光电编码器输出脉冲的几种计数方法
编码器内部PNP-NPN详解说明-有图示
编码器输出信号类型一般情况下,从编码器的光电检测器件获取的信号电平较低,波形也不规则,不能直接用于控制、信号处理和远距离传输,所以在编码器内还需要对信号进行放大、整形等处理。
经过处理的输出信号一般近似于正弦波或矩形波,因为矩形波输出信号容易进行数字处理,所以在控制系统中使用比较广泛。
增量式光电编码器的信号输出有集电极开路输出、电压输出、线驱动输出和推挽式输出等多种信号形式。
1集电极开路输出集电极开路输出是以输出电路的晶体管发射极作为公共端,并且集电极悬空的输出电路。
根据使用的晶体管类型不同,可以分为NPN集电极开路输出(也称作漏型输出,当逻辑1时输出电压为0V,如图2-1所示)和PNP集电极开路输出(也称作源型输出,当逻辑1时,输出电压为电源电压,如图2-2所示)两种形式。
在编码器供电电压和信号接受装置的电压不一致的情况下可以使用这种类型的输出电路。
图2-1 NPN集电极开路输出图2-2 PNP集电极开路输出对于PNP型的集电极开路输出的编码器信号,可以接入到漏型输入的模块中,具体的接线原理如图2-3所示。
注意:PNP型的集电极开路输出的编码器信号不能直接接入源型输入的模块中。
图2-3 PNP型输出的接线原理对于NPN型的集电极开路输出的编码器信号,可以接入到源型输入的模块中,具体的接线原理如图2-4所示。
注意:NPN型的集电极开路输出的编码器信号不能直接接入漏型输入的模块中。
图2-4 NPN型输出的接线原理2.2电压输出型电压输出是在集电极开路输出电路的基础上,在电源和集电极之间接了一个上拉电阻,这样就使得集电极和电源之间能有了一个稳定的电压状态,如图2-5。
一般在编码器供电电压和信号接受装置的电压一致的情况下使用这种类型的输出电路。
图2-5电压输出型2.3推挽式输出推挽式输出方式由两个分别为PNP型和NPN型的三极管组成,如图2-6所示。
当其中一个三极管导通时,另外一个三极管则关断,两个输出晶体管交互进行动作。
光电编码器原理及应用电路
光电编码器原理及应用电路交直流侍服器补缀1.光电编码器原理光电编码器,是一种议决光电转换将输出轴上的机器多少位移量转换成脉冲或数字量的传感器。
这是如今应用最多的传感器,光电编码器是由光栅盘和光电检测装置构成。
光栅盘是在肯定直径的圆板上中分地开通多少个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件构成的检测装置检测输出多少脉冲信号,其原理表示图如图1所示;议决谋划每秒光电编码器输出脉冲的个数就能反响当前电动机的转速。
别的,为鉴定旋转方向,码盘还可提供相位相差90旱牧铰仿龀逍藕拧根据检测原理,编码器可分为光学式、磁式、感到式和电容式。
根据其刻度要领及信号输出式样,可分为增量式、尽对式以及稠浊式三种。
1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90海佣煞奖愕嘏卸铣鲂较颍鳽相为每转一个脉冲,用于基准点定位。
它的长处是原理布局大概,机器匀称寿命可在几万小时以上,抗滋扰本领强,可靠性高,得当于长隔断传输。
其缺点是无法输出轴转动的尽对位置信息。
1.2尽对式编码器尽对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有多少同心码道,每条道上由透光和不透光的扇形区相间构成,相邻码道的扇区数量是双倍干系,码盘上的码道数便是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于差异位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的恣意位置都可读出一个稳固的与位置相对应的数字码。
显然,码道越多,区分率就越高,对付一个具有N位二进制区分率的编码器,其码盘务必有N条码道。
如今国内已有16位的尽对编码器产品。
尽对式编码器是利用天然二进制或循环二进制〔葛莱码〕方法举行光电转换的。
尽对式编码器与增量式编码器差异之处在于圆盘上透光、不透光的线条图形,尽对编码器可有多少编码,根据读出码盘上的编码,检测尽对位置。
编码器的脉冲计数高速计数器小总结
我们一般采用高速输出信号控制步进电机和伺服电机做位置,角度和速度的控制,比如定位,要实现这个目的,我们要知道这几个条件:1、PLC高速输出需要晶体管输出,继电器属于机械动作,反应缓慢,而且易坏2、以PLC为例,高速输出口采用Y0 、Y13、高速输出指令常用的有PLSY 脉冲输出PLSR 带加减速PLSV……可变速的脉冲输出ZRN……原点回归DRVI……相对定位DRVA……绝对定位4、脉冲结束标志位M80295、D8140 D8141 为Y0总输出脉冲数6、在同一个程序里面Y0做为脉冲输出,程序可以存在一次,当需要多次使用的时候,可以采用变址V进行数据的切换,频率,脉冲在不同的动作模式中,改变数据正对上述讲解的内容:我们用一个程序来表示若我们以后可能接触步进;伺服这一块,上述内容,大家一定要熟练掌握在高速计数器与编码器配合使用之前,我们首先要知道是单向计数,还是双向计数,需要记录记录的数据,需要多少个编码器,在PLC中也需要多少个高速输入点,我们先要确认清楚;当我们了解上面的问题以后,参照上题的寄存器分配表得知我们该选择什么高速计数器如:现在需要测量升降机上升和下降的高度,那么我们需要采用双向编码器,即可加可减的,AB相编码器,PLC需要两个IO点,查表得知,X0 