数据结构 顺序表的实现
数据结构经典题目及c语言代码
数据结构经典题目及c语言代码一、线性表1. 顺序表顺序表是一种利用连续存储空间存储元素的线性表。
以下是一个顺序表的经典题目及C语言代码实现:```c#define MaxSize 50typedef struct {int data[MaxSize]; // 存储元素的数组int length; // 顺序表的当前长度} SeqList;// 初始化顺序表void initList(SeqList *L) {L->length = 0;}// 插入元素到指定位置void insert(SeqList *L, int pos, int elem) {if (pos < 1 || pos > L->length + 1) {printf("插入位置无效\n");return;}if (L->length == MaxSize) {printf("顺序表已满,无法插入\n"); return;}for (int i = L->length; i >= pos; i--) { L->data[i] = L->data[i - 1];}L->data[pos - 1] = elem;L->length++;}// 删除指定位置的元素void delete(SeqList *L, int pos) {if (pos < 1 || pos > L->length) {printf("删除位置无效\n");return;}for (int i = pos - 1; i < L->length - 1; i++) {L->data[i] = L->data[i + 1];}L->length--;}// 获取指定位置的元素值int getElement(SeqList *L, int pos) {if (pos < 1 || pos > L->length) {printf("位置无效\n");return -1;}return L->data[pos - 1];}```2. 链表链表是一种利用非连续存储空间存储元素的线性表。
数据结构与算法分析实验报告
数据结构与算法分析实验报告一、实验目的本次实验旨在通过实际操作和分析,深入理解数据结构和算法的基本概念、原理和应用,提高解决实际问题的能力,培养逻辑思维和编程技巧。
二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。
操作系统为 Windows 10。
三、实验内容(一)线性表的实现与操作1、顺序表的实现使用数组实现顺序表,包括插入、删除、查找等基本操作。
通过实验,理解了顺序表在内存中的存储方式以及其操作的时间复杂度。
2、链表的实现实现了单向链表和双向链表,对链表的节点插入、删除和遍历进行了实践。
体会到链表在动态内存管理和灵活操作方面的优势。
(二)栈和队列的应用1、栈的实现与应用用数组和链表分别实现栈,并通过表达式求值的例子,展示了栈在计算中的作用。
2、队列的实现与应用实现了顺序队列和循环队列,通过模拟银行排队的场景,理解了队列的先进先出特性。
(三)树和二叉树1、二叉树的遍历实现了先序、中序和后序遍历算法,并对不同遍历方式的结果进行了分析和比较。
2、二叉搜索树的操作构建了二叉搜索树,实现了插入、删除和查找操作,了解了其在数据快速查找和排序中的应用。
(四)图的表示与遍历1、邻接矩阵和邻接表表示图分别用邻接矩阵和邻接表来表示图,并比较了它们在存储空间和操作效率上的差异。
2、图的深度优先遍历和广度优先遍历实现了两种遍历算法,并通过对实际图结构的遍历,理解了它们的应用场景和特点。
(五)排序算法的性能比较1、常见排序算法的实现实现了冒泡排序、插入排序、选择排序、快速排序和归并排序等常见的排序算法。
2、算法性能分析通过对不同规模的数据进行排序实验,比较了各种排序算法的时间复杂度和空间复杂度。
四、实验过程及结果(一)线性表1、顺序表在顺序表的插入操作中,如果在表头插入元素,需要将后面的元素依次向后移动一位,时间复杂度为 O(n)。
删除操作同理,在表头删除元素时,时间复杂度也为 O(n)。
数据结构实验报告-线性表(顺序表实现)
实验1:线性表(顺序表的实现)一、实验项目名称顺序表基本操作的实现二、实验目的掌握线性表的基本操作在顺序存储结构上的实现。
三、实验基本原理顺序表是由地址连续的的向量实现的,便于实现随机访问。
顺序表进行插入和删除运算时,平均需要移动表中大约一半的数据元素,容量难以扩充四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和一些预定义:2.定义顺序表:3.初始化:4.插入元素:5.查询元素:6.删除元素:7.销毁顺序表:8.清空顺序表:9.顺序表长度:10.判空:11.定位满足大小关系的元素(默认小于):12.查询前驱:13.查询后继:14.输出顺序表15.归并顺序表16.写测试程序以及主函数对顺序表的每一个操作写一个测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。
实验完整代码:#include <bits/stdc++.h>using namespace std;#define error 0#define overflow -2#define initSize 100#define addSize 10#define compareTo <=typedef int ElemType;struct List{ElemType *elem;int len;int listsize;}L;void init(List &L){L.elem = (ElemType *) malloc(initSize * sizeof(ElemType)); if(!L.elem){cout << "分配内存失败!";exit(overflow);}L.len = 0;L.listsize = initSize;}void destroy(List &L){free(L.elem);L.len = L.listsize = 0;}void clear(List &L){L.len = 0;}bool empty(List L){if(L.len == 0) return true;else return false;}int length(List L){return L.len;}ElemType getElem(List L,int i){if(i < 1 || i > L.len + 1){cout << "下标越界!";exit(error);}return L.elem[i - 1];}bool compare(ElemType a,ElemType b) {return a compareTo b;}int locateElem(List L,ElemType e) {for(int i = 0;i < L.len;i++){if(compare(L.elem[i],e))return i;}return -1;}int check1(List L,ElemType e){int idx = -1;for(int i = 0;i < L.len;i++)if(L.elem[i] == e)idx = i;return idx;}bool check2(List L,ElemType e){int idx = -1;for(int i = L.len - 1;i >= 0;i--)if(L.elem[i] == e)idx = i;return idx;}int priorElem(List L,ElemType cur_e,ElemType pre_e[]) {int idx = check1(L,cur_e);if(idx == 0 || idx == -1){string str = "";str = idx == 0 ? "无前驱结点" : "不存在该元素";cout << str;exit(error);}int cnt = 0;for(int i = 1;i < L.len;i++){if(L.elem[i] == cur_e){pre_e[cnt ++] = L.elem[i - 1];}}return cnt;}int nextElem(List L,ElemType cur_e,ElemType next_e[]){int idx = check2(L,cur_e);if(idx == L.len - 1 || idx == - 1){string str = "";str = idx == -1 ? "不存在该元素" : "无后驱结点";cout << str;exit(error);}int cnt = 0;for(int i = 0;i < L.len - 1;i++){if(L.elem[i] == cur_e){next_e[cnt ++] = L.elem[i + 1];}}return cnt;}void insert(List &L,int i,ElemType e){if(i < 1 || i > L.len + 1){cout << "下标越界!";exit(error);}if(L.len >= L.listsize){ElemType *newbase = (ElemType *)realloc(L.elem,(L.listsize + addSize) * sizeof(ElemType));if(!newbase){cout << "内存分配失败!";exit(overflow);}L.elem = newbase;L.listsize += addSize;for(int j = L.len;j > i - 1;j--)L.elem[j] = L.elem[j - 1];L.elem[i - 1] = e;L.len ++;}void deleteList(List &L,int i,ElemType &e){if(i < 1 || i > L.len + 1){cout << "下标越界!";exit(error);}e = L.elem[i - 1];for(int j = i - 1;j < L.len;j++)L.elem[j] = L.elem[j + 1];L.len --;}void merge(List L,List L2,List &L3){L3.elem = (ElemType *)malloc((L.len + L2.len) * sizeof(ElemType)); L3.len = L.len + L2.len;L3.listsize = initSize;if(!L3.elem){cout << "内存分配异常";exit(overflow);}int i = 0,j = 0,k = 0;while(i < L.len && j < L2.len){if(L.elem[i] <= L2.elem[j])L3.elem[k ++] = L.elem[i ++];else L3.elem[k ++] = L2.elem[j ++];}while(i < L.len)L3.elem[k ++] = L.elem[i ++];while(j < L2.len)L3.elem[k ++] = L2.elem[j ++];}bool visit(List L){if(L.len == 0) return false;for(int i = 0;i < L.len;i++)cout << L.elem[i] << " ";cout << endl;return true;}void listTraverse(List L){if(!visit(L)) return;}void partion(List *L){int a[100000],b[100000],len3 = 0,len2 = 0; memset(a,0,sizeof a);memset(b,0,sizeof b);for(int i = 0;i < L->len;i++){if(L->elem[i] % 2 == 0)b[len2 ++] = L->elem[i];elsea[len3 ++] = L->elem[i];}for(int i = 0;i < len3;i++)L->elem[i] = a[i];for(int i = 0,j = len3;i < len2;i++,j++) L->elem[j] = b[i];cout << "输出顺序表:" << endl;for(int i = 0;i < L->len;i++)cout << L->elem[i] << " ";cout << endl;}//以下是测试函数------------------------------------void test1(List &list){init(list);cout << "初始化完成!" << endl;}void test2(List &list){if(list.listsize == 0)cout << "线性表不存在!" << endl;else{int len;ElemType num;cout << "选择插入的元素数量:" << endl;cin >> len;cout << "依次输入要插入的元素:" << endl;for(int i = 1;i <= len;i++){cin >> num;insert(list,i,num);}cout << "操作成功!" << endl;}}void test3(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{cout << "请输入要返回的元素的下标" << endl;int idx;cin >> idx;cout << "线性表中第" << idx << "个元素是:" << getElem(L,idx) << endl;}}void test4(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{int idx;ElemType num;cout << "请输入要删除的元素在线性表的位置" << endl;cin >> idx;deleteList(L,idx,num);cout << "操作成功!" << endl << "被删除的元素是:" << num << endl; }}void test5(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{destroy(L);cout << "线性表已被销毁" << endl;}}void test6(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{clear(L);cout << "线性表已被清空" << endl;}}void test7(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else cout << "线性表的长度现在是:" << length(L) << endl;}void test8(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else if(empty(L))cout << "线性表现在为空" << endl;else cout << "线性表现在非空" << endl;}void test9(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{ElemType num;cout << "请输入待判定的元素:" << endl;cin >> num;cout << "第一个与目标元素满足大小关系的元素的位置:" << locateElem(L,num) << endl;}}void test10(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{ElemType num,num2[initSize / 2];cout << "请输入参照元素:" << endl;cin >> num;int len = priorElem(L,num,num2);cout << num << "的前驱为:" << endl;for(int i = 0;i < len;i++)cout << num2[i] << " ";cout << endl;}}void test11(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{ElemType num,num2[initSize / 2];cout << "请输入参照元素:" << endl;cin >> num;int len = nextElem(L,num,num2);cout << num << "的后继为:" << endl;for(int i = 0;i < len;i++)cout << num2[i] << " ";cout << endl;}}void test12(List list){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{cout << "输出线性表所有元素:" << endl;listTraverse(list);}}void test13(){if(L.listsize == 0)cout << "初始线性表不存在!" << endl; else{List L2,L3;cout << "初始化一个新线性表" << endl;test1(L2);test2(L2);cout << "归并两个线性表" << endl;merge(L,L2,L3);cout << "归并成功!" << endl;cout << "输出合并后的线性表" << endl;listTraverse(L3);}}void test14(){partion(&L);cout << "奇偶数分区成功!" << endl;}int main(){std::ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);int op = 0;while(op != 15){cout << "-----------------menu--------------------" << endl;cout << "--------------1:初始化------------------" << endl;cout << "--------------2:插入元素----------------" << endl;cout << "--------------3:查询元素----------------" << endl;cout << "--------------4:删除元素----------------" << endl;cout << "--------------5:销毁线性表--------------" << endl;cout << "--------------6:清空线性表--------------" << endl;cout << "--------------7:线性表长度--------------" << endl;cout << "--------------8:线性表是否为空----------" << endl;cout << "--------------9:定位满足大小关系的元素--" << endl;cout << "--------------10:查询前驱---------------" << endl;cout << "--------------11:查询后继---------------" << endl;cout << "--------------12:输出线性表-------------" << endl;cout << "--------------13:归并线性表-------------" << endl;cout << "--------------14:奇偶分区---------------" << endl;cout << "--------------15: 退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl; if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1(L);break;case 2:test2(L);break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:test12(L);break;case 13:test13();break;case 14:test14();break;case 15:cout << "测试结束!" << endl;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果1.初始化:2.插入元素3.查询元素(返回的是数组下标,下标从0开始)4.删除元素(位置从1开始)5.销毁顺序表6.清空顺序表7.顺序表长度(销毁或清空操作前)8.判空(销毁或清空操作前)9.定位满足大小关系的元素(销毁或清空操作前)说明:这里默认找第一个小于目标元素的位置且下标从0开始,当前顺序表的数据为:1 4 2 510.前驱(销毁或清空操作前)11.后继(销毁或清空操作前)12.输出顺序表(销毁或清空操作前)13.归并顺序表(销毁或清空操作前)七、思考讨论题或体会或对改进实验的建议通过本次实验,我掌握了定义线性表的顺序存储类型,加深了对顺序存储结构的理解,进一步巩固和理解了顺序表的基本操作,如建立、查找、插入和删除等。
顺序表实验报告
顺序表实验报告顺序表是一种线性数据结构,它以连续的存储空间来存储数据元素,通过元素在数组中的相对位置来表示数据元素之间的逻辑关系。
在这个实验中,我们使用顺序表的实现来进行实验。
首先我们先了解一下顺序表的结构。
顺序表由两部分组成:表头和表体。
表头包含顺序表的一些基本信息,如顺序表的长度和当前表体的容量;表体是一个一维数组,用来存储数据元素。
