IT绝缘栅双极晶体管

合集下载

怎么理解绝缘栅双极型晶体管

怎么理解绝缘栅双极型晶体管

怎么理解绝缘栅双极型晶体管绝缘栅双极型晶体管是一种常用的电子器件,其特点是具有高电流放大倍数和低输入电阻。

在现代电子技术中,绝缘栅双极型晶体管被广泛应用于各种电子设备中,如放大电路、开关电路和逻辑电路等。

本文将从晶体管的结构、工作原理、特性以及应用等方面对绝缘栅双极型晶体管进行详细介绍。

我们来看一下绝缘栅双极型晶体管的结构。

晶体管由三个区域组成,即发射区、基区和集电区。

发射区和集电区是N型材料,而基区是P型材料。

在基区与发射区之间有一层非导电的绝缘层,称为绝缘栅。

绝缘栅双极型晶体管的结构决定了其具有较高的绝缘性能和较低的漏电流。

绝缘栅双极型晶体管的工作原理是通过控制绝缘栅电压来调节晶体管的导电性。

当绝缘栅电压为0V时,绝缘栅双极型晶体管处于截止状态,没有电流通过。

当绝缘栅电压为正值时,绝缘栅双极型晶体管进入放大区,可以放大输入信号。

当绝缘栅电压为负值时,绝缘栅双极型晶体管进入饱和区,可以作为开关使用。

通过控制绝缘栅电压的大小,可以实现对晶体管的放大和开关控制。

绝缘栅双极型晶体管具有许多特性,其中最重要的是电流放大倍数。

电流放大倍数是指输出电流与输入电流之间的比值。

绝缘栅双极型晶体管的电流放大倍数较高,可以达到几十到几百倍。

这意味着绝缘栅双极型晶体管可以将微弱的输入信号放大成较大的输出信号,从而实现信号的增强。

除了电流放大倍数外,绝缘栅双极型晶体管还具有低输入电阻的特点。

输入电阻是指输入信号与输入电流之间的比值。

绝缘栅双极型晶体管具有较低的输入电阻,可以有效地接收输入信号。

这使得绝缘栅双极型晶体管在电子设备中的应用非常广泛。

绝缘栅双极型晶体管的应用非常广泛,包括放大电路、开关电路和逻辑电路等。

在放大电路中,绝缘栅双极型晶体管可以放大微弱的输入信号,使其达到可以被传感器或其他电子器件检测的程度。

在开关电路中,绝缘栅双极型晶体管可以作为开关,控制电路的通断。

在逻辑电路中,绝缘栅双极型晶体管可以实现逻辑运算,如与门、或门和非门等。

绝缘栅双极晶体管的工作原理

绝缘栅双极晶体管的工作原理

绝缘栅双极晶体管的工作原理
绝缘栅双极晶体管是一种三端半导体器件,也被称为IGBT。

IGBT 包含一个P型衬底,两个N型外延层和一个PNPN结构。

其中,N+型区
域和P+型区域用于接触电极,形成源极(S)、栅极(G)和漏极(D)。

IGBT的工作原理是在栅极与源极之间加上一个正向电压,即形成了一个正向偏压,在PN结和N导电层之间形成一个细窄的储存电荷区域。

当从源极施加正向电压时,由于P层和N+层之间的势垒,会产生
大量的少数载流子,这些载流子被P层电场加速后,穿过N层,耗散
在收集区域。

在使G极与S极之间加正向电压的同时,在栅极上接上
一个信号电压,使G极形成一个电场,这个电场就能控制S极和D极
之间通道的导电状态,因此,IGBT可以实现大电流控制的功能。

当栅极电压较低时,极个电场也较弱,S与D之间的场效应导电
是较弱的。

当栅极电压增加到一定程度时,P衬底和N+区之间的PN结
区域就会放电,电子被注入N+区域,从而形成一个N+掺杂的导电通道,从而使S和D之间的电阻变得非常小,此时IGBT处于导通状态,可以
实现大电流放电。

绝缘栅双极型晶体管

绝缘栅双极型晶体管

绝缘栅双极型晶体管一、 IGBT介绍IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极晶体管,是由BJT(双极型)和MOS()组成的复合全控型驱动式功率, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优势。

GTR饱和压降低,载流密度大,但驱动较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。

IGBT综合了以上两种的优势,驱动功率小而饱和压降低。

超级适合应用于为600V及以上的变流系统如交流电机、变频器、、照明电路、牵引传动等领域。

二、 IGBT的结构左侧所示为一个N沟道增强型绝缘栅双极结构, N+区称为源区,附于其上的电极称为源极(即发射极E)。

P+区称为漏区。

的操纵区为栅区,附于其上的电极称为(即门极G)。

沟道在紧靠栅区边界形成。

在C、E两极之间的P型区(包括P+和P-区)(沟道在该区域形成),称为亚沟道区(Subchannel region)。

而在漏区另一侧的P+区称为漏注入区(Drain injector),它是IGBT特有的,与漏区和亚沟道区一路形成PNP,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态。

