卷 25
返回目录
在磁场中 25, 海南卷 10, 的运动, 广东卷 35,北 安培力 京卷 23
5
返回目录
网络知识构建
6
返回目录
网络知识构建
☆通过场的类比(电场与重力场类比、电场与磁场的类比); 形象理解场的性质、掌握电场力和洛伦兹力的特性; ☆熟知两大定则(安培定则和左手定则),准确判定磁场及 磁场力的方向; ☆认识两类偏转模型(类平抛运动和圆周运动),掌握带电 粒子在场中的运动性质、规律和分析处理方法. ☆迁移力学“两大观点”,突破带电粒子在复合场中的 运动问题;掌握“两个典型实例”,攻克电场和磁场的 技术应用问题.
12
返回目录
核心知识重组
三、电场的应用 ε rS Q (1)电容器: 电容定义式: C=U; 平行板电容器的决定式: C= . 4π kd (2)加速和偏转: 带电粒子在电场中的加速问题一般选用动能定理求 解,带电粒子在电场中的轨迹问题一般用曲线运动的速度、合力与轨迹 的关系求解,带电粒子在匀强电场中的偏转一般用运动的分解与合成的 方法求解.
(完整版)高二物理电场磁场总结(超全)

电磁场总结知识要点:1.电荷 电荷守恒定律 点电荷⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。
电荷的多少叫电量。
基本电荷e =⨯-161019.C。
带电体电荷量等于元电荷的整数倍(Q=ne )⑵使物体带电也叫起电。
使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。
⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。
带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。
2.库仑定律(1)公式 F K Q Q r=122 (真空中静止的两个点电荷) 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表达式为F K Q Q r=122,其中比例常数K 叫静电力常量,K =⨯90109.N m C22·。
(F:点电荷间的作用力(N), Q 1、Q 2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引)(2)库仑定律的适用条件是(1)真空,(2)点电荷。
点电荷是物理中的理想模型。
当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。
3.静电场 电场线为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。
电场线的特点:(1)始于正电荷 (或无穷远),终止负电荷(或无穷远);(2)任意两条电场线都不相交。
电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。
带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。
4.电场强度 点电荷的电场⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。
30. 高中物理中的磁场与电场如何区分?

30. 高中物理中的磁场与电场如何区分?关键信息项:1、磁场与电场的定义和基本概念。
2、磁场与电场的产生方式。
3、磁场与电场的性质和特点。
4、磁场与电场的物理量及其单位。
5、磁场与电场对带电粒子的作用。
6、磁场与电场在实际生活和科学技术中的应用。
11 磁场的定义磁场是一种存在于磁体周围空间的特殊物质,它能对放入其中的磁体或电流产生力的作用。
磁场是由运动的电荷产生的,具有方向性和强弱性。
111 电场的定义电场是存在于电荷周围空间的一种特殊物质,它对放入其中的电荷有力的作用。
电场是由静止的电荷产生的,同样具有方向性和强弱性。
12 磁场的产生方式磁场可以由永磁体产生,如常见的磁铁。
也可以由电流产生,如通电的直导线、螺线管等。
当电流通过导体时,在其周围会产生环形磁场,磁场的方向可以通过安培定则来判断。