X1为一路采用C251高速计数器那么我们可以这样编程,如图开机即启动计数,上升时方向,C251加计数下降时方向,C2 51减计数我们要求编码器转动的数据达到多少时,就表示判断实际升降机到达的位置注意:在整个程序中没有出现X0、X1这个两个软元件是因为C251为X0、X1的内置高速计数器,他们是一一对应的,只要见到c251,X0 X1就在里面了,当然,用了C251以后,X0 、X 1不能在程序里面再当做开关量使用了接线参照下图相对11题定时器和计数器来说,本题目主要是告诉大家学习高数处理的功能PLC内部高速计时器是计数器功能的扩展,高速计数器指令与定位指令使PLC的应用范围从逻辑控制、模拟量控制扩展到了运动控制领域;特点:其最大的特点就是执行的过程中不受PLC的扫描周期影响,而是按照中断方式工作,并且立即输出;之前的题目中,我们说过内部信号计数器,它可以对编程元件X、Y、M、S、T、C信号进行计数;当X信号计数时,要求X的断开和接通一次时间应大于PLC的扫描周期,否则会出现丢步的现象,如果PLC的扫描周期为40ms,则一秒里X的信号频率最高位25HZ;这么低的速度限制了PLC的高速应用范围,如编码器,可以达到10000HZ;编码器后面会讲到我们看高速计数器,可以先参照下面表格图片出处:FX编程手册U:增计数输入;D:减计数输入;A:A相输入;B:B相输入;R:复位输入;S:启动输入;一般不同型号的PLC,可能对应高速计数器的点位控制不一样,首先满足硬件功能;然后在软件上进行实现,两者缺一不可图片出处:三菱编程手册我们现在说说高速计数器与普通计数器的区别:1、高速计数器相对于普通计数器,不受扫描周期的影响,但是,速度还是有限制的;2、多个高速计数输入口,和对应的高速计数器不是任意选择的,由上表得知,他们是一一对应的3、所有高速计数器均为停电保持型,题当前值和出点状态在停电时都会保持停电前的状态,也可以利用参数设定为非停电保持型;4、作为高速计数器的高速输入信号,建议使用电子开关信号,而不要使用机械开关触点信号,由于机械触点的振动会引起信号输入误差,从而影响到正确计数;考考大家的理解能力看了上图,再看后面的内容,我们会不会对高速计数器又一步加深理解编码器是产生脉冲反馈给PLC的检测装置,一般用来检测外围设备走的距离和速度,我们常见的检测位置的元件有:光电编码器、光栅编码器;最常用感应同步器、磁栅编码器、容栅编码器;10年前的产品电位器;30多年前的产品激光干涉仪、机器视觉系统;高精度、高成本旋转式光电编码器原理:光电编码器,是通过光电转换将输入轴上机械几何位移量转换成脉冲数字量的传感器; 光电编码器是有码盘和光电检测装置组成;码盘是在一定直径的透明圆板上等分的印制了若干个细长线,如图,经发光二极管等电子元件组成的检测装置检测脉冲输出信号,即可测量编码器输入轴的转角;通过计算单位时间编码器输出脉冲的个数就能计算出输入轴的转速;增量式编码器:增量式编码器是直接利用光电转换原理输出三组方波脉冲:A、B和脉冲相位差90度,以判断旋转方向,如下图所示;增量式编码器特点:l 构造简单,l 机械寿命长,l 抗干扰能力强,可靠性高;l 缺点是无法输出轴转动角的绝对位置;绝对式编码器:绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数;这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码;显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道;特点:1.可以直接读出角度坐标的绝对值;2.没有累积误差;3.电源切除后位置信息不会丢失;4.有10位、14位、16位等品种;。
光电编码器输出脉冲的几种计数方法
光电编码器输出脉冲的几种计数方法1.总脉冲计数法:总脉冲计数法是最简单的计数方法,即直接对光电编码器输出的每个脉冲进行计数。
计数器工作于计数模式,每次接收到一个脉冲信号,计数器就增加1、通过读取计数器的数值,可以获取到物体的具体位置。
这种方法适用于需要获取绝对位置信息的应用。
2.方向计数法:有些应用场景需要获取旋转运动物体的旋转方向,因此采用方向计数法。
方向计数法在总脉冲计数法的基础上增加了方向信号的判断。
方向信号通常通过一个相位差可调的霍尔元件或光电传感器来实现。
当物体顺时针旋转时,方向信号为高电平,计数器加1;当物体逆时针旋转时,方向信号为低电平,计数器减1、通过方向信号,可以准确识别旋转方向。
3.增量计数法:增量计数法是通过计算每次脉冲的增量来进行计数。
在这种方法中,光电编码器输出的脉冲信号被输入到一个脉冲传感器中,脉冲传感器将脉冲信号转换为固定周期的方波信号。
然后,方波信号经过一个计数器进行计数,每次计数都代表一个固定增量。
通过对增量计数进行累加,可以获取物体的位置信息。
增量计数法适用于需要获取相对位置变化的应用。
4.平均计数法:平均计数法是一种改进的计数方法,通过采用平均值来减小误差。
光电编码器输出的脉冲信号经过一个滤波器进行滤波,去除噪声和波动。
然后,滤波后的信号经过计数器进行计数。
由于滤波的作用,计数器只计数滤波后的信号,而不计数噪声和波动。
这样可以更准确地获取位置信息。