附于漏注入区上的电极称为漏极(即集电极C)。

IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP(原先为NPN)晶体管提供基极,使IGBT导通。

反之,加反向门极电压排除沟道,切断基极电流,使IGBT关断。

IGBT的驱动方式和MOSFET大体相同,只需操纵输入极N-沟道MOSFET,因此具有高输入阻抗特性。

当MOSFET的沟道形成后,从P+基极注入到N-层的空穴(少子),对N-层进行电导调制,减小N-层的,使IGBT在高电压时,也具有低的通态电压。

三、关于IGBT的测试IGBT模块的测试分为两大类:一类是静态参数测试,即在IGBT模块结温为25C时进行测试,现在IGBT工作在非开关状态;另一类是动态参数测试,即在IGBT模块结温为1时进行测试,现在IGBT工作在开关状态。

,绝缘栅双极型晶体管

,绝缘栅双极型晶体管

,绝缘栅双极型晶体管
摘要:
1.绝缘栅双极型晶体管的概念与结构
2.绝缘栅双极型晶体管的工作原理
3.绝缘栅双极型晶体管的特点与应用
4.绝缘栅双极型晶体管的发展趋势
正文:
绝缘栅双极型晶体管(简称IGBT)是一种高反压大电流器件,它是由双极型三极管(BJT)和绝缘栅型场效应管(MOSFET)组成的复合全控型电压驱动式功率半导体器件。

IGBT 兼具MOSFET 的高输入阻抗和双极型晶体管的低导通压降两方面的优点,具有较高的开关速度和较低的导通损耗,常用于大功率放大输出、电磁炉等应用。

IGBT 的工作原理是通过控制MOS 管的栅极,再由MOS 管控制晶体管的通断。

当MOS 管的栅极施加正向电压时,MOS 管导通,晶体管也随之导通;当MOS 管的栅极施加负向电压时,MOS 管截止,晶体管也随之截止。

这样,通过控制MOS 管的栅极电压,可以实现对晶体管的控制,从而达到开关电路的目的。

绝缘栅双极型晶体管具有以下特点:
1.高反压:由于晶体管的集电极和发射极之间有较高的反压,使得IGBT 可以承受较高的电压。

2.大电流:IGBT 具有较大的电流容量,可以承受较大的电流。

3.高开关速度:IGBT 的开关速度较高,可以实现高频率的开关操作。

4.低导通压降:IGBT 的导通压降较低,可以降低能耗和导通损耗。

随着科技的发展,绝缘栅双极型晶体管的应用领域不断扩大,包括新能源、工业控制、家用电器等领域。

IGBT绝缘栅极双极型晶体管

IGBT绝缘栅极双极型晶体管


在使用IGBT的场合,当栅极回路不正 常或栅极回路损坏时(栅极处于开路状 态),若在主回路上加上电压,则IGBT就 会损坏,为防止此类故障,应在G栅极与E 发射极之间串接一只10KΩ左右的电阻。
图片
名词定义
• • • • • • • • • • 专业术语 符号 定义 集电极、发射极间电压 VCES 栅极、发射极间短路时的集电极,发射极间的最 大电压 栅极发极间电压 VGES 集电极、发射极间短路时的栅极,发射极间最大 电压 集电极电流 IC 集电极所允许的最大直流电流 耗散功率 PC 单个IGBT所允许的最大耗散功率 结温 Tj 元件连续工作时芯片温厦 关断电流 ICES 栅极、发射极间短路,在集电极、发射极 间加上 指定的电压时的集电极电流 漏电流 IGES 集电极、发射极间短路,在栅极、集电极间加上 指定的电压时的栅极漏电流 饱和压降 V CE(sat) 在指定的集电极电流和栅极电压的情况下,集电 极、发射极间的电压。 输入电容 Clss 集电极、发射极间处于交流短路状态,在栅极、发 射极间及集电极、发射极间加上指定电压时, 栅极、发射极 绝缘栅双极晶体管(IGBT)本质上是一个场 效应晶体管,只是在漏极和漏区之间多了一个 P 型层 • IEC规定:源极引出的电极端子(含电极端) 称为发射极端(子),漏极引出的电极端(子) 称为集电极端(子)
工作原理
• 在IGBT的栅极G和发射极E之间加上驱动正 电压,则MOSFET导通,这样PNP晶体管的集电 极C与基极之间成低阻状态而使得晶体管导通; • 若IGBT的栅极和发射极之间电压为0V,则 MOS截止,切断PNP晶体管基极电流的供给,使 得晶体管截止。 • IGBT与MOSFET一样也是电压控制型器件, 在它的栅极G—发射极E间施加十几V的直流电压, 只有在uA级的漏电流流过,基本上不消耗功率。

绝缘栅双极型晶体管符号

绝缘栅双极型晶体管符号

绝缘栅双极型晶体管符号1 什么是绝缘栅双极型晶体管?绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,简称IGBT)是一种半导体器件,其结构类似于双极型晶体管和场效应晶体管的结合体。

它的主要应用领域是功率电子和汽车电子,可以用于高电压、高电流的开关控制和电能变换。

IGBT的结构和工作原理相对复杂,但是在广泛应用中是极为可靠和高效的。

2 IGBT的结构和工作原理IGBT的结构类似于双极型晶体管,由一个npn与一个pnp晶体管组成,其中中间部分注入了一个n型地沟板(Channel),上部注入一个绝缘栅(Insulated Gate),整个结构类似于晶体管的结构。

晶体管的工作原理是通过控制基极上的电流实现对晶体管的开关控制,而IGBT的控制电流则是通过绝缘栅上的电场控制,从而控制进入源极和漏极之间的电流,实现对功率电流的可控性。