121 电场的产生方式电场由静止的电荷产生,例如一个孤立的正电荷会在其周围空间产生指向无穷远处的电场,而一个孤立的负电荷则会在其周围产生指向自身的电场。
13 磁场的性质和特点磁场具有方向性,通常用磁感线来描述磁场的分布情况。
磁感线是闭合的曲线,其切线方向表示磁场的方向,磁感线的疏密程度表示磁场的强弱。
磁场对放入其中的磁体有力的作用,同名磁极相互排斥,异名磁极相互吸引。
131 电场的性质和特点电场具有方向性,电场线用于描述电场的分布,电场线从正电荷出发,终止于负电荷,其切线方向表示电场的方向,电场线的疏密程度表示电场的强弱。
电场对放入其中的电荷有力的作用,正电荷在电场中受力的方向与电场方向相同,负电荷受力方向与电场方向相反。
14 磁场的物理量及其单位描述磁场的物理量主要有磁感应强度,通常用字母 B 表示,单位是特斯拉(T)。
磁感应强度是描述磁场强弱和方向的物理量。
141 电场的物理量及其单位描述电场的物理量主要有电场强度,通常用字母 E 表示,单位是伏特每米(V/m)。
电场强度是描述电场强弱和方向的物理量。
15 磁场对带电粒子的作用当带电粒子在磁场中运动时,会受到洛伦兹力的作用。
高考物理电场与磁场知识点总结

高考物理电场与磁场知识点总结一、电场1、库仑定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们距离的平方成反比,作用力的方向在它们的连线上。
表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$ 是静电力常量,约为$90×10^9 N·m^2/C^2$ 。
要理解库仑定律,需要注意以下几点:(1)库仑定律适用于真空中的点电荷。
如果电荷分布在一个带电体上,当带电体的大小远小于它们之间的距离时,可以将带电体视为点电荷。
(2)库仑力是一种“超距作用”,即电荷之间不需要接触就能产生相互作用力。
2、电场强度电场强度是描述电场强弱和方向的物理量。
放入电场中某点的电荷所受的电场力$F$ 跟它的电荷量$q$ 的比值,叫做该点的电场强度,简称场强。
表达式为:$E =\frac{F}{q}$。
电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。
常见的电场强度的计算方法:(1)真空中点电荷产生的电场:$E = k\frac{Q}{r^2}$,其中$Q$ 是产生电场的点电荷的电荷量,$r$ 是该点到点电荷的距离。
(2)匀强电场:电场强度处处相等的电场叫匀强电场。
其电场强度大小为:$E =\frac{U}{d}$,其中$U$ 是两点间的电势差,$d$ 是沿电场线方向两点间的距离。
3、电场线电场线是为了形象地描述电场而引入的假想曲线。
电场线上每一点的切线方向都跟该点的场强方向一致,电场线的疏密表示电场的强弱。
常见的电场线形状:(1)正点电荷的电场线:从正电荷出发,终止于无穷远。
(2)负点电荷的电场线:从无穷远出发,终止于负电荷。
(3)等量同种电荷的电场线:分布不均匀,越靠近电荷,电场线越密集。
(4)等量异种电荷的电场线:从正电荷出发,终止于负电荷,两电荷连线的中垂线上电场强度的方向始终与中垂线垂直。
4、电势能与电势(1)电势能:电荷在电场中具有的势能叫电势能。
82. 高中物理中的磁场力与电场力有何区别?

82. 高中物理中的磁场力与电场力有何区别?关键信息项:1、磁场力的定义与特点定义:____________________________特点:____________________________2、电场力的定义与特点定义:____________________________特点:____________________________3、磁场力与电场力产生条件磁场力产生条件:____________________________电场力产生条件:____________________________4、磁场力与电场力的计算公式磁场力计算公式:____________________________电场力计算公式:____