数据结构实现顺序表各种基本运算

合集下载

数据结构能力测试集训题目

数据结构能力测试集训题目

数据结构能力测试集训题目线性表1.实现顺序表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化顺序表L;(2)采用尾插法依次插入a,b,c,d,e;(3)输出顺序表L;(4)输出顺序表L的长度;(5)判断顺序表L是否为空;(6)输出顺序表L的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出顺序表L;(10)删除顺序表L的第3个元素;(11)输出顺序表L;(12)释放顺序表L。

2.实现单链表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化单链表h;(2)采用尾插法依次插入a,b,c,d,e;(3)输出单链表h;(4)输出单链表h的长度;(5)判断单链表h是否为空;(6)输出单链表h的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出单链表h;(10)删除单链表h的第3个元素;(11)输出单链表h;(12)释放单链表h;3.实现双链表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化双链表h;(2)采用尾插法依次插入a,b,c,d,e;(3)输出双链表h;(4)输出双链表h的长度;(5)判断双链表h是否为空;(6)输出双链表h的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出双链表h;(10)删除双链表h的第3个元素;(11)输出双链表h;(12)释放双链表h;4.实现循环单链表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化循环单链表h;(2)采用尾插法依次插入a,b,c,d,e;(3)输出循环单链表h;(4)输出循环单链表h的长度;(5)判断循环单链表h是否为空;(6)输出循环单链表h的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出循环单链表h;(10)删除循环单链表h的第3个元素;(11)输出循环单链表h;(12)释放循环单链表h;5.实现循环单链表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化循环双链表h;(2)采用尾插法依次插入a,b,c,d,e;(3)输出循环双链表h;(4)输出循环双链表h的长度;(5)判断循环双链表h是否为空;(6)输出循环双链表h的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出循环双链表h;(10)删除循环双链表h的第3个元素;(11)输出循环双链表h;(12)释放循环双链表h;6.求集合的并,交,差运算(用有序单链表表示)栈和队列7.实现顺序栈各种基本运算的算法,编写一个程序实现顺序栈的各种基本运算,并在此基础上设计一个主程序完成以下各种功能:(1)初始化栈s(2)判断栈s是否非空(3)依次进栈元素a,b,c,d,e(4)判断栈s是否非空(5)输出栈长度(6)输出从栈顶到栈底元素(7)输出出栈序列(8)判断栈s是否非空(9)释放栈8.实现链栈各种基本运算的算法,编写一个程序,实现链栈的各种基本算法,并在此基础上设计一个主程序完成如下功能:(1)初始化链栈s(2)判断链栈s是否非空(3)依次进栈元素a,b,c,d,e(4)判断链栈s是否非空(5)输出链栈长度(6)输出从栈顶到栈底元素(7)输出链栈序列(8)判断链栈s是否非空(9)释放链栈9.实现顺序队列各种基本运算的算法,编写一个程序,实现顺序循环队列各种基本运算,并在此基础上设计一个主程序完成如下功能:(1)初始化队列q(2)判断队列q是否非空(3)依次进队列元素a,b,c(4)出队一个元素,输出该元素(5)输出队列q的元素的个数(6)依次进队列元素d,e,f(7)输出队列q的元素的个数(8)输出出队序列(9)释放队列10.实现链队各种基本运算的算法,编写一个程序,实现链队的各种基本运算,在此基础上设计一个主程序完成如下功能:(1)初始化链队q(2)判断链队q是否非空(3)依次进链队元素a,b,c(4)出队一个元素,输出该元素(5)输出链队q的元素的个数(6)依次进链队元素d,e,f(7)输出链队q的元素的个数(8)输出出队序列(9)释放链队串11.实现顺序串各种基本运算的算法,编写一个程序实现顺序的基本运算的算法,比在此基础上设计一个主程序完成如下功能:(1)建立s=”abcdefghefghijklmn”和串s1=”xyz”(2)输出串s(3)输出串s的长度(4)在串s的第9个字符位置插入串s1而产生串s2(5)输出串s2(6)删除串s第2个字符开始的5个字符而产生的串s2(7)输出串s2(8)将串s第2个字符开始的5个字符替换成串s1而产生串s2(9)输出串s2(10)提取串s的第2个字符开始的10个字符而产生串s3(11)输出串s3(12)将串s1和串s2连接起来而产生的串s4(13)输出串s412.实现链串个各种基本运算的算法,编写一个程序实现链串的各种基本运算,并在此基础上设计一个主程序完成如下功能;(1)建立s=”abcdefghefghijklmn”和串s1=”xyz”(2)输出串s(3)输出串s的长度(4)在串s的第9个字符位置插入串s1而产生串s2(5)输出串s2(6)删除串s第2个字符开始的5个字符而产生的串s2(7)输出串s2(8)将串s第2个字符开始的5个字符替换成串s1而产生串s2(9)输出串s2(10)提取串s的第2个字符开始的10个字符而产生串s3(11)输出串s3(12)将串s1和串s2连接起来而产生的串s4(13)输出串s413.顺序串的各种模式匹配运算,编写一个程序实现顺序串的各种模式匹配运算,并在此基础上完成如下功能:(1)建立”abcabcdabcdeabcdefabcdefg”目标串s和”abcdeabcdefab”模式串t(2)采用简单匹配算法求t在s中的位置(3)由模式串t求出next值和nextval值(4)采用KMP算法求t在s中的位置(5)采用改进的KMP算法求t在s中的位置查找14.实现顺序查找的算法,编写一个程序输出在顺序表{3,6,2,10,1,8,5,7,4,9}中采用顺序方法查找关键字5的过程。