3 IGBT的特点和优势IGBT具有双极型晶体管和场效应晶体管的优点,在高压和大电流的应用领域中,它能够实现更加广泛的电路控制功能,同时也具有以下特点和优势:(1)高电压容忍能力:IGBT能够承受数百伏的高电压,具有较强的阻绝电压能力,不易被击穿。

(2)大电流特性:IGBT能够通过大电流,应用范围广泛。

(3)低电压驱动:IGBT的正向压降很小,使用起来非常省电。

(4)高开关速度:IGBT的控制电路具有高频响应能力,能够快速实现电流的切换。

4 IGBT的应用领域IGBT的应用领域非常广泛,主要包括以下方面:(1)工业控制领域:在电机启停、电磁阀和灯控等领域中,IGBT 能够实现精准控制和高效能耗。

(2)汽车电子领域:IGBT在汽车电子领域中应用广泛,主要包括电池管理、电子油门、电磁阀控制等方面。

(3)铁路电力领域:IGBT在铁路电力领域中应用非常广泛,主要用于变频空调系统、辅助转向系统、制动转换器等方面。

5 总结绝缘栅双极型晶体管是一种高效、可靠、可控的半导体器件,在功率电子和汽车电子等领域中具有广泛的应用前景。

绝缘栅双极晶体管的原理

绝缘栅双极晶体管的原理

绝缘栅双极晶体管的原理绝缘栅双极晶体管(Insulated Gate Bipolar Transistor,简称IGBT)是一种强大的功率开关,具有MOSFET和双极晶体管的优点。

它结合了MOSFET的高输入电阻和低功率驱动需求以及双极晶体管的低导通电阻和高功率承载能力。

IGBT广泛应用于电力电子领域,如交流驱动、逆变器、变频器、电力变压器等。

IGBT的结构主要由P型、N型硅材料和三个控制区域构成,分别是漏极区、绝缘栅区和发射极区。

首先,IGBT的控制区域是绝缘栅区,其中有一个绝缘栅极层。

绝缘栅极由绝缘氧化物层、控制电极和金属连接层组成。

绝缘栅极主要负责控制漏极与源极之间的电流流动。

其次,IGBT的发射极区由N型区域构成,是电流的主要控制区域。

当正向电压施加在漏极上时,P型基区的电子与P型漂移区的空穴重新组合,形成一个N 型区域。

在正常工作条件下,IGBT处于关闭状态。

当绝缘栅极加上正向电压时,绝缘栅极下方的N型区域和P型漂移区产生内建电场。

这个电场将吸引P型漂移区的空穴向N型区域移动,形成一个名为空穴输运层(holes injection layer)的区域。

当发射极加上正向电压,空穴输运层的空穴将通过N型区域向漏极流动。

在这个过程中,N型区域的电子与空穴再次发生复合,形成一个N型输运层,其中的电子将通过N型纵向导通区流向漏极。

因此,IGBT可以形成一个NPN双极结构。

IGBT的导通过程是通过绝缘栅极的电压控制的。

当绝缘栅极处于低电平时(通常为零电压),N型输运层的电子将被吸引到绝缘栅极下的P型漂移区。

由于电子与空穴再次发生复合,电流无法流过N型区域,因此IGBT处于关断状态。

当绝缘栅极加上正向电压时,电子从N型输运层流向绝缘栅极,形成一个细弱的沟道。

这个沟道会引起N型输运层与P型漂移区之间的空间电荷区扩展,使得电流可以通过N型区域流向漏极。

当绝缘栅极施加足够的电压时,空间电荷区达到最大并且IGBT进入饱和导通状态。

怎么理解绝缘栅双极型晶体管

怎么理解绝缘栅双极型晶体管

怎么理解绝缘栅双极型晶体管绝缘栅双极型晶体管是一种重要的电子器件,它在电子电路中具有广泛的应用。

本文将从多个角度对绝缘栅双极型晶体管进行解析,以帮助读者更好地理解这一器件的原理和特性。

一、绝缘栅双极型晶体管的基本结构和工作原理绝缘栅双极型晶体管由三个区域组成,分别是发射区、基区和集电区。

其中,基区与发射区通过绝缘栅隔离,从而使得绝缘栅双极型晶体管具有了与普通双极型晶体管不同的特性。

绝缘栅双极型晶体管的工作原理是基于PN结的导电特性。

当在绝缘栅上施加正向偏置电压时,绝缘栅与发射区之间的势垒被打破,发射区的电子就会注入到基区中。

这样,基区就会形成一个电子多数载流子的区域,而发射区则成为一个电子少数载流子的区域。

当在集电区施加正向偏置电压时,电子就会从基区进一步注入到集电区,从而形成电流。

二、绝缘栅双极型晶体管的特性和应用1. 高输入电阻:绝缘栅双极型晶体管的绝缘栅与基区之间存在着绝缘层,因此绝缘栅双极型晶体管具有很高的输入电阻,可以减小输入电路的负载效应,提高电路的灵敏度。