在这个实验中,我们主要实现顺序表的插入操作和删除操作。
插入操作是指将一个新的数据元素插入到顺序表的某个位置;删除操作是指在顺序表中删除某个位置的数据元素。
实验步骤如下:1. 首先,我们需要定义一个顺序表的数据结构,包含表头和表体。
表头中需要有顺序表的长度和当前表体的容量,表体是一个一维数组。
2. 接下来,我们实现插入操作。
插入操作需要输入要插入的数据元素和插入的位置。
我们首先需要判断插入的位置是否合法,即位置在顺序表的范围内。
如果位置不合法,就返回插入失败。
如果位置合法,我们需要判断当前表体的容量是否已满。
如果已满,我们需要重新分配更大的内存空间来存储数据。
然后我们将插入位置后面的数据元素依次往后移动一位,给新的数据元素腾出位置。
最后,我们将要插入的数据元素放入指定位置处,并更新顺序表的长度。
3. 然后,我们实现删除操作。
删除操作需要输入要删除的位置。
首先我们需要判断删除的位置是否合法。
如果位置不合法,就返回删除失败。
如果位置合法,我们需要将删除位置后面的数据元素依次往前移动一位。
最后,我们更新顺序表的长度即可。
4. 最后,我们编写测试用例来检验我们实现的代码是否正确。
我们可以对插入和删除进行多次操作,然后查看顺序表的状态是否符合预期。
通过这个实验,我们可以更加深入地理解顺序表的原理和实现细节。
顺序表的插入和删除操作是非常常见的操作,掌握了这些操作,我们就能更加灵活地应用顺序表来解决实际问题。
同时,这个实验也锻炼了我们的编程能力和调试能力,提高了我们的代码质量和效率。
codeblock数据结构算法实现-顺序表基本操作
数据结构算法实现-顺序表基本操作序号一、引言二、顺序表的定义三、顺序表的基本操作1.初始化操作2.插入操作3.删除操作4.查找操作四、顺序表的实现五、总结一、引言数据结构是计算机科学中非常重要的一部分,它是计算机存储、组织数据的方式。
而顺序表是其中的一种基本数据结构,它采用一组位置区域连续的存储单元依次存放线性表中的元素。
本文将着重介绍顺序表的基本操作及其算法实现。
二、顺序表的定义顺序表是一种基本的线性表,顺序表中元素的逻辑顺序和物理顺序是一致的。
顺序表的特点是利用一组连续的存储单元依次存放线性表中的元素。
顺序表可以用数组实现,其元素在内存中是连续存储的,可以通过下标直接访问元素。
由于顺序表的存储方式,使得其在查找、插入和删除等操作上具有较好的性能。
三、顺序表的基本操作顺序表的基本操作包括初始化、插入、删除和查找等。
下面分别介绍这些操作的实现方法。
1.初始化操作初始化操作是指将一个空的顺序表初始化为一个具有初始容量的顺序表,并为其分配内存空间。
初始化操作的实现方法主要有两种,一种是静态分配内存空间,另一种是动态分配内存空间。
静态分配内存空间时,需要预先指定顺序表的容量大小,然后在程序中创建一个数组,并为其分配指定大小的内存空间。
动态分配内存空间时,可以根据需要动态创建一个数组,并为其分配内存空间。
下面是一个简单的初始化操作的实现示例:```C代码#define MAXSIZE 100 // 定义顺序表的最大容量typedef struct {ElementType data[MAXSIZE]; // 定义顺序表的元素数组int length; // 定义顺序表的当前长度} SeqList;2.插入操作插入操作是指将一个新元素插入到顺序表的指定位置。
插入操作的实现方法主要包括在指定位置插入元素,同时对其他元素进行后移操作。
下面是一个简单的插入操作的实现示例:```C代码Status Insert(SeqList *L, int i, ElementType e) {if (i < 1 || i > L->length + 1) { // 判断插入位置是否合法return ERROR;}if (L->length >= MAXSIZE) { // 判断顺序表是否已满return ERROR;}for (int j = L->length; j >= i; j--) { // 插入位置及之后的元素后移L->data[j] = L->data[j - 1];}L->data[i - 1] = e; // 插入新元素L->length++; // 顺序表长度加1return OK;}```3.删除操作删除操作是指将顺序表中指定位置的元素删除。
顺序表的实现实验报告
顺序表的实现实验报告顺序表的实现实验报告1. 引言顺序表是一种常见的数据结构,它可以用于存储一组有序的元素。
在本实验中,我们将探索顺序表的实现方式,并通过实验验证其性能和效果。
2. 实验目的本实验的主要目的是掌握顺序表的实现原理和基本操作,并通过实验对比不同操作的时间复杂度。
3. 实验方法3.1 数据结构设计我们选择使用静态数组作为顺序表的底层存储结构。
通过定义一个固定大小的数组,我们可以实现顺序表的基本操作。
3.2 基本操作实现在顺序表的实现中,我们需要实现以下基本操作:- 初始化操作:创建一个空的顺序表。
- 插入操作:向顺序表中插入一个元素。
- 删除操作:从顺序表中删除一个元素。
- 查找操作:在顺序表中查找指定元素。
- 获取长度:获取顺序表中元素的个数。
4. 实验步骤4.1 初始化操作首先,我们需要创建一个空的顺序表。
这可以通过定义一个数组和一个变量来实现,数组用于存储元素,变量用于记录当前顺序表的长度。
4.2 插入操作在顺序表中插入一个元素的过程如下:- 首先,判断顺序表是否已满,如果已满则进行扩容操作。
- 然后,将要插入的元素放入数组的末尾,并更新长度。
4.3 删除操作从顺序表中删除一个元素的过程如下:- 首先,判断顺序表是否为空,如果为空则返回错误信息。
- 然后,将数组中最后一个元素删除,并更新长度。
4.4 查找操作在顺序表中查找指定元素的过程如下:- 首先,遍历整个数组,逐个比较元素与目标元素是否相等。
- 如果找到相等的元素,则返回其位置;如果遍历完仍未找到,则返回错误信息。
4.5 获取长度获取顺序表中元素个数的过程如下:- 直接返回记录长度的变量即可。
5. 实验结果与分析在实验中,我们通过对大量数据进行插入、删除、查找等操作,记录了每个操作的耗时。
通过对比不同操作的时间复杂度,我们可以得出以下结论:- 初始化操作的时间复杂度为O(1),因为只需要创建一个空的顺序表。
- 插入和删除操作的时间复杂度为O(n),因为需要遍历整个数组进行元素的移动。
顺序表的实现及应用实验报告
顺序表的实现及应用实验报告序言顺序表是一种基本的线性数据结构,它采用物理上的连续存储结构,在数据元素的存储空间上也是连续的。
本文将阐述顺序表的实现及应用实验报告。
实验目的掌握顺序表的定义、实现及其应用。
实验内容1. 顺序表的定义顺序表是一种线性表的存储方法,它把线性表中的元素按其逻辑顺序依次存储在一段连续的存储区域中,也就是一维数组。
顺序表既可以用于存储静态数据,也可以用于存储动态数据。
2. 顺序表的实现顺序表的实现需要用到一维数组,当创建顺序表时,先要确定它的最大长度,然后根据长度创建相应大小的一维数组,接着插入数据时,依次将数据插入到数组中,需要注意的是,数组是从0开始储存的,而不是从1开始。
以下是顺序表的实现代码示例:```python# 设定最大长度为10MAX_SIZE = 10class SeqList:def __init__(self):self.seq = [None] * MAX_SIZEdef insert(self, index, value):# 检查是否超出最大长度,或者下标越界if index < 0 or index > MAX_SIZE or index >= len(self.seq): raise IndexError# 移动数组,腾出位置for i in range(MAX_SIZE - 1, index - 1, -1):self.seq[i] = self.seq[i - 1]# 插入数据self.seq[index] = valuedef pop(self, index):# 检查下标合法性if index < 0 or index >= len(self.seq):raise IndexError# 移动数组,删除数据for i in range(index, MAX_SIZE - 1):self.seq[i] = self.seq[i + 1]# 最后一位设为None,释放空间self.seq[-1] = Nonedef __repr__(self):return str(self.seq)```3. 顺序表的应用顺序表可以用于很多场景,比如存储学生成绩、成绩排名、图书管理等,以下是一个简单的例子:存储学生成绩并排序```pythonseq = SeqList()seq.insert(0, 89)seq.insert(1, 92)seq.insert(2, 76)seq.insert(3, 68)seq.insert(4, 100)print(seq)```输出:`[89, 92, 76, 68, 100, None, None, None, None, None]` 对学生成绩进行排序:```pythonseq.seq.sort(reverse=True)print(seq)```输出:`[100, 92, 89, 76, 68, None, None, None, None, None]` 结论通过本次实验,我们掌握了顺序表的定义、实现及其应用,顺序表在大多数情况下提供了比较高效的数据访问,因此在实际开发中非常有用。
数据结构-顺序表-实验报告
实验报告课程数据结构及算法实验项目 1.顺序表的建立和基本运算成绩专业班级*** 指导教师***姓名*** 学号*** 实验日期***实验一顺序表的建立和基本运算一、实验目的1、掌握顺序表存储结构的定义及C/C++语言实现2、掌握顺序表的各种基本操作及C/C++语言实现3、设计并实现有序表的遍历、插入、删除等常规算法二、实验环境PC微机,Windows,DOS,Turbo C或者Visual C++三、实验内容1、顺序表的建立和基本运算(1)问题描述顺序表时常进行的运算包括:创建顺序表、销毁顺序表、求顺序表的长度、在顺序表中查找某个数据元素、在某个位置插入一个新数据元素、在顺序表中删除某个数据元素等操作。
试编程实现顺序表的这些基本运算。
(2)基本要求实现顺序表的每一个运算要求用一个函数实现。
(3)算法描述参见教材算法2.3、算法2.4、算法2.5等顺序表的常规算法。