平均计数法适用于对测量精度要求较高的应用。
总结:光电编码器输出脉冲的计数方法有总脉冲计数法、方向计数法、增量计数法和平均计数法。
每种计数方法根据应用场景的需求选择不同的方法。
总脉冲计数法适用于需要获取绝对位置信息的应用;方向计数法适用于需要获取旋转方向的应用;增量计数法适用于需要获取相对位置变化的应用;平均计数法适用于对测量精度要求较高的应用。
光电编码器的工作原理和应用电路[指南]
光电编码器的工作原理和应用电路1 光电编码器的工作原理光电编码器(Optical Encoder)俗称“单键飞梭”,其外观好像一个电位器,因其外部有一个可以左右旋转同时又可按下的旋钮,很多设备(如显示器、示波器等)用它作为人机交互接口。
下面以美国Greyhill公司生产的光电编码器为例,介绍其工作原理及使用方法。
光电编码器的内部电路如图1所示,其内部有1个发光二极管和2个光敏三极管。
当左右旋转旋钮时,中间的遮光板会随旋钮一起转动,光敏三极管就会被遮光板有次序地遮挡,A、B相就会输出图2所示的波形;当按下旋钮时,2、3两脚接通,其用法同一般按键。
当顺时针旋转时,光电编码器的A相相位会比B相超前半个周期;反之,A相会比B相滞后半个周期。
通过检测A、B两相的相位就可以判断旋钮是顺时针还是逆时针旋转,通过记录A或B相变化的次数,就可以得出旋钮旋转的次数,通过检测2、3脚是否接通就可以判断旋钮是否按下。
其具体的鉴相规则如下:1.A为上升沿,B=0时,旋钮右旋;2.B为上升沿,A=l时,旋钮右旋;3.A为下降沿,B=1时,旋钮右旋;4.B为下降沿,A=O时,旋钮右旋;5.B为上升沿,A=0时,旋钮左旋;6.A为上升沿,B=1时,旋钮左旋;7.B为下降沿,A=l时,旋钮左旋;8.A为下降沿,B=0时,旋钮左旋。
通过上述方法,可以很简单地判断旋钮的旋转方向。
在判断时添加适当的延时程序,以消除抖动干扰。
2 WinCE提供的驱动模型WinCE操作系统支持两种类型的驱动程序。
一种为本地驱动程序,是把设备驱动程序作为独立的任务实现的,直接在顶层任务中实现硬件操作,因此都有明确和专一的目的。
本地设备驱动程序适合于那些集成到Windows CE平台的设备,诸如键盘、触摸屏、音频等设备。
另一种是具有定制接口的流接口驱动程序。
它是一般类型的设备驱动程序。
流接口驱动程序的形式为用户一级的动态链接库(DLL)文件,用来实现一组固定的函数称为“流接口函数”,这些流接口函数使得应用程序可以通过文件系统访问这些驱动程序。
编码器分类
编码器分类1、按信号的原理分:增量式编码器、肯定式编码器、混合式编码器1)增量式编码器直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90,从而可便利地推断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简洁,机械平均寿命可在几万小时以上,抗干扰力量强,牢靠性高,适合于长距离传输。
其缺点是无法输出轴转动的肯定位置信息。
2)肯定式编码器利用自然二进制或循环二进制(格雷码)方式进行光电转换的。
肯定式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,肯定编码器可有若干编码,依据读出码盘上的编码,检测肯定位置。
编码的设计可采纳二进制码、循环码、二进制补码等。
它的特点是:(1)可以直接读出角度坐标的肯定值;(2)没有累积误差;(3)电源切除后位置信息不会丢失。
但是辨别率是由二进制的位数来打算的,也就是说精度取决于位数,目前有10位、14位等多种。
3)混合式肯定值编码器它输出两组信息:一组信息用于检测磁极位置,带有肯定信息功能;另一组则完全同增量式编码器的输出信息。
肯定值编码器是一种直接编码和直接测量的检测装置。
它能指示肯定值位置,没有累积误差,电源切除后,位置信息不丢失。
常用的编码器有编码盘和编码尺,统称为码盘。
从编码器的使用记数来分类,有二进制编码、二进制循环码(葛莱码)、二-十进制码等编码器。
从结构原理分类,有接触式、光电式和电磁式等几种。
混合式肯定值编码器就是把增量制码与肯定制码同做在一块码盘上。
在圆盘的最外圈是高密度的增量条纹,中间有四个码道组成肯定式的四位葛莱码,每1/4同心圆被葛莱码分割成16个等分段。
该码盘的工作原理是三极记数:粗、中、精计数。
码盘转的转数由对“一转脉冲”的计数表示。
在一转以内的角度位置有葛莱码的4*16不同的数值表示。
每1/4圆葛莱码的细分有最外圆的增量码完成。
增量式光电编码器:测速,测转动方向,测移动角度、距离(相对)。
高速光电编码器的实时数据处理方法
高速光电编码器的实时数据处理方法高速光电编码器是现代工业自动化和精密控制系统中不可或缺的组件,其主要功能是将机械位移或速度转换为电信号,以实现精确的位置和速度控制。
随着技术的发展,光电编码器的数据传输速率越来越高,这就要求有相应的实时数据处理方法来确保数据的准确性和系统的稳定性。
本文将探讨高速光电编码器的实时数据处理方法,包括数据采集、处理算法、同步机制以及误差校正等方面。
一、高速光电编码器的数据采集高速光电编码器的数据采集是实时数据处理的第一步。
编码器通过光电转换原理,将机械位置变化转换为电信号,这些信号通常以脉冲的形式输出。
