2017年四川省绵阳市中考数学试卷(解析版)

合集下载

2017年绵阳高中招生考试数学试卷

2017年绵阳高中招生考试数学试卷

绵阳市2017年高中阶段学校招生暨初中学业水平考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共36分)一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项最符合题目要求.1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,-0.5的相反数是()A.0.5B.±0.5C.-0.5D.52.下列图案中,属于轴对称图形的是()3.中国幅员辽阔,陆地面积约为960万平方公里.“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×1024.如图所示的几何体的主视图正确的是()5.使代数式+有意义的整数x有()A.5个B.4个C.3个D.2个6.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离为4cm,则旗杆DE的高度等于()A.10mB.12mC.12.4mD.12.32m7.关于x的方程2x2+mx+n=0的两个根是-2和1,则n m的值为()A.-8B.8C.16D.-168.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm29.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F 两点.若AC=2,∠AEO=120°,则FC的长度为()A.1B.2C.D.10.将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8B.b>-8C.b≥8D.b≥-811.如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E 作EF⊥AB交BC于点F,连接AF交CE于点M,则的值为()A. B. C. D.12.如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形.第1幅图中“•”的个数为a1,第2幅图中“•”的个数为a2,第3幅图中“•”的个数为a3,……,以此类推,则+++…+的值为()A. B. C. D.第Ⅱ卷(非选择题,共104分)二、填空题:本大题共6个小题,每小题3分,共18分.将答案填写在相应的横线上.13.因式分解:8a2-2=.14.关于x的分式方程-=的解是.15.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是.16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.17.将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D 旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点.若CA=5,AB=6,AD∶AB=1∶3,则MD+的最小值为.18.如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延长线于点F,在AF上取点M,使得AM=AF,连接CM并延长交直线DE于点H.若AC=2,△AMH的面积是,则的值是.三、解答题:本大题共7个小题,共86分.解答应写出文字说明、证明过程或演算步骤.19.(本题共2个小题,每小题8分,共16分)(1)计算:+cos245°-(-2)-1-;(2)先化简,再求值:÷,其中x=2,y=.20.(本题满分11分)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):182195201179208204186192210204 175193200203188197212207185206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株.21.(本题满分11分)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.22.(本题满分11分)设反比例函数的解析式为y=(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(-2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO 的面积为时,求直线l的解析式.23.(本题满分11分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DFA=,AN=2,求圆O的直径的长度.24.(本题满分12分)如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE∶MF的值.25.(本题满分14分)如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1cm/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°.再过点N作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF.已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.答案全解全析:一、选择题1.A只有符号不同的两个数互为相反数,所以-0.5的相反数是0.5,故选A.2.A A选项是轴对称图形,共有5条对称轴;B、D选项既不是轴对称图形,也不是中心对称图形;C选项是中心对称图形,不是轴对称图形,故选A.3.B科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,故960万=9600 000=9.6×106,故选B.4.D由主视图的定义知选D.5.B由题意得解得-3<x≤,其中整数有-2,-1,0,1,故选B.6.B由题意可得∠ACB=∠ECD,∠ABC=∠EDC,∴△ABC∽△EDC.∴=,∴=,∴ED=12m,故选B.7.C由一元二次方程根与系数的关系得解得m=2,n=-4,故n m=(-4)2=16,故选C.8.C由陀螺的立体结构图可知,陀螺的表面积由底面圆面积、圆柱侧面积和圆锥侧面积组成.底面圆的半径r=4cm,底面圆的周长为2πr=8πcm,圆锥的母线长为=5cm,所以陀螺的表面积为π×42+8π×6+×8π×5=84πcm2,故选C.9.A∵四边形ABCD是矩形,∴OA=OB=OC=AC=.∵AD∥BC,∴∠OFC=∠AEO=120°,∴∠BFO=60°.∵EF⊥BD,∴∠BOF=90°,∴∠OBF=∠OCB=30°,∴∠COF=∠BFO-∠OCB=30°,∴OF=FC.∵OF=OB·tan30°=1,∴FC=1,故选A.10.D由题意可得,y=x2的图象经过两次平移后得到y=(x-3)2-1的图象.将①代入②得,x2-8x+8-b=0.因为抛物线与直线有公共点,所以Δ=(-8)2-4(8-b)=4b+32≥0,所以b≥-8,故选D.11.D∵在Rt△ABC中,点O是△ABC的重心,∴OC=CE,CE=AE=EB,∴∠B=∠BCE=30°,∠CAE=∠ECA=60°,∴△CAE是等边三角形.∵EF⊥AB,∴∠FEB=90°,∴∠CEF=30°,∴CF=EF,∴AF平分∠CAB,∴AM垂直平分CE,∴CM=CE,∴MO=CE=CM.∵MF=CM·tan30°=CM,∴==,故选D.12.C第1幅图中有3=1×3个“•”;第2幅图中有8=2×4个“•”;第3幅图中有15=3×5个“•”;……第19幅图中有399=19×21个“•”.所以+++…+=+++…+===,故选C.二、填空题13.答案2(2a+1)(2a-1)解析8a2-2=2(4a2-1)=2[(2a)2-12]=2(2a+1)(2a-1).14.答案x=-2解析∵-=,∴-=-,∴2(x+1)-(x-1)=-(x+1),∴2x+2-x+1=-x-1,∴2x=-4,∴x=-2.检验:当x=-2时,(x+1)(x-1)≠0,∴x=-2是原分式方程的根.15.答案(7,4)解析∵A(6,0),∴OA=6,又∵四边形ABCO为平行四边形,∴BC∥OA,BC=OA=6,∴点B的横坐标是1+6=7,纵坐标是4,∴B(7,4).16.答案解析列表如下:由表格可知,同时抛掷两枚质地均匀的骰子,共有36种结果,而符合“两枚骰子的点数和小于8且为偶数”的结果有9种,故所求概率P==.17.答案2解析∵∠B+∠BDN+∠BND=180°,∠BDN+∠FDE+∠ADM=180°,∠B=∠FDE,∴∠BND=∠ADM,又∵∠B=∠A,∴△BDN∽△AMD,∴=,∴DN·AM=MD·BD.∵AD∶AB=1∶3,∴BD=AB=4,∴DN·AM=4MD.设MD=x,则MD+=MD+=x+=()2-2··++2=+2,∴当=,即x=时,MD+取得最小值,为2.18.答案8-解析过H作HG⊥AC于点G,如图.∵AF平分∠EAC,∴∠EAF=∠CAF.∵DE∥BF,∴∠EAF=∠AFC,∴∠CAF=∠AFC,∴CF=CA=2.∵AM=AF,∴AM∶MF=1∶2.∵DE∥BF,∴===,∴AH=1,S△AHC=3S△AHM=,∴×2GH=,∴GH=,∴在Rt△AHG中,AG==,∴GC=AC-AG=2-=,∴==8-.三、解答题19.解析(1)原式=0.2+--(4分)=++-(6分)=.(8分)(2)原式=÷(2分)=÷(3分)=÷(4分)=·=.(6分)当x=2,y=时,原式==-.(8分)20.解析(1)频数从左到右应填3,6;对应扇形图中区域从左到右应填B,A.(4分)补全直方图如图所示.(6分)扇形A对应的圆心角为×360°=72°,扇形B对应的圆心角为×360°=36°.(8分)(2)稻穗谷粒数大于或等于205颗的水稻有3000×=900株.(11分)21.解析(1)设每台大型收割机1小时收割小麦a公顷,每台小型收割机1小时收割小麦b 公顷,(1分)根据题意得(3分)解得答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(4分) (2)设需要大型收割机x台,则需要小型收割机(10-x)台,(5分)根据题意得(7分)解得5≤x≤7,又x取整数,所以x=5,6,7,一共有三种方案.(9分)设费用为w元,则w=600x+400(10-x)=200x+4000,由一次函数性质知,w随x的增大而增大,所以当x=5时,w最小,即大型收割机5台,小型收割机5台时,费用最低,(10分)此时,费用为600×5+400×5=5000元.(11分)22.解析(1)由题意可得,正比例函数与反比例函数的一个交点坐标是(1,2),(2分)将其代入反比例函数解析式y=,得k=.(4分)(2)因为直线l过点M(-2,0),所以0=-2k+b,所以b=2k,所以直线l的方程可写为y=kx+2k,(5分)由消去y,得kx+2k=,因为k>0,所以x+2=,得x2+2x-3=0,(7分)解得x1=-3,x2=1,所以A(1,3k),B(-3,-k),(8分)所以S△ABO=S△AMO+S△BMO=×2(3k+|-k|)=,解得k=,(10分)所以直线l的解析式为y=x+.(11分)23.解析(1)证明:连接OF,∵ME与圆O相切于点F,∴OF⊥ME,即∠OFN+∠MFN=90°,(1分)∵∠OFN=∠OAN,∠OAN+∠ANH=90°,∴∠MFN=∠ANH,(3分)又∵ME∥AC,∴∠MFN=∠NAC,∴∠ANH=∠NAC,∴CA=CN.(5分)(2)∵cos∠DFA=,∠DFA=∠ACH,∴cos∠ACH=,(6分)在Rt△AHC中,设AC=5a,HC=4a,则AH=3a.由(1)知CA=CN,∴NH=a,(7分)在Rt△ANH中,利用勾股定理,得AH2+NH2=AN2,即(3a)2+a2=(2)2,解得a=2,(8分)连接OC,在Rt△OHC中,利用勾股定理,得OH2+HC2=OC2,设圆O的半径为R,则(R-6)2+82=R2,解得R=,(10分)∴圆O的直径的长度为2R=.(11分)24.解析(1)由题意知抛物线的解析式可化为y=a(x-2)2+1,(1分)因为抛物线经过点(4,2),所以2=a(4-2)2+1,解得a=,(2分)所以抛物线的解析式是y=(x-2)2+1=x2-x+2.(3分)(2)证明:由消去y,整理得x2-6x+4=0,(4分)解得x1=3-,x2=3+,(5分)将其代入直线方程,得y1=-,y2=+,所以B,D,因为点C是BD的中点,所以点C的纵坐标为=,(6分)利用勾股定理,可得BD==5,即半径R=,即圆心C到x轴的距离等于半径R,所以圆C与x轴相切.(7分) (3)连接BM、DM,因为BD为直径,所以∠BMD=90°,所以∠BME+∠DMF=90°,又因为BE⊥m,DF⊥m,所以∠MDF+∠DMF=90°,所以∠BME=∠MDF,所以△BME∽△MDF,所以=,即=,(9分)代入得=,化简得(t-3)2=4,解得t=5或t=1,(10分)因为点M在抛物线的对称轴的右侧,所以t=5,(11分)所以=.(12分)25.解析(1)能.(1分)如图,过F作FD⊥BC于点D,四边形MNEF为正方形时,易知MN=MF,∠FMD=∠NMC=45°,因为△CNM和△FDM都是等腰直角三角形,所以CM=MD=DF=t cm,所以BD=(4-2t)cm,易证△FDB∽△ACB,所以=,(2分)即=,解得t=.(4分)(2)如图,当点E恰好落在AB上时,连接ME,记EM与NF交于点O,由已知得,EO=OM=CM=t cm,所以EM=2OM=2t cm,易证△EMB∽△ACB,所以=,即=,解得t=2.(5分)当0<t<2时,易证△ANF∽△ACB,所以=,即=,解得NF=cm,(6分)此时y=·NF·NC=··t=-t2+2t;(7分)当2≤t≤4时,如图,设NE与AB交于点K,过K作KL⊥NF于点L,连接EM,交直线NF于点H,易证△KLF∽△ANF,所以=,因为NF=cm,且易知KL=NL,所以=,解得NL=cm,即KL=cm,(9分)此时y=·NF·KL=··=(8-t)2=t2-t+.综上所述,y=(10分)(3)由(2)知,当t=2时,y取得最大值,此时,点E恰好落在AB上,(11分)则有NM=t=2cm,∴NE=NM=2cm.过N作NG⊥AB,垂足为G,如图,∵AC=8cm,BC=4cm,∠C=90°,∴AB==4cm.易知△ANG∽△ABC,∴=,即=,∴NG=cm,(12分)∴sin∠NEF==.(14分)。