(4)算法实现#include<malloc.h> // malloc()等#include<stdio.h> // NULL, printf()等#include<process.h> // exit()// 函数结果状态代码#define OVERFLOW -2#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1typedef int Status; // Status是函数的类型,其值是函数结果状态代码,如OK等typedef int Boolean; // Boolean是布尔类型,其值是TRUE或者FALSE//-------- 线性表的动态分配顺序存储结构-----------#define LIST_INIT_SIZE 10 // 线性表存储空间的初始分配量#define LIST_INCREMENT 2 // 线性表存储空间的分配增量typedef int ElemType;struct SqList{ElemType *elem; // 存储空间基址int length; // 当前长度int listsize; // 当前分配的存储容量(以sizeof(int)为单位)};void InitList(SqList &L) // 算法2.3{ // 操作结果:构造一个空的顺序线性表LL.elem=new ElemType[LIST_INIT_SIZE];if(!L.elem)exit(OVERFLOW); // 存储分配失败L.length=0; // 空表长度为0L.listsize=LIST_INIT_SIZE; // 初始存储容量}void DestroyList(SqList &L){ // 初始条件:顺序线性表L已存在。
顺序表的基本操作和实现实验报告(一)
顺序表的基本操作和实现实验报告(一)顺序表的基本操作和实现实验报告1. 引言顺序表是计算机科学中一种常用的数据结构,用于存储一组元素并支持快速的随机访问。
本实验旨在探究顺序表的基本操作和实现方法。
2. 实验目的•理解顺序表的概念和特性。
•学习顺序表的基本操作,包括插入、删除、查找和修改等。
•掌握顺序表的实现方法,包括静态分配和动态分配两种方式。
•培养对数据结构的抽象思维和编程能力。
3. 实验内容1.了解顺序表的定义,及其与数组的关系。
2.掌握插入操作的实现方法,包括在表头、表中和表尾插入元素。
3.掌握删除操作的实现方法,包括按索引删除和按值删除。
4.掌握查找操作的实现方法,包括按索引查找和按值查找。
5.掌握修改操作的实现方法,包括按索引修改和按值修改。
6.实现顺序表的静态分配和动态分配两种方式。
4. 实验步骤1.定义顺序表的结构体,包括数据存储区和长度属性。
2.实现插入操作,根据需要选择插入位置和移动元素。
3.实现删除操作,根据需要选择删除方式和更新长度。
4.实现查找操作,根据需要选择查找方式和返回结果。
5.实现修改操作,根据需要选择修改方式和更新元素。
6.实现顺序表的静态分配和动态分配方法。
5. 实验结果经过多次实验和测试,顺序表的基本操作都能够正确实现。
在插入操作中,能够将元素正确插入指定位置,并保持顺序表的有序性。
在删除操作中,能够按需删除指定位置或值的元素,并正确更新顺序表的长度。
在查找操作中,能够根据索引或值查找到对应的元素,并返回正确的结果。
在修改操作中,能够按需修改指定位置或值的元素,并更新顺序表的内容。
6. 实验总结本实验通过对顺序表的基本操作和实现方法的学习和实践,进一步巩固了对数据结构的理解和编程能力的培养。
顺序表作为一种常用的数据结构,对于解决实际问题具有重要的作用。
通过本次实验,我对顺序表的插入、删除、查找和修改等操作有了更深入的了解,并学会了如何实现这些操作。
通过本次实验,我还学会了顺序表的静态分配和动态分配方法,了解了它们的区别和适用场景。
顺序表实验报告
顺序表实验报告实验名称:顺序表的实现与操作实验目的:1.理解顺序表的概念、特点和实现方式。
2.掌握顺序表的基本操作,包括初始化、插入、删除、查找、修改、清空等操作。
3.提高编程能力,加深对数据结构的理解。
实验原理:顺序表是数据结构中的一种线性表,采用连续的存储方式来存储元素,其具有访问速度快的特点。
在顺序表中,元素在物理存储上是连续的,每个元素占据一定的存储空间。
顺序表的实现需要使用数组,可以通过数组下标查找具体元素,也可以通过数组长度限定表的大小。
实验步骤:1.定义顺序表结构体struct SeqList{int size;//表的大小int length;//表的长度int *data;//存储数据的指针};2.初始化操作void initSeqList(SeqList &list,int size){list.size = size;list.length = 0;list.data = new int[size];}3.插入操作void insertSeqList(SeqList &list,int pos,int elem){ if(pos<1 || pos>list.length+1){cout<<"位置不合法"<<endl;return;}if(list.length>=list.size){cout<<"顺序表已满"<<endl;return;}for(int i=list.length-1; i>=pos-1; i--){list.data[i+1] = list.data[i];}list.data[pos-1] = elem;list.length++;}4.删除操作void deleteSeqList(SeqList &list,int pos){ if(pos<1 || pos>list.length){cout<<"位置不合法"<<endl;return;}for(int i=pos-1; i<list.length-1; i++){ list.data[i] = list.data[i+1];}list.length--;}5.查找操作int searchSeqList(SeqList list,int elem){for(int i=0; i<list.length; i++){if(list.data[i] == elem){return i+1;}}return 0;}6.修改操作void modifySeqList(SeqList &list,int pos,int elem){ if(pos<1 || pos>list.length){cout<<"位置不合法"<<endl;return;}list.data[pos-1] = elem;}7.清空操作void clearSeqList(SeqList &list){list.length = 0;}实验结果:经过上述实验操作,成功实现了顺序表的初始化、插入、删除、查找、修改、清空等操作,并能够正确输出结果。
顺序表的基本操作和实现实验报告
顺序表的基本操作和实现实验报告顺序表的基本操作和实现实验报告引言顺序表是一种常用的数据结构,它能够在连续的存储空间中存储元素,并通过索引来访问和修改这些元素。
本实验旨在通过实现基本操作,包括插入、删除、获取等,来深入理解顺序表的原理和实现方式。
实验目的1.掌握顺序表的基本操作2.理解顺序表的实现原理3.学习使用编程语言实现顺序表实验过程1.创建顺序表–使用数组作为底层存储结构,设置一个指针指向数组的起始位置,并初始化顺序表的长度为0。
2.插入元素–通过移动元素的方式,在指定位置插入一个新元素。
–更新顺序表的长度。
3.删除元素–通过覆盖元素的方式,删除指定位置的元素。
–更新顺序表的长度。
4.获取元素–根据指定位置,返回对应的元素。
5.更新元素–根据指定位置,修改对应的元素的值。
–不改变顺序表的长度。
6.打印顺序表–遍历顺序表中的元素,并输出到控制台。
实验结果根据以上操作,我们成功实现了一个顺序表,并在各基本操作上进行了测试和验证。
实验结果表明,顺序表能够高效地支持元素的插入、删除、获取和更新等操作,并能够正确地保存和展示数据。
实验总结通过本次实验,我们深入学习了顺序表的基本操作和实现方式。
顺序表作为一种简单而有用的数据结构,在实际应用中有着广泛的应用。
同时,我们也体会到了数据结构与算法的设计和实现的重要性,它们对于程序性能和可读性都有着关键的影响。
参考文献1.《数据结构与算法分析》2.《算法导论》3.《C++ Primer》实验环境•编程语言: C++•开发环境: Visual Studio Code•操作系统: Windows 10实验步骤1.创建顺序表的类SeqList,并定义私有属性int* data和intlength。
2.定义构造函数SeqList(int size),用于初始化顺序表的大小。
3.实现插入元素的方法void insert(int pos, int value),根据指定位置和值,在顺序表中插入新元素。
数据结构 顺序表基本运算实现
; //依次打印输出顺序表中的元素
printf("\n");
}
//查找
locate(SeqList *list, int e)
{
int i;
printf("插入元素,请输入需要插入的位置:\n");
scanf("%d",&i);
insert(list,i,e);
printList(list);
break;
3.编写一个完整的程序实现顺序表的下列基本操作:
(1) 新建一个顺序表。。
(2) 打印输出顺序表中的元素。
(3) 在顺序表中查找某个元素。
(4) 在顺序表中指定位置插入元素。
(5) 在顺序表中删除指定位置的元素。
(6) 删除顺序表La中的某一元素。
编写一个主菜单,调用以上基本操作。
参考程序代码如下,请将其补充完整,并上机调试运行。
//顺序表的建立、查找、插入与删除,表元素为数字
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#define MAX 100 //表最大长度
//选择顺序表操作动作
printf("请输入操作对应的数字进行顺序表的操作:\n");
printf("————查询(1)\n);
printf("————插入(2)\n);
printf("————删除(3)\n);
printf("————退出(0)\n);
顺序表基本操作的实现
顺序表基本操作的实现顺序表是数据结构中最基本的组织形式,是一种使用一组连续存储单元依次存储相关结构数据的存储方式。
它的特点是支持随机存取、增删操作效率较高,但是当表长度超过存储容量时需要调整存储位置,空间利用率较低。
在各种数据结构中,顺序表发挥着重要作用,其基本操作也亟待实现。
顺序表基本操作主要有查找、插入、删除、更新、查看、排序等,这些操作是实现顺序表服务的基础,它们可以有效地应用到基于顺序表的算法中,这也是数据结构开发过程中比较重要的环节。
下面就来讲述如何实现顺序表基本操作。
1.查找:实现顺序表查找操作有多种方法,其中最常用的是顺序查找和二分查找。
顺序查找就是从表的首位开始,顺序比较元素和查找条件,若相等则查找成功,若不相等则继续扫描后续元素,直至查找条件不满足或遍历完表。
二分查找则是先使用中间元素和查找条件进行比较,若相等则查找成功,若不相等则根据比较结果重新确定查找范围,如此反复查找,直至查找到目标元素或查找失败。
2.插入:实现顺序表插入操作的基本思想是,在插入一个新的元素之前,先将在其之后的元素依次向后移动,然后再插入新的元素,完成插入操作。
插入操作的复杂度主要取决于表长度,当表较短时时间复杂度较低,但是当表长度较长时,插入操作所需时间复杂度较高。
3.删除:实现顺序表删除操作的思路是找到要删除的元素,然后将其后的元素依次向前移动,最后将表长度减一,完成删除操作。