为了实现高速数据采集,需要采用高性能的数据采集系统,包括高速模数转换器(ADC)、数字信号处理器(DSP)或现场可编程门阵列(FPGA)等。
1.1 高速模数转换器高速模数转换器是将编码器输出的模拟信号转换为数字信号的关键组件。
为了满足高速数据采集的需求,ADC需要具备高采样率和高分辨率。
此外,ADC的输入噪声和量化误差也需要控制在较低水平,以保证数据的准确性。
1.2 数字信号处理器数字信号处理器(DSP)是一种专为快速数学运算设计的微处理器,它能够高效地处理编码器输出的数字信号。
DSP 通常具有多个处理核心和高速缓存,能够并行处理多个数据流,从而提高数据处理速度。
1.3 现场可编程门阵列现场可编程门阵列(FPGA)是一种可编程的数字逻辑设备,它能够根据用户的需求进行定制。
FPGA在数据采集和处理方面具有灵活性和可扩展性,能够实现复杂的算法和逻辑。
二、数据处理算法数据处理算法是实时数据处理的核心,它决定了数据的准确性和系统的响应速度。
常见的数据处理算法包括滤波算法、插值算法和解码算法等。
2.1 滤波算法滤波算法用于去除信号中的噪声和干扰,提高信号的质量。
常见的滤波算法有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
这些滤波器可以根据系统的需要选择合适的截止频率,以滤除不需要的频率成分。
光电编码器输出脉冲的几种计数方法
光电编码器输出脉冲的几种计数方法光电编码器是一种常用的传感器,可以将物理运动转换成电信号输出。
它通常用于测量旋转角度、线性位移或速度等物理量。
光电编码器的输出通常是脉冲信号,而这些脉冲信号的计数方法对于准确获取物理量的数值至关重要。
在本文中,我们将探讨光电编码器输出脉冲的几种计数方法,并进一步分析其适用范围和优缺点。
1. 简单计数法在简单计数法中,我们直接对光电编码器输出的脉冲信号进行计数。
当脉冲数量达到预定值时,即可得到相应的物理量数值。
这种计数方法简单直接,适用于对物理量精度要求不高的场合,如简单的位置控制系统中。
然而,由于简单计数法无法处理脉冲信号的突变和误码,其适用范围受到一定限制。
2. 相位计数法相位计数法是以脉冲信号的相位变化进行计数。
通过检测脉冲信号的相位变化,可以实现对物理量的准确计数。
相位计数法适用于对脉冲信号变化频率较高的情况,能够有效避免误码和突变信号的影响。
然而,相位计数法对于频率较低的脉冲信号则无法有效计数,因此在选用相位计数法时需谨慎考虑其适用范围。
3. 光电编码器作为位置传感器时的计数方法对于光电编码器作为位置传感器的计数方法,通常采用增量式和绝对式两种方式。
增量式计数方法是基于光电编码器输出的增量脉冲进行计数,适用于需要连续监测位置变化的应用场合,如机械运动控制系统中。
而绝对式计数方法则是直接读取光电编码器输出的位置信息,能够精确获取物理量的绝对数值,适用于对位置精度要求较高的场合。
光电编码器输出脉冲的计数方法多种多样,各有适用范围和优缺点。
在实际应用中,我们需根据具体的物理量测量需求和系统性能要求来选择合适的计数方法。
通过深入理解和灵活运用这些计数方法,我们能够更好地实现对物理量的精确测量与控制。
在本主题中,我深入研究了光电编码器输出脉冲的几种计数方法,通过对比和分析,我对其中的优缺点有了更深入的理解。
我认为在实际应用中,选择合适的计数方法需要综合考虑物理量测量需求、系统性能和可靠性要求等多方面因素,以便更好地实现精确的测量与控制。
电梯编码器知识
电梯编码器知识2009-10-27 20:34 来源:互联网admin 点击: 891次编码器的工作原理介绍一、光电编码器的工作原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90o的两路脉冲信号。
根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
(一)增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90o,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
(二)绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。
目前国内已有16位的绝对编码器产品。
绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。
光电编码器输出脉冲的几种计数方法
《光电编码器输出脉冲的几种计数方法》1. 背景介绍光电编码器是一种常用的测量设备,用于测量旋转或线性运动的位置、速度和加速度。
其输出信号通常为脉冲信号,而如何准确、高效地计数这些脉冲信号成为工程和技术人员关注的焦点之一。
本文将探讨光电编码器输出脉冲的几种计数方法,并对其优缺点进行全面评估。
2. 计数方法一:基于计数器的方法在基于计数器的方法中,常用的计数器有单向计数器和双向计数器。
单向计数器适用于仅需统计脉冲信号的个数而不需要知道方向的场景,而双向计数器则可以准确地统计正负方向的脉冲信号。
这种方法简单直接,具有较高的实时性,但对信号的稳定性和频率要求较高。
3. 计数方法二:基于微处理器的方法基于微处理器的方法通过将脉冲信号输入微处理器中,通过编程实现脉冲的计数。
这种方法灵活多变,适用于复杂的计数任务,并且可以通过编程实现更多的功能,比如对脉冲信号进行滤波、脉冲宽度测量等。