________________________5、磁场力与电场力的方向判断方法磁场力方向判断方法:____________________________电场力方向判断方法:____________________________6、磁场力与电场力对带电粒子运动轨迹的影响磁场力对带电粒子运动轨迹的影响:____________________________电场力对带电粒子运动轨迹的影响:____________________________7、磁场力与电场力在实际应用中的例子磁场力在实际应用中的例子:____________________________电场力在实际应用中的例子:____________________________11 磁场力的定义与特点磁场力是指运动电荷在磁场中所受到的力。
磁场力包括洛伦兹力和安培力。
洛伦兹力是指带电粒子在磁场中运动时所受到的力,安培力是指通电导线在磁场中所受到的力。
磁场力的特点主要有以下几点:111 磁场力始终垂直于电荷的运动速度和磁场方向所确定的平面。
112 磁场力不对运动电荷做功,只会改变电荷的运动方向,而不改变其速率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理电场和磁场【方法归纳】一、场强、电势的概念1、电场强度E①定义:放入电场中某点的电荷受的电场力F 与它的电量q 的比值叫做该点的电场强度。
②数学表达式:q F E /=,单位:m V /③电场强度E 是矢量,规定正电荷在电场中某点所受电场力的方向即为该点的电场强度的方向 ④场强的三个表达式⑤比较电场中两点的电场强度的大小的方法: 2、电势、电势差和电势能 二、电加速和电偏转1、带电粒子在电场中的加速在匀强电场中的加速问题 一般属于物体受恒力(重力一般不计)作用运动问题。
处理的方法有两种: ①根据牛顿第二定律和运动学公式结合求解②根据动能定理与电场力做功,运动学公式结合求解 2、带电粒子在电场中的偏转设极板间的电压为U ,两极板间的距离为d ,极板长度为L 。
运动状态分析:带电粒子垂直于匀强电场的场强方向进入电场后,受到恒定的电场力作用,且与初速度方向垂直,因而做匀变速曲线运动——类似平抛运动如图1。
运动特点分析:在垂直电场方向做匀速直线运动0v v x = t v x 0= 在平行电场方向,做初速度为零的匀加速直线运动dmUq mEq a ==at v y = 221at y =通过电场区的时间:0v L t =粒子通过电场区的侧移距离:222mdvUqL y =粒子通过电场区偏转角:20mdvUqL tg =θ三、电容器的动态分析解此类问题的关键是:先由电容定义式UQ C =、平行板电容器电容的大小C 与板距d 、正面积S 、介质的介电常数ε的关系式dSC ε∝和匀强电场的场强计算式dU E =导出dSUCU Q ε∝=,SdQCQ U ε∝=,图1SQCdQ E ε∝=等几个制约条件式备用。
接着弄清三点:①电容器两极板是否与电源相连接?②哪个极板接地?③C 值通过什么途径改变?若电容器充电后脱离电源,则隐含“Q 不改变”这个条件;若电容器始终接在电源上,则隐含“U 不改变”(等于电源电动势)这个条件;若带正电极板接地,则该极板电势为零度,电场中任一点的电势均小于零且沿电场线方向逐渐降低;若带负电极板接地,则该极板电势为零,电场中任一点电势均大于零。
四、带电粒子在匀强磁场的运动1、带电粒子在匀强磁场中运动规律 初速度的特点与运动规律①00=v 0=洛f 为静止状态 ②B v // 0=洛f 则粒子做匀速直线运动 运动轨道半径公式:Bqmv R =;运动周期公式:Bqm T π2=2、解题思路及方法 圆运动的圆心的确定:①利用洛仑兹力的方向永远指向圆心的特点,只要找到圆运动两个点上的洛仑兹力的方向,其延长线的交点必为圆心.②利用圆上弦的中垂线必过圆心的特点找圆心五、加速器问题 1、直线加速器①单级加速器:是利用电场加速,如图2所示。
粒子获得的能量:Uq mvE k ==221缺点是:粒子获得的能量与电压有关,而电压又不能太高,所以粒子的能量受到限制。