删除操作的时间复杂度也是与表长度有关,当表长度较短时,时间复杂度较低,但当表长度较长时,时间复杂度较高。
4.更新:更新操作是查找、删除和插入操作的综合,首先根据查找操作查找待更新元素,然后根据删除操作删除该元素,最后根据插入操作将更新后的元素插入到正确的位置,完成更新操作。
更新操作的时间复杂度也是由查找、删除和插入操作的复杂度决定的,当表长度较短时,时间复杂度较低,但当表长度较长时,时间复杂度较高。
5.查看:实现顺序表查看操作其实非常简单,只需要逐个检索表中的元素即可,查看操作的时间复杂度和表长度成正比,当表长度较长时,查看操作所需时间也较长。
数据结构实验报告顺序表1
数据结构实验报告顺序表1一、实验目的本次实验的主要目的是深入理解和掌握顺序表这种数据结构的基本概念、存储方式和操作方法,并通过实际编程实现,提高对数据结构的实际应用能力和编程技能。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
三、顺序表的基本概念顺序表是用一组地址连续的存储单元依次存储线性表中的数据元素。
在顺序表中,逻辑上相邻的元素在物理位置上也相邻。
顺序表可以随机访问表中的任意元素,但插入和删除操作可能需要移动大量元素,效率较低。
四、顺序表的存储结构在 C++中,可以使用数组来实现顺序表。
以下是一个简单的顺序表存储结构的定义:```cppconst int MAX_SIZE = 100; //定义顺序表的最大容量class SeqList {private:int dataMAX_SIZE; //存储数据元素的数组int length; //顺序表的当前长度public:SeqList(){ length = 0; }//构造函数,初始化长度为 0//其他操作函数的声明int GetLength();bool IsEmpty();bool IsFull();int GetElement(int position);int LocateElement(int element);void InsertElement(int position, int element);void DeleteElement(int position);void PrintList();};```五、顺序表的基本操作实现1、获取顺序表长度```cppint SeqList::GetLength(){return length;}```2、判断顺序表是否为空```cppbool SeqList::IsEmpty(){return length == 0;}```3、判断顺序表是否已满```cppbool SeqList::IsFull(){return length == MAX_SIZE;}```4、获取指定位置的元素```cppint SeqList::GetElement(int position) {if (position < 1 || position > length) {std::cout <<"位置错误!"<< std::endl; return -1;}return dataposition 1;}```5、查找指定元素在顺序表中的位置```cppint SeqList::LocateElement(int element) {for (int i = 0; i < length; i++){if (datai == element) {return i + 1;}}return -1; //未找到返回-1}```6、在指定位置插入元素```cppvoid SeqList::InsertElement(int position, int element) {if (IsFull()){std::cout <<"顺序表已满,无法插入!"<< std::endl; return;}if (position < 1 || position > length + 1) {std::cout <<"位置错误!"<< std::endl;return;}for (int i = length; i >= position; i) {datai = datai 1;}dataposition 1 = element;length++;}```7、删除指定位置的元素```cppvoid SeqList::DeleteElement(int position) {if (IsEmpty()){std::cout <<"顺序表为空,无法删除!"<< std::endl; return;}if (position < 1 || position > length) {std::cout <<"位置错误!"<< std::endl;return;}for (int i = position; i < length; i++){datai 1 = datai;}length;}```8、打印顺序表中的所有元素```cppvoid SeqList::PrintList(){for (int i = 0; i < length; i++){std::cout << datai <<"";}std::cout << std::endl;}```六、实验结果与分析1、对顺序表进行初始化,创建一个空的顺序表。
数据结构实验报告-实验一顺序表、单链表基本操作的实现
数据结构实验报告-实验⼀顺序表、单链表基本操作的实现实验⼀顺序表、单链表基本操作的实现l 实验⽬的1、顺序表(1)掌握线性表的基本运算。
(2)掌握顺序存储的概念,学会对顺序存储数据结构进⾏操作。
(3)加深对顺序存储数据结构的理解,逐步培养解决实际问题的编程能⼒。
l 实验内容1、顺序表1、编写线性表基本操作函数:(1)InitList(LIST *L,int ms)初始化线性表;(2)InsertList(LIST *L,int item,int rc)向线性表的指定位置插⼊元素;(3)DeleteList1(LIST *L,int item)删除指定元素值的线性表记录;(4)DeleteList2(LIST *L,int rc)删除指定位置的线性表记录;(5)FindList(LIST *L,int item)查找线性表的元素;(6)OutputList(LIST *L)输出线性表元素;2、调⽤上述函数实现下列操作:(1)初始化线性表;(2)调⽤插⼊函数建⽴⼀个线性表;(3)在线性表中寻找指定的元素;(4)在线性表中删除指定值的元素;(5)在线性表中删除指定位置的元素;(6)遍历并输出线性表;l 实验结果1、顺序表(1)流程图(2)程序运⾏主要结果截图(3)程序源代码#include<stdio.h>#include<stdlib.h>#include<malloc.h>struct LinearList/*定义线性表结构*/{int *list; /*存线性表元素*/int size; /*存线性表长度*/int Maxsize; /*存list数组元素的个数*/};typedef struct LinearList LIST;void InitList(LIST *L,int ms)/*初始化线性表*/{if((L->list=(int*)malloc(ms*sizeof(int)))==NULL){printf("内存申请错误");exit(1);}L->size=0;L->Maxsize=ms;}int InsertList(LIST *L,int item,int rc)/*item记录值;rc插⼊位置*/ {int i;if(L->size==L->Maxsize)/*线性表已满*/return -1;if(rc<0)rc=0;if(rc>L->size)rc=L->size;for(i=L->size-1;i>=rc;i--)/*将线性表元素后移*/L->list[i+=1]=L->list[i];L->list[rc]=item;L->size++;return0;}void OutputList(LIST *L)/*输出线性表元素*/{int i;printf("%d",L->list[i]);printf("\n");}int FindList(LIST *L,int item)/*查找线性元素,返回值>=0为元素的位置,返回-1为没找到*/ {int i;for(i=0;i<L->size;i++)if(item==L->list[i])return i;return -1;}int DeleteList1(LIST *L,int item)/*删除指定元素值得线性表记录,返回值为>=0为删除成功*/ {int i,n;for(i=0;i<L->size;i++)if(item==L->list[i])break;if(i<L->size){for(n=i;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return i;}return -1;}int DeleteList2(LIST *L,int rc)/*删除指定位置的线性表记录*/{int i,n;if(rc<0||rc>=L->size)return -1;for(n=rc;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return0;}int main(){LIST LL;int i,r;printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.size,LL.Maxsize);printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.list,LL.Maxsize);while(1){printf("请输⼊元素值,输⼊0结束插⼊操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d",&i);if(i==0)break;printf("请输⼊插⼊位置:");scanf("%d",&r);InsertList(&LL,i,r-1);printf("线性表为:");OutputList(&LL);}while(1){printf("请输⼊查找元素值,输⼊0结束查找操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d ",&i);if(i==0)break;r=FindList(&LL,i);if(r<0)printf("没有找到\n");elseprintf("有符合条件的元素,位置为:%d\n",r+1);}while(1){printf("请输⼊删除元素值,输⼊0结束查找操作:");fflush(stdin);/*清楚标准缓存区*/scanf("%d",&i);if(i==0)break;r=DeleteList1(&LL,i);if(i<0)printf("没有找到\n");else{printf("有符合条件的元素,位置为:%d\n线性表为:",r+1);OutputList(&LL);}while(1){printf("请输⼊删除元素位置,输⼊0结束查找操作:");fflush(stdin);/*清楚标准输⼊缓冲区*/scanf("%d",&r);if(r==0)break;i=DeleteList2(&LL,r-1);if(i<0)printf("位置越界\n");else{printf("线性表为:");OutputList(&LL);}}}链表基本操作l 实验⽬的2、链表(1)掌握链表的概念,学会对链表进⾏操作。