绵阳市2017年高中阶段学校招生暨初中学业水平测试 解析版

绵阳市2017年高中阶段学校招生暨初中学业水平测试 解析版

2017年四川省绵阳市中考数学试卷 第Ⅰ卷 (选择题,共36分)一、选择题:本大题共12小题,每小题3分,共36分.)1.(2017年四川绵阳)中国人最早使用负数,可追溯到两千多年前的秦汉时期,-0.5的相反数是A .0.5B.5C .﹣0.5D .5答案:A 解析:根据相反数的定义求解即可. 2.(2017年四川绵阳)下列图案中,属于轴对称的是答案:A 解析:本题考查轴对称图形的识别,判断一个图形是否是轴对称图形,就是看是否可以存在一条直线,使得这个图形的一部分沿着这条直线折叠,能够和另一部分互相重合.3.(2017年四川绵阳)中国幅员辽阔,陆地面积约为960万平方公里.“960万”用科学计数法表示为A .0.96×107B .9.6×106C .96×105D .9.6×102答案:B 解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 4.(2017年四川绵阳)如图所示的几何体的主视图正确的是答案:D 解析:考查画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形. 5.(2017年四川绵阳)使代数式x x 3431-++有意义的整数x 有 A .5个B .4个C .3个D .2个答案:B 解析:根据被开方数是非负数,分母不能为零,可得答案. 6.(2017年四川绵阳)为测量操场上旗杆的高度,效力同学想到了物理学(第4题图) A B DC中平面镜成像的原理.她拿出随身携带的镜子和卷尺.先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B .测得脚掌中心位置B 到镜面中心C 的距离是50cm ,镜面中心C 距旗杆底部D 的距离为4m ,如图所示,已知小丽同学的身高是1.54cm ,眼睛位置A 距离小丽头顶的距离是4cm ,则旗杆的高度等于A .10mB .12mC .12.4mD .12.32m答案:B 解析:根据题意得出△ABC ∽△EDC ,进而利用相似三角形的性质得出答案. 7.关于x 的方程2x 2+mx +n =0的两根为-2和1,则n m 的值为A .-8B .8C .16D .-16答案:C 解析:利用根与系数的关系求解即可.8.(2017年四川绵阳)“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm ,圆柱部分的高BC=6cm ,圆锥体部分的高CD=3cm ,则这个陀螺的表面积是A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2答案:C 解析:圆锥的表面积加上圆柱的侧面积即可求得其表面积.9.(2017年四川绵阳)如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC =23,∠AEO =120°,则FC 的长度为A .1B .2C .2D .3答案:A 解析:10.(2017年四川绵阳)将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是A .b >8B .b >-8C .b ≥8D .b ≥-8答案:D 解析:二次函数向下平移1个单位,再向右平移3个单位后,得到y =(x -3)2+1,再结合与一次函数y =2x +b 有公共点,联立方程组,建立关于x 的一元二次方程,利用一元二次方程有解的条件△≥0,可求出b 的范围.11.(2017年四川绵阳)如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点E .则MFMO的值为 (第8题图)D CBAA BCDEFO(第9题图) (第11题图)BA .21B .45C .32D .33答案:D 解析:根据三角形的重心性质可得OC =32CE ,根据直角三角形的性质可得CE =AE ,根据等边三角形的判定和性质得到CM =21CE ,进一步得到OM =61CE ,即OM =61AE ,根据垂直平分线的性质和含30°的直角三角形的性质可得EF =33AE ,MF =21EF ,依此得到MF =63AE ,从而得到MF MO的值. 12.(2017年四川绵阳)如图所示,将形状、大小完全相同的“形,第1幅图形中“a 1,第2a 2,第3幅图形中“为a 3,…,以此类推,则193211111a a a a +⋯+++的值为 A .2120B .8461C .840589D .760431答案:C 解析:首先根据图形中“●”的个数得出数字变化规律, a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);进而求出即可.第Ⅱ卷(非选择题,共104分)二、填空题:(本大题共6个小题,每小题3分,共18分.将答案填写在答题卡相应的横线上) 13.(2017年四川绵阳)因式分解:8a 2-2= . 答案:)12)(12(2-+n n解析:首先提取公因式2,进而利用平方差公式进行分解即可.14.(2017年四川绵阳)关于x 的分式方程xx x -=+--111112的解是 . 答案:2-=x 解析:观察可得最简公分母是(x +1)(x -1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.15.(2017年四川绵阳)如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点.若点A 的坐标是(6,0),点C 的坐标是(1,4),则点B 的坐标是 .答案:(7,4) 解析:根据平行四边形的性质及A 点和C 的坐标求出点B 的坐标即可.:∵四边形ABCO 是平行四边形,O 为坐标原点,点A 的坐标是(6,0),点C 的坐标是(1,4),∴BC =OA =6,6+1=7,∴点B 的坐标是(7,4).16.(2017年四川绵阳)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶第1幅图 第2幅图 第3幅图 第4幅图数”的概率是 . 答案:41解析:画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于8且为偶数”的结果数,然后根据概率公式求解.17.(2017年四川绵阳)将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA 、CB 于M 、N 两点.若CA =5,AB =6,AD ∶AB =1∶3,则MD +DNMA ⋅12的最小值为 .答案:32 解析:先求出AD =2,BD =4,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AMD +∠A =∠E D F +∠BDN ,然后求出∠AMD =∠BDN ,从而得到△AMD 和△BDN 相似,根据相似三角形对应边成比例可得DNMDBD MA =,求出MA •DN =4MD ,再将所求代数式整理出完全平方的形式,然后根据非负数的性质求出最小值即可.18.(2017年四川绵阳)如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM =31AF ,连接CM 并延长交直线DE 于点H ,若AC =2,△AMH 的面积是121,则ACH∠tan 1的值是 . 答案:158- 解析:利用平行和角平分线先得出AC =CB =CF =2;再利用平行得到△AMH 与△CMF相似,结合AM =31AF ,得出△AMH 的面积与△ACH 面积的关系,以及△CMF 的关系,求出△ACH 的面积和△CMF 的面积;从而求出三角形ABF 的面积,取MF 的中点N ,可得△CAN 是直角三角形,将∠ACH 转化到∠CAM ,最终转化到∠F ,则可求出结论.三、解答题:本大题共7个小题,共86分,解答应写出文字说明,证明过程或演算步骤. 19.(2017年四川绵阳)(本题共2个小题,每小题8分,共16分)(1)计算:21245cos 04.012----︒+-)(; (1)原式=2121)22(2.02---+………………………………………………4分 A HED BC FM(第18题图)(第17题图)CAB DEFNM=21212151-++…………………………………………………………………6分 =107………………………………………………………………………………8分 (2)先化简,再求值:(yx yxy x x y xy x y x 2)22(222-÷--+--),其中x =22,y =2. (2)原式=y x yy x x x y x y x 2)2()(2-÷⎥⎦⎤⎢⎣⎡----……………………………………………………2分 =y x yy x y x 2)211(-÷---………………………………………………………………3分 =yx yy x y x y x y x 2)2()()()2(-÷⎥⎦⎤⎢⎣⎡-⋅----……………………………………………………4分 =yx y y x y x y x y --=-⋅-⋅--12)2()(………………………………………………6分 当222==y x ,时,22211-=-=--y x .……………………………………………8分 20.(2017年四川绵阳)(本题满分11分)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):182 195 201 179 208 204 186 192 210 204 175 193 200 203 188 197 212 207 185 206 188 186 198 202 221 199 219 208 187 224(1)对抽取的30株水稻穗谷粒数进行分析,请补全下表中空格,并完善直方图:上图所示的扇形统计图中,扇形A 对应的圆心角为 度,扇形B 对应的圆心角为 度; (2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有对手(颗)株?解:(1)频数从左到右应填:3,6;对应扇形图中区域从左到右应填:B ,A ;……………4分正确完成直方图;……………………………………………………………………………6分 扇形A 对应的圆心角为72度,扇形B 对应的圆心角为36度.………………8分 (2)9003093000=⨯(株).…………………………………………………………………11分 思路分析:(1)根据表格中数据填表即可,利用360°×其所占的百分比求出扇形对应的圆心角度数;(2)用360°乘以样本中稻穗谷粒数大于或等于205颗的水稻所占百分比即可. 21.(2017年四川绵阳)(本题满分11分)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元.两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元.有几种方案?请指出费用最低的一种方案,并求出相应的费用.解:(1)设1台大型收割机每小时收割小麦a 公顷,1台小型收割机每小时收割小麦b 公顷…1分根据题意,得⎩⎨⎧=+=+5.2524.13b a b a ,……………………………………3分解得⎩⎨⎧==3.05.0b a .………………………………4分(2)设需要大型收割机x 台,则需要小型收割机(10-x )台,…………………………5分 根据题意,得⎩⎨⎧≥-+≤-+8)10(6.05400)10(400600x x x x ,…………………………………7分解得75≤≤x ,又x 取整数,所以x =5,6,7,一共有3种方案.……………9分 设费用为w 元,则4000200)10(400600+=-+=x x x w .由一次函数性质知,w 随x 增大而增大.所以x =5时,w 值最小,即大型收割机5台,小型收割机5台时,费用最低,………………………………………………………………………………10分此时,所有费用w =600×5+400×5=5000(元).……………………11分 思路分析:(1)此题可设1台大型收割机和1台小型收割机工作1天各收割小麦a 公顷和b 公顷,根据题中的等量关系列出二元一次方程组解答即可;(2)大收割机为x 台,则小收割机为(10-x )台.由“两种收割机共15台,要求两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元.列出关于x 的不等式组,通过解不等式组求得整数x 的值. 22.(2017年四川绵阳)(本题满分11分)如图,设反比例函数的解析式为y =xk3(k >0). (1)若该反比例函数和正比例函数y =2x 的图象有一个交点的纵坐标为2,求k 的值; (2)若该反比例函数于过点M (-2,0)的直线l :y =kx +b 的图象交于A ,B 两点.如图所示,当△ABO 的面积为316时,求直线l 的解析式.解:(1)根据题意,正比例函数与反比例函数的一个交点坐标是(1,2),…2分 代入反比例函数解析式x k y 3=,得32=k .…………………………4分 (2)因为直线l 过点M (-2,0).代入直线方程,得0=-2k +b ,所以b =2k ,所以直线l 方程可写为y =kx +2k ,……5分联立方程⎪⎩⎪⎨⎧=+=x ky kkx y 32,消去y ,得x k k kx 32=+, 因为k >0,所以xx 32=+,得0322=-+x x ,…………………………7分 解得1321=-=x x ,,所以A (1,3k ),B (-3,-k ),……………………8分所以△ABO 的面积=316)3(221=-+⨯⨯=+k k S S BMO AMO △△,解得34=k .………………………………………………10分所以直线l 的解析式为:3834+=x y .……………………………………11分思路分析:(1)由题意可得A (2,4),利用待定系数法即可解决问题;(2)把M (-2,0)代入y =kx +b ,可得b =2k ,可得y =kx +2k ,由⎪⎩⎪⎨⎧+==kkx y xk y 23消去y 得到x 2+2x -3=0,解得x =-3或1,推出B (-3,-k ),A (1,3k ),根据△ABO 的面积为316,可得21•2•3k +21•2•k =316,解方程即可解决问题. 23.(2017年四川绵阳)(本题满分11分)如图,已知AB 是圆O 的直径.弦CD ⊥AB ,垂足为H .与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N . (1)求证:CA =CN ; (2)连接DF ,若cos ∠DF A =54,AN =210,求圆O 的直径的长度.(1)证明:连接OF ,∵ME 与圆O 相切与点F ,∴OF ⊥ME ,即∠OFN +∠MFN =90°,…………………………1分 ∵∠OFN =∠OAN ,∠OAN +∠ANH =90°, ∴∠MFN =∠ANH ,(等量代换)…………………………………3分 又∵ME ∥AC ,∴∠MFN =∠NAC ,∴∠ANH =∠NAC . ∴CA =CN .…………………………………………5分 (2)解:∵cos ∠DF A =54,所以cosC =54,……6分 在直角△AHC 中,设AC =5a ,HC =4a ,则AH =3a由(1)知,CA =CN ,∴NH =a ,……7分 在直角△ANH 中,利用勾股定理, 得222AN NH AH =+,即222)102()3(=+a a ,解得a =2,……………8分连接OC ,在直角△OHC 中,利用勾股定理,得222OC HC OH =+, 设圆O 的半径为R ,则2228)6(R R =+-,解得325=R ,……………10分 所以圆O 的直径长度为3502=R .……………………………………………………11分 方法2:同(2)中,解得a =2,连接BC ,因为AB 为直径,所以∠ACB =90°,由射影定理,得 AB AH CA ⋅=2,即AB ⋅=6100,解得AB =350.…………………11分 思路分析:(1)连接OF ,根据切线的性质结合四边形内角和为360°,即可得出∠M +∠FOH =180°,由三角形外角结合平行线的性质即可得出∠M =∠C =2∠OAF ,再通过互余利用角的计算即可得出∠CAN =90°-∠OAF =∠ANC ,由此即可证出CA =CN ;(2)连接OC ,由圆周角定理结合cos ∠DF A =54、AN =210,即可求出CH 、AH 的长度,设圆的半径为R ,则OH =R ﹣6,根据勾股定理即可得出关于R 的一元一次方程,解之即可得出R ,再乘以2即可求出圆O 直径的长度.(第23题图)24.(2017年四川绵阳)(本题满分12分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的图象的顶点坐标是(2,1),并且经过点(4,2).直线y =21x +1与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,圆C 于直线m 交于对称轴右侧的点M (t ,1).直线m 上每一点的纵坐标都等于1. (1)求抛物线的解析式; (2)证明:圆C 与x 轴相切;(3)过点B 作BE ⊥m ,垂足为E ,再过点D 作DF ⊥m ,垂足为F .求BE ∶MF 的值.解:(1)设抛物线方程为k h x a y +-=2)(,因为抛物线的顶点坐标是(2,1),所以1)2(2+-=x a y …………………………1分 又抛物线经过点(4,2),所以1)24(22+-=a ,解得41=a ,………………2分 所以抛物线的方程是2411)2(4122+-=+-=x x x y .……………………………3分 (2)联立⎪⎪⎩⎪⎪⎨⎧+=+-=1212412x y x x y ,消去y ,整理得0462=+-x x ,………………………4分解得531-=x ,532+=x ,…………………………5分代入直线方程,解得25251-=y ,25252+=y , 所以B (252553--,),D (252553++,),因为点C 是BD 的中点,所以点C 的纵坐标为25221=+y y ,………………………6分利用勾股定理,可算出BD =5)()(221221=-+-y y x x ,即半径R =25, 即圆心C 到x 轴的距离等于半径R ,所以圆C 与x 轴相切.…………………………7分 (3)连接BM 和DM ,因为BD 为直径, 所以∠BMD =90°,所以∠BME +∠DMF =90°,又因为BE ⊥m 于点E ,DF ⊥m 于点F , 所以∠BME =∠MDF , 所以△BME ∽△MDF ,所以DF EMMF BE =,……………………………9分 即112121--=--y x t t x y , 代入得2523)53()53(25-23+--=-+t t , 化简得4)3(2=-t ,解得t =5或t =1,………………………………10分因为点M 在对称轴右侧,所以t =5,………………………11分 所以215+=MF BE …………………………………………………12分 法2:过点C 作CH ⊥m ,垂足为H ,连接CM ,由(2)知CM =R =52 ,CH =R -1=32,由勾股定理,得MH =2,…………………9分又HF =5212=-x x , 所以MF =HF -MH = 5 -2,…………………10分又BE =y 1-1=32 -52,所以BE MF =5+12,………………………………………………12分思路分析:(1)知抛物线的顶点和其它任意一点,可设出抛物线的顶点式,代入点的坐标即可求出抛物线的解析式;(2)由抛物线与直线交于B 、D ,联立方程组,求出点B 点D 坐标,求出直径BD 的长度,从而求出半径,与C 的纵坐标进行比较,得出结论;(3)连接BM 和DM ,因为BD 为直径, 所以∠BMD =90°,所以∠BME +∠DMF =90°,又因为BE ⊥m 于点E ,DF ⊥m 于点F ,所以∠BME =∠MDF ,所以△BME ∽△MDF ,所以DFEM MF BE =,即112121--=--y x t t x y ,代入得2523)53()53(25-23+--=-+t t ,化简得4)3(2=-t ,解得t =5或t =1,因为点M 在对称轴右侧,所以t =5,所以215+=MF BE .25.(2017年四川绵阳)(本题满分14分)如图,已知△ABC 中,∠C =90°,点M 从点C 出发沿CB 方向以1cm /s 的速度匀速运动,到达点B 停止运动,在点M 的运动过程中,过点M 作直线MN 交AC 于点N ,且保持∠NMC =45°,再过点N 作AC 的垂线交AB 于点F ,连接MF ,将△MNF 关于直线NF 对称后得到△ENF ,已知AC =8cm ,BC =4cm ,设点M 运动时间为t (s ),△ENF 与△ANF 重叠部分的面积为y (cm 2).(1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;(2)求y 关于t 的函数解析式及相应t 的取值范围;(3)求y 取最大值时,求sin ∠NEF 的值.25.(1)能,……………………………………………………………………1分如图,四边形MNEF 为正方形时,过F 作FD ⊥BC于点D ,则∠FMD =∠NMC =45°,所以CN =ND =DF =t ,易证△FDB ∽△ACB ,所以FD AC =BD BC,………………2分 即t 8 =4-2t 4 ,解得t =85.……………………………………4分 (2)当点E 恰好落在AB 上时,连接ME ,同(1),易证△EMB ∽△ACB ,所以EM AC =BM BC, 即2t 8 =4-t 4,解得t =2.……………………………………5分 当0<t <2时,连接EM ,易证△ANF ∽△ACB ,所以NF BC =AN AC, 即NF 4 =8-t 8 ,解得NF =4-t 2.…………………………6分 所以t t NC NF y ⋅-⋅=⋅⋅=)24(2121 t t 241-2+=,…………………………………7分 当42≤≤t 时,如图,设NE 与AB 交于点K , 过K 作KL ⊥NF ,垂足为L ,连接EM ,交直线NF 于点H .易证△KLF ∽△ANF ,所以LF NF =KL AN, 因为NF =4-t 2 ,所以t NL t NL t -=---824)24(, 解得NL =83 -t 3 ,即KL =83 -t 3,………………………………………9分 (第25题图) AB C MEN F所以)338()24(2121t t KL NF y -⋅-⋅=⋅⋅=31634121)8(12122+-=-=t t t , 综上所述,⎪⎪⎩⎪⎪⎨⎧≤≤+-<<+-=)42(31634121)20(24122t t t t t t y .……………………………………10分(3)由题意知,当t =2,y 取得最大值,此时,点E 恰好落在AB 上,…………………………11分由(2)知,NM =2t =2 2 ,NF =4-t 2=3, 由勾股定理,得MF = 5 ,又因为222NF MF MN >+,所以,△NMF 为锐角三角形,…………………12分 所以MNFMF NMF NF ∠=∠sin sin ,即︒=∠45sin 5sin 3NMF , 所以sin ∠NMF =31010 ,即sin ∠NEF =31010.………………………………14分思路分析:(1)若四边形MNEF 为正方形时,过F 作FD ⊥BC 于点D ,则∠FMD =∠NMC =45°,所以CN =ND =DF =t ,易证△FDB ∽△ACB ,所以FD AC =BD BC,代入求解;(2)当点E 恰好落在AB 上时,连接ME ,同(1),易证△EMB ∽△ACB ,所以EM AC =BM BC ,即2t 8 =4-t 4,解得t =2. 当0<t <2时,连接EM ,易证△ANF ∽△ACB ,所以NF BC =AN AC ,即NF 4 =8-t 8 ,解得NF =4-t 2. 所以t t NC NF y ⋅-⋅=⋅⋅=)24(2121t t 2412+-=,当42≤≤t 时,如图,设NE 与AB 交于点K ,过K 作KL ⊥NF ,垂足为L ,连接EM ,交直线NF 于点H .易证△KLF ∽△ANF ,所以LF NF =KL AN ,因为NF =4-t 2 ,(第25题(2)图) A B C MEN F A (第25题图) B C M EN F D (第25题(2)图) A B C M EN FHKL所以t NL t NL t -=---824)24(,解得NL =83 -t 3 ,即KL =83 -t 3 ,所以 )338()24(2121t t KL NF y -⋅-⋅=⋅⋅= 31634121)8(12122+-=-=t t t , (3)由题意知,当t =2,y 取得最大值,此时,点E 恰好落在AB 上,由(2)知,NM =2t =2 2 ,NF =4-t 2=3,由勾股定理,得MF = 5 ,又因为222NF MF MN >+,所以,△NMF 为锐角三角形,所以MNFMF NMF NF ∠=∠sin sin ,即︒=∠45sin 5sin 3NMF ,所以sin ∠NMF =31010 ,即sin ∠NEF =31010 .。

2017年四川省绵阳市中考数学试卷(含答案解析)

2017年四川省绵阳市中考数学试卷(含答案解析)

绝密★启用前四川省绵阳市2017年高中阶段学校招生暨初中学业水平考试数学本试卷满分140分,考试时间120分钟.第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,0.5-的相反数是( )A.0.5B.0.5±C.0.5-D.52.下列图案中,属于轴对称图形的是( )A B C D3.中国幅员辽阔,陆地面积约为960万平方公里.“960万”用科学记数法表示为( )A.70.9610⨯B.69.610⨯C.59610⨯D.29.610⨯4.如图所示的几何体的主视图正确的是( )A B C D5.使代数式433xx+-+有意义的整数x有( )A.5个B.4个C.3个D.2个6.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------_____________________________刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B .测得脚掌中心位置B 到镜面中心C 的距离是50cm ,镜面中心C 距旗杆底部D 的距离为4m ,如图所示.已知小丽同学的身高是1.54m ,眼睛位置A 距离小丽头顶的距离是4cm ,则旗杆DE 的高度等于( )A .10mB .12mC .12.4mD .12.32m 7.关于x 的方程220x mx n ++=的两个根是2-和1,则m n 的值为( )A .8-B .8C .16D .16-8.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径8cm AB =,圆柱体部分的高6cm BC =,圆锥体部分的高3cm CD =,则这个陀螺的表面积是( )A .268πcmB .274πcmC .284πcmD .2100πcm9.如图,矩形ABCD 的对角线AC 与BD 交于点O .过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若23AC =,120AEO =︒∠,则FC 的长度为( )A .1B .2C .2D .310.将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数2y x b =+的图象有公共点,则实数b 的取值范围是( ) A .8b >B .8b >-C .8b ≥D .8b ≥-11.如图,Rt ABC △中,30B ∠=︒.点O 是ABC △的重心,连接CO 并延长交AB 于点E ,过点E 作EF AB ⊥交BC 于点F ,连接AF 交CE 于点M ,则MOMF的值为 ( ) A .12B .5C .23D .3312.如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形.第1幅图形中“”的个数为1a ,第2幅图形中“”的个数为2a ,第3幅图形中“”的个数为3a ,……,以此类推,则123111a a a +++ (19)1a +的值为 ( )A .2021B .6184C .589840D .431760第Ⅱ卷(非选择题 共104分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 13.因式分解:282a -= .14.关于x 的分式方程211111x x x-=-+-的解是 . 15.如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点.若点A 的坐标是(6,0),点C 的坐标是(1,4),则点B 的坐标是 .16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .17.将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上.DEF △绕点D 旋转,腰DF 和底边DE 分别交CAB △的两腰CA ,CB 于M ,N 两点.若5CA =,6AB =,:1:3AD AB =,则12MD MA DN+的最小值为 .18.如图,过锐角ABC △的顶点A 作//DE BC ,AB 恰好平分DAC ∠.AF 平分EAC ∠交BC 的延长线于点F .在AF 上取点M ,使得13AM AF =.连接CM 并延长交直线DE 于点H .若2AC =,AMH △的面积是112,则1tan ACH∠的值是 .三、解答题(本大题共7小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分16分,每题8分)(1)计算:2110.04cos 45(2)||2-+︒----;(2)先化简,再求值:222()222x y x yx xy y x xy x y--÷-+--,其中22x =,2y =.20.(本小题满分11分)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查.从试验田中随机抽取了30株,得到的数据如下(单位:颗):182 195 201 179 208 204 186 192 210 204 175 193 200 203 188 197 212 207 185 206 188 186 198 202 221 199 219 208 187 224(上图所示的扇形统计图中,扇形A 对应的圆心角为 度,扇形B 对应的圆心角为 度; (2)该试验田中大约有3000株水稻.据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?21.(本小题满分11分)江南农场收割小麦.已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元.两种型号的收割机一共有10台.要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元.有几种方案?请指出费用最低的一种方案,并求出相应的费用.22.(本小题满分11分)如图,设反比例函数的解析式为3 (0)ky k x=>. (1)若该反比例函数与正比例函数2y x =的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点(2,0)M -的直线l y kx b =+:的图象交于A ,B 两点,如图所示.当ABO△毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------的面积为163时,求直线l 的解析式.23.(本小题满分11分)如图,已知AB 是圆O 的直径.弦CD AB ⊥,垂足为H .与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F .连接AF 交CD 于点N . (1)求证:CA CN =;(2)连接DF ,若4cos 5DFA ∠=,AN =.求圆O 的直径的长度.24.(本小题满分12分)如图,已知抛物线2(0)y ax bx c a =++≠的图象的顶点坐标是(2,1),并且经过点(4,2).直线112y x =+与抛物线交于B ,D 两点.以BD 为直径作圆,圆心为点C .圆C 与直线m 交于对称轴右侧的点(t,1)M .直线m 上每一点的纵坐标都等于1. (1)求抛物线的解析式; (2)证明:圆C 与x 轴相切;(3)过点B 作BE m ⊥,垂足为E ,再过点D 作DF m ⊥,垂足为F .求:BE MF 的值.25.(本小题满分14分)如图,已知ABC △中,90C ∠=︒.点M 从点C 出发沿CB 方向以1cm/s 的速度匀速运动,到达点B 停止运动.在点M 的运动过程中,过点M 作直线MN 交AC 于点N ,且保持45NMC =︒∠.再过点N 作AC 的垂线交AB 于点F ,连接MF .将MNF △关于直线NF 对称后得到ENF △.已知8cm AC =,4cm BC =.设点M 运动时间为(s)t ,ENF △与ANF △重叠部分的面积为2)(cm y .(1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;(2)求y 关于t 的函数解析式及相应t 的取值范围; (3)当y 取最大值时,求sin NEF ∠的值.四川省绵阳市2017年高中阶段学校招生暨初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】解:0.5-的相反数是0.5,故选:A. 【提示】根据相反数的定义求解即可. 【考点】相反数的概念 2.【答案】A【解析】解:A ,此图案是轴对称图形,有5条对称轴,此选项符合题意;B.此图案不是轴对称图形,此选项不符合题意;C.此图案不是轴对称图形,而是旋转对称图形,不符合题意;D.此图案不是轴对称图形,不符合题意;故选:A.【提示】根据轴对称图形的定义求解可得. 【考点】轴对称图形的概念 3.【答案】B【解析】解:“960万”用科学记数法表示为69.610⨯,故选:B.2219111111132435461921a ++=+++++⨯⨯⨯⨯⨯11435461921++-⎪⎭222021840⎪⎝⎭【解析】解:画树状图为:4MA DN BD MD MD ==,∴114MA DN MD=12MD MD M A DN D M M +=+ ⎝3MD,即12MA DN有最4 MA DN MD=AH m∴16 m=14AC HG=∴HG tan4ACH HG∠2x y y ⎤-⎥⎦ 2x yy ⎫-⎪⎭2)x yy -谷粒颗数 175185x ≤< 185195x ≤< 195205x ≤< 205215x ≤< 215225x ≤<频数 3 8 10 6 3 对应扇形 图中区域 BDEAC如图所示:1116232223k k +=,解得1116232223k k +=,解方程即可解与O 相切,∴AB ,∴∠BOF OAF =∠+AC ,∴M ∠33圆的半径,∴圆C与x轴相切;10 EF5。

