人教版五年级上册数学列方解应用题找等量关系

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级列方程解应用题找等量关系练习题
一、译式法
将题目中的关键性语句翻译成等量关系。

(一)从关键语句中寻找等量关系。

1、关键句是“求和”句型的.
例:先锋水果店运来苹果和梨共720千克,其中苹果是270。

运来的梨有多少千克?理解:720千克由两部分组成:一部分是苹果,一部分是梨子。

苹果+梨 = 720
270 + x = 720
2、关键句是“相差关系”句型。

关键词:比一个数多几,比一个数少几,
例:小张买苹果用去7.4元,比买橘子多用0.6元,每千克橘子多少元?
理解:苹果与橘子相比较,多用了元。

(推荐)直译法列式:从“比”字后面开始列:橘子+ = 苹果
x + =
比较法列式:较大数-较小数=相差数:苹果-橘子=元
- x =
3、关键句是“倍数关系”句型。

饲养场共养2400只母鸡,母鸡只数是公鸡只数的2倍,公鸡养了多少只?
理解:公鸡是1倍数,要求,母鸡是2倍数,为2400只。

(推荐)列乘法式:(从“是”字后面开始列)公鸡×2 = 母鸡 2X = 2400
列除法式:母鸡÷公鸡= 2倍
2400 ÷ x = 2
4、有两个关键句,既有“倍数”关系,又有“求和”或者“相差”关系。

一般把“和
差”关系作为全题的等量关系式,倍数关系作为两个未知量之间的关系,用来设未知量。

(1倍数设为x,几倍数设为几x。


如果只有和差关系的话,一般把求和关系作为全题的等量关系式,相差关系作为两个未知量之间的关系。

(把较小数设为x,则较大数为x+a。


例:果园里共种240棵果树,其中桃树是梨树的2倍,这两种树各有多少棵?
解:设梨树为x棵,则桃树为2x棵。

桃树+梨树= 240
2x +x = 240
例:河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍。

又知鸭比鹅多27只,鹅和鸭各多少只?
解:设鹅为x只,则鸭为4x只。

鹅+27只= 鸭鸭-鹅= 27只
x + 27= 4x 4x-x = 27
例:后街粮店共运来大米986包,上午比下午多运14包,上午和下午各运多少包?解:设下午运了x包,则上午运了x+14包。

上午+下午= 全天共运的
(x+14)+ x = 986
(二)没有关键句,找关键字上,寻找等量关系式。

“一共”、“还剩”
例:网球场一共有1428个网球,每筒装5个,还剩3个。

装了多少筒?
理解:网球分成了两个部分,一部分数装了的,另一部分是还剩下没装的。

共有的-装了的= 还剩的
解:设装了X筒。

装了的 + 剩下的 = 共有的
1428 - 5x = 3
5x + 3 = 1428
5X=1428-3
5X=1425
X=1425÷5
X=285
例:一辆公共汽车上有乘客38人,在火车站有12人下车,又上来一些人,这时车上有乘客54人。

在火车站上车的有多少人?
解:设在火车站上车的有 X人。

原有人数-下车人数+上车人数= 现有人数
38 -12 + X = 54 (三)从常见的数量关系中找等量关系。

这种方法一般适用于工程问题、路程问题、价格问题。

工作效率×工作时间=工作总量
速度×时间=路程
单价×件数=总价
例:两辆汽车同时从相距的两个车站相向开出,3小时两车相遇,一辆汽车每小时行68千米,另一辆汽车每小时行多少千米?
理解:这是典型的相遇问题(行程问题)。

速度和×相遇时间=相遇路程
(68+x)× 3 = 498
(四)从公式中找等量关系。

例:一幅画长是宽的2倍,做画框共用了的木条,求这幅画的面积是多少?
理解:“做画框共用了的木条”这句话是告诉我们画框的周长。

解:设宽为x米,则长为2x米。

(根据长宽倍数关系设未知量)
长方形的周长公式:(长+宽)×2=周长
(2X+X)×2=
(五)从隐蔽条件中找等量关系。

例:鸡和兔数量相同,两种动物的腿共有48条,求鸡和兔各有多少只?
理解:题中隐藏了两个重要的条件:鸡有2条腿,兔有4条腿。

解:设鸡为x只,则鸡腿为2X只,兔腿为4x只。

鸡的腿数+兔的腿数= 48
2X + 4X = 48
例:两个相邻的奇数之和是176,这两个数各是多少?
理解:题中隐藏的条件:大奇数比小奇数多2。

解:设小奇数为x,则大奇数为x+2.
小奇数+大奇数= 176
X +(x+2)= 176
二、列表法。

将已知条件和所求的未知量纳入表格,从而找出各种量之间的关系。

例:某工地有一批钢材,原计划每天用6吨,可以用70天,现在每天节约吨,这样一来可以用多少天?
每天用量天数
原计划 6 70
实际 6- x
实际总量= 原计划总量
(6-)x= 6×70
以上所举只是一些比较简单的应用题。