然而,这种方法需要具备一定的编程技能和对硬件信号处理的理解,对技术人员的要求较高。
4. 计数方法三:基于定时器的方法基于定时器的方法是通过定时器对脉冲信号进行时间测量和计数。
这种方法准确性高,适用于对时间要求较高的场景,比如需要测量脉冲信号的频率、周期等。
然而,该方法对定时器的精度、稳定性和对脉冲信号的频率要求较高。
5. 总结与展望本文对光电编码器输出脉冲的几种计数方法进行了深入探讨和评估。
不同的计数方法各有优劣,适用于不同的场景。
在实际应用中,工程和技术人员可以根据具体的需求选择合适的计数方法,并结合实际情况进行优化和改进。
未来随着技术的不断进步和应用需求的不断拓展,光电编码器输出脉冲的计数方法也将不断创新和完善。
6. 个人观点作为文章写手,我深入了解了光电编码器输出脉冲的计数方法,并感到在实际工程中,选择合适的计数方法至关重要。
我个人倾向于基于微处理器的方法,因为其灵活多变,可以通过编程实现更多的功能,从而满足复杂的计数需求。
光电编码器的原理及应用
各输出形式的特点:
单通道连接:用于单方向计数,单方向测速。不适 用于变频器反转。
A,B通道连接:用于正反向计数,判断正反向和测速 。
A,B,Z通道连接:用于带参考位修正的位置测量。
A,A-,B,B-,Z,Z-连接:由于带有对称负信号的连接 ,电流对于电缆贡献的电磁场为0,衰减较少,抗 干扰最佳,可传输较远的距离。
工作原理图
零位 外圈 内圈
பைடு நூலகம்
光电 转换
零位脉冲 A相脉冲 B相脉冲
编码器码盘的材料有玻璃、金属、塑料,玻 璃码盘是在玻璃上沉积很薄的刻线,其热稳定性 好,精度高;金属码盘直接以通和不通刻线,不 易碎,但由于金属有一定的厚度,精度就有限制 ,其热稳定性就要比玻璃的差一个数量级;塑料 码盘是经济型的,其成本低,但精度、热稳定性 、寿命均要差一些。
对于多转绝对值旋转编码器
编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一 组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器 的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码 ,每个位置编码唯一不重复,而无需记忆。 多圈编码器另一个优点是由于测量范围大, 实际使用往往富裕较多,这样在安装时不必要费劲找零点, 将某一中间位置作为起始点 就可以了,而大大简化了安装调试难度。
• 由于采用固定脉冲信号,因此旋转角 度的起始位可以任意设定
• 由于采用相对编码,因此掉电后旋转 角度数据会丢失需要重新复位
注:旋转增量值编码器以转动时输出脉冲,通过计数设备来计算其 位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住 位置。这样,当停电后,编码器不能有任何的移动,当来电工作 时,编码器输出脉冲过程中,也可能有干扰而丢失脉冲,不然, 计数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从 知道的,只有错误的结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位 置修正进计数设备的记忆位置。在参考点以前,但不能保证位置 的准确性的。在工控中就有每次操作先找参考点,开机找零等方 法。
光电编码器测量电机转速的方法
光电编码器测量电机转速的方法光电编码器测量电机转速的方法可以利用定时器/计数器配合光电编码器的输出脉冲信号来测量电机的转速。
具体的测速方法有M法、T法和M/T法3种。
一、M法又称之为测频法,其测速原理是在规定的检测时间Tc内,对光电编码器输出的脉冲信号计数的测速方法,例如光电编码器是N线的,则每旋转一周可以有4N个脉冲,因为两路脉冲的上升沿与下降沿正好使编码器信号4倍频。
现在假设检测时间是Tc,计数器的记录的脉冲数是M1,在实际的测量中,时间Tc内的脉冲个数不一定正好是整数,而且存在最大半个脉冲的误差。
如果要求测量的误差小于规定的范围,比如说是小于百分之一,那么M1就应该大于50。
在一定的转速下要增大检测脉冲数M1以减小误差,可以增大检测时间Tc单考虑到实际的应用检测时间很短,例如伺服系统中的测量速度用于反馈控制,一般应在0.01秒以下。
由此可见,减小测量误差的方法是采用高线数的光电编码器。
M法测速适用于测量高转速,因为对于给定的光电编码器线数N机测量时间Tc条件下,转速越高,计数脉冲M1越大,误差也就越小。
二、T法也称之为测周法,该测速方法是在一个脉冲周期内对时钟信号脉冲进行计数的方法。
为了减小误差,希望尽可能记录较多的脉冲数,因此T法测速适用于低速运行的场合。
但转速太低,一个编码器输出脉冲的时间太长,时钟脉冲数会超过计数器最大计数值而产生溢出;另外,时间太长也会影响控制的快速性。
与M法测速一样,选用线数较多的光电编码器可以提高对电机转速测量的快速性与精度。
三、M/T法M/T法测速是将M法和T法两种方法结合在一起使用,在一定的时间范围内,同时对光电编码器输出的脉冲个数M1和M2进行计数。
实际工作时,在固定的Tc时间内对光电编码器的脉冲计数,在第一个光电编码器上升沿定时器开始定时,同时开始记录光电编码器和时钟脉冲数,定时器定时Tc时间到,对光电编码器的脉冲停止计数,而在下一个光电编码器的上升沿到来时刻,时钟脉冲才停止记录。