2017年四川省绵阳市中考数学试卷(含答案解析版)

2017年四川省绵阳市中考数学试卷(含答案解析版)

2017年四川省绵阳市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5B.±0.5C.﹣0.5D.52.(3分)下列图案中,属于轴对称图形的是()A.B.C.D.3.(3分)中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×1024.(3分)如图所示的几何体的主视图正确的是()A.B.C.D.5.(3分)使代数式+√4−3x有意义的整数x有()√x+3A.5个B.4个C.3个D.2个6.(3分)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10m B.12m C.12.4m D.12.32m7.(3分)关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8B.8C.16D.﹣168.(3分)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm29.(3分)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2√3,∠AEO=120°,则FC的长度为()A.1B.2C.√2D.√310.(3分)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8B.b>﹣8C.b≥8D.b≥﹣811.(3分)如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为()A.12B.√54C.23D.√3312.(3分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则1a1+1a2+1a3+…+1a19的值为()A.2021B.6184C.589840D.431760二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:8a2﹣2=.14.(3分)关于x的分式方程2x−1−1x+1=11−x的解是.15.(3分)如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是.16.(3分)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.17.(3分)将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA=5,AB=6,AD :AB=1:3,则MD +12MA⋅DN的最小值为 .18.(3分)如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM=13AF ,连接CM 并延长交直线DE 于点H .若AC=2,△AMH 的面积是112,则1tan∠ACH的值是 .三、解答题(本大题共7小题,共86分) 19.(16分)(1)计算:√0.04+cos 245°﹣(﹣2)﹣1﹣|﹣12| (2)先化简,再求值:(x−y x 2−2xy+y 2﹣x x 2−2xy)÷y x−2y,其中x=2√2,y=√2.20.(11分)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗): 182 195 201 179 208 204 186 192 210 204 175 193 200 203 188 197 212 207 185 206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图: 谷粒颗数175≤x <185185≤x <195 195≤x <205 205≤x <215 215≤x <225 频数8103对应扇形图中区域D E C如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?21.(11分)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.22.(11分)如图,设反比例函数的解析式为y=3kx(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为163时,求直线l的解析式.23.(11分)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N . (1)求证:CA=CN ;(2)连接DF ,若cos ∠DFA=45,AN=2√10,求圆O 的直径的长度.24.(12分)如图,已知抛物线y=ax 2+bx +c (a ≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=12x +1与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,圆C 与直线m 交于对称轴右侧的点M (t ,1),直线m 上每一点的纵坐标都等于1. (1)求抛物线的解析式; (2)证明:圆C 与x 轴相切;(3)过点B 作BE ⊥m ,垂足为E ,再过点D 作DF ⊥m ,垂足为F ,求BE :MF 的值.25.(14分)如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1cm/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.2017年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•绵阳)中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5B.±0.5C.﹣0.5D.5【考点】14:相反数.【分析】根据相反数的定义求解即可.【解答】解:﹣0.5的相反数是0.5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2017•绵阳)下列图案中,属于轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的定义求解可得.【解答】解:A,此图案是轴对称图形,有5条对称轴,此选项符合题意;B、此图案不是轴对称图形,此选项不符合题意;C、此图案不是轴对称图形,而是旋转对称图形,不符合题意;D、此图案不是轴对称图形,不符合题意;故选:A.【点评】本题主要考查轴对称图形,掌握其定义是解题的关键:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3.(3分)(2017•绵阳)中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×102【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:“960万”用科学记数法表示为9.6×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•绵阳)如图所示的几何体的主视图正确的是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】先细心观察原立体图形和正方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选D.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2017•绵阳)使代数式√x+3+√4−3x有意义的整数x有()A.5个B.4个C.3个D.2个【考点】72:二次根式有意义的条件.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x+3>0且4﹣3x≥0,解得﹣3<x≤4 3,整数有﹣2,﹣1,0,1,故选:B.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.6.(3分)(2017•绵阳)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10m B.12m C.12.4m D.12.32m【考点】SA:相似三角形的应用.【分析】根据题意得出△ABC∽△EDC,进而利用相似三角形的性质得出答案.【解答】解:由题意可得:AB=1.5m,BC=0.4m,DC=4m,△ABC∽△EDC,则ABED=BCDC,即1.5DE=0.54,解得:DE=12,故选:B.【点评】此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键.7.(3分)(2017•绵阳)关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8B.8C.16D.﹣16【考点】AB:根与系数的关系.【分析】由方程的两根结合根与系数的关系可求出m、n的值,将其代入n m中即可求出结论.【解答】解:∵关于x的方程2x2+mx+n=0的两个根是﹣2和1,∴﹣m2=﹣1,n2=﹣2 ∴m=2,n=﹣4,∴n m=(﹣4)2=16.故选C.【点评】本题考查了根与系数的关系,根据方程的两根结合根与系数的关系求出m、n的值是解题的关键.8.(3分)(2017•绵阳)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm2【考点】MP:圆锥的计算;I4:几何体的表面积.【分析】圆锥的表面积加上圆柱的侧面积即可求得其表面积.【解答】解:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.【点评】考查了圆锥的计算及几何体的表面积的知识,解题的关键是能够了解圆锥的有关的计算方法,难度不大.9.(3分)(2017•绵阳)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2√3,∠AEO=120°,则FC的长度为()A.1B.2C.√2D.√3【考点】LB:矩形的性质;KD:全等三角形的判定与性质;T7:解直角三角形.【分析】先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF 的长.【解答】解:∵EF⊥BD,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°﹣30°=30°,∴OF=CF,又∵Rt△BOF中,BO=12BD=12AC=√3,∴OF=tan30°×BO=1,∴CF=1,故选:A.【点评】本题主要考查了矩形的性质以及解直角三角形的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.10.(3分)(2017•绵阳)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8B.b>﹣8C.b≥8D.b≥﹣8【考点】H6:二次函数图象与几何变换;F7:一次函数图象与系数的关系.【分析】先根据平移原则:上→加,下→减,左→加,右→减写出解析式,再列方程组,有公共点则△≥0,则可求出b的取值.【解答】解:由题意得:平移后得到的二次函数的解析式为:y=(x﹣3)2﹣1,则{y=(x−3)2−1 y=2x+b,(x﹣3)2﹣1=2x+b,x2﹣8x+8﹣b=0,△=(﹣8)2﹣4×1×(8﹣b)≥0,b≥﹣8,故选D.【点评】主要考查的是函数图象的平移和两函数的交点问题,两函数有公共点:说明两函数有一个交点或两个交点,可利用方程组→一元二次方程→△≥0的问题解决.11.(3分)(2017•绵阳)如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为()A.12B.√54C.23D.√33【考点】K5:三角形的重心;S9:相似三角形的判定与性质.【分析】根据三角形的重心性质可得OC=23CE,根据直角三角形的性质可得CE=AE,根据等边三角形的判定和性质得到CM=12CE,进一步得到OM=16CE,即OM=16AE,根据垂直平分线的性质和含30°的直角三角形的性质可得EF=√33AE,MF=12EF,依此得到MF=√36AE,从而得到MOMF的值.【解答】解:∵点O是△ABC的重心,∴OC=23 CE,∵△ABC是直角三角形,∴CE=BE=AE ,∵∠B=30°,∴∠FAE=∠B=30°,∠BAC=60°,∴∠FAE=∠CAF=30°,△ACE 是等边三角形,∴CM=12CE , ∴OM=23CE ﹣12CE=16CE ,即OM=16AE , ∵BE=AE ,∴EF=√33AE , ∵EF ⊥AB ,∴∠AFE=60°,∴∠FEM=30°,∴MF=12EF , ∴MF=√36AE , ∴MO MF =16AE √36AE =√33. 故选:D .【点评】考查了三角形的重心,等边三角形的判定和性质,垂直平分线的性质,含30°的直角三角形的性质,关键是得到OM=16AE ,MF=√36AE . 12.(3分)(2017•绵阳)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+…+1a 19的值为( )A.2021B.6184C.589840D.431760【考点】38:规律型:图形的变化类.【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【解答】解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴1a1+1a2+1a3+…+1a19=11×3+12×4+13×5+14×6+…+119×21=12(1﹣13+12﹣14+13﹣15+14﹣16+…+119﹣121)=12(1+12﹣120﹣121)=589840,故选C.【点评】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•绵阳)分解因式:8a2﹣2=2(2a+1)(2a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:8a2﹣2,=2(4a2﹣1),=2(2a+1)(2a﹣1).故答案为:2(2a+1)(2a﹣1).【点评】本题考查了提公因式法,公式法分解因式.注意分解要彻底.14.(3分)(2017•绵阳)关于x的分式方程2x−1−1x+1=11−x的解是﹣2.【考点】B3:解分式方程.【分析】把分式方程转化为整式方程即可解决问题.【解答】解:两边乘(x+1)(x﹣1)得到,2x+2﹣(x﹣1)=﹣(x+1),解得x=﹣2,经检验,x=﹣2是分式方程的解.∴x=﹣2.故答案为﹣2.【点评】本题考查分式方程的解,记住即为分式方程的步骤,注意解分式方程必须检验.15.(3分)(2017•绵阳)如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是(7,4).【考点】L5:平行四边形的性质;D5:坐标与图形性质.【分析】根据平行四边形的性质及A点和C的坐标求出点B的坐标即可.【解答】解:∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(6,0),点C的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B的坐标是(7,4);故答案为:(7,4).【点评】本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解决问题的关键.16.(3分)(2017•绵阳)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是14.【考点】X6:列表法与树状图法.【专题】11 :计算题.【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于8且为偶数”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率=936=14. 故答案为14. 【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.17.(3分)(2017•绵阳)将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA=5,AB=6,AD :AB=1:3,则MD +12MA⋅DN的最小值为 2√3 .【考点】S9:相似三角形的判定与性质;KH :等腰三角形的性质;R2:旋转的性质.【分析】先求出AD=2,BD=4,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AMD +∠A=∠EDF +∠BDN ,然后求出∠AMD=∠BDN ,从而得到△AMD 和△BDN 相似,根据相似三角形对应边成比例可得MA BD =MD DN,求出MA•DN=4MD ,再将所求代数式整理出完全平方的形式,然后根据非负数的性质求出最小值即可.【解答】解:∵AB=6,AD :AB=1:3,∴AD=6×13=2,BD=6﹣2=4, ∵△ABC 和△FDE 是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE ,由三角形的外角性质得,∠AMD +∠A=∠EDF +∠BDN ,∴∠AMD=∠BDN ,∴△AMD ∽△BDN ,∴MA BD =MD DN =AD BN, ∴MA•DN=BD•MD=4MD ,∴1MA⋅DN =14MD ,∴MD +12MA⋅DN =MD +3MD=(√MD )2+(√3MD )2﹣2√3+2√3=(√MD ﹣√3MD )2+2√3, ∴√MD =√3MD ,即MD=√3, 如图,连接CD ,过点C 作CG ⊥AB 于G ,∵AC=BC=5,AB=6,∴AG=3,CG=4,∴DG=AG ﹣AD=3﹣2=1,在Rt △CDG 中,根据勾股定理得,CD=√DG 2+CG 2=√17当点M 和点C 重合时,DM 最大,即:DM 最大=√17当DM ⊥AC 时,DM 最小,过点D 作DH ⊥AC 于H ,即:DM 最小=DH ,在Rt △ACG 中,sin ∠A=CG AC =45, 在Rt △ADH 中,sin ∠A=DH AD ,∴DH=ADsin ∠A=2×45=85, ∵85≤DM ≤√17, ∴DM=√3时,MD +12MA⋅DN有最小值为2√3. 故答案为:2√3.【点评】本题考查了相似三角形的判定与性质,等腰三角形的性质,旋转变换,难点在于将所求代数式整理出完全平方的形式从而判断出最小值.18.(3分)(2017•绵阳)如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM=13AF ,连接CM 并延长交直线DE 于点H .若AC=2,△AMH 的面积是112,则1tan∠ACH的值是 8﹣√15 .【考点】S9:相似三角形的判定与性质;T7:解直角三角形.【分析】过点H 作HG ⊥AC 于点G ,由于AF 平分∠CAE ,DE ∥BF ,∠HAF=∠AFC=∠CAF ,从而AC=CF=2,利用△AHM ∽△FCM ,AM MF =AH CF ,从而可求出AH=1,利用△AMH 的面积是112,从而可求出HG ,利用勾股定理即可求出CG 的长度,所以1tan∠ACH =CG HG. 【解答】解:过点H 作HG ⊥AC 于点G ,∵AF 平分∠CAE ,DE ∥BF ,∴∠HAF=∠AFC=∠CAF ,∴AC=CF=2,∵AM=13AF , ∴AM MF =12, ∵DE ∥CF ,∴△AHM ∽△FCM ,∴AM MF =AH CF, ∴AH=1,设△AHM 中,AH 边上的高为m , △FCM 中CF 边上的高为n , ∴m n =AM MF =12, ∵△AMH 的面积为:112, ∴112=12AH•m ∴m=16, ∴n=13, 设△AHC 的面积为S ,∴SS △AHM =m+n m =3,∴S=3S △AHM =14, ∴12AC•HG=14, ∴HG=14, ∴由勾股定理可知:AG=√154, ∴CG=AC ﹣AG=2﹣√154∴1tan∠ACH =CGHG=8﹣√15故答案为:8﹣√15【点评】本题考查相似三角形综合问题,解题的关键是通过相似三角形的性质求出HG 、CG 、AH 长度,本题属于难题.三、解答题(本大题共7小题,共86分) 19.(16分)(2017•绵阳)(1)计算:√0.04+cos 245°﹣(﹣2)﹣1﹣|﹣12| (2)先化简,再求值:(x−y x 2−2xy+y2﹣x x 2−2xy)÷y x−2y,其中x=2√2,y=√2.【考点】6D :分式的化简求值;2C :实数的运算;6F :负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、绝对值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【解答】解:(1)√0.04+cos 245°﹣(﹣2)﹣1﹣|﹣12| =0.2+(√22)2−(−12)−12=0.2+12+12−12=0.7;(2)(x−yx −2xy+y ﹣xx −2xy )÷yx−2y=[x−y (x−y)2−x x(x−2y)]⋅x−2y y =(1x−y −1x−2y )⋅x−2yy=x−2y−x+y (x−y)(x−2y)⋅x−2y y=−y y(x−y)=1y−x,当x=2√2,y=√2时,原式=√2−2√2=−√2=−√22. 【点评】本题考查分式的化简求值、特殊角的三角函数值、负整数指数幂、绝对值,解答本题的关键是明确它们各自的计算方法.20.(11分)(2017•绵阳)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗): 182 195 201 179 208 204 186 192 210 204 175 193 200 203 188 197 212 207 185 206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图: 谷粒颗数175≤x <185185≤x <195 195≤x <205 205≤x <215 215≤x <225 频数 3 8 10 6 3 对应扇形 图中区域BDEAC如图所示的扇形统计图中,扇形A 对应的圆心角为 72 度,扇形B 对应的圆心角为 36 度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB :扇形统计图.【分析】(1)根据表格中数据填表画图即可,利用360°×其所占的百分比求出扇形对应的圆心角度数;(2)用360°乘以样本中稻穗谷粒数大于或等于205颗的水稻所占百分比即可. 【解答】解:(1)填表如下: 谷粒颗数175≤x <185185≤x <195 195≤x <205 205≤x <215 215≤x <225 频数 3 8 10 6 3 对应扇形 图中区域 BDEAC如图所示:如图所示的扇形统计图中,扇形A 对应的圆心角为:360°×630=72度,扇形B 对应的圆心角为360°×330=36度.故答案为3,6,B ,A ,72,36;(2)3000×6+330=900.即据此估计,其中稻穗谷粒数大于或等于205颗的水稻有900株.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.21.(11分)(2017•绵阳)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷. (1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【考点】CE :一元一次不等式组的应用;9A :二元一次方程组的应用.【分析】(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据“1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10﹣m )台,根据总费用=大型收割机的费用+小型收割机的费用,即可得出w 与m 之间的函数关系式,由“要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,依此可找出各方案,再结合一次函数的性质即可解决最值问题. 【解答】解:(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据题意得:{x +3y =1.42x +5y =2.5,解得:{x =0.5y =0.3.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷. (2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10﹣m )台, 根据题意得:w=300×2m +200×2(10﹣m )=200m +4000. ∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元, ∴{2×0.5m +2×0.3(10−m)≥8200m +4000≤5400,解得:5≤m ≤7, ∴有三种不同方案.∵w=200m +4000中,200>0, ∴w 值随m 值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元. 【点评】本题考查了二元一次方程组的应用、一次函数的性质以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据总费用=大型收割机的费用+小型收割机的费用,找出w 与m 之间的函数关系式. 22.(11分)(2017•绵阳)如图,设反比例函数的解析式为y=3k x(k >0).(1)若该反比例函数与正比例函数y=2x 的图象有一个交点的纵坐标为2,求k 的值; (2)若该反比例函数与过点M (﹣2,0)的直线l :y=kx +b 的图象交于A ,B 两点,如图所示,当△ABO 的面积为163时,求直线l 的解析式.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)由题意可得A (1,2),利用待定系数法即可解决问题;(2)把M (﹣2,0)代入y=kx +b ,可得b=2k ,可得y=kx +2k ,由{y =3kx y =kx +2k消去y 得到x 2+2x ﹣3=0,解得x=﹣3或1,推出B (﹣3,﹣k ),A (1,3k ),根据△ABO 的面积为163,可得12•2•3k +12•2•k=163,解方程即可解决问题;【解答】解:(1)由题意A (1,2),把A (1,2)代入y=3kx ,得到3k=2,∴k=23.(2)把M (﹣2,0)代入y=kx +b ,可得b=2k , ∴y=kx +2k ,由{y =3k x y =kx +2k消去y 得到x 2+2x ﹣3=0,解得x=﹣3或1, ∴B (﹣3,﹣k ),A (1,3k ),∵△ABO 的面积为163,∴12•2•3k +12•2•k=163, 解得k=43,∴直线l 的解析式为y=43x +83.【点评】本题考查一次函数与反比例函数图象的交点、待定系数法、二元一次方程组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(11分)(2017•绵阳)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N .(1)求证:CA=CN ;(2)连接DF ,若cos ∠DFA=45,AN=2√10,求圆O 的直径的长度.【考点】MC:切线的性质;KQ:勾股定理;M5:圆周角定理;T7:解直角三角形.【分析】(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,由圆周角定理结合cos∠DFA=45、AN=2√10,即可求出CH、AH的长度,设圆的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O直径的长度.【解答】(1)证明:连接OF,则∠OAF=∠OFA,如图所示.∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME∥AC,∴∠M=∠C=2∠OAF.∵CD⊥AB,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF,∠BAC=90°﹣∠C=90°﹣2∠OAF,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC,∴CA=CN .(2)连接OC ,如图2所示.∵cos ∠DFA=45,∠DFA=∠ACH ,∴CH AC =45. 设CH=4a ,则AC=5a ,AH=3a , ∵CA=CN , ∴NH=a ,∴AN=√AH 2+NH 2=√(3a)2+a 2=√10a=2√10, ∴a=2,AH=3a=6,CH=4a=8. 设圆的半径为r ,则OH=r ﹣6,在Rt △OCH 中,OC=r ,CH=8,OH=r ﹣6, ∴OC 2=CH 2+OH 2,r 2=82+(r ﹣6)2,解得:r=253,∴圆O 的直径的长度为2r=503.【点评】本题考查了切线的性质、勾股定理、解直角三角形、圆周角定理以及解一元一次方程,解题的关键是:(1)通过角的计算找出∠CAN=90°﹣∠OAF=∠ANC;(2)利用解直角三角形求出CH、AH的长度.24.(12分)(2017•绵阳)如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=12x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF的值.【考点】HF:二次函数综合题.【分析】(1)可设抛物线的顶点式,再结合抛物线过点(4,2),可求得抛物线的解析式;(2)联立直线和抛物线解析式可求得B、D两点的坐标,则可求得C点坐标和线段BD的长,可求得圆的半径,可证得结论;(3)过点C作CH⊥m于点H,连接CM,可求得MH,利用(2)中所求B、D的坐标可求得FH,则可求得MF和BE的长,可求得其比值.【解答】解:(1)∵已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为y=a(x﹣2)2+1,∵抛物线经过点(4,2),∴2=a(4﹣2)2+1,解得a=1 4,∴抛物线解析式为y=14(x ﹣2)2+1=14x 2﹣x +2;(2)联立直线和抛物线解析式可得{y =14x 2−x +2y =12x +1,解得{x =3−√5y =52−√52或{x =3+√5y =52+√52, ∴B (3﹣√5,52﹣√52),D (3+√5,52+√52),∵C 为BD 的中点,∴点C 的纵坐标为52−√52+52+√522=52, ∵BD=√[(3−√5)−(3+√5)]+[(52−52)−(52+52)]=5, ∴圆的半径为52,∴点C 到x 轴的距离等于圆的半径, ∴圆C 与x 轴相切;(3)如图,过点C 作CH ⊥m ,垂足为H ,连接CM ,由(2)可知CM=52,CH=52﹣1=32,在Rt △CMH 中,由勾股定理可求得MH=2,∵HF=3+√5−(3−√5)2=√5,∴MF=HF ﹣MH=√5﹣2,。