②多级加速器:是利用两个金属筒缝间的电场加速。
粒子获得的能量:nUq mvE k ==221缺点是:金属筒的长度一个比一个长,占用空间太大。
2、回旋加速器采用了多次小电压加速的优点,巧妙地利用电场对粒子加速、利用磁场对粒子偏转,实验对粒子加速。
①回旋加速器使粒子获得的最大能量: 在粒子的质量m 、电量q ,磁感应强度B 、D 型盒的半径R 一定的条件下,由轨道半径可知,Bqmv R =,即有,mBqR v =max ,所以粒子的最大能量为mR q B mvE 2212222maxmax ==图2U由动能定理可知,max E nUq =,加速电压的高低只会影响带电粒子加速的总次数,并不影响引出时的最大速度和相应的最大能量。
②回旋加速器能否无限制地给带电粒子加速?回旋加速器不能无限制地给带电粒子加速,在粒子的能量很高时,它的速度越接近光速,根据爱因斯坦的狭义相对论,这里粒子的质量将随着速率的增加而显著增大,从而使粒子的回旋周期变大(频率变小)这样交变电场的周期难以与回旋周期一致,这样就破坏了加速器的工作条件,也就无法提高速率了。
七、粒子在交变电场中的往复运动当电场强度发生变化时,由于带电粒子在电场中的受力将发生变化,从而使粒子的运动状态发生相应的变化,粒子表现出来的运动形式可能是单向变速直线运动,也可能是变速往复运动。
八、粒子在复合场中运动1、在运动的各种方式中,最为熟悉的是以垂直电磁场的方向射入的带电粒子,它将在电磁场中做匀速直线运动,那么,初速v 0的大小必为E/B ,这就是速度选择器模型,关于这一模型,我们必须清楚,它只能选取择速度,而不能选取择带电的多少和带电的正负,这在历年高考中都是一个重要方面。
2、带电物体在复合场中的受力分析:带电物体在重力场、电场、磁场中运动时,其运动状态的改变由其受到的合力决定,因此,对运动物体进行受力分析时必须注意以下几点:①受力分析的顺序:先场力(包括重力、电场力、磁场力)、后弹力、再摩擦力等。
②重力、电场力与物体运动速度无关,由物体的质量决定重力大小,由电场强决定电场力大小;但洛仑兹力的大小与粒子速度有关,方向还与电荷的性质有关。
所以必须充分注意到这一点才能正确分析其受力情况,从而正确确定物体运动情况。
3、带电物体在复合场的运动类型:①匀速运动或静止状态:当带电物体所受的合外力为零时 ②匀速圆周运动:当带电物体所受的合外力充当向心力时③非匀变速曲线运动;当带电物体所受的合力变化且和速度不在一条直线上时 4、综合问题的处理方法(1)处理力电综合题的的方法①用力的观点进解答,常用到正交分解的方法将力分解到两个垂直的方向上,分别应用牛顿第三定律列出运动方程,然后对研究对象的运动进分解。
可将曲线运动转化为直线运动来处理,再运用运动学的特点与方法,然后根据相关条件找到联系方程进行求解。
②用能量的观点处理问题 对于受变力作用的带电体的运动,必须借助于能量观点来处理。
即使都是恒力作用的问题,用能量观点处理也常常显得简洁,具体方法有两种:(2)处理复合场用等效方法:各种性质的场与实物(由分子和原子构成的物质)的根本区别之一是场具有叠加性。
即几个场可以同时占据同一空间,从而形成叠加场,对于叠加场中的力学问题,可以根据力的独立作用原理分别研究每一种场力对物体的作用效果;也可以同时研究几种场力共同作用的效果,将叠加紧场等效为一个简单场,然后与重力场中的力学问题进行类比,利用力学的规律和方法进行分析与解答。
【典例分析】【例1】如图5所示,AB 是一个接地的很大的薄金属板,其右侧P 点有带量为Q 的正电荷,N 为金属板外表面上的一点,P 到金属板的垂直距离d PN =,M 为PN 连线的中点,关于M 、N 两点的场强和电势,有如下说法:①M 点的电势比N 点电势高,M 点的场强比N 点的场强大②M 点的场强大小为2/4d kQ ③N 点的电势为零,场强不为零 ④N 点的电势和场强都为零上述说法中正确的是( )A.①③B.②④C.①④D.②③【例2】如图6所示,两根长为l 的绝缘细线上端固定在O 点,下端各悬挂质量为m 的带电小球A 、B ,A 、B 带电分别为q +、q -,今在水平向左的方向上加匀强电场,场强E ,使连接AB 长为l 的绝缘细线拉直,并使两球处于静止状态,问,要使两小球处于这种状态,外加电场E 的大小为多少?