基于51单片机的光电编码器测速报告
基于51单片机的光电编码器测速报告课程名称:标题:课程设计报告|基于51单片机速度测量的199微机原理光电编码器课程设计在位置控制系统中,电机可以正转或反转,因此为了对与其相连的编码器输出的脉冲进行计数,需要相应的计数器向上或向下计数,即向上或向下计数有许多计数方法,包括纯软件计数和硬件计数。
本文分别分析了两种常用的计数方法,并比较了它们的优缺点。
最后,提出了一种新的计数方法,利用80C51单片机内部的计数器实现光电编码器输出脉冲的上下可逆计数,节省了硬件资源,获得了较高的计数频率。
该设计以STC89C52RC芯片、光电编码器和1602液晶为核心,辅以必要的电路,构成了基于51单片机的光电编码器转速表该系统有两个控制键,分别用于控制每秒和每分钟的转速,并用1602液晶显示速度。
速度计测速准确,具有实时检测功能,操作简单。
关键词:光电编码器,51单片机,C语言,1602液晶显示器2目录1,设计任务和要求 (4)1.1设计任务.................................................................................................................4 1.2设计要求 (4)2、方案的总体设计是 (5)2.1方案一 (5)2.2方案二。
.............................................................................................................. ...5 2.3系统采用方案.. (5)3,硬件设计 (7)3.1单片机最小系统....................................................................................................7 3.2液晶模块..................................................................................................7 3.3系统电源.................................................................................................................. ..8 3.4光电编码器电路..........................................................................................................8 3.5整体电路. (9)4,软件设计 (10)4.1 keil软件推出 (10)4.2系统程序流程..................................................................................................................105,仿真与实现 (12)5.1 proteus软件推出 (12)5.2模拟过程.................................................................................................................. ...12 5.3物理生产和调试........................................................................................................13 5.4使用说明.. (14)6,总结.................................................................................................................156.1设计总结 (15)6.2经验总结 (1)57,参考文献 (16)31、设计任务和要求1.1设计任务1)。
增量式编码器使用方法
增量式编码器使用方法
增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z 相;A、B两组脉冲相位差90,从而可便利地推断出旋转方向,而Z 相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简洁,机械平均寿命可在几万小时以上,抗干扰力量强,牢靠性高,适合于长距离传输。
其缺点是无法输出轴转动的肯定位置信息。
一、增量型旋转编码器有辨别率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,辨别率越高;这是选型的重要依据之一。
二、增量型编码器通常有三路信号输出(差分有六路信号):A,B 和Z,一般采纳TTL电平,A脉冲在前,B脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。