中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)

一、选择题目1.(2017四川省南充市)下列计算正确的是( ) A.842a a a ÷= B .236(2)6a a = C .3232a a a -=D .23(1)33a a a a -=-【答案】D . 【解析】试题分析:A .原式=4a ,不符合题意; B .原式=68a ,不符合题意; C .原式不能合并,不符合题意; D .原式=233a a -,符合题意. 故选D .考点:整式的混合运算.2.(2017四川省广安市)下列运算正确的是( )A .|√2−1|=√2−1B .x 3⋅x 2=x 6C .x 2+x 2=x 4D .(3x 2)2=6x 4 【答案】A . 【解析】试题分析:A .|√2−1|=√2−1,正确,符合题意; B .325x x x ⋅=,故此选项错误; C .2222x x x +=,故此选项错误;D .224(3)9x x =,故此选项错误;故选A .考点:1.幂的乘方与积的乘方;2.实数的性质;3.合并同类项;4.同底数幂的乘法.学科*网 3.(2017四川省广安市)要使二次根式√2x −4在实数范围内有意义,则x 的取值范围是( ) A .x >2 B .x ≥2 C .x <2 D .x =2 【答案】B .【解析】试题分析:∵二次根式√2x −4在实数范围内有意义,∴2x ﹣4≥0,解得:x ≥2,则实数x 的取值范围是:x ≥2.故选B .考点:二次根式有意义的条件.4.(2017四川省眉山市)下列运算结果正确的是( )A-= B .2(0.1)0.01--= C .222()2a b ab a b ÷= D .326()m m m -=-【答案】A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.5.(2017四川省眉山市)已知2211244m n n m +=--,则11m n -的值等于( ) A .1 B .0 C .﹣1 D .14-【答案】C . 【解析】试题分析:由2211244m n n m +=--,得:22(2)(2)0m n ++-= ,则m =﹣2,n =2,∴11m n -=1122--=﹣1.故选C .考点:1.分式的化简求值;2.条件求值. 6.(2017四川省绵阳市)使代数式√x+3+√4−3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B .考点:二次根式有意义的条件.7.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+⋯+1a 19的值为( )A .2021B .6184C .589840D .421760【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);∴1a 1+1a 2+1a3+⋯+1a 19=11111 (13243546)1921+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=589840,故选C .学科#网 考点:1.规律型:图形的变化类;2.综合题. 8.(2017四川省达州市)下列计算正确的是( ) A .235a b ab +=B 6=±C .22122a b ab a ÷=D .()323526ab a b =【答案】C .【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确; C .22122a b ab a÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 9.(2017山东省枣庄市)下列计算,正确的是( )A-= B .13|2|22-=-C= D .11()22-=【答案】D . 【解析】=,A 错误;13|2|22-=,B 错误;2,C 错误;11()22-=,D 正确,故选D .考点:1.立方根;2.有理数的减法;3.算术平方根;4.负整数指数幂. 10.(2017山东省枣庄市)实数a ,b在数轴上对应点的位置如图所示,化简||a 的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 【答案】A .考点:1.二次根式的性质与化简;2.实数与数轴.11.(2017山东省济宁市)单项式39m x y 与单项式24n x y 是同类项,则m +n 的值是( ) A .2 B .3 C .4 D .5 【答案】D . 【解析】试题分析:由题意,得m =2,n =3.m +n =2+3=5,故选D . 考点:同类项.12.(20171+在实数范围内有意义,则x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠12【答案】C . 【解析】试题分析:由题意可知:210120x x -≥⎧⎨-≥⎩,解得:x =12.故选C .考点:二次根式有意义的条件. 13.(2017山东省济宁市)计算()322323a a a a a -+-÷,结果是( )A .52a a - B .512a a -C .5aD .6a【答案】D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂.14.(2017山西省)如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55 【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A . 考点:1.平行线的性质;2.翻折变换(折叠问题). 15.(2017广东省)下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a =D .424a a a +=【答案】B . 【解析】试题分析:A .a +2a =3a ,此选项错误; B .325a a a ⋅=,此选项正确;C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误;故选B .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 16.(2017广西四市)下列运算正确的是( )A .−3(x −4)=−3x +12B .(−3x)2⋅4x 2=−12x 4C .3x +2x 2=5x 3D .x 6÷x 2=x 3 【答案】A .考点:整式的混合运算.17.(2017江苏省盐城市)下列运算中,正确的是( )A .277a a aB .236a aa C .32a aa D .22abab【答案】C . 【解析】 试题分析:A .错误、7a +a =8a .B .错误.235aa a . C .正确.32a aa .D .错误.222aba b故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.18.(2017江苏省连云港市)计算2a a 的结果是( )A .aB .2aC .22aD .3a 【答案】D .考点:同底数幂的乘法.19.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.23C.2D.0【答案】A.【解析】试题分析:如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.考点:1.规律型:图形的变化类;2.综合题.20.(2017河北省)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.446+=B.004446++=C.46+=D.1446-=【答案】D.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.图表型.21.(2017河北省)若321xx--= +11x-,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数【答案】B.【解析】试题分析:∵321xx-- = +11x-,∴321xx--﹣11x-=3211xx---=2(1)1xx--=﹣2,故____中的数是﹣2.故选B.考点:分式的加减法.22.(2017浙江省丽水市)计算23a a⋅,正确结果是()A.5a B.4a C.8a D.9a 【答案】A.【解析】试题分析:23a a⋅=23a+=5a,故选A.考点:同底数幂的乘法.23.(2017浙江省丽水市)化简2111x x x +--的结果是( )A .x +1B .x ﹣1C .21x -D .211x x +-【答案】A .考点:分式的加减法.24.(2017浙江省台州市)下列计算正确的是( ) A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+D .()2222a b a ab b -=-+【答案】D . 【解析】试题分析:A .原式=24a -,不符合题意;B .原式=22a a --,不符合题意; C .原式=222a ab b ++,不符合题意;D .原式=222a ab b -+,符合题意. 故选D .考点:整式的混合运算.25.(2017湖北省襄阳市)下列运算正确的是( )A .32a a -=B .()325a a = C . 235a a a = D .632a a a ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.学科*网 26.(2017重庆市B 卷)计算53a a ÷结果正确的是( ) A .a B .2a C .3a D .4a 【答案】B . 【解析】试题分析:53a a ÷=2a .故选B . 考点:同底数幂的除法.27.(2017重庆市B 卷)若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( ) A .﹣10 B .﹣8 C .4 D .10 【答案】B . 【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B . 考点:代数式求值.28.(2017重庆市B卷)若分式13x -有意义,则x 的取值范围是( )A .x >3B .x <3C .x ≠3D .x =3 【答案】C . 【解析】试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C .考点:分式有意义的条件.29.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 【答案】B .考点:规律型:图形的变化类. 二、填空题目30.(2017四川省南充市)计算:0|1(π+= .【解析】试题分析:原式1+1 考点:1.实数的运算;2.零指数幂.31.(2017四川省广安市)分解因式:24mx m -= . 【答案】m (x +2)(x ﹣2). 【解析】试题分析:24mx m -=2(4)m x -=m (x +2)(x ﹣2).故答案为:m (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.32.(2017四川省眉山市)分解因式:228ax a -= . 【答案】2a (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.33.(2017四川省绵阳市)分解因式:282a -= . 【答案】2(2a +1)(2a ﹣1). 【解析】试题分析:282a -=22(41)a - =2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1).考点:提公因式法与公式法的综合运用.34.(2017四川省达州市)因式分解:3228a ab -= .【答案】2a (a +2b )(a ﹣2b ). 【解析】试题分析:2a 3﹣8ab 2 =2a (a 2﹣4b 2) =2a (a +2b )(a ﹣2b ).故答案为:2a (a +2b )(a ﹣2b ). 考点:提公因式法与公式法的综合运用.35.(2017山东省枣庄市)化简:2223321(1)x x xx x x ++÷-+-= . 【答案】1x .【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x . 考点:分式的乘除法.36.(2017山东省济宁市)分解因式:222ma mab mb ++=.【答案】2()m a b + .【解析】试题分析:原式=22(2)m a ab b ++=2()m a b +,故答案为:2()m a b +.考点:提公因式法与公式法的综合运用.37.(2017山西省)计算:-= .【答案】.考点:二次根式的加减法.38.(2017广东省)分解因式:a a +2= .【答案】a (a +1). 【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1).考点:因式分解﹣提公因式法.学&科网39.(2017广东省)已知4a +3b =1,则整式8a +6b ﹣3的值为 . 【答案】﹣1. 【解析】试题分析:∵4a +3b =1,∴8a +6b =2,8a +6b ﹣3=2﹣3=﹣1;故答案为:﹣1. 考点:1.代数式求值;2.整体思想.40.(2017江苏省盐城市)分解因式2a b a 的结果为 .【答案】a (ab ﹣1). 【解析】试题分析:2a b a =a (ab ﹣1),故答案为:a (ab ﹣1).考点:提公因式法与公式法的综合运用.41.(2017在实数范围内有意义,则x 的取值范围是 . 【答案】x ≥3. 【解析】试题分析:根据题意得x ﹣3≥0,解得x ≥3.故答案为:x ≥3. 考点:二次根式有意义的条件.42.(2017江苏省连云港市)分式11x 有意义的x 的取值范围为 . 【答案】x ≠1.考点:分式有意义的条件.43.(2017江苏省连云港市)计算(a ﹣2)(a +2)=. 【答案】24a -. 【解析】试题分析:(a ﹣2)(a +2)=24a -,故答案为:24a -. 考点:平方差公式.44.(2017浙江省丽水市)分解因式:22m m += . 【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法.45.(2017浙江省丽水市)已知21a a +=,则代数式23a a --的值为 . 【答案】2. 【解析】试题分析:∵21a a +=,∴原式=23()a a -+=3﹣1=2.故答案为:2.考点:1.代数式求值;2.条件求值;3.整体思想.46.(2017浙江省台州市)因式分解:26x x += .【答案】x (x +6). 【解析】试题分析:原式=x (6+x ),故答案为:x (x +6). 考点:因式分解﹣提公因式法.47.(2017浙江省绍兴市)分解因式:2x y y -= .【答案】y (x +1)(x ﹣1).考点:1.提公因式法与公式法的综合运用;2.因式分解.48.(2017重庆市B 卷)计算:0|3|(4)-+- .【答案】4. 【解析】试题分析:原式=3+1=4.故答案为:4. 考点:1.实数的运算;2.零指数幂.三、解答题49.(2017四川省南充市)化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值.【答案】1x x -,当x =5时,原式=54.【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.试题解析:原式=2211x x x x x xx +-+⋅+-=21(1)1x x x x x +⋅+-=1x x - ∵x ﹣1≠0,x (x +1)≠0,∴x ≠±1,x ≠0,当x =5时,原式=551-=54.考点:分式的化简求值.50.(2017四川省广安市)计算:6118cos 4520173--+⨯-+.【答案】13 .考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.51.(2017四川省广安市)先化简,再求值:2211a a a aa +-⎛⎫+÷⎪⎝⎭,其中a =2. 【答案】11a a +-,3.【解析】试题分析:先化简分式,再代入求值.试题解析:原式=221(1)(1)a a a a a a ++⨯+-=2(1)(1)(1)a a a a a +⨯+-=11a a +- 当a =2时,原式=3. 考点:分式的化简求值.52.(2017四川省眉山市)先化简,再求值:2(3)2(34)a a +-+,其中a =﹣2. 【答案】21a +,5. 【解析】试题分析:原式利用完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=26968a a a ++--=21a +,当a =﹣2时,原式=4+1=5. 考点:整式的混合运算—化简求值.53.(2017四川省绵阳市)(1)计算:√0.04+cos 2450−(−2)−1−|−12|;(2)先化简,再求值:(x−y x 2−2xy +y 2−x x 2−2xy )÷yx−2y ,其中x=y.【答案】(1)0.7;(2)1y x -,.考点:1.分式的化简求值;2.实数的运算;3.负整数指数幂;4.特殊角的三角函数值.54.(2017四川省达州市)计算:11201712cos453-⎛⎫--+︒⎪⎝⎭.【答案】5.【解析】试题分析:首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=1132+++55.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.学科#网55.(2017四川省达州市)设A=223121a aaa a a-⎛⎫÷-⎪+++⎝⎭.(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:()()()27341124x xf f f---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+;(2)x≤4.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.56.(2017山东省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=p q.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)3 4.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型.57.(2017广东省)计算:()11713π-⎛⎫---+ ⎪⎝⎭.【答案】9. 【解析】试题分析:直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案. 试题解析:原式=7﹣1+3=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.58.(2017广东省)先化简,再求值:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x【答案】2x , 【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x当x= 考点:分式的化简求值.59.(2017广西四市)先化简,再求值:2211121x x x x x ---÷++,其中x =√5−1. 【答案】11x +考点:分式的化简求值.60.(201711()20172.【答案】3. 【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2+2﹣1=3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂. 61.(2017江苏省盐城市)先化简,再求值:35222x x x x ,其中33x .【答案】13x -.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值. 试题解析:原式=3(2)(2)5[]222x x x x x x =23922x x x x +-÷--=322(3)(3)x x x x x +-⋅-+-=13x -当33x 时,原式.考点:分式的化简求值.62.(2017江苏省连云港市)计算:0318 3.14.【答案】0. 【解析】试题分析:先去括号、开方、零指数幂,然后计算加减法. 试题解析:原式=1﹣2+1=0.考点:1.实数的运算;2.零指数幂.63.(2017江苏省连云港市)化简: 211a aa a .【答案】21a .考点:分式的乘除法.64.(2017河北省)发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍.(2)()()()()() 2222222 211251052n n n n n n n-+-+++++=+=+.∵n为整数,∴这个和是5的倍数.延伸余数是2.理由:设中间的整数为n,()()22221132n n n n-+++=+被3除余2.考点:1.完全平方公式;2.整式的加减.65.(2017浙江省丽水市)计算:011(2017)()3---【答案】1.【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.学&科网试题解析:原式=1﹣3+3=1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.66.(2017)013 +---.【答案】1.考点:1.实数的运算;2.零指数幂.67.(2017浙江省台州市)先化简,再求值:1211x x⎛⎫-⋅⎪+⎝⎭,其中x=2017.【答案】21x+,11009.【解析】试题分析:根据分式的减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.试题解析:原式=1121xx x+-⨯+ =21xx x⨯+=21x+当x =2017时,原式=220171+=22018=11009.考点:分式的化简求值.68.(2017浙江省绍兴市)(1)计算:()4π-+-(2)解不等式:()4521x x +≤+.【答案】(1)﹣3;(2)x ≤32-.考点:1.解一元一次不等式;2.实数的运算;3.零指数幂.69.(2017湖北省襄阳市)先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中2x =,2y =-.【答案】2xy x y -,12.【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得.试题解析:原式=1[]()()()()()x y x y x y x y x y x y y x y -++÷+-+-+=2()()()x y x y x y x y ⋅++- =2xyx y -当2x =+,2y =-时,原式24=12. 考点:分式的化简求值. 70.(2017重庆市B 卷)计算:(1)2()(2)x y x y x+--;(2)23469 (2)22a a aaa a--++-÷--.【答案】(1)222x y+;(2)3aa-.考点:1.分式的混合运算;2.单项式乘多项式;3.完全平方公式.71.(2017重庆市B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k= ()()F sF t中,找出最大值即可.试题解析:(1)F (243)=(423+342+234)÷111=9; F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6.∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴16x y =⎧⎨=⎩或25x y =⎧⎨=⎩或34x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩或61x y =⎧⎨=⎩.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴16x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩,∴()6()12F s F t =⎧⎨=⎩或()9()9F s F t =⎧⎨=⎩或()10()8F s F t =⎧⎨=⎩,∴k =()()F s F t =12或k =()()F s F t =1或k =()()F s F t =54,∴k 的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.祝你考试成功!祝你考试成功!。