实现顺序表的各种基本运算的算法

实现顺序表的各种基本运算的算法

实现顺序表的各种基本运算的算法顺序表是一种基本的数据结构,它可以存储线性结构,支持随机访问,具有较好的存储效率。

在实际应用中,我们需要实现顺序表的各种基本运算,包括插入、删除、查找、遍历、排序等操作。

下面介绍一些实现顺序表基本运算的算法。

1.插入算法顺序表插入算法的基本思路是:将插入位置之后的所有元素向后移动一位,然后将待插入元素放入插入位置。

具体实现如下:```void Insert(SqList &L, int pos, int data){if (pos < 1 || pos > L.length + 1) // 插入位置非法return;if (L.length == L.MAXSIZE) // 顺序表已满return;for (int i = L.length; i >= pos; i--) // 将pos以后的元素依次后移,腾出pos位置L.data[i] = L.data[i - 1];L.data[pos - 1] = data; // 将新元素插入pos位置L.length++; // 顺序表长度+1}```2.删除算法顺序表删除算法的基本思路是:将待删除元素之后的所有元素向前移动一位,然后将顺序表长度减1。

具体实现如下:```void Delete(SqList &L, int pos){if (pos < 1 || pos > L.length) // 删除位置非法return;for (int i = pos; i < L.length; i++) // 将pos以后的元素依次前移,覆盖pos位置L.data[i - 1] = L.data[i];L.length--; // 顺序表长度-1}```3.查找算法顺序表查找算法的基本思路是:从表头开始逐个比较元素,直到找到目标元素或者搜索到表尾。

具体实现如下:```int Search(SqList L, int data){for (int i = 0; i < L.length; i++){if (L.data[i] == data) // 找到目标元素,返回其下标return i;}return -1; // 未找到目标元素,返回-1}```4.遍历算法顺序表遍历算法的基本思路是:从表头开始依次输出元素。

数据结构与算法分析实验报告

数据结构与算法分析实验报告

数据结构与算法分析实验报告一、实验目的本次实验旨在通过实际操作和分析,深入理解数据结构和算法的基本概念、原理和应用,提高解决实际问题的能力,培养逻辑思维和编程技巧。

二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。

操作系统为 Windows 10。

三、实验内容(一)线性表的实现与操作1、顺序表的实现使用数组实现顺序表,包括插入、删除、查找等基本操作。

通过实验,理解了顺序表在内存中的存储方式以及其操作的时间复杂度。

2、链表的实现实现了单向链表和双向链表,对链表的节点插入、删除和遍历进行了实践。

体会到链表在动态内存管理和灵活操作方面的优势。

(二)栈和队列的应用1、栈的实现与应用用数组和链表分别实现栈,并通过表达式求值的例子,展示了栈在计算中的作用。

2、队列的实现与应用实现了顺序队列和循环队列,通过模拟银行排队的场景,理解了队列的先进先出特性。

(三)树和二叉树1、二叉树的遍历实现了先序、中序和后序遍历算法,并对不同遍历方式的结果进行了分析和比较。

2、二叉搜索树的操作构建了二叉搜索树,实现了插入、删除和查找操作,了解了其在数据快速查找和排序中的应用。

(四)图的表示与遍历1、邻接矩阵和邻接表表示图分别用邻接矩阵和邻接表来表示图,并比较了它们在存储空间和操作效率上的差异。

2、图的深度优先遍历和广度优先遍历实现了两种遍历算法,并通过对实际图结构的遍历,理解了它们的应用场景和特点。

(五)排序算法的性能比较1、常见排序算法的实现实现了冒泡排序、插入排序、选择排序、快速排序和归并排序等常见的排序算法。

2、算法性能分析通过对不同规模的数据进行排序实验,比较了各种排序算法的时间复杂度和空间复杂度。

四、实验过程及结果(一)线性表1、顺序表在顺序表的插入操作中,如果在表头插入元素,需要将后面的元素依次向后移动一位,时间复杂度为 O(n)。

删除操作同理,在表头删除元素时,时间复杂度也为 O(n)。

数据结构实验报告-线性表(顺序表实现)

数据结构实验报告-线性表(顺序表实现)

实验1:线性表(顺序表的实现)一、实验项目名称顺序表基本操作的实现二、实验目的掌握线性表的基本操作在顺序存储结构上的实现。

三、实验基本原理顺序表是由地址连续的的向量实现的,便于实现随机访问。

顺序表进行插入和删除运算时,平均需要移动表中大约一半的数据元素,容量难以扩充四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和一些预定义:2.定义顺序表:3.初始化:4.插入元素:5.查询元素:6.删除元素:7.销毁顺序表:8.清空顺序表:9.顺序表长度:10.判空:11.定位满足大小关系的元素(默认小于):12.查询前驱:13.查询后继:14.输出顺序表15.归并顺序表16.写测试程序以及主函数对顺序表的每一个操作写一个测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。