2. 低输出电阻:绝缘栅双极型晶体管的集电区电流增大时,由于电子注入的增加,集电区的电导率也会增加,从而降低了输出电阻,提高了电路的输出功率。

3. 快速开关速度:绝缘栅双极型晶体管具有快速的开关速度,可以实现高频率的信号放大和开关控制。

这使得它在射频放大器、频率合成器和通信系统中得到广泛应用。

4. 小型化和集成化:由于绝缘栅双极型晶体管的特殊结构,它可以实现微小尺寸的制造,从而有利于集成电路的小型化和高集成度。

绝缘栅双极型晶体管在电子电路中有着广泛的应用。

例如,在放大电路中,它可以用作低噪声放大器、功率放大器和运算放大器等。

在开关电路中,它可以用于数字逻辑门、触发器和计数器等。

此外,由于绝缘栅双极型晶体管的特殊性能,它还被广泛应用于射频通信、无线传感器网络和医疗器械等领域。

三、绝缘栅双极型晶体管的发展趋势和挑战随着科技的不断进步,绝缘栅双极型晶体管也在不断发展和演进。

绝缘栅双极晶体管的优缺点以及应用场合

绝缘栅双极晶体管的优缺点以及应用场合

绝缘栅双极晶体管的优缺点以及应用场合绝缘栅双极晶体管(IGBT)是一种能够承受高电压和高电流的半导体器件,由于它具有普通双极晶体管和场效应晶体管的优点,同时又能避免它们的缺点,因此在电力电子、变频器和交流调速器等领域得到广泛应用。

其主要优点包括:第一,高电压承受能力。

IGBT的工作电压可以达到数千伏,远高于一般双极晶体管的极限。

第二,高电流承受能力。

IGBT的电流承受能力可以达到数百安培,远高于一般场效应晶体管的极限。

第三,开关速度快。

IGBT的开关速度可以达到微秒级别,比一般双极晶体管要快得多,这使其在高频电路中具有优势。

其主要缺点包括:第一,导通压降大。

由于IGBT的结构特殊,其导通压降比一般双极晶体管要大,这会导致其功率损失增大。

第二,开关损耗大。

由于IGBT的零电压开关和零电流关断特性,其在开关过程中容易产生大量热量,从而增加了开关损耗。

IGBT的应用场合包括:第一,交流驱动器。

IGBT的高电压和高电流承受能力,以及快速的开关速度,使其适用于交流电机的控制。

第二,逆变器。

IGBT的高电压和高电流承受能力,以及零电压开关和零电流关断特性,使其适用于逆变器的控制。

第三,直流稳压器。

IGBT的高电压承受能力,使其适用于直流稳压器的控制。

总之,IGBT是一种功能强大的半导体器件,具有广泛的应用前景。

然而,应用时需要注意其导通压降和开关损耗等问题,以提高其效率和可靠性。

igbt绝缘栅双极晶体管国家标准

igbt绝缘栅双极晶体管国家标准

igbt绝缘栅双极晶体管国家标准IGBT绝缘栅双极晶体管国家标准。

IGBT(Insulated Gate Bipolar Transistor)绝缘栅双极晶体管是一种半导体器件,具有功率MOSFET和双极晶体管的优点,被广泛应用于电力电子、变频调速、逆变器等领域。