2017年中考真题解析 数学(四川绵阳卷)

2017年中考真题解析 数学(四川绵阳卷)

2017年四川省绵阳市中考数学试卷(含答案)一、选择题(本大题共12小题,每小题3分,共36分)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5B.±0.5C.﹣0.5D.5【答案】A.【解析】试题分析:﹣0.5的相反数是0.5,故选A.考点:相反数.2.下列图案中,属于轴对称图形的是()A.B.C.D.【答案】A.考点:轴对称图形.3.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×102【答案】B.【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B.考点:科学记数法—表示较大的数.4.如图所示的几何体的主视图正确的是()A .B .C .D .【答案】D .考点:简单组合体的三视图. 5.使代数式x x 3431-++有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B . 【解析】试题分析:由题意,得x +3>0且4﹣3x ≥0,解得﹣3<x ≤43,整数有﹣2,﹣1,0,1,故选B .学.科.网 考点:二次根式有意义的条件.6.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得脚掌中心位置B 到镜面中心C 的距离是50cm ,镜面中心C 距离旗杆底部D 的距离为4m ,如图所示.已知小丽同学的身高是1.54m ,眼睛位置A 距离小丽头顶的距离是4cm ,则旗杆DE 的高度等于( )A .10mB .12mC .12.4mD .12.32m 【答案】B . 【解析】试题分析:由题意可得:AB =1.5m ,BC =0.4m ,DC =4m ,△ABC ∽△EDC ,则AB BC ED DC =,即1.50.54DE =,解得:DE =12,故选B . 考点:相似三角形的应用.7.关于x 的方程022=++n mx x 的两个根是﹣2和1,则mn 的值为( ) A .﹣8 B .8 C .16 D .﹣16 【答案】C .考点:根与系数的关系.8.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB =8cm ,圆柱体部分的高BC =6cm ,圆锥体部分的高CD =3cm ,则这个陀螺的表面积是( )A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2 【答案】C . 【解析】试题分析:∵底面圆的直径为8cm ,高为3cm ,∴母线长为5cm ,∴其表面积=π×4×5+42π+8π×6=84πcm 2,故选C .考点:圆锥的计算;几何体的表面积.9.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC =23,∠AEO =120°,则FC 的长度为( )A .1B .2C .2D .3 【答案】A .考点:矩形的性质;全等三角形的判定与性质;解直角三角形.10.将二次函数2x y =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( )A .b >8B .b >﹣8C .b ≥8D .b ≥﹣8 【答案】D . 【解析】试题分析:由题意得:平移后得到的二次函数的解析式为:2(3)1y x =-- ,则2(3)12y x y x b⎧=--⎨=+⎩,2(3)12x x b --=+,2880x x b -+-=,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选D .考点:二次函数图象与几何变换;一次函数图象与系数的关系.11.如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点M ,则MOMF的值为( )A.12B.54C.23D.33【答案】D.考点:三角形的重心;相似三角形的判定与性质;综合题.12.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则193211111aaaa++++Λ的值为()A.2120B.8461C.840589D.760421【答案】C.【解析】试题分析:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴193211111aaaa++++Λ=11111...132435461921+++++⨯⨯⨯⨯⨯=1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=840589,故选C.考点:规律型:图形的变化类;综合题.二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:282a-= .【答案】2(2a+1)(2a﹣1).【解析】试题分析:282a-=22(41)a- =2(2a+1)(2a﹣1).故答案为:2(2a+1)(2a﹣1).考点:提公因式法与公式法的综合运用.14.关于x的分式方程xxx-=+--111112的解是.【答案】x=﹣2.考点:解分式方程.15.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是.【答案】(7,4).【解析】试题分析:∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(6,0),点C的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B的坐标是(7,4);故答案为:(7,4).考点:平行四边形的性质;坐标与图形性质.16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.【答案】14.考点:列表法与树状图法.17.将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AB=1:3,则MD+12MA DN⋅的最小值为.【答案】3.【解析】试题分析:∵AB=6,AB=1:3,∴AD=6×13=2,BD=6﹣2=4,∵△ABC和△FDE是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE,由三角形的外角性质得,∠AMD+∠A=∠EDF+∠BDN,∴∠AMD=∠BDN,∴△AMD∽△BDN,∴MA MDBD DN=,∴MA•DN=BD•MD=4MD,∴MD+12MA DN⋅=MD+3MD=223))233MDMD+-=23()3MDMD+,∴当3MD MD =,即MD =3时MD +12MA DN⋅有最小值为23.故答案为:23.学&科.网 考点:相似三角形的判定与性质;等腰三角形的性质;旋转的性质;最值问题;综合题.18.如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM =13AF ,连接CM 并延长交直线DE 于点H .若AC =2,△AMH 的面积是112,则ACH∠tan 1的值是 .【答案】815-.815-.考点:相似三角形的判定与性质;解直角三角形;综合题.三、解答题(本大题共7小题,共86分)19.(1)计算:|21|)2(45cos 04.012----+-; (2)先化简,再求值:y x yxyx x y xy x y x 2)22(222-÷--+--,其中x =22y 2.【答案】(1)0.7;(2)1 yx-,22-.=22()(2)x y x y x yx y x y y--+-⋅--=()yy x y--=1y x-当x=22y2222-2-=2考点:分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.20.红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):182195201179208204186192210204175193200203188197212207185206188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:谷粒颗数175≤x<185185≤x<195195≤x<205205≤x<215215≤x<225频数8103对应扇形图中区域D E C如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?【答案】(1)3,6,B,A,72,36;(2)900.试题解析:(1)填表如下:谷粒颗数175≤x<185185≤x<195195≤x<205205≤x<215215≤x<225频数3810 6 3对应扇形图中区域B D E AC 如图所示:如图所示的扇形统计图中,扇形A对应的圆心角为:360°×630=72度,扇形B对应的圆心角为360°×330=36度.故答案为:3,6,B,A,72,36;(2)3000×6330+=900.即据此估计,其中稻穗谷粒数大于或等于205颗的水稻有900株.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.21.江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【答案】(1)每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷;(2)有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.试题解析:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:3 1.425 2.5x yx y+=⎧⎨+=⎩,解得:0.50.3xy=⎧⎨=⎩.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴20.520.3(10)8 20040005400m mm⨯+⨯-≥⎧⎨+≤⎩,解得:5≤m≤7,∴有三种不同方案.∵w=200m+4000中,200>0,∴w值随m值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.考点:一元一次不等式组的应用;二元一次方程组的应用;方案型;最值问题.22.如图,设反比例函数的解析式为3k yx=(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO 的面积为163时,求直线l的解析式.【答案】(1)23k=;(2)4833y x=+.方程即可解决问题;试题解析:(1)由题意A(1,2),把A(1,2)代入3kyx=,得到3k=2,∴23k=.(2)把M(﹣2,0)代入y=kx+b,可得b=2k,∴y=kx+2k,由32kyxy kx k⎧=⎪⎨⎪=+⎩消去y得到2230x x+-=,解得x=﹣3或1,∴B(﹣3,﹣k),A(1,3k),∵△ABO的面积为163,∴12•23k+12•2k=163,解得k=43,∴直线l的解析式为4833y x=+.考点:反比例函数与一次函数的交点问题.23.如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N . (1)求证:CA =CN ; (2)连接DF ,若cos ∠DF A =45,AN =210,求圆O 的直径的长度.【答案】(1)证明见解析;(2)503. 的长度.试题解析:(1)证明:连接OF ,则∠OAF =∠OF A ,如图所示. ∵ME 与⊙O 相切,∴OF ⊥ME .∵CD ⊥AB ,∴∠M +∠FOH =180°. ∵∠BOF =∠OAF +∠OF A =2∠OAF ,∠FOH +∠BOF =180°,∴∠M =2∠OAF . ∵ME ∥AC ,∴∠M =∠C =2∠OAF .∵CD ⊥AB ,∴∠ANC +∠OAF =∠BAC +∠C =90°,∴∠ANC =90°﹣∠OAF ,∠BAC =90°﹣∠C =90°﹣2∠OAF ,∴∠CAN =∠OAF +∠BAC =90°﹣∠OAF =∠ANC ,∴CA =CN . (2)连接OC ,如图2所示. ∵cos ∠DF A =45,∠DF A =∠ACH ,∴CH AC =45.设CH =4a ,则AC =5a ,AH =3a ,∵CA =CN ,∴NH =a ,∴AN 22AH NH +22(3)a a +10a =10,∴a =2,AH =3a =6,CH =4a =8.设圆的半径为r ,则OH =r ﹣6,在Rt △OCH 中,OC =r ,CH =8,OH =r ﹣6,∴OC 2=CH 2+OH 2,r 2=82+(r ﹣6)2,解得:r =253,∴圆O 的直径的长度为2r =503.考点:切线的性质;勾股定理;圆周角定理;解直角三角形.24.如图,已知抛物线2y ax bx c =++(a ≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线121+=x y 与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,圆C 与直线m 交于对称轴右侧的点M (t ,1),直线m 上每一点的纵坐标都等于1. (1)求抛物线的解析式; (2)证明:圆C 与x 轴相切;(3)过点B 作BE ⊥m ,垂足为E ,再过点D 作DF ⊥m ,垂足为F ,求MF 的值.【答案】(1)2124y x x =-+ ;(2)证明见解析;(3)51+ .(3)过点C 作CH ⊥m 于点H ,连接CM ,可求得MH ,利用(2)中所求B 、D 的坐标可求得FH ,则可求得MF 和BE 的长,可求得其比值. 试题解析:学.科*网(1)∵已知抛物线2y ax bx c =++(a ≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为2(2)1y a x =-+ ,∵抛物线经过点(4,2),∴22(42)1a =-+,解得a =14,∴抛物线解析式为21(2)14y x =-+,即2124y x x =-+;(2)联立直线和抛物线解析式可得2124112y x x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得:35552x y ⎧=-⎪⎨=-⎪⎩或35552x y ⎧=+⎪⎨=+⎪⎩,∴B (35-,552-),D (35+,552+),∵C 为BD 的中点,∴点C 的纵坐标为555522222-++=52,∵BD =225555[(35)(35)][()()]2222--++--+ =5,∴圆的半径为52,∴点C 到x 轴的距离等于圆的半径,∴圆C 与x 轴相切;考点:二次函数综合题;压轴题.25.如图,已知△ABC 中,∠C =90°,点M 从点C 出发沿CB 方向以1c m /s 的速度匀速运动,到达点B 停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N作AC 的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.【答案】(1)85;(2)2212 (02)41416(24)1233t t tyt t t⎧-+<<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)310.②当2<t≤4时,作GH⊥NF于H,由(1)得:NF=12(8﹣t),GH=NH,GH=2FH,得出GH=23NF=13(8﹣t),由三角形面积得出21(8)12y t=-(2<t≤4);(3)当点E在AB边上时,y取最大值,连接EM,则EF=BF,EM=2CN=2CM=2t,EM=2BM,得出方程,解方程求出CN=CM=2,AN=6,得出BM=2,NF=12AN=3,因此EM=2BM=4,作FD⊥NE于D,由勾股定理求出EB =22EM BM +=25,求出EF =12EB =5,由等腰直角三角形的性质和勾股定理得出DF =22HF =322,在Rt △DEF 中,由三角函数定义即可求出sin ∠NEF 的值.(2)分两种情况:①当0<t ≤2时,y =12×12(8﹣t )×t =2124t t -+,即2124y t t =-+(0<t ≤2);②当2<t ≤4时,如图2所示:作GH ⊥NF 于H ,由(1)得:NF =12(8﹣t ),GH =NH ,GH =2FH ,∴GH =23NF =13(8﹣t ),∴y =12NF ′GH =12×12(8﹣t )×13(8﹣t )=21(8)12t -,即21(8)12y t =-(2<t ≤4); 综上所述:2212 (02)41416(24)1233t t t y t t t ⎧-+<<⎪⎪=⎨⎪-+≤≤⎪⎩ .(3)当点E 在AB 边上时,y 取最大值,连接EM ,如图3所示:则EF =BF ,EM =2CN =2CM =2t ,EM =2BM ,∵BM =4﹣t ,∴2t =2(4﹣t ),解得:t =2,∴CN =CM =2,AN =6,∴BM =4﹣2=2,NF =12AN =3,∴EM =2BM =4,作FD ⊥NE 于D ,则EB 22EM BM +2242+25△DNF 是等腰直角三角形,∴EF =12EB 5DF =22 HF =322,在Rt △DEF 中,sin ∠NEF =DF EF 3225=31010.考点:四边形综合题;最值问题;动点型;存在型;分类讨论;压轴题.。

四川省绵阳市2017年中考数学试卷(解析版)

四川省绵阳市2017年中考数学试卷(解析版)

【分析】根据被开方数是非负数,分母不能为零,可得答案.
【解答】解:由题意,得
x+3>0 且 4﹣3x≥0,
解得﹣3<x≤ , 整数有﹣2,﹣1,0,1, 故选:B.
王老师编辑整理
王老师编辑整理
6.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她 拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她 站直身子刚好能从镜子里看到旗杆的顶端 E,标记好脚掌中心位置为 B,测得脚 掌中心位置 B 到镜面中心 C 的距离是 50cm,镜面中心 C 距离旗杆底部 D 的距 离为 4m,如图所示.已知小丽同学的身高是 1.54m,眼睛位置 A 距离小丽头顶 的距离是 4cm,则旗杆 DE 的高度等于( )
的值
三、解答题(本大题共 7 小题,共 86 分)
19.(1)计算:
+cos245°﹣(﹣2)﹣1﹣|﹣ |
(2)先化简,再求值:(

)÷ ,其中 x=2 ,y=

20.红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试
验田中随机抽取了 30 株,得到的数据如下(单位:颗):
182 195 201 179 208 204 186 192 210 204
185
195
205
215
225
王老师编辑整理
王老师编辑整理
频数
8
10
3
对应扇形
D
E
C
图中区域
如图所示的扇形统计图中,扇形 A 对应的圆心角为 度,扇形 B 对应的 圆心角为 度; (2)该试验田中大约有 3000 株水稻,据此估计,其中稻穗谷粒数大于或等于 205 颗的水稻有多少株? 21.江南农场收割小麦,已知 1 台大型收割机和 3 台小型收割机 1 小时可以收 割小麦 1.4 公顷,2 台大型收割机和 5 台小型收割机 1 小时可以收割小麦 2.5 公 顷. (1)每台大型收割机和每台小型收割机 1 小时收割小麦各多少公顷? (2)大型收割机每小时费用为 300 元,小型收割机每小时费用为 200 元,两种 型号的收割机一共有 10 台,要求 2 小时完成 8 公顷小麦的收割任务,且总费用 不超过 5400 元,有几种方案?请指出费用最低的一种方案,并求出相应的费 用.