一般利用A超前B 或B超前A进行判向,我公司增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90°。
也有不相同的,要看产品说明。
三、使用plc采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦
合器的输入端口。
四、建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。
五、在电子装置中设立计数栈。
(整理)编码器的工作原理介绍
编码器的工作原理介绍一、光电编码器的工作原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90o的两路脉冲信号。
根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
(一)增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90o,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
(二)绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。
目前国内已有16位的绝对编码器产品。
绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。
绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。
光电编码器
一、编码器专业术语1、线:编码器光电码盘的一周刻线。
①增量式编码器:10线、100线、2500线,主要码盘能刻下,可任意选数;②绝对式编码器:因格雷码的编排方式,决定其基本是2N线:256线、1024线、8192线,但也有特别的格雷余码输出的:360线、720线、3600线。
2、位:绝对式编码器通常是用2N线输出的,所以大部分绝对式编码器也用“位”表达,当然对格雷余码输出的360线、720线、3600线例外;增量式编码器也有用“位”表示的,如15位、17位,通过内部细分,将计算的线数倍增后,一般大于10000线,就用“位”表达。
3、分辨率:编码器可以分辨的最小角度。
一般计算360°/刻线数,目前大部分就用多少线来表达。
但对于增量式编码器,如用上A/B两相的四倍频,2500线实际分辨率为360°/10000。
如果内部细分计算的“线”可以更多,达到15位、17位。
所以通常增量式编码器用“线”表达,表示还没有倍频细分;用“位”来表达,表示已经细分过了。
高分辨率并不代表高精度。
对于实际的码盘刻线,绝对式编码器分辨率可以达到增量式编码器的两倍,但如果采用倍频技术,增量式编码器分辨率又可大于绝对式编码器。
细分倍频是电气模拟技术,并不改善精度,精度是由码盘刻线、轴的机械安装及电气的响应综合因素决定的。
分辨率,增量式可以做的更高,但是精度就是绝对式的高,因为它不受停电、干扰、速度、电气响应的影响的,尤其在高速高精的条件下,倍频细分是无法满足要求。
4、增量式VS绝对式增量式以转动时输出脉冲,通过计数设备来检测位置。
当编码器不动或停电时,依靠计数设备的内部记忆记住位置。
这样,当停电时,编码器不能有任何的移动;当来电工作时,编码器在输出脉冲的过程中,也不能有任何的干扰而丢失脉冲。
否则,计数设备记忆的零点就会发生偏移,而且这种偏移量是无从知道的,只有产生错误的结果后才知道。
解决的办法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电编码器输出脉冲的几种计数方法
自动化在线Auto o
1 引言
在位置控制系统中,为了提高控制精度,准确测量控制对象的位置是十分重要的。
目前,检测位置的办法有两种:其一是使用位置传感器,测量到的位移量由变送器经A/D转换成数字量送至系统进行进一步处理。
此方法虽然检测精度高,但在多路、长距离位置监控系统中,由于其成本昂贵,安装困难,因此并不适用;其二是使用光电编码器[1]。
光电编码器是高精度控制系统常用的位移检测传感器。
当控制对象发生位置变化时,光电编码器便会发出A、B两路相位差90度的数字脉冲信号。
正转时A超前B90度,反转时B超前A90度。
脉冲的个数与位移量成比例关系,因此通过对脉冲计数就能计算出相应的位移。
该方法不仅使用方便、测量准确,而且成本较低,因此在电力拖动系统中,经常采用第二种位置测量方法。
使用光电编码器测量位移,准确无误的记数起着决定性作用。
由于在位置控制系统中,电机既可以正转,又可以反转,所以要求计数器既要能够实现加计数,又要能够实现减计数。
相应的计数方法可以用软件来实现,也可以用硬件来实现。
使用软件方式对光电编码器的脉冲进行方向判别和计数降低了系统控制的实时性,尤其当使用光电编码器的数量较多时,并且其可靠性也不及硬件电路。
但是用软件计数外围电路比较简单,所以在计数频率不高的情况下,使用软件计数还是有一定优势的。
对编码器中输出的两路脉冲进行计数主要分两个步骤,首先要对编码器输出的两路脉冲进行鉴相,即:判别电机是正转还是反转;其次是进行加减计数,正转时加计数,反转时减计数。
2 鉴相原理
脉冲鉴相的方法比较多,既可以用软件实现,也可以用一个D触发器实现。