实验完整代码:#include <bits/stdc++.h>using namespace std;#define error 0#define overflow -2#define initSize 100#define addSize 10#define compareTo <=typedef int ElemType;struct List{ElemType *elem;int len;int listsize;}L;void init(List &L){L.elem = (ElemType *) malloc(initSize * sizeof(ElemType)); if(!L.elem){cout << "分配内存失败!";exit(overflow);}L.len = 0;L.listsize = initSize;}void destroy(List &L){free(L.elem);L.len = L.listsize = 0;}void clear(List &L){L.len = 0;}bool empty(List L){if(L.len == 0) return true;else return false;}int length(List L){return L.len;}ElemType getElem(List L,int i){if(i < 1 || i > L.len + 1){cout << "下标越界!";exit(error);}return L.elem[i - 1];}bool compare(ElemType a,ElemType b) {return a compareTo b;}int locateElem(List L,ElemType e) {for(int i = 0;i < L.len;i++){if(compare(L.elem[i],e))return i;}return -1;}int check1(List L,ElemType e){int idx = -1;for(int i = 0;i < L.len;i++)if(L.elem[i] == e)idx = i;return idx;}bool check2(List L,ElemType e){int idx = -1;for(int i = L.len - 1;i >= 0;i--)if(L.elem[i] == e)idx = i;return idx;}int priorElem(List L,ElemType cur_e,ElemType pre_e[]) {int idx = check1(L,cur_e);if(idx == 0 || idx == -1){string str = "";str = idx == 0 ? "无前驱结点" : "不存在该元素";cout << str;exit(error);}int cnt = 0;for(int i = 1;i < L.len;i++){if(L.elem[i] == cur_e){pre_e[cnt ++] = L.elem[i - 1];}}return cnt;}int nextElem(List L,ElemType cur_e,ElemType next_e[]){int idx = check2(L,cur_e);if(idx == L.len - 1 || idx == - 1){string str = "";str = idx == -1 ? "不存在该元素" : "无后驱结点";cout << str;exit(error);}int cnt = 0;for(int i = 0;i < L.len - 1;i++){if(L.elem[i] == cur_e){next_e[cnt ++] = L.elem[i + 1];}}return cnt;}void insert(List &L,int i,ElemType e){if(i < 1 || i > L.len + 1){cout << "下标越界!";exit(error);}if(L.len >= L.listsize){ElemType *newbase = (ElemType *)realloc(L.elem,(L.listsize + addSize) * sizeof(ElemType));if(!newbase){cout << "内存分配失败!";exit(overflow);}L.elem = newbase;L.listsize += addSize;for(int j = L.len;j > i - 1;j--)L.elem[j] = L.elem[j - 1];L.elem[i - 1] = e;L.len ++;}void deleteList(List &L,int i,ElemType &e){if(i < 1 || i > L.len + 1){cout << "下标越界!";exit(error);}e = L.elem[i - 1];for(int j = i - 1;j < L.len;j++)L.elem[j] = L.elem[j + 1];L.len --;}void merge(List L,List L2,List &L3){L3.elem = (ElemType *)malloc((L.len + L2.len) * sizeof(ElemType)); L3.len = L.len + L2.len;L3.listsize = initSize;if(!L3.elem){cout << "内存分配异常";exit(overflow);}int i = 0,j = 0,k = 0;while(i < L.len && j < L2.len){if(L.elem[i] <= L2.elem[j])L3.elem[k ++] = L.elem[i ++];else L3.elem[k ++] = L2.elem[j ++];}while(i < L.len)L3.elem[k ++] = L.elem[i ++];while(j < L2.len)L3.elem[k ++] = L2.elem[j ++];}bool visit(List L){if(L.len == 0) return false;for(int i = 0;i < L.len;i++)cout << L.elem[i] << " ";cout << endl;return true;}void listTraverse(List L){if(!visit(L)) return;}void partion(List *L){int a[100000],b[100000],len3 = 0,len2 = 0; memset(a,0,sizeof a);memset(b,0,sizeof b);for(int i = 0;i < L->len;i++){if(L->elem[i] % 2 == 0)b[len2 ++] = L->elem[i];elsea[len3 ++] = L->elem[i];}for(int i = 0;i < len3;i++)L->elem[i] = a[i];for(int i = 0,j = len3;i < len2;i++,j++) L->elem[j] = b[i];cout << "输出顺序表:" << endl;for(int i = 0;i < L->len;i++)cout << L->elem[i] << " ";cout << endl;}//以下是测试函数------------------------------------void test1(List &list){init(list);cout << "初始化完成!" << endl;}void test2(List &list){if(list.listsize == 0)cout << "线性表不存在!" << endl;else{int len;ElemType num;cout << "选择插入的元素数量:" << endl;cin >> len;cout << "依次输入要插入的元素:" << endl;for(int i = 1;i <= len;i++){cin >> num;insert(list,i,num);}cout << "操作成功!" << endl;}}void test3(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{cout << "请输入要返回的元素的下标" << endl;int idx;cin >> idx;cout << "线性表中第" << idx << "个元素是:" << getElem(L,idx) << endl;}}void test4(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{int idx;ElemType num;cout << "请输入要删除的元素在线性表的位置" << endl;cin >> idx;deleteList(L,idx,num);cout << "操作成功!" << endl << "被删除的元素是:" << num << endl; }}void test5(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{destroy(L);cout << "线性表已被销毁" << endl;}}void test6(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{clear(L);cout << "线性表已被清空" << endl;}}void test7(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else cout << "线性表的长度现在是:" << length(L) << endl;}void test8(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else if(empty(L))cout << "线性表现在为空" << endl;else cout << "线性表现在非空" << endl;}void test9(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{ElemType num;cout << "请输入待判定的元素:" << endl;cin >> num;cout << "第一个与目标元素满足大小关系的元素的位置:" << locateElem(L,num) << endl;}}void test10(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{ElemType num,num2[initSize / 2];cout << "请输入参照元素:" << endl;cin >> num;int len = priorElem(L,num,num2);cout << num << "的前驱为:" << endl;for(int i = 0;i < len;i++)cout << num2[i] << " ";cout << endl;}}void test11(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{ElemType num,num2[initSize / 2];cout << "请输入参照元素:" << endl;cin >> num;int len = nextElem(L,num,num2);cout << num << "的后继为:" << endl;for(int i = 0;i < len;i++)cout << num2[i] << " ";cout << endl;}}void test12(List list){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{cout << "输出线性表所有元素:" << endl;listTraverse(list);}}void test13(){if(L.listsize == 0)cout << "初始线性表不存在!" << endl; else{List L2,L3;cout << "初始化一个新线性表" << endl;test1(L2);test2(L2);cout << "归并两个线性表" << endl;merge(L,L2,L3);cout << "归并成功!" << endl;cout << "输出合并后的线性表" << endl;listTraverse(L3);}}void test14(){partion(&L);cout << "奇偶数分区成功!" << endl;}int main(){std::ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);int op = 0;while(op != 15){cout << "-----------------menu--------------------" << endl;cout << "--------------1:初始化------------------" << endl;cout << "--------------2:插入元素----------------" << endl;cout << "--------------3:查询元素----------------" << endl;cout << "--------------4:删除元素----------------" << endl;cout << "--------------5:销毁线性表--------------" << endl;cout << "--------------6:清空线性表--------------" << endl;cout << "--------------7:线性表长度--------------" << endl;cout << "--------------8:线性表是否为空----------" << endl;cout << "--------------9:定位满足大小关系的元素--" << endl;cout << "--------------10:查询前驱---------------" << endl;cout << "--------------11:查询后继---------------" << endl;cout << "--------------12:输出线性表-------------" << endl;cout << "--------------13:归并线性表-------------" << endl;cout << "--------------14:奇偶分区---------------" << endl;cout << "--------------15: 退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl; if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1(L);break;case 2:test2(L);break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:test12(L);break;case 13:test13();break;case 14:test14();break;case 15:cout << "测试结束!" << endl;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果1.初始化:2.插入元素3.查询元素(返回的是数组下标,下标从0开始)4.删除元素(位置从1开始)5.销毁顺序表6.清空顺序表7.顺序表长度(销毁或清空操作前)8.判空(销毁或清空操作前)9.定位满足大小关系的元素(销毁或清空操作前)说明:这里默认找第一个小于目标元素的位置且下标从0开始,当前顺序表的数据为:1 4 2 510.前驱(销毁或清空操作前)11.后继(销毁或清空操作前)12.输出顺序表(销毁或清空操作前)13.归并顺序表(销毁或清空操作前)七、思考讨论题或体会或对改进实验的建议通过本次实验,我掌握了定义线性表的顺序存储类型,加深了对顺序存储结构的理解,进一步巩固和理解了顺序表的基本操作,如建立、查找、插入和删除等。