【例3】如图7所示,是示波管工作原理示意图,电子经加速电压U 1加速后垂直进入偏转电场,离开偏转电场时的偏转量为h ,两平行板间的距离为d ,电势差为U 2,板长为l ,为了提高示波管的灵敏度(单位偏转电压引起的偏转量)可采取哪些措施?【例4】(2001年,安徽高考题)一平行板电容器,两板间的距离d 和两板面积S 都可调节,电容器两极板与电池相连接,以Q 表示电容器的电量,E 表示两极间的电场强度,则下列说法中正确的是( )A.当d 增大,S 不变时,Q 减小E 减小B.当S 增大,d 不变时,Q 增大E 增大C.当d 减小,S 增大时,Q 增大E 增大D.当S 减小,d 减小时,Q 不变E 不变【例5】如图8所示,在S 点的电量为q ,质量为m 的静止带电粒子,被加速电压为U ,极板间距离为d 的匀强电场加速后,从正中央垂直射入电压为U 的匀强偏转电场,偏转极板长度和极板距离均为L ,带电粒子离开偏转电场后即进入一个垂直纸面方向的匀强磁场,其磁感应强度为B 。
若不计重力影响,欲使带电粒子通过某路径返回S 点,求:图7(1)匀强磁场的宽度D 至少为多少?(2)该带电粒子周期性运动的周期T 是多少?偏转电压正负极多长时间变换一次方向?【例6】N 个长度逐个增大的金属筒和一个靶沿轴线排列成 一串,如图9 所示(图中只画出4个圆筒,作为示意),各筒和靶相间地连接到频率为f ,最大电压值为U 的正弦交流电源的两端,整个装置放在高度真空容器中,圆筒的两底面中心开有小孔,现有一电量为q 、质量为m 的正离子沿轴线射入圆筒,并将在圆筒间及圆筒与靶间的缝隙处受到电场力作用而加速(设圆筒内部没有电场),缝隙的宽度很小,离子穿过缝隙的时间可以不计,已知离子进入第一个圆筒左端的速度为v 1,且此时第一、二两个圆筒间的电势差U 1-U 2=-U ,为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子能量。
【例7】一水平放置的平行板电容器置于真空中,开始时两极板的匀电场的场强大小为E 1,这时一带电粒子在电场的正中处于平衡状态。
现将两极板间的场强大小由E 1突然增大到E 2,但保持原来的方向不变,持续一段时间后,突然将电场反向,而保持场强的大小E 2不变,再持续一段同样时间后,带电粒子恰好回到最初的位置,已知在整个过程中,粒子并不与极板相碰,求场强E 1的值。
【例8】如图10所示,在xOy 平面内,有场强E=12N/C ,方向沿x 轴正方向的匀强电场和磁感应强度大小为B=2T 、方向垂直xOy 平面指向纸里的匀强磁场.一个质量m=4×10-5kg ,电量q=2.5×10-5C 带正电的微粒,在xOy 平面内做匀速直线运动,运动到原点O 时,撤去磁场,经一段时间后,带电微粒运动到了x 轴上的P 点.求:(1)P 点到原点O 的距离;(2)带电微粒由原点O 运动到P 点的时间.图8图9【跟踪练习】1.如图11所示,P 、Q 是两个电量相等正的电荷,它们连线的中点是O ,a 、b 是中垂线上的两点,Ob Oa <,用a E 、b E 、a U 、b U 分别表示a 、b 两点的场强和电势,则( ) A.a E 一定大于b E ,a U 一定大于b U B.a E 不一定大于b E ,a U 一定大于b U C.a E 一定大于b E ,a U 不一定大于b U D.a E 不一定大于b E ,a U 不一定大于b U2.一个电量为C 5101-⨯的正电荷从电场外移到电场里的A 点,电场做功J 3106-⨯-,则A 点的电势U A 等于多少?如果此电荷移到电场里的另一点B,电场力做功2×10-3,则A 、B 两点间的电势差U A B 等于多少?如果有另一电量是C q 5102-⨯='的负电荷从A 移到B ,则电场力做功为多少?3.如图12所示,质量为m 的小球B ,带电量为q ,用绝缘细线悬挂在O 点,球心到O 点的距离为l ,在O 点的正下方有一个带同种电荷的小球A 固定不动,A 的球心到O 点的距离也为l ,改变A 球的带电量,B 球将在不同的位置处于平衡状态。