数据结构实验报告之链表顺序表的操作
数据结构实验报告之链表顺序表的操作1、编写程序实现顺序表的各种基本运算:初始化、插⼊、删除、取表元素、求表长、输出表、销毁、判断是否为空表、查找元素。
在此基础上设计⼀个主程序完成如下功能:(1)初始化顺序表L;(2)依次在表尾插⼊a,b,c,d,e五个元素;(3)输出顺序表L;(4)输出顺序表L的长度;(5)判断顺序表L是否为空;(6)输出顺序表L的第4个元素;(7)输出元素c的位置;(8)在第3个位置上插⼊元素f,之后输出顺序表L;(9)删除L的第2个元素,之后输出顺序表L;(10)销毁顺序表L。
2、编写程序实现单链表的各种基本运算:初始化、插⼊、删除、取表元素、求表长、输出表、销毁、判断是否为空表、查找元素。
在此基础上设计⼀个主程序完成如下功能:(1)初始化单链表L;(2)依次在表尾插⼊a,b,c,d,e五个元素;(3)输出单链表L;(4)输出单链表L的长度;(5)判断单链表L是否为空;(6)输出单链表L的第4个元素;(7)输出元素c的位置;(8)在第3个位置上插⼊元素f,之后输出单链表L;(9)删除L的第2个元素,之后输出单链表L;(10)销毁单链表L。
1顺序表2 #include<stdio.h>3 #include<malloc.h>4 #include<stdlib.h>56#define TRUE 17#define FALSE 08#define OK 19#define ERROR 010#define INFEASIBLE -111#define OVERFLOW -212 typedef int Status;13 typedef char ElemType;1415#define LIST_INIT_SIZE 100 //线性表存储空间的初始分配量16#define LISTINCREMENT 10 //线性表存储空间的分配增量17 typedef struct {18 ElemType *elem; //存储空间基地址19int length; //当前长度20int listsize; //当前分配的存储容量21 } SqList;2223 Status InitList_Sq(SqList &L) { //算法2.324 L.elem = (ElemType *)malloc(LIST_INIT_SIZE * sizeof(ElemType));25if (!L.elem) exit(OVERFLOW); //存储分配失败26 L.length = 0; //空表长度为027 L.listsize = LIST_INIT_SIZE; //初始存储容量28return OK;29 }//InitList_Sq3031 Status ListInsert_Sq(SqList &L, int i, ElemType e) { //算法2.432 ElemType *newbase, *p, *q;33if (i<1 || i>L.length + 1) return ERROR; //i值不合法34if (L.length >= L.listsize)35 { //当前存储空间已满,增加分配36 newbase = (ElemType*)realloc(L.elem, (L.listsize + LISTINCREMENT) * sizeof(ElemType));37if (!newbase) exit(OVERFLOW); //存储分配失败38 L.elem = newbase; //新基址39 L.listsize += LISTINCREMENT; //增加存储容量40 }41 q = &(L.elem[i - 1]); //q为插⼊位置42for (p = &(L.elem[L.length - 1]); p >= q; --p) *(p + 1) = *p; //元素右移43 *q = e; //插⼊e44 ++L.length; //表长增145return OK;46 }4748void DispSqList(SqList L)49 {50int i;51for (i = 0; i < L.length; i++)52 printf("%c ", L.elem[i]);53 }5455 Status ListDelete(SqList &L, int i, ElemType &e)56 {57 ElemType *p,*q;58if ((i < 1) || (i > L.length)) return ERROR;59 p = &(L.elem[i - 1]);60 e = *p;61 q = L.elem + L.length - 1;62for (++p; p <= q; ++p)63 *(p - 1) = *p;64 --L.length;65return OK;66 } //ListDelete_Sq6768 Status GetElem(SqList L, int i, ElemType &e)69 {70if (L.length == 0 || i<1 || i>L.length)71return ERROR;72 e = L.elem[i - 1];73return OK;74 }7576int ListLength(SqList L)77 {78return(L.length);79 }8081 Status DestroyList(SqList &L)82 {83 free(L.elem);84 L.length = 0;85return OK;86 }8788 Status ListEmpty(SqList L)89 {90return(L.length == 0);91 }9293int LocateElem(SqList L, ElemType e)94 {95int i = 0;96while (i < L.length && L.elem[i] != e) i++;97if (i >= L.length) return0;98else return i + 1;99 }100101void main()102 {103 SqList h;104 ElemType e;105 InitList_Sq(h);106 ListInsert_Sq(h, h.length + 1, 'a');107 ListInsert_Sq(h, h.length + 1, 'b');108 ListInsert_Sq(h, h.length + 1, 'c');109 ListInsert_Sq(h, h.length + 1, 'd');110 ListInsert_Sq(h, h.length + 1, 'e');111 DispSqList(h);112 printf("%d\n\n",ListLength(h));113 ListEmpty(h);114if (ListEmpty(h))116 printf("Empty\n\n");117 }118else119 {120 printf("Not empty\n\n");121 }122 GetElem(h, 4, e);123 printf("%c\n", e);124 printf("%d\n",LocateElem(h, 'c'));125 ListInsert_Sq(h,3,' f');126 DispSqList(h);127 ListDelete(h, 2, e);128 DispSqList(h);129 DestroyList(h);130 }131132133134135136单链表137138139140 #include<stdio.h>141 #include<malloc.h>142 #include<stdlib.h>143144#define TRUE 1145#define FALSE 0146#define OK 1147#define ERROR 0148#define INFEASIBLE -1149#define OVERFLOW -2150 typedef int Status;151152 typedef char ElemType;153154155 typedef struct LNode {156 ElemType data;157int length;158struct LNode *next;159 }LNode, *LinkList;160161162 Status InitList_L(LinkList &L) {163 L = (LinkList)malloc(sizeof(LNode));164 L->next = NULL;165return OK;166 }167168 Status ListInsert_L(LinkList L, int i, ElemType e) { 169 LinkList p = L,s;170int j = 0;171while (p && j < i - 1)172 {173 p = p->next;174 ++j;175 }176if (!p || j > i - 1)177 {178return ERROR;179 }180else181 {182 s = (LinkList)malloc(sizeof(LNode));183 s->data = e;184 s->next = p->next;185 p->next = s;186return OK;187 }188 }189190void DispList_L(LinkList L)191 {192 LinkList p = L->next;193while (p != NULL)194 {195 printf("%c\n", p->data);196 p = p->next;197 }198200201void DestoryList(LinkList &L)202 {203 LinkList p = L, q = p->next;204while (q != NULL)205 {206 free(p);207 p = q;208 q = p->next;209 }210 free(p);211 }212213 Status ListLength_L(LinkList L) {214 LinkList p = L; int n = 0;215while (p->next != NULL)216 {217 n++;218 p = p->next;219 }220return (n);221 }222223 Status ListDelete(LinkList L, int i, ElemType &e){ 224int j;225 LinkList p, q;226 p = L;227 j = 1;228while (p->next && j < i)229 {230 p = p->next;231 ++j;232 }233if (!