实现顺序表各种基本运算的算法.doc

实现顺序表各种基本运算的算法.doc

实现顺序表各种基本运算的算法.doc
创建顺序表:创建顺序表需要先确定表的大小,即容量。

可以通过动态分配内存来创建顺序表,或者直接在程序中定义一个静态数组作为顺序表的存储空间。

创建时需要初始化表中元素的数量为0。

插入元素:在顺序表中插入元素时,需要先判断表是否已满。

如果表已满,则需要扩容。

扩容可以通过动态分配更大的内存空间,并将原有元素拷贝到新的内存空间中来实现。

如果表未满,则可以直接在表的末尾插入元素。

如果要在指定位置插入元素,则需要先将该位置及其后面的元素依次后移一个位置,再在该位置插入新元素。

删除元素:在顺序表中删除元素时,需要先判断要删除的元素是否存在。

如果不存在,则无需进行任何操作。

如果存在,则可以直接删除该元素。

如果要删除指定位置的元素,则需要先将该位置后面的元素依次前移一个位置,再将表中元素的数量减1。

查找元素:在顺序表中查找元素时,可以使用顺序查找或二分查找算法。

顺序查找的时间复杂度为O(n),而二分查找的时间复杂度为O(log n)。

在使用二分查找时,需要保证顺序表中的元素已经按照升序或降序排列。

修改元素:在顺序表中修改元素时,需要先查找该元素的位置,然后将其修改为新值。

输出顺序表:输出顺序表时,需要遍历表中所有元素,并将它们依次输出。

可以使用循环来实现遍历。

总之,实现顺序表的基本运算需要涉及到动态内存分配、数组操作、循环遍历和查找算法等知识点。

在实际应用中,还需要考虑如何优化算法效率、如何处理异常情况等问题。

实现顺序表的各种基本运算的算法

实现顺序表的各种基本运算的算法

实现顺序表的各种基本运算的算法1. 初始化顺序表算法实现:初始化操作就是将顺序表中所有元素的值设置为默认值,对于数值类型,可以将其设置为0,对于字符类型,可以将其设置为空格字符。