为了规范和统一IGBT绝缘栅双极晶体管的生产、测试和应用,我国制定了一系列国家标准,以确保产品质量和安全性。

首先,IGBT绝缘栅双极晶体管国家标准对产品的分类和命名进行了规定。

根据不同的用途和技术要求,IGBT绝缘栅双极晶体管被分为不同的等级和型号,并对其命名进行了统一规范,以便生产厂家和用户能够准确地识别和选择合适的产品。

其次,国家标准对IGBT绝缘栅双极晶体管的技术要求进行了详细的规定。

包括电气特性、封装结构、环境适应能力、可靠性指标等方面的要求,以确保产品在各种工作条件下都能够稳定可靠地工作,并具有一定的抗干扰能力和环境适应能力。

此外,IGBT绝缘栅双极晶体管国家标准还对产品的检验方法和标志进行了规定。

包括产品的外观检查、电气性能测试、环境适应能力测试等内容,以及产品标志的规定和使用,以便生产厂家和用户在使用过程中能够准确地了解产品的性能和质量等信息。

总的来说,IGBT绝缘栅双极晶体管国家标准的制定,对于推动我国IGBT绝缘栅双极晶体管产业的发展,提高产品质量和安全性,促进技术创新和产业升级具有重要意义。

只有严格依照国家标准生产、测试和应用IGBT绝缘栅双极晶体管,才能够确保产品的质量和可靠性,为用户提供更加优质的产品和服务。

综上所述,IGBT绝缘栅双极晶体管国家标准的制定和执行,是我国电力电子领域的重要举措,将为行业的发展和产品的质量提升起到积极的推动作用。

希望生产厂家和用户能够充分重视国家标准的执行,共同推动我国IGBT绝缘栅双极晶体管产业的健康发展。

绝缘栅双极型晶体管作用

绝缘栅双极型晶体管作用

绝缘栅双极型晶体管作用
绝缘栅双极型晶体管(IGBT)是一种高性能功率半导体器件,广泛应用于电力电子、交通运输、工业自动化等领域。

其主要作用如下:
1. 放大信号:IGBT具有较高的电压放大倍数和较低的输入阻抗,能够有效地放大小信号。

2. 控制电流:IGBT的控制端可以通过调节输入信号的大小来控制输出电流的大小,从而实现对电路的精确控制。

3. 开关功能:IGBT具有快速开关和可靠性高等特点,可以在高频率下进行开关操作,并且不易出现损坏情况。

4. 降低功耗:由于IGBT具有较低的导通损耗和截止损耗,因此能够有效地降低功耗并提高效率。

5. 保护作用:当负载电流过大或过载时,IGBT可以自动切断电路以避免设备损坏,并保护系统安全运行。

6. 防止反向漏电流:由于IGBT具有良好的反向阻断特性,能够有效地防止反向漏电流对设备造成损害。

总之,绝缘栅双极型晶体管是一种高性能功率半导体器件,具有多种作用,能够广泛应用于各个领域。

绝缘栅双极型晶体管设计与工艺

绝缘栅双极型晶体管设计与工艺

绝缘栅双极型晶体管设计与工艺
绝缘栅双极型晶体管(IGBT)是一种常用的功率半导体器件,通常用于高电压、高电流和高功率应用中。

IGBT具有具有高
开关速度、低导通压降和低饱和压降等优点,被广泛应用于电力电子和电动机控制等领域。

以下是IGBT的设计与工艺步骤:
1. 设计IGBT电路结构:根据需要的电流和电压要求,确定IGBT的电路结构,包括NPN功率二极管的织构和PNP织构等。

同时,还要确定绝缘栅结构的参数,例如栅极长度、栅极宽度和栅极氧化层厚度等。

2. 设计IGBT掺杂层结构:在半导体衬底上进行多次掺杂和扩
散工艺,形成绝缘栅结构、集电极结构和发射极结构。

掺杂的材料和掺杂浓度要根据所需的电流和电压要求来确定。

3. 完成绝缘栅结构:使用物理气相沉积(PECVD)或化学气
相沉积(CVD)技术制备绝缘栅氧化层。

4. 完成金属电极:利用光刻和蒸镀工艺对铝或其他金属材料进行沉积和定义,形成栅极、集电极和发射极等金属电极。

5. 完成封装:将已制备好的IGBT芯片封装到塑料外壳中,并
连接外部引脚。

封装过程中需要考虑导热性能和电气隔离等。

6. 进行测试和性能验证:对制备好的IGBT进行电气性能测试
和可靠性测试,确保其性能符合要求。

以上是绝缘栅双极型晶体管设计与工艺的一般步骤,具体的步骤和工艺参数可能会有所不同,取决于具体的需求和制造工艺。

IGBT绝缘栅双极晶体管解析

IGBT绝缘栅双极晶体管解析

IGBT是Insulated Gate Bipolar Transistor的英文缩写绝缘门双极性晶体管绝缘栅双极晶体管缩写IGBTMOSFET是场效应管,因为只有一个极性的粒子导电,又称为单极性晶体管。

是功率管,有放大作用,IGBT的本质就是一个场效应管,不过是在场效应管的基础上加上了P+层。

是结合了场效应管&双极性晶体管的特点。

IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。

由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。

虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。

较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。

IGBT基本结构见图1中的纵剖面图及等效电路。

导通IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。

如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。

基片的应用在管体的P+和N+ 区之间创建了一个J1结。

当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率MOSFET的方式产生一股电流。

如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。

最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流);空穴电流(双极)。

关断当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。

绝 缘 栅 双 极 型 晶 体 管

绝 缘 栅 双 极 型 晶 体 管

绝缘栅双极型晶体管 IGBT是由 MOSFET和双极型晶体管复合而成的一种器件,其输入极为 MOSFET,输出极为 PNP晶体管,因此,可以把其看作是 MOS输入的达林顿管。

它融和了这两种器件的优点,既具有 MOSFET器件驱动简单和快速的优点,又具有双极型器件容量大的优点,因而,在现代电力电子技术中得到了越来越广泛的应用。

在中大功率的开关电源装置中, IGBT由于其控制驱动电路简单、工作频率较高、容量较大的特点,已逐步取代晶闸管或 GTO。

但是在开关电源装置中,由于它工作在高频与高电压、大电流的条件下,使得它容易损坏,另外,电源作为系统的前级,由于受电网波动、雷击等原因的影响使得它所承受的应力更大,故IGBT的可靠性直接关系到电源的可靠性。

因而,在选择 IGBT时除了要作降额考虑外,对 IGBT的保护设计也是电源设计时需要重点考虑的一个环节。

工作原理IGBT的等效电路如图 1所示。

由图 1可知,若在 IGBT的栅极和发射极之间加上驱动正电压,则 MOSFET导通,这样 PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若 IGBT的栅极和发射极之间电压为 0 V,则 MOSFET截止,切断 PNP晶体管基极电流的供给,使得晶体管截止。

由此可知, IGBT的安全可靠与否主要由以下因素决定:—— IGBT栅极与发射极之间的电压;—— IGBT集电极与发射极之间的电压;——流过 IGBT集电极-发射极的电流;—— IGBT的结温。

如果 IGBT栅极与发射极之间的电压,即驱动电压过低,则 IGBT 不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则 IGBT可能永久性损坏;同样,如果加在 IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过 IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流, IGBT的结温超过其结温的允许值, IGBT都可能会永久性损坏。