下图是编码器正反转时输出脉冲的相位关系。
由图中编码器输出波形可以看出,编码器正转时A相超前B相90度.在A相脉冲的下降沿处,B相为高电平;而在编码器反转时,A相滞后B相90度,在A相脉冲的下降沿处,B相输出为低电平。
这样,编码器旋转时通过判断B相电平的高低就可以判断编码器的旋转方向[2]。
3 用软件实现脉冲的鉴相、计数
编码器输出的A向脉冲接到单片机的外部中断INT0,B向脉冲接到I/O端口P1.0。
当系统工作时,首先要把INT0设置成下降沿触发,并开相应中断。
当有有效脉冲触发中断时,进行中断处理程序,判别B脉冲是高电平还是低电平,若是高电平则编码器正转,加1计数;若是低电平则编码器反转,减1计数。
4 用硬件实现脉冲的鉴相、计数
硬件计数在执行速度上有软件计数不可比拟的优势,通常采用多个可预置4位双时锺加减计数器74LS193 级联组成的加减计数电路。
P0-P3为计数器的4位预置数据端,与数据输入锁存器相接;QA-QD 为计数器的4位数据输出端,与数据输出缓冲器相接;MR为清零端与上电清零脉冲相接;PL为预置允许端,由译码控制电路触发;CU 为加脉冲输入端,CD为减脉冲输入端;TCU为进位输出端,TCD 为借位输出端。
如下图所示:
当CU和CD中一个输入脉冲时,另一个必须处于高电平,才能进行计数工作。
而从编码器直接输出的A、B 两路脉冲不符合要求,不能直接接到计数器的输入端。
但我们可以利用这两路脉冲之间的相位关系对其进行鉴相后再计数。
下图给出了光电编码器实际使用的鉴相与双向计数电路,鉴相电路用1个D触发器和2个与非门组成,计数电路用3片74LS193组成。
当光电编码器顺时针旋转时, A相超前B相90°,D触发器输出/Q(W1)为高电平,Q(W2)为低电平,上面与非门打开,计数脉冲通过(W3),送至双向计数器74LS193的加脉冲输入端CU,进行加法计数;此时,下面与非门关闭,其输出为高电平(W4)。
当光电编码器逆时针旋转时, A相比B相延迟90°,D触发器输出/Q(W1)为低电平,Q(W2)为高电平,上面与非门关闭,其输出为高电平(W3);此时,下面与非门打开,计数脉冲通过(波W4),送至双向计数器74LS193的减脉冲输入端CD,进行减法计数[3]。
5 利用单片机内部计数器实现可逆计数
对以上两种计数方法进行分析可知,用纯软件计数虽然电路简单,但是计数速度慢,难以满足实时性要求,而且容易出错,用外接加减计数芯片的方法,虽然速度快,但硬件电路复杂,由上图可以看出要做一个12位计数器需要5个外围芯片,成本也较高。
那么我们能否用单片机内部的计数器来实现加减计数呢。
我们知道,8051片内有两个16位的定时器:定时器0和定时器1,8052还有一个定时器2,这三个定时器都可以作为计数器来用。
但8051内部的计数器是加1计数器,所以不能直接应用,必须经过适当的软件编程,来实现其“减”计数功能。
硬件电路如下:
我们可以把经过D触发器之后的脉冲,即方向控制脉冲(DIR)接到单片机的外部中断INT0端,同时经过反向器后再接到另一个外部中断INT1,并且把计数脉冲A接到单片机的片内计数器T0端即可,相对外部计数芯片来说,使用这种方法电路相对要简单的多。
系统工作时,先要把两个中断设置成下降沿触发,并打开相应的中断。
当方向判别脉冲(DIR)由低―高跳变时,INT1中断,执行相应的中断程序,进行加计数;而当方向判别脉冲由高―低跳变时,INT0中断,执行相应的中断程序,进行“减”计数(实际是重新复值,进行加计数)。
下面是软件编程思路:
我们在C语言环境下来实现计数功能:
#include
int data k=1;
void service_int0() interrupt 0 using 0
{ k-- ;/*标志位减1*/
TR0=0 ;/*停止计数*/
TH0= -TH0 ;
TL0= -TL0 ;/*把计数器重新复值,此时相当于减计数*/
TR0=1 ;/*开始计数*/
}
void service_int1() interrupt 2 using 1
{ k++ ;/*标志位加1*/
TR0=0 ;/*停止计数*/
TH0= -TH0 ;
TL0= -TL0 ;/*把计数器重新复值,此时相当于加计数*/
TR0=1 ;/*开始计数*/
}
void timer0(void) interrup 1 using2
{ if(k=0)
/*反向计数满*/
else if(k=1)
/*计数为0*/
else
/*正向计数满*/
}
void main(void)
{TCON=0X05 ;/*设置下降沿中断*/
TMOD=0X05 ;/*T0为16位计数方式*/
IE=0X87 ;/*开中断*/
TH0=0 ;
TL0=0 ;/*预置初值*/
}
此方法采用中断的形式进行计数,硬件电路比较简单,程序也不复杂,执行速度较快。
6 结论
本文分别介绍了利用软件、外接计数芯片及单片机内部计数器实现对编码器输出脉冲进行计数的方法。
利用软件计数,硬件电路简单,但占用了较多的CPU资源,执行速度较慢。
利用外接计数芯片的方法计数,计数速度
较快,但是要用较多的外围芯片,硬件电路复杂。
利用单片机内部计数器实现加减计数,在编码器旋转方向不频繁改变的情况下,计数速度很快,而且外围电路简单,编程也不复杂,只是占用了两个外部中断和一个内部计数器。
具体使用哪种计数方法,在使用时还要根据具体情况进行选择。