初始化的时间复杂度为O(n),其中n为顺序表的长度。

2. 插入操作算法实现:顺序表的插入操作就是在指定位置上插入一个元素,需要将该位置后面的元素全部后移,在指定位置上插入新元素。

若顺序表已满,则需要进行扩容操作,将顺序表长度扩大一倍或者按一定的比例扩大。

插入操作的时间复杂度为O(n),其中n为顺序表长度。

3. 删除操作算法实现:顺序表的删除操作需要将指定位置上的元素删除,并将该位置后面的元素全部前移。

删除操作后,如果顺序表的实际长度小于等于其总长度的1/4,则需要进行缩容操作,将顺序表长度缩小一倍或者按一定的比例缩小。

删除操作的时间复杂度为O(n),其中n为顺序表长度。

4. 修改操作算法实现:顺序表的修改操作就是将指定位置上的元素赋予新的值。

修改操作的时间复杂度为O(1)。

5. 查找操作算法实现:顺序表的查找操作就是在顺序表中找到指定位置的元素,并返回其值。

查找操作的时间复杂度为O(1)。

6. 遍历操作算法实现:顺序表的遍历操作就是依次访问顺序表中的每个元素,遍历操作的时间复杂度为O(n),其中n为顺序表的长度。

7. 合并操作算法实现:顺序表的合并操作就是将两个顺序表合并成一个新的顺序表,新的顺序表的长度为两个顺序表的长度之和。

合并操作的时间复杂度为O(n),其中n为两个顺序表的长度之和。

总结:顺序表是一种简单而高效的数据结构,其基本运算包括初始化、插入、删除、修改、查找、遍历和合并等操作。

其中,插入、删除、遍历和合并操作的时间复杂度比较高,需要进行相应的优化处理。

同时,在实际应用中,还需要注意顺序表的扩容和缩容操作,避免造成资源浪费或者性能下降。

数据结构-顺序表-实验报告

数据结构-顺序表-实验报告

实验报告课程数据结构及算法实验项目 1.顺序表的建立和基本运算成绩专业班级*** 指导教师***姓名*** 学号*** 实验日期***实验一顺序表的建立和基本运算一、实验目的1、掌握顺序表存储结构的定义及C/C++语言实现2、掌握顺序表的各种基本操作及C/C++语言实现3、设计并实现有序表的遍历、插入、删除等常规算法二、实验环境PC微机,Windows,DOS,Turbo C或者Visual C++三、实验内容1、顺序表的建立和基本运算(1)问题描述顺序表时常进行的运算包括:创建顺序表、销毁顺序表、求顺序表的长度、在顺序表中查找某个数据元素、在某个位置插入一个新数据元素、在顺序表中删除某个数据元素等操作。

试编程实现顺序表的这些基本运算。

(2)基本要求实现顺序表的每一个运算要求用一个函数实现。

(3)算法描述参见教材算法2.3、算法2.4、算法2.5等顺序表的常规算法。

(4)算法实现#include<malloc.h> // malloc()等#include<stdio.h> // NULL, printf()等#include<process.h> // exit()// 函数结果状态代码#define OVERFLOW -2#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1typedef int Status; // Status是函数的类型,其值是函数结果状态代码,如OK等typedef int Boolean; // Boolean是布尔类型,其值是TRUE或者FALSE//-------- 线性表的动态分配顺序存储结构-----------#define LIST_INIT_SIZE 10 // 线性表存储空间的初始分配量#define LIST_INCREMENT 2 // 线性表存储空间的分配增量typedef int ElemType;struct SqList{ElemType *elem; // 存储空间基址int length; // 当前长度int listsize; // 当前分配的存储容量(以sizeof(int)为单位)};void InitList(SqList &L) // 算法2.3{ // 操作结果:构造一个空的顺序线性表LL.elem=new ElemType[LIST_INIT_SIZE];if(!L.elem)exit(OVERFLOW); // 存储分配失败L.length=0; // 空表长度为0L.listsize=LIST_INIT_SIZE; // 初始存储容量}void DestroyList(SqList &L){ // 初始条件:顺序线性表L已存在。

顺序表各种基本运算

顺序表各种基本运算
}
第二个类:
public class SeqList implements List{
final int defaultSize=10;
int maxSize;
int size;
Object[]listArray;
public SeqList(){
initiate(defaultSize);
}
public SeqList(int size){
for(int j=i;j<size-1;j++);
size--;
return it;
}
public Object getData(int i)throws Exception{
if(i<0||i>=size){
throw new Exception("参数错误");
}
return listArray[i];
else
System.out.println("顺序表L不为空");
System.out.println("顺序表L的第3个元素:"+L.getData(2));
if(L.MoreDataDelete(L,'d')==0)
System.out.println("顺序表L中没有'd'");
else
System.out.println("顺序表L中有'd'");
}
public int size(){
return size;
}
public boolean isEmpty(){
return size==0;

数据结构编程实现顺序表的基本操作

数据结构编程实现顺序表的基本操作

数据结构编程实现顺序表的基本操作顺序表是一种基础的数据结构,它是线性表的一种实现方式,它采用连续存储结构来存储线性表的元素。

顺序表中的数据元素存储往往是数值型,它通常用于存储数组和队列等数据结构。

今天我们来学习顺序表的基本操作及其编程实现。

第一步:定义顺序表在编写顺序表的基本操作之前,我们需要先定义一个顺序表的数据结构。

这里我们可以使用结构体来定义一个顺序表的数据类型:```typedef struct {int *data; // 存储空间的基地址int length; // 顺序表的长度int max_size; // 顺序表可存储的最大元素个数} SeqList;```以上定义了一个SeqList结构体类型,包含三个成员:data表示存储空间的基地址,length表示顺序表的元素个数,max_size表示顺序表可存储的最大元素个数。