2 保护措施在进行电路设计时,应针对影响 IGBT可靠性的因素,有的放矢地采取相应的保护措施。

绝缘栅双极型晶体管及应用进行讨论

绝缘栅双极型晶体管及应用进行讨论

绝缘栅双极型晶体管及应用进行讨论绝缘栅双极型晶体管(IGBT)是一种功能强大的功率器件,广泛应用于各种电力和电子系统中。

它结合了双极型晶体管(BJT)和金属氧化物半导体场效应晶体管(MOSFET)的优点,具有高电压、高电流和高功率的能力。

首先,我们来讨论IGBT的结构。

IGBT由NPN型双极型晶体管和P型MOSFET组成,其中双极型晶体管负责控制电流,MOSFET负责控制电压。

IGBT的基极连接双极型晶体管的集电极,发射极连接双极型晶体管的基极,而栅极连接MOSFET的栅极。

这种结构使得IGBT既能够实现高电流放大能力,又能够通过栅极控制电流。

IGBT的工作原理是这样的:当栅极施加正电压时,栅极结与源结之间产生正向偏压,导致P型基区形成大量的N型电子,使得NPN型双极型晶体管处于导通状态。

通过控制栅极电压的大小,可以精确地控制双极型晶体管的导通程度,从而控制电流的大小。

当栅极电压为零或负电压时,IGBT处于截止状态,不导通电流。

这种特性使得IGBT可以用作开关器件,在高功率应用中实现快速的开关操作。

IGBT具有许多应用领域,特别是在电力电子和电力系统中。

一种主要的应用是电力转换器,用于将直流电转换为交流电或反过来。

IGBT可以承受高电压和高电流,因此非常适合于这些高功率转换应用。

此外,IGBT还用于电机驱动器,用于控制电动机的速度和转向。

IGBT的快速开关能力使电机驱动系统更加高效,减少能量损耗。

此外,IGBT还常用于电力系统中的静态无功补偿(SVC)和静态同步补偿(STATCOM)系统中。

这些系统用于实现电网的功率因数校正和电压调节。

IGBT的快速开关特性和高电压能力使得它在这些动态补偿系统中非常有用。

总的来说,绝缘栅双极型晶体管(IGBT)是一种能够高效控制功率的器件。

它结合了双极型晶体管和MOSFET的优点,具有高电压、高电流和高功率的能力。

IGBT广泛应用于电力电子和电力系统中,如电力转换器、电机驱动器、静态无功补偿和静态同步补偿系统等。

绝缘栅双极型晶体管工作原理

绝缘栅双极型晶体管工作原理

绝缘栅双极型晶体管工作原理绝缘栅双极型晶体管,听起来有点高大上,其实它就像一位舞台上的明星,既能独当一面,又能与其他演员配合得天衣无缝。

想象一下,在电路的世界里,它就像个神奇的开关,能在瞬间把电流导入或切断。

平常说的电流,就像是马路上的车辆,流动起来的时候,一切都井然有序,但如果遇上堵车,嘿,麻烦就来了。

那绝缘栅双极型晶体管(IGBT)到底是怎么工作的呢?它有个超厉害的结构。

想象一下,一座高楼,最上面有个阳台,阳台上有个小门,这个小门就是“栅极”。

它负责控制“楼里”的大批电流。

这楼里有电流“公寓”,一进一出,各种电流在这里忙得不可开交。

有了这个小门,电流就能听从指挥,谁进谁出,完全看这个栅极的心情。

我们来聊聊栅极的工作。

它有个特别的地方,就是不需要直接连接电流。

就像魔法一样,只要给栅极施加一个小小的电压,它就能“喊”电流过来。

电流像听话的小孩,听到指令就乖乖地涌动过来,简直是太神奇了!不过,栅极可不是随便就能控制的,得讲究技巧。

要是施加的电压不够,电流就不愿意配合,那就尴尬了。

再来说说这小门的“材料”。

绝缘层就像是它的保护罩,确保了电流不随便乱跑。

要知道,这保护罩是多么重要,稍不留神,电流就可能打破规则,产生短路,那就麻烦大了。

正因为有了这个绝缘层,IGBT才能在高电压和大电流的环境下,依然稳稳当当地工作。

IGBT不仅仅是个开关,它的应用可广泛了。

比如,咱们日常见到的电动汽车和风力发电机里,IGBT都是个大忙人。

它们帮助电能转化、调节,确保一切运转如飞。

再比如,咱们的冰箱、空调,里面的电路都有它的身影,真是家庭的“隐形英雄”。

如果我们进一步深入,IGBT的速度也让人惊叹。

它的开关速度可不是一般的快,像风一样迅捷,瞬间就能切换。

想想,开关电源的时候,简直跟开赛车一样刺激。

这速度让它能轻松应对各种负载变化,绝对是电力系统的“超级英雄”。

不过,IGBT也有小脾气。

长时间工作会让它发热,就像人在阳光下晒久了会中暑一样。

绝缘栅双极晶体管的基本知识

绝缘栅双极晶体管的基本知识

绝缘栅双极晶体管的基本知识绝缘栅双极晶体管(Insulated Gate Bipolar Transistor,IGBT)是一种常用的电力开关器件,具有较高的电压承受能力和较低的导通压降。

它在现代电力电子技术中得到广泛应用,如变频器、电力逆变器、电力调制器等。

绝缘栅双极晶体管由三个区域组成:N型区域、P型区域和N型区域。

N型区域被称为发射极,P型区域被称为集电极,N型区域被称为基极。

发射极和集电极之间通过P型区域形成P-N结,而基极和发射极之间通过N型区域形成N-P结。

在基极和发射极之间有一层绝缘栅氧化物,起到隔离的作用。

绝缘栅双极晶体管的工作原理如下:当发射极和集电极之间的电压为正时,P-N结会被正向偏置,这时集电结会导通,电流可以从集电极流向发射极。

此时,绝缘栅氧化物上施加一个正电压,使绝缘栅区的电子层向内侧迁移,导致N-P结中的空穴区域减少,从而减小了N-P结的屏蔽效应,提高了电流传输的效率。

因此,绝缘栅双极晶体管具有较低的导通压降。

当发射极和集电极之间的电压为负时,P-N结会被反向偏置,此时集电结不导通,绝缘栅氧化物上施加的正电压使得绝缘栅区的电子层向外侧迁移,增加了N-P结的空穴区域,从而增加了屏蔽效应,减小了电流的传输效率。