如果遇到较复杂的应用题,还要采取灵活的方法,如“抓住不变量解”、“换一种说法解”、“根据题意逐步解”、“逆向思考推导解”等等。

这些都要求学生在解决具体问题时,采取不同的方法,以求顺利解答
找到等量关系解决问题(强化训练)
1.某数的2倍比这个数大1,求这个数。

2.某数的3倍比这个数的一半大2,求这个数。

3.六(1)班有16名女生,女生比男生的倍少2人,男生有多少人?
4.甲、乙两组共50人,且甲队人数比乙队人数的2倍少10人,求两队各有多少人?
5李明有1136张中国邮票,中国邮票比外国邮票的8倍还多16张,外国邮票有多少张?
6.把下图面积为20平方厘米的长方形分成两块,使其中的大面积是小面积的3倍。

大面积和小面积各是多少?
7.小王买了6斤苹果,他给了老板50元,老板找回他26元,求苹果的单价。

8.李先生买了6支铅笔和2个文具盒,共花了50元,已知铅笔和文具盒的单价之和
为15元,求文具盒的单价。

9.长方形的周长为60米,已知长是宽的倍,求它的面积。

10.长方形的周长为20米,已知长比宽的2倍少2米,求它的面积。

11.三角形面积是20,底边长为8,求高。

12梯形的下底比上底多2米,高5米,面积为40平方米。

求梯形上底。

13、小军有邮票的张数是小林的3倍,他们一共有邮票240张,求小军和小林各有邮票多少张?
14、某植物园有松树和榕树120棵,已知松树是榕树棵数的2倍,问榕树,松树各有多少棵?
15、饲养场有公鸡和母鸡480只,母鸡比公鸡的2倍还多30只,这个饲养场公鸡和母鸡各有多少只?16、甲仓库粮是乙仓库的3倍,如果从甲仓库运出90吨,从乙仓运出10吨,则两仓库存粮相等,甲乙两仓库原各存粮多少吨?
17、幼儿园小朋友分糖,每人6颗则多80颗,每人8颗则少20颗,问有几个小朋友?多少颗糖果?
18.一班有48人,在某一次捐款活动中,男生平均每人捐款5元,女生平均每人捐款8元,全班一共捐款285元。

问男生有多少人?
19.某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?
20.在生物竞赛中,某校共有22人获得一、二等奖,若一等奖的奖金50元,二等奖的奖金是30元, 22人一共获得奖金860元,问有多少人获得二等奖?
21.一批图书分给班上学生,若每人分3本则多出20本,若每人分4本则还差25本。

求班上有多少人?
22、第一个正方形的边长比第二个正方形的边长的3倍多1厘米,而它们的周长相差12厘米,求这两个正方形的面积分别为多少?
23、甲仓存粮130吨,乙仓存粮80吨,从甲仓运多少吨到乙仓,才能使乙仓存粮比甲仓的4倍多10吨?
24、有一群鸭在池塘里嬉戏,河里有78只鸭,岸上有26只鸭,从河里上岸多少只,岸上的鸭就是河里的鸭的4倍少1只?
25.要生产一批篮球,若每天生产25个,则到了规定时间还有50个未完成。

若每天生产28个,则到了规定时间超产40个。

问一共要生产多少个篮球?
26、一条1000米的公路,平均每天修x米,修了8天,还剩下440米。

关系式:
方程;
答:27、小军有邮票的张数是小林的3倍,他们一共有邮票240张,求小军和小林各有邮票多少张?
28某植物园有松树和榕树120棵,已知松树是榕树棵数的2倍,问榕树,松树各有多少棵?
29、饲养场有公鸡和母鸡480只,母鸡比公鸡的2倍还多30只,这个饲养场公鸡和母鸡各有多少只?
30甲仓库粮是乙仓库的3倍,如果从甲仓库运出90吨,从乙仓运出10吨,则两仓库存粮相等,甲乙两仓库原各存粮多少吨?
31幼儿园小朋友分糖,每人6颗则多80颗,每人8颗则少20颗,问有几个小朋友?多少颗糖果?。

相关文档
最新文档