其中,data采用动态分配内存的方式,可以根据实际需要动态调整顺序表的大小,max_size则是由用户在创建顺序表时指定的。

第二步:实现顺序表的基本操作顺序表的基本操作包括初始化、插入、删除、查找、获取元素等。

下面分别介绍这些操作的实现方法。

1. 初始化操作初始化操作用于创建一个空的顺序表。

它的实现方法如下:```SeqList* init_seq_list(int max_size) {SeqList *list = (SeqList*)malloc(sizeof(SeqList)); // 申请存储空间if (!list) { // 内存申请失败printf("Error: Out of memory!\n");return NULL;}list->data = (int*)malloc(sizeof(int) * max_size); // 申请存储数据的空间if (!list->data) { // 内存申请失败printf("Error: Out of memory!\n");free(list); // 释放存储空间return NULL;}list->length = 0; // 空表长度为0list->max_size = max_size; // 顺序表可存储的最大元素个数 return list; // 返回顺序表指针}```在初始化过程中,我们先申请存储空间,然后再申请存储数据的空间,最后将顺序表的长度设为0,顺序表可存储的最大元素个数设为max_size,返回顺序表的指针。

数据结构 顺序表基本运算实现

数据结构 顺序表基本运算实现
printf("这些元素分别是:\n");
; //依次打印输出顺序表中的元素
printf("\n");
}
//查找
locate(SeqList *list, int e)
{
int i;
printf("插入元素,请输入需要插入的位置:\n");
scanf("%d",&i);
insert(list,i,e);
printList(list);
break;
3.编写一个完整的程序实现顺序表的下列基本操作:
(1) 新建一个顺序表。。
(2) 打印输出顺序表中的元素。
(3) 在顺序表中查找某个元素。
(4) 在顺序表中指定位置插入元素。
(5) 在顺序表中删除指定位置的元素。
(6) 删除顺序表La中的某一元素。
编写一个主菜单,调用以上基本操作。
参考程序代码如下,请将其补充完整,并上机调试运行。
//顺序表的建立、查找、插入与删除,表元素为数字
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#define MAX 100 //表最大长度
//选择顺序表操作动作
printf("请输入操作对应的数字进行顺序表的操作:\n");
printf("————查询(1)\n);
printf("————插入(2)\n);
printf("————删除(3)\n);
printf("————退出(0)\n);

数据结构实验报告-实验一顺序表、单链表基本操作的实现

数据结构实验报告-实验一顺序表、单链表基本操作的实现

数据结构实验报告-实验⼀顺序表、单链表基本操作的实现实验⼀顺序表、单链表基本操作的实现l 实验⽬的1、顺序表(1)掌握线性表的基本运算。

(2)掌握顺序存储的概念,学会对顺序存储数据结构进⾏操作。

(3)加深对顺序存储数据结构的理解,逐步培养解决实际问题的编程能⼒。

l 实验内容1、顺序表1、编写线性表基本操作函数:(1)InitList(LIST *L,int ms)初始化线性表;(2)InsertList(LIST *L,int item,int rc)向线性表的指定位置插⼊元素;(3)DeleteList1(LIST *L,int item)删除指定元素值的线性表记录;(4)DeleteList2(LIST *L,int rc)删除指定位置的线性表记录;(5)FindList(LIST *L,int item)查找线性表的元素;(6)OutputList(LIST *L)输出线性表元素;2、调⽤上述函数实现下列操作:(1)初始化线性表;(2)调⽤插⼊函数建⽴⼀个线性表;(3)在线性表中寻找指定的元素;(4)在线性表中删除指定值的元素;(5)在线性表中删除指定位置的元素;(6)遍历并输出线性表;l 实验结果1、顺序表(1)流程图(2)程序运⾏主要结果截图(3)程序源代码#include<stdio.h>#include<stdlib.h>#include<malloc.h>struct LinearList/*定义线性表结构*/{int *list; /*存线性表元素*/int size; /*存线性表长度*/int Maxsize; /*存list数组元素的个数*/};typedef struct LinearList LIST;void InitList(LIST *L,int ms)/*初始化线性表*/{if((L->list=(int*)malloc(ms*sizeof(int)))==NULL){printf("内存申请错误");exit(1);}L->size=0;L->Maxsize=ms;}int InsertList(LIST *L,int item,int rc)/*item记录值;rc插⼊位置*/ {int i;if(L->size==L->Maxsize)/*线性表已满*/return -1;if(rc<0)rc=0;if(rc>L->size)rc=L->size;for(i=L->size-1;i>=rc;i--)/*将线性表元素后移*/L->list[i+=1]=L->list[i];L->list[rc]=item;L->size++;return0;}void OutputList(LIST *L)/*输出线性表元素*/{int i;printf("%d",L->list[i]);printf("\n");}int FindList(LIST *L,int item)/*查找线性元素,返回值>=0为元素的位置,返回-1为没找到*/ {int i;for(i=0;i<L->size;i++)if(item==L->list[i])return i;return -1;}int DeleteList1(LIST *L,int item)/*删除指定元素值得线性表记录,返回值为>=0为删除成功*/ {int i,n;for(i=0;i<L->size;i++)if(item==L->list[i])break;if(i<L->size){for(n=i;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return i;}return -1;}int DeleteList2(LIST *L,int rc)/*删除指定位置的线性表记录*/{int i,n;if(rc<0||rc>=L->size)return -1;for(n=rc;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return0;}int main(){LIST LL;int i,r;printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.size,LL.Maxsize);printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.list,LL.Maxsize);while(1){printf("请输⼊元素值,输⼊0结束插⼊操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d",&i);if(i==0)break;printf("请输⼊插⼊位置:");scanf("%d",&r);InsertList(&LL,i,r-1);printf("线性表为:");OutputList(&LL);}while(1){printf("请输⼊查找元素值,输⼊0结束查找操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d ",&i);if(i==0)break;r=FindList(&LL,i);if(r<0)printf("没有找到\n");elseprintf("有符合条件的元素,位置为:%d\n",r+1);}while(1){printf("请输⼊删除元素值,输⼊0结束查找操作:");fflush(stdin);/*清楚标准缓存区*/scanf("%d",&i);if(i==0)break;r=DeleteList1(&LL,i);if(i<0)printf("没有找到\n");else{printf("有符合条件的元素,位置为:%d\n线性表为:",r+1);OutputList(&LL);}while(1){printf("请输⼊删除元素位置,输⼊0结束查找操作:");fflush(stdin);/*清楚标准输⼊缓冲区*/scanf("%d",&r);if(r==0)break;i=DeleteList2(&LL,r-1);if(i<0)printf("位置越界\n");else{printf("线性表为:");OutputList(&LL);}}}链表基本操作l 实验⽬的2、链表(1)掌握链表的概念,学会对链表进⾏操作。