(高清版)2017年四川省绵阳市中考数学试卷

(高清版)2017年四川省绵阳市中考数学试卷

中, O 为坐标原点.若点 A 的坐标是 (6,0) ,点 C 的坐标
是 (1, 4) ,则点 B 的坐标是
.
16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点
数和小于 8 且为偶数”的概率是
.
17.将形状、大小完全相同的两个等腰三角形如图所示放置
数学试卷 第 3页(共 24页)
点 D 在 AB 边 上 . △DEF 绕 点 D 旋 转 , 腰 DF 和 底 边 DE 分 别 交 △CAB 的 两 腰
C. 589 840
第Ⅱ卷(非选择题 共 104 分)
D. 431 760
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分.请把答案填在题中的横线上)
13.因式分解: 8a2 2
.
14.关于
x
的分式方程
x
2 1
x
1 1
1
1
x
的解是
.
15.如图,将平行四边形 ABCO 放置在平面直角坐标系 xOy
在 绝密★启用前
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
四川省绵阳市 2017 年高中阶段学校招生暨初中学业水平考试
数学

本试卷满分 140 分,考试时间 120 分钟.
第Ⅰ卷(选择题 共 36 分)
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -----------------------------------

绵阳市2017年高中阶段学校招生暨初中学业水平测试(解析版)

绵阳市2017年高中阶段学校招生暨初中学业水平测试(解析版)

2017年四川省绵阳市中考数学试卷第Ⅰ卷 (选择题,共36分)一、选择题:本大题共12小题,每小题3分,共36分.)1.(2017年四川绵阳)中国人最早使用负数,可追溯到两千多年前的秦汉时期,-0.5的相反数是A .0.5 B.5 C .﹣0.5 D .5答案:A 解析:根据相反数的定义求解即可.2.(2017年四川绵阳)下列图案中,属于轴对称的是答案:A 解析:本题考查轴对称图形的识别,判断一个图形是否是轴对称图形,就是看是否可以存在一条直线,使得这个图形的一部分沿着这条直线折叠,能够和另一部分互相重合.3.(2017年四川绵阳)中国幅员辽阔,陆地面积约为960万平方公里.“960万”用科学计数法表示为A .0.96×107B .9.6×106C .96×105D .9.6×102答案:B 解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.4.(2017年四川绵阳)如图所示的几何体的主视图正确的是答案:D 解析:考查画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.5.(2017年四川绵阳) 使代数式x x 3431-++有意义的整数x 有 A .5个 B .4个C .3个D .2个 答案:B 解析:根据被开方数是非负数,分母不能为零,可得答案.6.(2017年四川绵阳)为测量操场上旗杆的高度,效力同学想到了物理学(第4题图)ABDC中平面镜成像的原理.她拿出随身携带的镜子和卷尺.先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B .测得脚掌中心位置B 到镜面中心C 的距离是50cm ,镜面中心C 距旗杆底部D 的距离为4m ,如图所示,已知小丽同学的身高是1.54cm ,眼睛位置A 距离小丽头顶的距离是4cm ,则旗杆的高度等于A .10mB .12mC .12.4mD .12.32m答案:B 解析:根据题意得出△ABC ∽△EDC ,进而利用相似三角形的性质得出答案.7.关于x 的方程2x 2+mx +n =0的两根为-2和1,则n m 的值为A .-8B .8C .16D .-16答案:C 解析:利用根与系数的关系求解即可.8.(2017年四川绵阳)“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm ,圆柱部分的高BC=6cm ,圆锥体部分的高CD=3cm ,则这个陀螺的表面积是A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2答案:C 解析:圆锥的表面积加上圆柱的侧面积即可求得其表面积.9.(2017年四川绵阳)如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC =23,∠AEO =120°,则FC 的长度为A .1B .2C .2D .3答案:A 解析:10.(2017年四川绵阳)将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是A .b >8B .b >-8C .b ≥8D .b ≥-8答案:D 解析:二次函数向下平移1个单位,再向右平移3个单位后,得到y =(x -3)2+1,再结合与一次函数y =2x +b 有公共点,联立方程组,建立关于x 的一元二次方程,利用一元二次方程有解的条件△≥0,可求出b 的范围.11.(2017年四川绵阳)如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点E .则MFMO 的值为 (第8题图) D CBA AB C D E F O(第9题图) (第11题图)BA .21B .45C .32D .33答案:D 解析:根据三角形的重心性质可得OC =32CE ,根据直角三角形的性质可得CE =AE ,根据等边三角形的判定和性质得到CM =21CE ,进一步得到OM =61CE ,即OM =61AE ,根据垂直平分线的性质和含30°的直角三角形的性质可得EF =33AE ,MF =21EF ,依此得到MF =63AE ,从而得到MFMO 的值. 12.(2017年四川绵阳)如图所示,将形状、大小完全相同的“形,第1幅图形中“a 1,第2a 2,第3幅图形中“为a 3,…,以此类推,则193211111a a a a +⋯+++的值为A .2120B .8461C .840589D .760431答案:C 解析:首先根据图形中“●”的个数得出数字变化规律, a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);进而求出即可.第Ⅱ卷(非选择题,共104分)二、填空题:(本大题共6个小题,每小题3分,共18分.将答案填写在答题卡相应的横线上)13.(2017年四川绵阳)因式分解:8a 2-2= .答案:)12)(12(2-+n n 解析:首先提取公因式2,进而利用平方差公式进行分解即可.14.(2017年四川绵阳)关于x 的分式方程xx x -=+--111112的解是 . 答案:2-=x 解析:观察可得最简公分母是(x +1)(x -1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.15.(2017年四川绵阳)如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点.若点A 的坐标是(6,0),点C 的坐标是(1,4),则点B 的坐标是 .答案:(7,4) 解析:根据平行四边形的性质及A 点和C 的坐标求出点B 的坐标即可.:∵四边形ABCO 是平行四边形,O 为坐标原点,点A 的坐标是(6,0),点C 的坐标是(1,4),∴BC =OA =6,6+1=7,∴点B 的坐标是(7,4). 第1幅图 第2幅图 第3幅图 第4幅图。

【精校】2017年四川省绵阳市中考真题数学

【精校】2017年四川省绵阳市中考真题数学

2017年四川省绵阳市中考真题数学一、选择题(本大题共12小题,每小题3分,共36分)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,-0.5的相反数是( )A.0.5B.±0.5C.-0.5D.5解析:-0.5的相反数是0.5.答案:A2.下列图案中,属于轴对称图形的是( )A.B.C.D.解析:A,此图案是轴对称图形,有5条对称轴,此选项符合题意;B、此图案不是轴对称图形,此选项不符合题意;C、此图案不是轴对称图形,而是旋转对称图形,不符合题意;D、此图案不是轴对称图形,不符合题意.答案:A3.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )A.0.96×107B.9.6×106C.96×105D.9.6×102解析:“960万”用科学记数法表示为9.6×106.答案:B4. 如图所示的几何体的主视图正确的是( )A.B.C.D.解析:由图可知,主视图一个矩形和三角形组成.答案:D5.x有( )A.5个B.4个C.3个D.2个解析:由题意,得x+3>0且4-3x≥0,解得-3<x≤43,整数有-2,-1,0,1.答案:B6. 为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于( )A.10mB.12mC.12.4mD.12.32m解析:由题意可得:AB=1.5m ,BC=0.4m ,DC=4m ,△ABC ∽△EDC ,则AB BC ED DC =,即1.50.54DE =,解得:DE=12. 答案:B7.关于x 的方程2x 2+mx+n=0的两个根是-2和1,则n m 的值为( )A.-8B.8C.16D.-16解析:∵关于x 的方程2x 2+mx+n=0的两个根是-2和1,∴-2m =-1,2n =-2,∴m=2,n=-4,∴n m =(-4)2=16. 答案:C8.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm ,圆柱体部分的高BC=6cm ,圆锥体部分的高CD=3cm ,则这个陀螺的表面积是( )A.68πcm 2B.74πcm 2D.100πcm 2解析:∵底面圆的直径为8cm ,高为3cm ,∴母线长为5cm ,∴其表面积=π×4×5+42π+8π×6=84πcm 2.答案:C9.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=23,∠AEO=120°,则FC 的长度为( )A.1B.2解析:∵EF ⊥BD ,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD 是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°-30°=30°,∴OF=CF ,又∵Rt △BOF 中,BO=1122BD AC ==,∴OF=tan30°×BO=1,∴CF=1. 答案:A10.将二次函数y=x 2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b 的图象有公共点,则实数b 的取值范围是( )A.b >8C.b≥8D.b≥-8解析:由题意得:平移后得到的二次函数的解析式为:y=(x-3)2-1,则()2312y xy x b⎧=--⎪⎨=+⎪⎩,,(x-3)2-1=2x+b,x2-8x+8-b=0,△=(-8)2-4×1×(8-b)≥0,b≥-8.答案:D11.如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为( )A.1 2B.C.2 3D.解析:∵点O是△ABC的重心,∴OC=23 CE,∵△ABC是直角三角形,∴CE=BE=AE,∵∠B=30°,∴∠FAE=∠B=30°,∠BAC=60°,∴∠FAE=∠CAF=30°,△ACE是等边三角形,∴CM=12 CE,∴OM=211326CE CE CE-=,即OM=16AE,∵BE=AE,∴,∵EF⊥AB,∴∠AFE=60°,∴∠FEM=30°,∴MF=12EF,∴MF=6AE,∴16AEMOMF==.答案:D12.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则123191111a a a a+++⋯+的值为( )A.2021B.6184C.589840D.431760解析:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴12319111111111132435461921a a a a+++⋯+=++++⋯+⨯⨯⨯⨯⨯=1111111111111589112243546191()21222021840 3-+-+-+-+⋯+-=⎛⎫⎪⎝=⎭+--.答案:C二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:8a2-2= .解析:8a2-2=2(4a2-1)=2(2a+1)(2a-1).答案:2(2a+1)(2a-1)14.关于x的分式方程211111x x x-=-+-的解是 .解析:两边乘(x+1)(x-1)得到,2x+2-(x-1)=-(x+1),解得x=-32,经检验,x=-32是分式方程的解.∴x=-32.答案:-3 215.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是 .解析:∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(6,0),点C的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B的坐标是(7,4);答案:(7,4)16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .解析:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率=91 364=.答案:1 417.将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D 旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AD:AB=1:3,则MD+12MA DN⋅的最小值为 .解析:∵AB=6,AD:AB=1:3,∴AD=6×13=2,BD=6-2=4,∵△ABC和△FDE是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE,由三角形的外角性质得,∠AMD+∠A=∠EDF+∠BDN,∴∠AMD=∠BDN,∴△AMD∽△BDN,∴MA MDBD DN=,∴MA·DN=BD·MD=4MD,∴MD+222123222 MDMA DN MD=+=+-+=+⋅,=时,MD+12MA DN⋅有最小值为2.答案:218.如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延长线于点F.在AF上取点M,使得AM=13AF,连接CM并延长交直线DE于点H.若AC=2,△AMH 的面积是112,则1tan ACH∠的值是 .解析:过点H作HG⊥AC于点G,∵AF平分∠CAE,DE∥BF,∴∠HAF=∠AFC=∠CAF,∴AC=CF=2,∵AM=13AF,∴12AMMF=,∵DE∥CF,∴△AHM∽△FCM,∴AM AHMF CF=,∴AH=1,设△AHM中,AH边上的高为m,△FCM中CF边上的高为n,∴12m AMn MF==,∵△AMH的面积为:112,∴11122=AH·m∴m=16,∴n=13,设△AHC的面积为S,∴3AHMS m nS m+==V,∴S=3S△AHM=14,∴1124AC HG⋅=,∴HG=14,∴由勾股定理可知:AG=4,∴CG=AC-AG=2-4,∴18tanCGACH HG==∠.答案:8-三、解答题(本大题共7小题,共86分)19.计算:(1)+cos245°-(-2)-1-|-12|.(2)先化简,再求值:222222x y x yx xy yx xy x y --÷-+-⎫⎪⎭-⎛⎝,其中,. 解析:(1)根据特殊角的三角函数值、负整数指数幂、绝对值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.答案:+cos 245°-(-2)-1-|-12|=2110.222+--⎛⎫⎪⎝⎭-⎝⎭ =0.2+111222+- =0.7;(2)222222x y x yx xy y x xy x y --÷-+-⎫⎪⎭-⎛⎝ =()()222x y xx y x x y y x y ⎡⎤⎢⎥⎢⎥⎣⎦---⋅-- =1122x yx y x y y ⎛⎫⎪⎝⋅⎭---- =()()222x y x y x yx y x y y --+-⋅--=()yy x y --=1y x-, 当,时,原式2==-. 20.红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?解析:(1)根据表格中数据填表画图即可,利用360°×其所占的百分比求出扇形对应的圆心角度数;(2)用360°乘以样本中稻穗谷粒数大于或等于205颗的水稻所占百分比即可.答案:(1)填表如下:如图所示:如图所示的扇形统计图中,扇形A对应的圆心角为:360°×630=72度,扇形B对应的圆心角为360°×330=36度.(2)3000×6330=900.即据此估计,其中稻穗谷粒数大于或等于205颗的水稻有900株.21.江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.解析:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据“1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设大型收割机有m台,总费用为w元,则小型收割机有(10-m)台,根据总费用=大型收割机的费用+小型收割机的费用,即可得出w与m之间的函数关系式,由“要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,依此可找出各方案,再结合一次函数的性质即可解决最值问题. 答案:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:3 1.425 2.5x yx y+=⎧⎨+=⎩,,解得:0.50.3xy=⎧⎨=⎩,.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机有m台,总费用为w元,则小型收割机有(10-m)台,根据题意得:w=300×2m+200×2(10-m)=200m+4000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴()20.520.3108 20040005400m mm⨯+⨯-≥⎧⎪⎨+≤⎪⎩,,解得:5≤m≤7,∴有三种不同方案.∵w=200m+4000中,200>0,∴w值随m值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.22.如图,设反比例函数的解析式为y=3kx(k>0).(1)若该反比例函数与正比例函数y=2x 的图象有一个交点的纵坐标为2,求k 的值; (2)若该反比例函数与过点M(-2,0)的直线l :y=kx+b 的图象交于A ,B 两点,如图所示,当△ABO 的面积为163时,求直线l 的解析式. 解析(1)由题意可得A(1,2),利用待定系数法即可解决问题;(2)把M(-2,0)代入y=kx+b ,可得b=2k ,可得y=kx+2k ,由32k y xy kx k⎧=⎪⎨⎪=+⎩,消去y 得到x 2+2x-3=0,解得x=-3或1,推出B(-3,-k),A(1,3k),根据△ABO 的面积为163,可得1116232223k k ⋅⋅+⋅⋅=,解方程即可解决问题. 答案:(1)由题意A(1,2),把A(1,2)代入y=3kx,得到3k=2,∴k=23.(2)把M(-2,0)代入y=kx+b ,可得b=2k ,∴y=kx+2k ,由32k y x y kx k ⎧=⎪⎨⎪=+⎩,消去y 得到x 2+2x-3=0,解得x=-3或1,∴B(-3,-k),A(1,3k), ∵△ABO 的面积为163,∴1116232223k k ⋅⋅+⋅⋅=,解得k=43, ∴直线l 的解析式为y=4833x +.23.如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N.(1)求证:CA=CN ;(2)连接DF ,若cos ∠DFA=45,O 的直径的长度. 解析:(1)连接OF ,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF ,再通过互余利用角的计算即可得出∠CAN=90°-∠OAF=∠ANC ,由此即可证出CA=CN ;(2)连接OC ,由圆周角定理结合cos ∠DFA=45、CH 、AH 的长度,设圆的半径为r ,则OH=r-6,根据勾股定理即可得出关于r 的一元一次方程,解之即可得出r ,再乘以2即可求出圆O 直径的长度.答案:(1)连接OF ,则∠OAF=∠OFA ,如图所示.∵ME 与⊙O 相切,∴OF ⊥ME. ∵CD ⊥AB ,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF ,∠FOH+∠BOF=180°,∴∠M=2∠OAF. ∵ME ∥AC ,∴∠M=∠C=2∠OAF.∵CD ⊥AB ,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°-∠OAF,∠BAC=90°-∠C=90°-2∠OAF,∴∠CAN=∠OAF+∠BAC=90°-∠OAF=∠ANC,∴CA=CN.(2)连接OC,如图2所示.∵cos∠DFA=45,∠DFA=∠ACH,∴45CHAC=.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴===∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r-6,在Rt△OCH中,OC=r,CH=8,OH=r-6,∴OC2=CH2+OH2,r2=82+(r-6)2,解得:r=253,∴圆O的直径的长度为2r=503.24.如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=12x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF的值.解析:(1)可设抛物线的顶点式,再结合抛物线过点(4,2),可求得抛物线的解析式;(2)联立直线和抛物线解析式可求得B、D两点的坐标,则可求得C点坐标和线段BD的长,可求得圆的半径,可证得结论;(3)过点C作CH⊥m于点H,连接CM,可求得MH,利用(2)中所求B、D的坐标可求得FH,则可求得MF和BE的长,可求得其比值.答案:(1)∵已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为y=a(x-2)2+1,∵抛物线经过点(4,2),∴2=a(4-2)2+1,解得a=14,∴抛物线解析式为y=14(x-2)2+1=14x2-x+2;(2)联立直线和抛物线解析式可得2124112y x xy x⎧=-+⎪⎪⎨⎪=+⎪⎩,,解得352xy⎧=⎪⎨=⎪⎩或352xy⎧=+⎪⎨=+⎪⎩,∴522-),522+),∵C 为BD 的中点,∴点C的纵坐标为555222222-++=, ∵,∴圆的半径为52, ∴点C 到x 轴的距离等于圆的半径,∴圆C 与x 轴相切; (3)如图,过点C 作CH ⊥m ,垂足为H ,连接CM ,由(2)可知CM=52,CH=53122-=,在Rt △CMH 中,由勾股定理可求得MH=2,∵HF=(332=,∵BE=53122--=3BE MF ==.25.如图,已知△ABC 中,∠C=90°,点M 从点C 出发沿CB 方向以1cm/s 的速度匀速运动,到达点B 停止运动,在点M 的运动过程中,过点M 作直线MN 交AC 于点N ,且保持∠NMC=45°,再过点N 作AC 的垂线交AB 于点F ,连接MF ,将△MNF 关于直线NF 对称后得到△ENF ,已知AC=8cm ,BC=4cm ,设点M 运动时间为t(s),△ENF 与△ANF 重叠部分的面积为y(cm 2).(1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;(2)求y 关于t 的函数解析式及相应t 的取值范围; (3)当y 取最大值时,求sin ∠NEF 的值.解析:(1)由已知得出CN=CM=t ,FN ∥BC ,得出AN=8-t ,由平行线证出△ANF ∽△ACB ,得出对应边成比例求出NF=1122AN =(8-t),由对称的性质得出∠ENF=∠MNF=∠NMC=45°,MN=NE ,OE=OM=CN=t ,由正方形的性质得出OE=ON=FN ,得出方程,解方程即可; (2)分两种情况:①当0<t ≤2时,由三角形面积得出y=-14t 2+2t ; ②当2<t ≤4时,作GH ⊥NF 于H ,由(1)得:NF=12(8-t),GH=NH ,GH=2FH ,得出GH=2313NF =(8-t),由三角形面积得出y=112(8-t)2(2<t ≤4); (3)当点E 在AB 边上时,y 取最大值,连接EM ,则EF=BF ,EM=2CN=2CM=2t ,EM=2BM ,得出方程,解方程求出CN=CM=2,AN=6,得出BM=2,NF=12AN=3,因此EM=2BM=4,作FD ⊥NE 于D ,由勾股定理求出=EF=12EB =,由等腰直角三角形的性质和勾股定理得出DF=22HF =,在Rt △DEF 中,由三角函数定义即可求出sin ∠NEF 的值.答案:(1)能使得四边形MNEF 为正方形;理由如下:连接ME 交NF 于O ,如图1所示:∵∠C=90°,∠NMC=45°,NF⊥AC,∴CN=CM=t,FN∥BC,∴AN=8-t,△ANF∽△ACB,∴824AN ACNF BC===,∴NF=1122AN=(8-t),由对称的性质得:∠ENF=∠MNF=∠NMC=45°,MN=NE,OE=OM=CN=t,∵四边形MNEF是正方形,∴OE=ON=FN,∴t=1122⨯(8-t),解得:t=85;即在点M的运动过程中,能使得四边形MNEF为正方形,t的值为85;(2)分两种情况:①当0<t≤2时,y=1122⨯(8-t)×t=-14t2+2t,即y=-14t2+2t(0<t≤2);②当2<t≤4时,如图所示:作GH⊥NF于H,由(1)得:NF=12(8-t),GH=NH,GH=2FH,∴GH=2313NF=(8-t),∴y=()()()211118882221132NF GH t t t'=⨯-⨯-=-,即y=112(8-t)2(2<t≤4);(3)当点E在AB边上时,y取最大值,连接EM,如图所示:则EF=BF,EM=2CN=2CM=2t,EM=2BM,∵BM=4-t,∴2t=2(4-t),解得:t=2,∴CN=CM=2,AN=6,∴BM=4-2=2,NF=12AN=3,∴EM=2BM=4,作FD⊥NE于D,则==DNF是等腰直角三角形,∴EF=12EB=DF=22HF=,在Rt△DEF中,sin∠NEF=10DFEF==.考试考高分的小窍门1、提高课堂注意力2、记好课堂笔记3、做家庭作业4、消除焦虑、精中精力、5、不忙答题,先摸卷情、不要畏惧考试。