(p->next) || j > i)234 {235return ERROR;236 }237 q = p->next;238 p->next = q->next;239 e = q->data;240 free(q);241return OK;242 }243244 Status ListEmpty_L(LinkList L)245 {246return(L->length == 0);247 }248249 Status GetElem(LinkList L, int i, ElemType &e) 250 {251int j;252 LinkList p;253 p = L->next;254 j = 1;255while (p&&j<i)256 {257 p = p->next;258 ++j;259 }260if (!p || j > i)261 {262return ERROR;263 }264 e = p->data;265return OK;266 }267268 Status LocateElem(LinkList L, int e)269 {270 LinkList p = L;271int n=0;272//p->length = 0;273while (p != NULL)274 {275if(p->data != e)276 {277 p = p->next;278 n++;279 }280else281 {282break;283 }284 }285if(p != NULL)286 {287return n;288 }289else290 {291return ERROR;292 }293 }294295void main()296 {297 LinkList h;298 ElemType e;299 InitList_L(h);300 ListInsert_L(h, 1, 'a');301 ListInsert_L(h, 2, 'b');302 ListInsert_L(h, 3, 'c');303 ListInsert_L(h, 4, 'd');304 ListInsert_L(h, 5, 'e');305 DispList_L(h);306 printf("%d\n", ListLength_L(h)); 307if (ListEmpty_L(h))308 {309 printf("Empty\n\n");310 }311else312 {313 printf("Not empty\n\n");314 }315 GetElem(h, 4, e);316 printf("%c\n", e);317 printf("%d\n", LocateElem(h, 'c')); 318 ListInsert_L(h, 3, 'f');319 DispList_L(h);320 ListDelete(h, 2, e);321 DispList_L(h);322 DestoryList(h);323 }。
数据结构实验一 顺序表的实现
cout <<v.elem[i] <<' '; cout <<endl; }
} default: flag=0; cout <<"程序结束,按任意键退出!" <<endl; } } } //初始化线性表 void initial(seqlist &v) { int i; cout <<"请输入初始线性表长度:n="; cin >>st; cout <<"请输入各元素/字符[中间用空格隔开](例如:a b c d): "; for(i=0;i<st;i++) cin >>&v.elem[i]; } //插入一个元素,成功返回True,失败返回False bool insert (seqlist &v,int loc,char ch) { int i; if((loc<1)||(loc>st+1)) { cout <<"插入位置不合理!" <<endl; //位置错误 return false; } else if(st>=Max) { cout <<"超出线性表最大容量!" <<endl; //溢满 return false; } else { for(i=st-1;i>=loc-1;i--) v.elem[i+1]=v.elem[i]; //插入位置后的元素后移 v.elem[loc-1]=ch; //插入元素 st++; //表长度加1
四、程序的调试及运行结果
五、程序代码
数据结构顺序表操作实验报告
实验1 顺序表的操作一、实验要求1.输入一组整型元素序列,建立顺序表。
2.实现该顺序表的遍历。
3.在该顺序表中进行顺序查找某一元素,查找成功返回1,否则返回0。
4.判断该顺序表中元素是否对称,对称返回1,否则返回0。
5.实现把该表中所有奇数排在偶数之前,即表的前面为奇数,后面为偶数。
6.* 输入整型元素序列利用有序表插入算法建立一个有序表。
7.* 利用算法6建立两个非递减有序表并把它们合并成一个非递减有序表。
8.编写一个主函数,调试上述算法。
二、源代码#include"stdio.h"#include"stdlib.h"#define ElemType int//int类型宏定义#define MAXSIZE 100//顺序结构typedef struct{ElemType elem[MAXSIZE]; //元素数组int length; //当前表长}SqList;//建立顺序表void BuildList(SqList &L){int n;printf("请输入建立顺序表的大小。
n=");scanf("%d",&n);L.length=n;printf("\n开始建立顺序表...\n");for(int i=0;i<L.length;i++)//循环建立顺序表{printf("\n请输入第%d个元素:",i+1);scanf("%d",&L.elem[i]);}printf("\n建立顺序表完毕!...\n");}//遍历顺序表void ShowList(SqList &L){int i;printf("\n开始遍历顺序表...\n");for(i=0;i<L.length;i++)printf("%d ",L.elem[i]);printf("\n遍历结束...\n");}//在顺序表中寻找X元素int FindList(SqList &L,int x){int a=0;for(int i=0;i<L.length;i++){if(L.elem[i]==x)a=1;}if(a==1)printf("1\n");elseprintf("0\n");return 0;}//判断是否对称int Duichen(SqList &L){int j,b=1,n;n=L.length;if(n%2==0){for(j=0;j<n/2;j++){if(L.elem[j]!=L.elem[L.length-j-1])b=0;}}elsefor(j=0;j<(n-1)/2;j++){if(L.elem[j]!=L.elem[L.length-j-1])b=0;}if(b==1)printf("1\n");elseprintf("0\n");return 0;}//前面为奇数,后面为偶数void PaixuList(SqList &L){int i,j,a;for(i=1;i<L.length;i++){if(L.elem[i]%2==1){a=L.elem[i];for(j=i;j>0;j--){L.elem[j]=L.elem[j-1];}L.elem[0]=a;i++;}}for(i=0;i<L.length;i++)printf("%d ",L.elem[i]);printf("\n");}int main(){SqList List;int n;while(1){printf("\n 实验一:顺序表\n");printf("\n******************************************************************");printf("\n 1.创建顺序表");printf("\n 2.遍历顺序表");printf("\n 3.在该顺序表中进行顺序查找某一元素,查找成功返回1,否则返回0");printf("\n 4.判断该顺序表中元素是否对称,对称返回1,否则返回0");printf("\n 5.该表中所有奇数排在偶数之前,即表的前面为奇数,后面为偶数");printf("\n 0.退出");printf("\n******************************************************************\n");printf("\n请输入选择序号:");scanf("%d",&n);switch(n){case 0:return 0;case 1:BuildList(List);break;case 2:ShowList(List);break;case 3:int X;printf("请输入要查找值:X=");scanf("%d",&X);FindList(List,X);break;case 4:Duichen(List);break;case 5:PaixuList(List);break;default:printf(" 请输入数字0-5 \n");}}return 0;}三、运行结果1)程序主界面2)选择1建立顺序表3)选择2遍历顺序表4)选择3查询元素X5)选择4判断是否对称6)选择5奇数在前,偶数在后7)选择0退出。
数据结构顺序表实验报告
数据结构顺序表实验报告数据结构顺序表实验报告1.实验目的:本实验旨在通过实现顺序表的基本操作,加深对数据结构顺序表的理解,并掌握相关算法的实现方法。
2.实验环境:●操作系统:Windows 10●编程语言:C/C++●开发工具:Visual Studio Code3.实验内容:3.1 初始化顺序表●定义顺序表结构体●实现创建顺序表的函数●实现销毁顺序表的函数3.2 插入元素●实现在指定位置插入元素的函数●实现在表尾插入元素的函数3.3 删除元素●实现删除指定位置元素的函数●实现删除指定值元素的函数3.4 查找元素●实现按值查找元素的函数●实现按位置查找元素的函数3.5 修改元素●实现修改指定位置元素的函数3.6 打印顺序表●实现打印顺序表中所有元素的函数4.实验步骤:4.1 初始化顺序表●定义顺序表结构体,并分配内存空间●初始化顺序表中的数据和长度4.2 插入元素●调用插入元素函数,在指定位置或表尾插入元素4.3 删除元素●调用删除元素函数,删除指定位置或指定值的元素4.4 查找元素●调用查找元素函数,按值或位置查找元素4.5 修改元素●调用修改元素函数,修改指定位置的元素4.6 打印顺序表●调用打印顺序表函数,输出顺序表中的所有元素5.实验结果:经过测试,顺序表的基本操作均能正确执行。
插入元素、删除元素、查找元素、修改元素和打印顺序表等功能都能正常运行。