数据结构-顺序表的基本操作的实现-课程设计-实验报告

数据结构-顺序表的基本操作的实现-课程设计-实验报告

数据结构-顺序表的基本操作的实现-课程设计-实验报告顺序表的基本操作的实现一、实验目的1、掌握使用VC++上机调试顺序表的基本方法;2、掌握顺序表的基本操作:建立、插入、删除等运算。

二、实验仪器安装VC++软件的计算机。

三、实验原理利用线性表的特性以及顺序存储结构特点对线性表进行相关的基本操作四、实验内容程序中演示了顺序表的创建、插入和删除。

程序如下:#include#include/*顺序表的定义:*/#define ListSize 100typedef struct{ int data[ListSize]; /*向量data用于存放表结点*/i nt length; /*当前的表长度*/}SeqList;void main(){ void CreateList(SeqList *L,int n);v oid PrintList(SeqList *L,int n);i nt LocateList(SeqList *L,int x);v oid InsertList(SeqList *L,int x,int i);v oid DeleteList(SeqList *L,int i);SeqList L;i nt i,x;i nt n=10;L.length=0;c lrscr();C reateList(&L,n); /*建立顺序表*/P rintList(&L,n); /*打印建立后的顺序表*/p rintf("INPUT THE RESEARCH ELEMENT");s canf("%d",&x);i=LocateList(&L,x);p rintf("the research position is %d\n",i); /*顺序表查找*/ p rintf("input the position of insert:\n");s canf("%d",&i);p rintf("input the value of insert\n");s canf("%d",&x);I nsertList(&L,x,i); /*顺序表插入*/P rintList(&L,n); /*打印插入后的顺序表*/p rintf("input the position of delete\n");s canf("%d",&i);D eleteList(&L,i); /*顺序表删除*/P rintList(&L,n); /*打印删除后的顺序表*/g etchar();}/*顺序表的建立:*/void CreateList(SeqList *L,int n){int i;printf("please input n numbers\n");for(i=1;i<=n;i++)scanf("%d",&L->data[i]);L->length=n;}/*顺序表的打印:*/void PrintList(SeqList *L,int n){int i;printf("the sqlist is\n");for(i=1;i<=n;i++)printf("%d ",L->data[i]);}/*顺序表的查找:*/int LocateList(SeqList *L,int x){int i;for(i=1;i<=10;i++)if((L->data[i])==x) return(i);else return(0);}/*顺序表的插入:*/void InsertList(SeqList *L,int x,int i){int j;for(j=L->length;j>=i;j--)L->data[j+1]=L->data[j];L->data[i]=x;L->length++;}void DeleteList(SeqList *L,int i) /*顺序表的删除:*/ { int j;for(j=i;j<=(L->length)-1;j++)L->data[j]=L->data[j+1];}五、实验步骤1、认真阅读和掌握本实验的程序。

数据结构实验报告之链表顺序表的操作

数据结构实验报告之链表顺序表的操作

数据结构实验报告之链表顺序表的操作1、编写程序实现顺序表的各种基本运算:初始化、插⼊、删除、取表元素、求表长、输出表、销毁、判断是否为空表、查找元素。

在此基础上设计⼀个主程序完成如下功能:(1)初始化顺序表L;(2)依次在表尾插⼊a,b,c,d,e五个元素;(3)输出顺序表L;(4)输出顺序表L的长度;(5)判断顺序表L是否为空;(6)输出顺序表L的第4个元素;(7)输出元素c的位置;(8)在第3个位置上插⼊元素f,之后输出顺序表L;(9)删除L的第2个元素,之后输出顺序表L;(10)销毁顺序表L。

2、编写程序实现单链表的各种基本运算:初始化、插⼊、删除、取表元素、求表长、输出表、销毁、判断是否为空表、查找元素。

在此基础上设计⼀个主程序完成如下功能:(1)初始化单链表L;(2)依次在表尾插⼊a,b,c,d,e五个元素;(3)输出单链表L;(4)输出单链表L的长度;(5)判断单链表L是否为空;(6)输出单链表L的第4个元素;(7)输出元素c的位置;(8)在第3个位置上插⼊元素f,之后输出单链表L;(9)删除L的第2个元素,之后输出单链表L;(10)销毁单链表L。