四川省绵阳市2017年中考数学题

四川省绵阳市2017年中考数学题

A. B. C. D.四川省绵阳市2017年初中学业考试暨高中阶段学校招生考试数 学本试卷分为试题卷和答题卡两部分,其中试题卷共6页,答题卡共6页。

满分140分,考试时间120分钟。

注意事项:1.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨迹的签字笔填写在答题卡上,认真核对条形码上的姓名、准考证号、考点、考场号。

2.选择答案用2B 铅笔把答题卡上对应题目的答案标号涂黑,非选择题的答案用0.5毫米黑色墨迹的签字笔填写在答题卡上对应的框内,超出答题区域的答案无效,写在草稿纸、试题卷上的答案无效。

3.考试结束后将答题卡和试题卷一并交回.第Ⅰ卷(选择题,共36分)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.中国人最早使用负数,可追溯到两千年前的秦汉时期,5.0-的相反数是( ) A .5.0 B .5.0± C .5.0- D .52.下列图案中,属于轴对称图形的是( )A. B. C. D.3.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( ) A .71096.0⨯ B .6106.9⨯ C .51096⨯ D .2106.9⨯ 4.如图所示的几何体的主视图正确的是( )5.使代数式x x 3431-++有意义的整数x 有( )A .5个B .4个C .3个D .2个6.如图,为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带 的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得点B 到镜面中心C 的距离为 50cm ,镜面中心C 距旗杆底部D 的距离为cm 4。

已知小丽图象的身高1.54m , 眼睛位置A 距离小丽头顶的距离为cm 4,则旗杆的高度等于( ) A .m 10 B .m 12 C. m 4.12 D .m 32.12 7.关于x 的方程022=++n mx x 的两个根是2-和1,则mn 的值为( ) A .8- B .8 C. 16 D .16-8.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图。

四川省绵阳市2017年中考数学真题试题(含解析)

四川省绵阳市2017年中考数学真题试题(含解析)

2017年四川省绵阳市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5 B.±0.5 C.﹣0.5 D.5【答案】A.【解析】试题分析:﹣0.5的相反数是0.5,故选A.考点:相反数.2.下列图案中,属于轴对称图形的是()A.B.C.D.【答案】A.考点:轴对称图形.3.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×102【答案】B.【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B.考点:科学记数法—表示较大的数.4.如图所示的几何体的主视图正确的是()A .B .C .D .【答案】D .考点:简单组合体的三视图. 5.使代数式x x 3431-++有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B . 【解析】试题分析:由题意,得x +3>0且4﹣3x ≥0,解得﹣3<x ≤43,整数有﹣2,﹣1,0,1,故选B . 考点:二次根式有意义的条件.6.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得脚掌中心位置B 到镜面中心C 的距离是50cm ,镜面中心C 距离旗杆底部D 的距离为4m ,如图所示.已知小丽同学的身高是1.54m ,眼睛位置A 距离小丽头顶的距离是4cm ,则旗杆DE 的高度等于( )A .10mB .12mC .12.4mD .12.32m【答案】B . 【解析】试题分析:由题意可得:AB =1.5m ,BC =0.4m ,DC =4m ,△ABC ∽△EDC ,则AB BC ED DC =,即1.50.54DE =,解得:DE =12,故选B .考点:相似三角形的应用.7.关于x 的方程022=++n mx x 的两个根是﹣2和1,则mn 的值为( ) A .﹣8 B .8 C .16 D .﹣16 【答案】C .考点:根与系数的关系.8.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB =8cm ,圆柱体部分的高BC =6cm ,圆锥体部分的高CD =3cm ,则这个陀螺的表面积是( )A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2【答案】C . 【解析】试题分析:∵底面圆的直径为8cm ,高为3cm ,∴母线长为5cm ,∴其表面积=π×4×5+42π+8π×6=84πcm 2,故选C .考点:圆锥的计算;几何体的表面积.9.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC =∠AEO =120°,则FC 的长度为( )A .1B .2C 2D 3【答案】A .考点:矩形的性质;全等三角形的判定与性质;解直角三角形.10.将二次函数2x y =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( )A .b >8B .b >﹣8C .b ≥8D .b ≥﹣8 【答案】D . 【解析】试题分析:由题意得:平移后得到的二次函数的解析式为:2(3)1y x =-- ,则2(3)12y x y x b⎧=--⎨=+⎩,2(3)12x x b --=+,2880x x b -+-=,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选D .考点:二次函数图象与几何变换;一次函数图象与系数的关系.11.如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点M ,则MOMF的值为( )A .12 B C .23 D【答案】D .考点:三角形的重心;相似三角形的判定与性质;综合题.12.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则193211111a a a a ++++ 的值为( )A .2120 B .8461 C .840589 D .760421【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2); ∴193211111a a a a ++++ =11111 (13243546)1921+++++⨯⨯⨯⨯⨯=1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=840589,故选C . 考点:规律型:图形的变化类;综合题.二、填空题(本大题共6小题,每小题3分,共18分) 13.分解因式:282a -= . 【答案】2(2a +1)(2a ﹣1).【解析】试题分析:282a -=22(41)a - =2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1). 考点:提公因式法与公式法的综合运用. 14.关于x 的分式方程xx x -=+--111112的解是 . 【答案】x =﹣2.考点:解分式方程.15.如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点,若点A 的坐标是(6,0),点C 的坐标是(1,4),则点B 的坐标是 .【答案】(7,4). 【解析】试题分析:∵四边形ABCO 是平行四边形,O 为坐标原点,点A 的坐标是(6,0),点C 的坐标是(1,4),∴BC =OA =6,6+1=7,∴点B 的坐标是(7,4);故答案为:(7,4).考点:平行四边形的性质;坐标与图形性质.16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 . 【答案】14.考点:列表法与树状图法.17.将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AB=1:3,则MD+12MA DN⋅的最小值为.【答案】23.【解析】试题分析:∵AB=6,AB=1:3,∴AD=6×13=2,BD=6﹣2=4,∵△ABC和△FDE是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE,由三角形的外角性质得,∠AMD+∠A=∠EDF+∠BDN,∴∠AMD=∠BDN,∴△AMD∽△BDN,∴MA MDBD DN=,∴MA•DN=BD•MD=4MD,∴MD+12MA DN⋅=MD+3MD=223()()2323MDMD+-=23()23MDMD+,∴当=,即MD3MD+12MA DN⋅有最小值为2323考点:相似三角形的判定与性质;等腰三角形的性质;旋转的性质;最值问题;综合题.18.如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延长线于点F.在AF上取点M ,使得AM =13AF ,连接CM 并延长交直线DE 于点H .若AC =2,△AMH 的面积是112,则ACH ∠tan 1的值是 .【答案】8158考点:相似三角形的判定与性质;解直角三角形;综合题. 三、解答题(本大题共7小题,共86分) 19.(1)计算:|21|)2(45cos 04.012----+-; (2)先化简,再求值:yx yxy x x y xy x y x 2)22(222-÷--+--,其中x =22y 2 【答案】(1)0.7;(2)1y x -,2-.=22()(2)x y x y x yx y x y y--+-⋅--=()yy x y--=1y x-当x=y2222-2-=22-.考点:分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.20.红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?【答案】(1)3,6,B,A,72,36;(2)900.试题解析:(1)填表如下:如图所示:如图所示的扇形统计图中,扇形A对应的圆心角为:360°×630=72度,扇形B对应的圆心角为360°×330=36度.故答案为:3,6,B,A,72,36;(2)3000×6330=900.即据此估计,其中稻穗谷粒数大于或等于205颗的水稻有900株.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.21.江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【答案】(1)每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷;(2)有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.试题解析:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:3 1.425 2.5x yx y+=⎧⎨+=⎩,解得:0.50.3xy=⎧⎨=⎩.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴20.520.3(10)8 20040005400m mm⨯+⨯-≥⎧⎨+≤⎩,解得:5≤m≤7,∴有三种不同方案.∵w=200m+4000中,200>0,∴w值随m值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.考点:一元一次不等式组的应用;二元一次方程组的应用;方案型;最值问题.22.如图,设反比例函数的解析式为3k y x=(k >0). (1)若该反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点M (﹣2,0)的直线l :y =kx +b 的图象交于A ,B 两点,如图所示,当△ABO 的面积为163时,求直线l 的解析式.【答案】(1)23k =;(2)4833y x =+.方程即可解决问题;试题解析:(1)由题意A (1,2),把A (1,2)代入3k y x =,得到3k =2,∴23k =. (2)把M (﹣2,0)代入y =kx +b ,可得b =2k ,∴y =kx +2k ,由32k y x y kx k⎧=⎪⎨⎪=+⎩消去y 得到2230x x +-=,解得x =﹣3或1,∴B (﹣3,﹣k ),A (1,3k ),∵△ABO 的面积为163,∴12 •23k +12•2k =163,解得k =43,∴直线l 的解析式为4833y x =+. 考点:反比例函数与一次函数的交点问题.23.如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N .(1)求证:CA =CN ;(2)连接DF ,若cos ∠DFA =45,AN =,求圆O 的直径的长度.【答案】(1)证明见解析;(2)503.的长度.试题解析:(1)证明:连接OF ,则∠OAF =∠OFA ,如图所示.∵ME 与⊙O 相切,∴OF ⊥ME .∵CD ⊥AB ,∴∠M +∠FOH =180°.∵∠BOF =∠OAF +∠OFA =2∠OAF ,∠FOH +∠BOF =180°,∴∠M =2∠OAF .∵ME ∥AC ,∴∠M =∠C =2∠OAF .∵CD ⊥AB ,∴∠ANC +∠OAF =∠BAC +∠C =90°,∴∠ANC =90°﹣∠OAF ,∠BAC =90°﹣∠C =90°﹣2∠OAF ,∴∠CAN =∠OAF +∠BAC =90°﹣∠OAF =∠ANC ,∴CA =CN .(2)连接OC ,如图2所示.∵cos ∠DFA =45,∠DFA =∠ACH ,∴CH AC =45.设CH =4a ,则AC =5a ,AH =3a ,∵CA =CN ,∴NH =a ,∴AN10a =210,∴a =2,AH =3a =6,CH =4a =8.设圆的半径为r ,则OH =r ﹣6,在Rt △OCH 中,OC =r ,CH =8,OH =r ﹣6,∴OC 2=CH 2+OH 2,r 2=82+(r ﹣6)2,解得:r =253,∴圆O 的直径的长度为2r =503.考点:切线的性质;勾股定理;圆周角定理;解直角三角形.24.如图,已知抛物线2y ax bx c =++(a ≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线121+=x y 与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,圆C 与直线m 交于对称轴右侧的点M (t ,1),直线m 上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C 与x 轴相切;(3)过点B 作BE ⊥m ,垂足为E ,再过点D 作DF ⊥m ,垂足为F ,求MF 的值.【答案】(1)2124y x x =-+ ;(2)证明见解析;(351+ .(3)过点C 作CH ⊥m 于点H ,连接CM ,可求得MH ,利用(2)中所求B 、D 的坐标可求得FH ,则可求得MF 和BE 的长,可求得其比值.试题解析:(1)∵已知抛物线2y ax bx c =++(a ≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为2(2)1y a x =-+ ,∵抛物线经过点(4,2),∴22(42)1a =-+,解得a =14,∴抛物线解析式为21(2)14y x =-+,即2124y x x =-+; (2)联立直线和抛物线解析式可得2124112y x x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得:3552x y ⎧=⎪⎨=⎪⎩或3552x y ⎧=+⎪⎨=+⎪⎩,∴B(3522-),D (355522+),∵C 为BD 的中点,∴点C 的纵坐标为555522222++ =52,∵BD,∴圆的半径为52,∴点C 到x 轴的距离等于圆的半径,∴圆C 与x 轴相切;考点:二次函数综合题;压轴题.25.如图,已知△ABC 中,∠C =90°,点M 从点C 出发沿CB 方向以1c m/s 的速度匀速运动,到达点B 停止运动,在点M 的运动过程中,过点M 作直线MN 交AC 于点N ,且保持∠NMC =45°,再过点N 作AC 的垂线交AB 于点F ,连接MF ,将△MNF 关于直线NF 对称后得到△ENF ,已知AC =8cm ,BC =4cm ,设点M 运动时间为t (s ),△ENF 与△ANF 重叠部分的面积为y (cm 2).(1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;(2)求y 关于t 的函数解析式及相应t 的取值范围;(3)当y 取最大值时,求sin ∠NEF 的值.【答案】(1)85;(2)2212 (02)41416(24)1233t t t y t t t ⎧-+<<⎪⎪=⎨⎪-+≤≤⎪⎩;(3310.②当2<t ≤4时,作GH ⊥NF 于H ,由(1)得:NF =12(8﹣t ),GH =NH ,GH =2FH ,得出GH =23NF =13(8﹣t ),由三角形面积得出21(8)12y t =-(2<t ≤4); (3)当点E 在AB 边上时,y 取最大值,连接EM ,则EF =BF ,EM =2CN =2CM =2t ,EM =2BM ,得出方程,解方程求出CN =CM =2,AN =6,得出BM =2,NF =12AN =3,因此EM =2BM =4,作FD ⊥NE 于D ,由勾股定理求出EB=EF =12EB 5DF 2 HF 32,在Rt △DEF 中,由三角函数定义即可求出sin ∠NEF 的值.(2)分两种情况:①当0<t ≤2时,y =12×12(8﹣t )×t =2124t t -+,即2124y t t =-+(0<t ≤2); ②当2<t ≤4时,如图2所示:作GH ⊥NF 于H ,由(1)得:NF =12(8﹣t ),GH =NH ,GH =2FH ,∴GH =23NF =13(8﹣t ),∴y =12NF ′GH =12×12(8﹣t )×13(8﹣t )=21(8)12t -,即21(8)12y t =-(2<t ≤4); 综上所述:2212 (02)41416(24)1233t t t y t t t ⎧-+<<⎪⎪=⎨⎪-+≤≤⎪⎩ .(3)当点E 在AB 边上时,y 取最大值,连接EM ,如图3所示:则EF =BF ,EM =2CN =2CM =2t ,EM =2BM ,∵BM =4﹣t ,∴2t =2(4﹣t ),解得:t =2,∴CN =CM =2,AN =6,∴BM =4﹣2=2,NF =12AN =3,∴EM =2BM =4,作FD ⊥NE 于D ,则EB 22EM BM +2242+25DNF 是等腰直角三角形,∴EF =12EB 5DF =22 HF =322,在Rt △DEF 中,sin ∠NEF =DF EF 3225310.考点:四边形综合题;最值问题;动点型;存在型;分类讨论;压轴题.。

2017年绵阳中考数学试题

2017年绵阳中考数学试题

2017年绵阳中考数学试题2017年绵阳中考数学试题分析一、选择题1. 选择题概述本年度绵阳中考数学试题选择题部分共计10题,每题3分,总计30分。

题目覆盖了初中数学的基础知识,包括代数、几何、概率与统计等领域。

题目设计注重考查学生的计算能力、逻辑推理能力和问题解决能力。

2. 题目分析(1)代数部分选择题中代数题目占比较大,涉及因式分解、方程求解、不等式性质等知识点。

例如,第2题考查了一元一次不等式的解法,要求学生能够熟练掌握不等式的解集表示方法。

(2)几何部分几何题目主要考查了学生对图形性质的理解和计算能力,如第5题涉及了三角形的相似性质,要求学生能够运用相似三角形的性质解决实际问题。

(3)概率与统计部分概率与统计题目在选择题中占有一定比例,如第8题通过掷骰子的例子,考查了学生对概率计算的理解和应用。

二、填空题1. 填空题概述填空题共计6题,每题4分,总计24分。

题目类型多样,包括计算题、证明题和应用题等,旨在考查学生的数学基础知识和应用能力。

2. 题目分析(1)计算题计算题要求学生具备扎实的运算技能和准确的计算能力。

例如,第11题要求学生计算一个分式的值,考查了学生的分式运算能力。

(2)证明题证明题考查学生的逻辑推理能力和对几何定理的理解。

如第13题要求证明一个关于直角三角形的性质,需要学生运用勾股定理和三角形的相似性进行证明。

(3)应用题应用题考查学生将数学知识应用于实际问题的能力。

例如,第15题通过一个实际问题考查了学生对比例和单位换算的理解和应用。

三、解答题1. 解答题概述解答题共计4题,总计96分。

题目类型包括计算题、证明题和综合题,考查学生的综合运用能力和解题技巧。

2. 题目分析(1)计算题计算题要求学生具备较强的数学运算能力和准确度。

如第17题考查了二次函数的性质和求最值的方法,需要学生运用配方法或公式法进行计算。

(2)证明题证明题考查学生的逻辑推理和证明能力。

例如,第19题要求证明一个关于圆的性质的定理,需要学生运用圆的性质和几何定理进行证明。

(最新整理)2017年四川省绵阳市中考数学试卷(解析版)