因此,绝缘栅双极晶体管具有较高的电压承受能力。

绝缘栅双极晶体管在电力电子领域的应用非常广泛。

它具有较高的开关速度和较低的开关损耗,可以实现高效率的能量转换。

此外,绝缘栅双极晶体管还具有较好的抗短路能力和抗干扰能力,能够在恶劣的工作环境下稳定运行。

绝缘栅双极晶体管的基本知识是电子工程师和电力工程师必备的知识之一。

了解绝缘栅双极晶体管的结构和工作原理,对于设计和应用电力电子系统具有重要意义。

在实际应用中,需要根据具体的要求选择合适的绝缘栅双极晶体管型号,并合理设计电路和控制策略,以实现高效、稳定和可靠的工作。

绝缘栅双极晶体管是一种重要的电力开关器件,具有较高的电压承受能力和较低的导通压降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 从正向阻断状态转换到 正向导通的过程。
❖ 开通延迟时间td(on) : 10%IICC从M所10需%U时C间EM。到
❖ 电流上升时间tr : 90%ICI从CM1所0%需I时CM间上。升至
❖ 开通时间ton :

ton = td(on) + tr
图3.7.3 IGBT的开关特性
25.06.2020
✓ IGBT的伏安特性分为:截止区、有源放大区、饱和 区和击穿区。
图3.7.2 IGBT的伏安特性和转移特性
25.06.2020
32
当MOSFET的导电沟道充分 开启,IGBT的集电极电流主 要由钉二极管部份决定,其
通态伏安特性为指数函数, 而VMOS和GTR皆为线性关 系。因此,在同样的耐压下, 使用IGBT比使用VMOS和 GTR更容易通过较大电流, 获得更大的功率输出。如对 于600V等级的器件,IGBT能 够承受的最大电流密度一般 是VMOS的20倍,是GTR的5 倍左右。
1、基本结构
IGBT每个器 件单元实际 上就是 MOSFET和 双极晶体管 BJT的组合
集电极 C
铝栅结构IGBT
硅栅结构IGBT
MOSFET
• IGBT的构造和功率MOSFET的对比 如左图所示。IGBT是通过在功率 MOSFET的漏极上追加p+层而构成 的,从而具有以下特征。
• 1电压控制型元件
IGBT的伏安特性与GTR 类似,不同之处是,控 制参数是门源电压VGS, 而不是基极电流,伏安 特性分饱和区(Ⅰ)、 放大区(Ⅱ)和击穿区 (Ⅲ)。如果无N+缓冲 区,正反向阻断电压可 以做到同样水平,但加 入缓冲区,反向阻断电 压只有几十伏。
31
IGBT的伏安特性
反映在一定的栅极一发射极电压UGE下器件的输 出端电压UCE与电流Ic的关系。
S
α2 α1
D
等效电路
Hale Waihona Puke C(D) GE(S)
图形符号
特点:
具有通态密度 高、正反向阻 断能力强以及 导通和关断双 可控特点,且 功耗小
3、IGBT分类
沟道
N沟道IGBT P沟道IGBT
缓冲区
25.06.2020
有,非对称型IGBT(穿通型)
PT-IGBT: 冲压机Throught-IGBT
无,对称型IGBT(非穿通型)
双极型器件
GTR(大功率晶体管)结构示意图
优点:由于有少数载流子的注入对漂 移区电导的调制,其通流能力一般都 很高,电流密度约为200~300A/cm2, 因此器件尺寸小,价格低。
缺点:除开关速度低外,开关过程中 的功率消耗太大。
单极型器件
VMOS结构示意图
克服了双极型器件的以上二个缺 点,但由于没有少数载流子的电 导调制作用,以至于通态电阻 Ron较大,通流能力较小。如 600V耐压VMOS最大电流密度仅 为10A/cm2。
• IGBT的理想等效电路,正如图2所示,
是对pnp双极型晶体管和功率MOSFET
进行达林顿连接(就是两个三极管接在一起,
IGBT
极性只认前面的三极管)后形成的单片型Bi-
MOS晶体管。因此,在门极—发射极之
间外加正电压使功率MOSFET导通时,
pnp晶体管的基极—集电极间就连接上
了低电阻,从而使pnp晶体管处于导通
+
J3 J2 J1
S —D
S
IGBT的正向阻断电压 则是由J2结的雪崩电压