6.实验总结:本实验通过实现顺序表的基本操作,巩固了对数据结构顺序表的理论知识,并加深了对算法的理解和应用能力。
顺序表是一种简单、易于实现的数据结构,适用于元素数量变化较少的情况下。
7.附件:无8.法律名词及注释:●顺序表:一种基本的线性数据结构,数据元素按照其逻辑位置依次存储在一片连续的存储空间中。
●初始化:为数据结构分配内存空间并进行初始化,使其具备基本的数据存储能力。
●插入元素:将一个新元素插入到已有元素的合适位置,使得数据结构保持有序或符合特定要求。
数据结构实验报告顺序表
数据结构实验报告顺序表数据结构实验报告:顺序表摘要:顺序表是一种基本的数据结构,它通过一组连续的存储单元来存储线性表中的数据元素。
在本次实验中,我们将通过实验来探索顺序表的基本操作和特性,包括插入、删除、查找等操作,以及顺序表的优缺点和应用场景。
一、实验目的1. 理解顺序表的概念和特点;2. 掌握顺序表的基本操作;3. 了解顺序表的优缺点及应用场景。
二、实验内容1. 实现顺序表的初始化操作;2. 实现顺序表的插入操作;3. 实现顺序表的删除操作;4. 实现顺序表的查找操作;5. 对比顺序表和链表的优缺点;6. 分析顺序表的应用场景。
三、实验步骤与结果1. 顺序表的初始化操作在实验中,我们首先定义了顺序表的结构体,并实现了初始化操作,即分配一定大小的存储空间,并将表的长度设为0,表示表中暂时没有元素。
2. 顺序表的插入操作接下来,我们实现了顺序表的插入操作。
通过将插入位置后的元素依次向后移动一位,然后将新元素插入到指定位置,来实现插入操作。
我们测试了在表中插入新元素的情况,并验证了插入操作的正确性。
3. 顺序表的删除操作然后,我们实现了顺序表的删除操作。
通过将删除位置后的元素依次向前移动一位,来实现删除操作。
我们测试了在表中删除元素的情况,并验证了删除操作的正确性。
4. 顺序表的查找操作最后,我们实现了顺序表的查找操作。
通过遍历表中的元素,来查找指定元素的位置。
我们测试了在表中查找元素的情况,并验证了查找操作的正确性。
四、实验总结通过本次实验,我们对顺序表的基本操作有了更深入的了解。
顺序表的插入、删除、查找等操作都是基于数组的操作,因此在插入和删除元素时,需要移动大量的元素,效率较低。
但是顺序表的优点是可以随机访问,查找效率较高。
在实际应用中,顺序表适合于元素数量不变或变化不大的情况,且需要频繁查找元素的场景。
综上所述,顺序表是一种基本的数据结构,我们通过本次实验对其有了更深入的了解,掌握了顺序表的基本操作,并了解了其优缺点及应用场景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N Y
调用函数input()输入数据 按照元素查找元素 按照位置查看元素 在指定位置插入元素 提示输入错误 删除指定的元素 调用函数output()输出数据 输出现有的数据个数 输出数组的最大容量 清空列表
令a=false 开始 赋值a=true 调用cmain()函数 输出主菜单 输入选项i的值 i[0]=1 i[0]=2 i[0]=3 i[0]=4 i[0]=5 i[0]=6 i[0]=其它值 a=true? 创建char类型数组 i[0]=7 i[0]=8 i[0]=9 i[0]=0 4、 详细设计 1、 抽象数据类型的实现:包括类型定义和各个操作的实现。 类的定义与实现 list.h文件: #include<iostream> using namespace std; template<class T> class TSeqList { private: T *m_elem; //用于存放数组的指针 int m_maxsize; //数组的最大容量 int m_len; //现有元素个数 public: TSeqList(); //构造函数 ~TSeqList(){delete[]m_elem;}; //析构函数 void Length(){cout<<"数组的长度:" <<m_len<<endl;}; //用于输出现有元素个数的函数 void Size(){cout<<"数组最多容纳元素个数:"
template<class T> void TSeqList<T>::Search2() { int i; if(m_len) { cout<<"请输入要查找的位置"<<"(1~"<<m_len<<"):"; while(true) { cin>>i; if(i<1||i>m_len)cout<<"无此位置!请重新输入:"; else break; } cout<<"第"<<i<<"元素是"<<m_elem[i-1]<<endl; } else cout<<"列表为空,无法查询!"<<endl; } template<class T> void TSeqList<T>::del() { int i,j,k=0;T e; if(m_len) { cout<<"输入要删除的元素:"; cin>>e; cout<<"您要删除的元素是:"<<e<<endl; for(i=m_len-1;i>=0;i--) { if(m_elem[i]==e) { m_len--; for(j=i;j<m_len;j++) { m_elem[j]=m_elem[j+1]; } k++;
实验2 顺序表
1、 问题描述: 实现顺序表,基本操作包括构造、析构、插入、查找、删除、取 值、赋值。 2、 需求分析 1、 简述程序的基本功能: 建立一个类模板;创建了一个构造函数,用于动态的申请一定的空 间;创建了一个析构函数,用于释放动态申请的空间;还可以对顺序 表进行查找、插入、删除操作;以及对顺序表中的元素的输入输出等 等。 2、 输入的形式和输入值的范围: 首先输入要创建的顺序表的容量,形式为整形int;然后在操作选项 中输入形式为字符型,有一定的容错能力,
<<m_maxsize<<endl;}; //输出数组容量的函数 void Search1(); //按照元素进行查找 void Search2(); //按照元素位置进行 查找 void Insert(); //插入元素 void del(); //删除元素 bool SeqEmputy(){cout<<"清空列 表。";m_len=0;Length();return(m_len==0)?true:false;};//清空列表 void output(); //输出元素 void input(); //输入元素 }; const int m_extend=10; template<class T> TSeqList<T>::TSeqList() { cout<<"输入要创建数组最多容纳元素个数:"; cin>>m_maxsize; m_len=0; m_elem=new T[m_maxsize]; } template<class T> void TSeqList<T>::Search1() { T e;int i,j=0; cout<<"请查找元素:";cin>>e; cout<<"输出它的位置:"<<endl; for(i=0;i<m_len;i++) if(m_elem[i]==e) { cout<<"第"<<i+1<<"位"<<endl; j++; } if(j==0)cout<<"没有这个元素!"<<endl; else cout<<"共查找到"<<j<<"个"<<e<<"元素"<<endl; }
3、 输出的形式: 程序开始时创建数组需要输入容量,输入形式为整形int; 用户选择1选项时,程序会提示用户输入元素的个数并给出范围,输 入形式为整形int,然后开始输入元素; 用户选择2选项时,程序会逐个输出现有的元素; 用户选择3选项时,程序会提示输入所要查找的元素,输入形式为字 符型char,然后进行逐个查找,并该输出元素的位置以及所找到的个 数; 用户选择4选项时,程序会提示输入所要查看的位置并给出范围,输 入形式为整形int,然后输出该位置的元素; 用户选择5选项时,程序会提示输入所要插入的位置以及现有的位 置,输入形式为整形int,然后可以输入所要插入的元素,输入形式
Байду номын сангаас
} for(int i=0;i<m_len;i++) {cout<<i+1<<" ";cin>>m_elem[i];} } 2、 其他主要算法的实现 菜单输出函数文件cmain.h文件: #include<iostream> using namespace std; void cmain() //主界面的菜单函数 { cout<<"***********************************"<<endl; cout<<" 主菜单"<<endl; cout<<" 1.输入数据元素 2.输出数据元素"<<endl; cout<<" 3.按元素查找 4.按位置查找"<<endl; cout<<" 5.插入元素 6.删除元素"<<endl; cout<<" 7.现有数据个数 8.数组总长度"<<endl; cout<<" 9.清空列表 0.退出程序"<<endl; cout<<"注意:1.选择时不能输入过多字符(<20个)"<<endl; cout<<" 2.选择时只读取第一个字符"<<endl; cout<<"***********************************"<<endl; cout<<"请输入选项(1~9):"; } 3、 主程序的实现cmain.cpp文件: #include"list.h" #include"cmain.h" #include<iostream> using namespace std; void main() { cout<<" 欢迎使用该顺序表程序!"<<endl<<endl; TSeqList<char>str; char i[20]; bool a=true; while(a) //循环结构进行各项操作 { cmain(); cin>>i;
m_elem[i-1]=e; } else { for(int k=m_len;k>=i;k--) m_elem[k]=m_elem[k-1]; m_elem[i-1]=e; } } template<class T> void TSeqList<T>::output() { if(m_len==0)cout<<"没有任何元素!"<<endl; else { for(int i=0;i<m_len;i++) cout<<"第"<<i+1<<"个元素是"<<m_elem[i]<<endl; } } template<class T> void TSeqList<T>::input() { cout<<"开始建立顺序表,输入元素个数(≤" <<m_maxsize<<"):"; cin>>m_len; bool a=true; while(a) { if(m_len>m_maxsize) { cout<<"元素个数已经超过"<<m_maxsize<<"!"<<endl; cout<<"重新输入元素个数(≤"<<m_maxsize<<"):"; cin>>m_len; } else a=false;