(最新整理)2017年四川省绵阳市中考数学试卷(解析版)

18.如图,过锐角△ABC 的顶点 A 作 DE∥BC,AB 恰好平分∠DAC,AF 平分∠EAC 交 BC
的延长线于点 F.在 AF 上取点 M,使得 AM= AF,连接 CM 并延长交直线 DE 于点 H.若
AC=2,△AMH 的面积是 ,则
的值是 .
三、解答题(本大题共 7 小题,共 86 分)
第 2 页(共 36 页)
2017 年四川省绵阳市中考数学试卷(解析版)
示.已知小丽同学的身高是 1.54m,眼睛位置 A 距离小丽头顶的距离是 4cm,则旗杆 DE 的高度等于( )
A.10m B.12m C.12。4m D.12.32m 7.关于 x 的方程 2x2+mx+n=0 的两个根是﹣2 和 1,则 nm 的值为( ) A.﹣8 B.8 C.16 D.﹣16 8.“赶陀螺"是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知 底面圆的直径 AB=8cm,圆柱体部分的高 BC=6cm,圆锥体部分的高 CD=3cm,则这个陀 螺的表面积是( )
A.
B.
C.
D.
3.中国幅员辽阔,陆地面积约为 960 万平方公里,“960 万”用科学记数法表示为 ( ) A.0.96×107 B.9。6×106 C.96×105 D.9。6×102 4.如图所示的几何体的主视图正确的是( )
A.
B.
C.
D.
5.使代数式 + 有意义的整数 x 有( ) A.5 个 B.4 个 C.3 个 D.2 个 6.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出 随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子 刚好能从镜子里看到旗杆的顶端 E,标记好脚掌中心位置为 B,测得脚掌中心位置 B 到镜面中心 C 的距离是 50cm,镜面中心 C 距离旗杆底部 D 的距离为 4m,如图所
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年四川省绵阳市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5 B.±0.5 C.﹣0.5 D.52.下列图案中,属于轴对称图形的是()A. B.C.D.3.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×1024.如图所示的几何体的主视图正确的是()A.B.C.D.5.使代数式+有意义的整数x有()A.5个 B.4个 C.3个 D.2个6.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10m B.12m C.12.4m D.12.32m7.关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8 B.8 C.16 D.﹣168.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm29.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2,∠AEO=120°,则FC的长度为()A.1 B.2 C.D.10.将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8 B.b>﹣8 C.b≥8 D.b≥﹣811.如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则的值为()A.B.C.D.12.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则+++…+的值为()A.B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:8a2﹣2=.14.关于x的分式方程=的解是.15.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是.16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.17.将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AD:AB=1:3,则MD+的最小值为.18.如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC 交BC的延长线于点F.在AF上取点M,使得AM=AF,连接CM并延长交直线DE于点H.若AC=2,△AMH的面积是,则的值是.三、解答题(本大题共7小题,共86分)19.(1)计算: +cos245°﹣(﹣2)﹣1﹣|﹣|(2)先化简,再求值:(﹣)÷,其中x=2,y=.20.红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):182195201179208204186192210204 175193200203188197212207185206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:谷粒颗数175≤x<185185≤x<195195≤x<205205≤x<215215≤x<225频数8103对应扇形图中区域D E C如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?21.江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.22.如图,设反比例函数的解析式为y=(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为时,求直线l的解析式.23.如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DFA=,AN=2,求圆O的直径的长度.24.如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF 的值.25.如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1cm/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.2017年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5 B.±0.5 C.﹣0.5 D.5【考点】14:相反数.【分析】根据相反数的定义求解即可.【解答】解:﹣0.5的相反数是0.5,故选:A.2.下列图案中,属于轴对称图形的是()A. B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的定义求解可得.【解答】解:A,此图案是轴对称图形,有5条对称轴,此选项符合题意;B、此图案不是轴对称图形,此选项不符合题意;C、此图案不是轴对称图形,而是旋转对称图形,不符合题意;D、此图案不是轴对称图形,不符合题意;故选:A.3.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×102【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:“960万”用科学记数法表示为9.6×106,故选:B.4.如图所示的几何体的主视图正确的是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】先细心观察原立体图形和正方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图一个矩形和三角形组成.故选D.5.使代数式+有意义的整数x有()A.5个 B.4个 C.3个 D.2个【考点】72:二次根式有意义的条件.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x+3>0且4﹣3x≥0,解得﹣3<x≤,整数有﹣2,﹣1,0,1,故选:B.6.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10m B.12m C.12.4m D.12.32m【考点】SA:相似三角形的应用.【分析】根据题意得出△ABC∽△EDC,进而利用相似三角形的性质得出答案.【解答】解:由题意可得:AB=1.5m,BC=0.4m,DC=4m,△ABC∽△EDC,则=,即=,解得:DE=12,故选:B.7.关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8 B.8 C.16 D.﹣16【考点】AB:根与系数的关系.【分析】由方程的两根结合根与系数的关系可求出m、n的值,将其代入n m中即可求出结论.【解答】解:∵关于x的方程2x2+mx+n=0的两个根是﹣2和1,∴﹣=﹣1,=﹣2,∴m=2,n=﹣4,∴n m=(﹣4)2=16.故选C.8.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm2【考点】MP:圆锥的计算;I4:几何体的表面积.【分析】圆锥的表面积加上圆柱的侧面积即可求得其表面积.【解答】解:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.9.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2,∠AEO=120°,则FC的长度为()A.1 B.2 C.D.【考点】LB:矩形的性质;KD:全等三角形的判定与性质;T7:解直角三角形.【分析】先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.【解答】解:∵EF⊥BD,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°﹣30°=30°,∴OF=CF,又∵Rt△BOF中,BO=BD=AC=,∴OF=tan30°×BO=1,∴CF=1,故选:A.10.将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8 B.b>﹣8 C.b≥8 D.b≥﹣8【考点】H6:二次函数图象与几何变换;F7:一次函数图象与系数的关系.【分析】先根据平移原则:上→加,下→减,左→加,右→减写出解析式,再列方程组,有公共点则△≥0,则可求出b的取值.【解答】解:由题意得:平移后得到的二次函数的解析式为:y=(x﹣3)2﹣1,则,(x﹣3)2﹣1=2x+b,x2﹣8x+8﹣b=0,△=(﹣8)2﹣4×1×(8﹣b)≥0,b≥﹣8,故选D.11.如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则的值为()A.B.C.D.【考点】K5:三角形的重心;S9:相似三角形的判定与性质.【分析】根据三角形的重心性质可得OC=CE,根据直角三角形的性质可得CE=AE,根据等边三角形的判定和性质得到CM=CE,进一步得到OM=CE,即OM=AE,根据垂直平分线的性质和含30°的直角三角形的性质可得EF=AE,MF=EF,依此得到MF=AE,从而得到的值.【解答】解:∵点O是△ABC的重心,∴OC=CE,∵△ABC是直角三角形,∴CE=BE=AE,∵∠B=30°,∴∠FAE=∠B=30°,∠BAC=60°,∴∠FAE=∠CAF=30°,△ACE是等边三角形,∴CM=CE,∴OM=CE﹣CE=CE,即OM=AE,∵BE=AE,∴EF=AE,∵EF⊥AB,∴∠AFE=60°,∴∠FEM=30°,∴MF=EF,∴MF=AE,∴==.故选:D.12.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则+++…+的值为()A.B.C. D.【考点】38:规律型:图形的变化类.【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【解答】解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴+++…+=++++…+=(1﹣+﹣+﹣+﹣+…+﹣)=(1+﹣﹣)=,故选C.二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:8a2﹣2=2(2a+1)(2a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:8a2﹣2,=2(4a2﹣1),=2(2a+1)(2a﹣1).故答案为:2(2a+1)(2a﹣1).14.关于x的分式方程=的解是﹣.【考点】B3:解分式方程.【分析】把分式方程转化为整式方程即可解决问题.【解答】解:两边乘(x+1)(x﹣1)得到,2x+2﹣(x﹣1)=﹣(x+1),解得x=﹣,经检验,x=﹣是分式方程的解.∴x=﹣.故答案为﹣.15.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是(7,4).【考点】L5:平行四边形的性质;D5:坐标与图形性质.【分析】根据平行四边形的性质及A点和C的坐标求出点B的坐标即可.【解答】解:∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(6,0),点C的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B的坐标是(7,4);故答案为:(7,4).16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.【考点】X6:列表法与树状图法.【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于8且为偶数”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.17.将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AD:AB=1:3,则MD+的最小值为2.【考点】S9:相似三角形的判定与性质;KH:等腰三角形的性质;R2:旋转的性质.【分析】先求出AD=2,BD=4,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AMD+∠A=∠EDF+∠BDN,然后求出∠AMD=∠BDN,从而得到△AMD和△BDN相似,根据相似三角形对应边成比例可得=,求出MA•DN=4MD,再将所求代数式整理出完全平方的形式,然后根据非负数的性质求出最小值即可.【解答】解:∵AB=6,AD:AB=1:3,∴AD=6×=2,BD=6﹣2=4,∵△ABC和△FDE是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE,由三角形的外角性质得,∠AMD+∠A=∠EDF+∠BDN,∴∠AMD=∠BDN,∴△AMD∽△BDN,∴=,∴MA•DN=BD•MD=4MD,∴MD+=MD+=()2+()2﹣2+2=(﹣)2+2,∴当=,即MD=时MD+有最小值为2.故答案为:2.18.如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC 交BC的延长线于点F.在AF上取点M,使得AM=AF,连接CM并延长交直线DE于点H.若AC=2,△AMH的面积是,则的值是8﹣.【考点】S9:相似三角形的判定与性质;T7:解直角三角形.【分析】过点H作HG⊥AC于点G,由于AF平分∠CAE,DE∥BF,∠HAF=∠AFC=∠CAF,从而AC=CF=2,利用△AHM∽△FCM,=,从而可求出AH=1,利用△AMH的面积是,从而可求出HG,利用勾股定理即可求出CG的长度,所以=.【解答】解:过点H作HG⊥AC于点G,∵AF平分∠CAE,DE∥BF,∴∠HAF=∠AFC=∠CAF,∴AC=CF=2,∵AM=AF,∴=,∵DE∥CF,∴△AHM∽△FCM,∴=,∴AH=1,设△AHM中,AH边上的高为m,△FCM中CF边上的高为n,∴==,∵△AMH的面积为:,∴=AH•m∴m=,∴n=,设△AHC的面积为S,∴==3,=,∴S=3S△AHM∴AC•HG=,∴HG=,∴由勾股定理可知:AG=,∴CG=AC﹣AG=2﹣∴==8﹣故答案为:8﹣三、解答题(本大题共7小题,共86分)19.(1)计算: +cos245°﹣(﹣2)﹣1﹣|﹣|(2)先化简,再求值:(﹣)÷,其中x=2,y=.【考点】6D:分式的化简求值;2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、绝对值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(1)+cos245°﹣(﹣2)﹣1﹣|﹣|=0.2+=0.2+=0.7;(2)(﹣)÷=====,当x=2,y=时,原式=.20.红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):182195201179208204186192210204 175193200203188197212207185206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:谷粒颗数175≤x<185185≤x<195195≤x<205205≤x<215215≤x<225频数381063对应扇形图中区域B D E A C如图所示的扇形统计图中,扇形A对应的圆心角为72度,扇形B对应的圆心角为36度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)根据表格中数据填表画图即可,利用360°×其所占的百分比求出扇形对应的圆心角度数;(2)用360°乘以样本中稻穗谷粒数大于或等于205颗的水稻所占百分比即可.【解答】解:(1)填表如下:谷粒颗数175≤x<185185≤x<195195≤x<205205≤x<215215≤x<225频数3810 6 3对应扇形图中区域B D E A C如图所示:如图所示的扇形统计图中,扇形A对应的圆心角为:360°×=72度,扇形B 对应的圆心角为360°×=36度.故答案为3,6,B,A,72,36;(2)3000×=900.即据此估计,其中稻穗谷粒数大于或等于205颗的水稻有900株.21.江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据“1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据总费用=大型收割机的费用+小型收割机的费用,即可得出w与m之间的函数关系式,由“要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,依此可找出各方案,再结合一次函数的性质即可解决最值问题.【解答】解:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:,解得:.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴,解得:5≤m≤7,∴有三种不同方案.∵w=200m+4000中,200>0,∴w值随m值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.22.如图,设反比例函数的解析式为y=(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为时,求直线l的解析式.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)由题意可得A(1,2),利用待定系数法即可解决问题;(2)把M(﹣2,0)代入y=kx+b,可得b=2k,可得y=kx+2k,由消去y得到x2+2x﹣3=0,解得x=﹣3或1,推出B(﹣3,﹣k),A(1,3k),根据△ABO的面积为,可得•2•3k+•2•k=,解方程即可解决问题;【解答】解:(1)由题意A(1,2),把A(1,2)代入y=,得到3k=2,∴k=.(2)把M(﹣2,0)代入y=kx+b,可得b=2k,∴y=kx+2k,由消去y得到x2+2x﹣3=0,解得x=﹣3或1,∴B(﹣3,﹣k),A(1,3k),∵△ABO的面积为,∴•2•3k+•2•k=,解得k=,∴直线l的解析式为y=x+.23.如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DFA=,AN=2,求圆O的直径的长度.【考点】MC:切线的性质;KQ:勾股定理;M5:圆周角定理;T7:解直角三角形.【分析】(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,由圆周角定理结合cos∠DFA=、AN=2,即可求出CH、AH 的长度,设圆的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O直径的长度.【解答】(1)证明:连接OF,则∠OAF=∠OFA,如图所示.∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME∥AC,∴∠M=∠C=2∠OAF.∵CD⊥AB,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF,∠BAC=90°﹣∠C=90°﹣2∠OAF,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC,∴CA=CN.(2)连接OC,如图2所示.∵cos∠DFA=,∠DFA=∠ACH,∴=.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN===a=2,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r=,∴圆O的直径的长度为2r=.24.如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF 的值.【考点】HF:二次函数综合题.【分析】(1)可设抛物线的顶点式,再结合抛物线过点(4,2),可求得抛物线的解析式;(2)联立直线和抛物线解析式可求得B、D两点的坐标,则可求得C点坐标和线段BD的长,可求得圆的半径,可证得结论;(3)过点C作CH⊥m于点H,连接CM,可求得MH,利用(2)中所求B、D 的坐标可求得FH,则可求得MF和BE的长,可求得其比值.【解答】解:(1)∵已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为y=a(x﹣2)2+1,∵抛物线经过点(4,2),∴2=a(4﹣2)2+1,解得a=,∴抛物线解析式为y=(x﹣2)2+1=x2﹣x+2;(2)联立直线和抛物线解析式可得,解得或,∴B(3﹣,﹣),D(3+, +),∵C为BD的中点,∴点C的纵坐标为=,∵BD==5,∴圆的半径为,∴点C到x轴的距离等于圆的半径,∴圆C与x轴相切;(3)如图,过点C作CH⊥m,垂足为H,连接CM,由(2)可知CM=,CH=﹣1=,在Rt△CMH中,由勾股定理可求得MH=2,∵HF==,∴MF=HF﹣MH=﹣2,∵BE=﹣﹣1=﹣,∴==.25.如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1cm/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.【考点】LO:四边形综合题.【分析】(1)由已知得出CN=CM=t,FN∥BC,得出AN=8﹣t,由平行线证出△ANF∽△ACB,得出对应边成比例求出NF=AN=(8﹣t),由对称的性质得出∠ENF=∠MNF=∠NMC=45°,MN=NE,OE=OM=CN=t,由正方形的性质得出OE=ON=FN,得出方程,解方程即可;(2)分两种情况:①当0<t≤2时,由三角形面积得出y=﹣t2+2t;②当2<t≤4时,作GH⊥NF于H,由(1)得:NF=(8﹣t),GH=NH,GH=2FH,得出GH=NF=(8﹣t),由三角形面积得出y=(8﹣t)2(2<t≤4);(3)当点E在AB边上时,y取最大值,连接EM,则EF=BF,EM=2CN=2CM=2t,EM=2BM,得出方程,解方程求出CN=CM=2,AN=6,得出BM=2,NF=AN=3,因此EM=2BM=4,作FD⊥NE于D,由勾股定理求出EB==2,求出EF==,由等腰直角三角形的性质和勾股定理得出DF=HF=,在Rt △DEF中,由三角函数定义即可求出sin∠NEF的值.【解答】解:(1)能使得四边形MNEF为正方形;理由如下:连接ME交NF于O,如图1所示:∵∠C=90°,∠NMC=45°,NF⊥AC,∴CN=CM=t,FN∥BC,∴AN=8﹣t,△ANF∽△ACB,∴==2,∴NF=AN=(8﹣t),由对称的性质得:∠ENF=∠MNF=∠NMC=45°,MN=NE,OE=OM=CN=t,∵四边形MNEF是正方形,∴OE=ON=FN,∴t=×(8﹣t),解得:t=;即在点M的运动过程中,能使得四边形MNEF为正方形,t的值为;(2)分两种情况:①当0<t≤2时,y=×(8﹣t)×t=﹣t2+2t,即y=﹣t2+2t(0<t≤2);②当2<t≤4时,如图2所示:作GH⊥NF于H,由(1)得:NF=(8﹣t),GH=NH,GH=2FH,∴GH=NF=(8﹣t),∴y=NF′GH=×(8﹣t)×(8﹣t)=(8﹣t)2,即y=(8﹣t)2(2<t≤4);(3)当点E在AB边上时,y取最大值,连接EM,如图3所示:则EF=BF,EM=2CN=2CM=2t,EM=2BM,∵BM=4﹣t,∴2t=2(4﹣t),解得:t=2,∴CN=CM=2,AN=6,∴BM=4﹣2=2,NF=AN=3,∴EM=2BM=4,作FD⊥NE于D,则EB===2,△DNF是等腰直角三角形,∴EF==,DF=HF=,在Rt△DEF中,sin∠NEF===.第31页(共32页)2017年6月29日第32页(共32页)。

相关文档
最新文档