决定。因为VCE为正
时,若栅极对发射极短
J3
路,J2结处于反向偏置
状态而VDMOS未能形 厚基区 J2
成导电沟道。
J1
但若此时对栅极加正向
电压,沟道体表面形成
沟道,IGBT进入正向
+
导通状态。
D
S
IGBT导通原理
+(小

tfi2——IGBT内部的PNP晶体管 的关断过程,ic下降较慢。
图3.7.3 IGBT的开关特性
25.06.2020
41
3.开关时间:用电流的动态波形确定开关时间。 ①漏极电流的开通时间和上升时间: 开通时间:ton=td(on)+tri 上升时间:tr=tfv1+tfv2 ②漏极电流的关断时间和下降时间: 关断时间:toff=td(off)+trv 下降时间:tf=tfi1+tfi2 ③反向恢复时间:trr
25.06.2020
34
由于MOSFET和PNP管在这里是 达林顿接法,其电流不会像 MOSFET那样从零伏开始上升, 而是存在着PNP晶体管VBE所需 要的偏置电压。一旦电导调制效 应发生后,其动态电阻与 MOSFET相比则非常小。
➢IGBT不适合于要求器件压降低于0.7V的场合下使用
➢击穿电压高的IGBT器件电流容量较低。高耐压器件 的N基区较宽。
39
2.关断过程:
td(off):延迟时间
trv:VDS上升时间
tfi2:由PNP晶体管中 存储电荷决定,此时 MOSFET已关断, IGBT又无反向电压, 体内存储电荷很难迅 速消除,因此下降时 间较长,VDS较大,功 耗较大。一般无缓冲 区的,下降时间短。
由MOSFET决定
25.06.2020
IGBT模块
IGBT(IGT),1982年研制, 第一代于1985年生产,主要 特点是低损耗,导通压降为 3V,下降时间0.5us,耐压 500—600V,电流25A。第二 代于1989年生产,有高速开 关型和低通态压降型,容量 为400A/500—1400V,工作频 率达20KHZ。
目前第三代正在发展,仍然分 为两个方向,一是追求损耗 更低和速度更高;另一方面 是发展更大容量,采用平板 压接工艺,容量达1000A, 4500V;命名为IEGT (InjectionEnhancedGateTra nsistor)
25.06.2020
42
动态特性(开关特性)
uGE tON
0.9UGEM
UST 0.1UGEM
UGEM
钳位效应:G-E驱动电流≈
二极管正向特 性
tOFF
t
iC
0.9ICM
0.1ICM
uCE
t2
ICM
t1
MOSON GTRON
• IGBT也属场控器件,其驱动原 理与电力MOSFET基本相同,是一 种由栅极电压UGE控制集电极电流 的栅控自关断器件。
❖ 导通:UGE大于开启电压UGE(th)时,
MOSFET内形成沟道,为晶体管提 供基极电流,IGBT导通。
❖ 导通压降:电导调制效应使电阻 RN减小,使通态压降小。
❖ 关断:栅射极间施加反压或不加 信号时,MOSFET内的沟道消失,
NPT-IGBT:非冲压机Throught-IGBT
20
IGBT按缓冲区的有无来分类,缓冲区是介于P+ 发射区和N-飘移区之间的N+层。无缓冲区者称 为对称型IGBT,有缓冲区者称为非对称型IGBT。 因为结构不同,因而特性也不同。非对称型 IGBT由于存在N+区,反向阻断能力弱,但其正 向压降低、关断时间短、关断时尾部电流小;与 此相反,对称型IGBT具有正反向阻断能力,其 他特性却不及非对称型IGBT。目前商品化的 IGBT单管或模块大部分是非对称型IGBT。
BiMOS器件
兼双极和单极型器件所长构成的 一种新型器件。这种新型器件设 计与制造技术就是双极—MOS复 合器件技术,简称BiMOS技术。 如IGBT、MCT等。
IGBT IGBT-绝缘栅双极晶体管
——是一种新型电力电子器件,具有输 入阻抗高、通态压降低、驱动电路简单、 安全工作区宽、电流处理能力强的特点, 广泛应用在电机控制、中频开关电源和 逆变器、机器人、空调器以及要求快速、 低损耗的许多领域
1700V/1200A , 3300V/1200A IGBT 模块
IGBT模块内部结构
Powerex CM300DY-24H
4x IGBT
4x二极管
4.1 IGBT的结构和工作原理
IGBT是在VMOS的基础上发展起来的, 两者结构十分类似,不同之处是IGBT 多了一层P+层发射极,从而多了一个 大面积的P+N结(J1)。 IGBT也有N沟道和P沟道之分。
思考与讨论
1, 请分析IGBT与MOSFET的区别。 2, 请分析IGBT的工作原理。
25.06.2020
30
IGBT的工作特性包括静态和动态两类:静态特性。IGBT的静态特性主 要有伏安特性、饱和电压特性、转移特性和开关特性。
4、工作特性与参数
❖伏安特性
(1)静态特性
IC
25.06.2020
VBR VC E
1.开通过程:
td(on):开通延迟时间 tri:电流上升时间 tfv1,tfv2:漏源电压下降时间 tfv1:MOSFET单独工作时的 电压下降时间。
tfv2:MOSFET和PNP管同时 工作时的电压下降时间。随漏
源电压下降而延长;受PNP管
饱和过程影响。
25.06.2020
38
IGBT的开关特性 (1)IGBT的开通过程:
不进入深饱和区,它的 电压降比处于深饱和区
Rb BJT
的 同 样 PNP 管 要 高 。 然
G
而特别应该指出的是: MOSFET
一 个 IGBT 发 射 极 覆 盖
芯片的整个面积,因此
它的注射效率和通态压
S
降比同样尺寸的双极晶
体管要优越得多。
对于已正向导通的 IGBT,如果想令其转 入关断状态,只须让 VG=0即可,可以通过 将栅极与发射极短路来 实现。
状态。此后,使门极—发射极之间的电
压为0V时,首先功率MOSFET处于断路
相关文档
最新文档