1顺序表2 #include<stdio.h>3 #include<malloc.h>4 #include<stdlib.h>56#define TRUE 17#define FALSE 08#define OK 19#define ERROR 010#define INFEASIBLE -111#define OVERFLOW -212 typedef int Status;13 typedef char ElemType;1415#define LIST_INIT_SIZE 100 //线性表存储空间的初始分配量16#define LISTINCREMENT 10 //线性表存储空间的分配增量17 typedef struct {18 ElemType *elem; //存储空间基地址19int length; //当前长度20int listsize; //当前分配的存储容量21 } SqList;2223 Status InitList_Sq(SqList &L) { //算法2.324 L.elem = (ElemType *)malloc(LIST_INIT_SIZE * sizeof(ElemType));25if (!L.elem) exit(OVERFLOW); //存储分配失败26 L.length = 0; //空表长度为027 L.listsize = LIST_INIT_SIZE; //初始存储容量28return OK;29 }//InitList_Sq3031 Status ListInsert_Sq(SqList &L, int i, ElemType e) { //算法2.432 ElemType *newbase, *p, *q;33if (i<1 || i>L.length + 1) return ERROR; //i值不合法34if (L.length >= L.listsize)35 { //当前存储空间已满,增加分配36 newbase = (ElemType*)realloc(L.elem, (L.listsize + LISTINCREMENT) * sizeof(ElemType));37if (!newbase) exit(OVERFLOW); //存储分配失败38 L.elem = newbase; //新基址39 L.listsize += LISTINCREMENT; //增加存储容量40 }41 q = &(L.elem[i - 1]); //q为插⼊位置42for (p = &(L.elem[L.length - 1]); p >= q; --p) *(p + 1) = *p; //元素右移43 *q = e; //插⼊e44 ++L.length; //表长增145return OK;46 }4748void DispSqList(SqList L)49 {50int i;51for (i = 0; i < L.length; i++)52 printf("%c ", L.elem[i]);53 }5455 Status ListDelete(SqList &L, int i, ElemType &e)56 {57 ElemType *p,*q;58if ((i < 1) || (i > L.length)) return ERROR;59 p = &(L.elem[i - 1]);60 e = *p;61 q = L.elem + L.length - 1;62for (++p; p <= q; ++p)63 *(p - 1) = *p;64 --L.length;65return OK;66 } //ListDelete_Sq6768 Status GetElem(SqList L, int i, ElemType &e)69 {70if (L.length == 0 || i<1 || i>L.length)71return ERROR;72 e = L.elem[i - 1];73return OK;74 }7576int ListLength(SqList L)77 {78return(L.length);79 }8081 Status DestroyList(SqList &L)82 {83 free(L.elem);84 L.length = 0;85return OK;86 }8788 Status ListEmpty(SqList L)89 {90return(L.length == 0);91 }9293int LocateElem(SqList L, ElemType e)94 {95int i = 0;96while (i < L.length && L.elem[i] != e) i++;97if (i >= L.length) return0;98else return i + 1;99 }100101void main()102 {103 SqList h;104 ElemType e;105 InitList_Sq(h);106 ListInsert_Sq(h, h.length + 1, 'a');107 ListInsert_Sq(h, h.length + 1, 'b');108 ListInsert_Sq(h, h.length + 1, 'c');109 ListInsert_Sq(h, h.length + 1, 'd');110 ListInsert_Sq(h, h.length + 1, 'e');111 DispSqList(h);112 printf("%d\n\n",ListLength(h));113 ListEmpty(h);114if (ListEmpty(h))116 printf("Empty\n\n");117 }118else119 {120 printf("Not empty\n\n");121 }122 GetElem(h, 4, e);123 printf("%c\n", e);124 printf("%d\n",LocateElem(h, 'c'));125 ListInsert_Sq(h,3,' f');126 DispSqList(h);127 ListDelete(h, 2, e);128 DispSqList(h);129 DestroyList(h);130 }131132133134135136单链表137138139140 #include<stdio.h>141 #include<malloc.h>142 #include<stdlib.h>143144#define TRUE 1145#define FALSE 0146#define OK 1147#define ERROR 0148#define INFEASIBLE -1149#define OVERFLOW -2150 typedef int Status;151152 typedef char ElemType;153154155 typedef struct LNode {156 ElemType data;157int length;158struct LNode *next;159 }LNode, *LinkList;160161162 Status InitList_L(LinkList &L) {163 L = (LinkList)malloc(sizeof(LNode));164 L->next = NULL;165return OK;166 }167168 Status ListInsert_L(LinkList L, int i, ElemType e) { 169 LinkList p = L,s;170int j = 0;171while (p && j < i - 1)172 {173 p = p->next;174 ++j;175 }176if (!p || j > i - 1)177 {178return ERROR;179 }180else181 {182 s = (LinkList)malloc(sizeof(LNode));183 s->data = e;184 s->next = p->next;185 p->next = s;186return OK;187 }188 }189190void DispList_L(LinkList L)191 {192 LinkList p = L->next;193while (p != NULL)194 {195 printf("%c\n", p->data);196 p = p->next;197 }198200201void DestoryList(LinkList &L)202 {203 LinkList p = L, q = p->next;204while (q != NULL)205 {206 free(p);207 p = q;208 q = p->next;209 }210 free(p);211 }212213 Status ListLength_L(LinkList L) {214 LinkList p = L; int n = 0;215while (p->next != NULL)216 {217 n++;218 p = p->next;219 }220return (n);221 }222223 Status ListDelete(LinkList L, int i, ElemType &e){ 224int j;225 LinkList p, q;226 p = L;227 j = 1;228while (p->next && j < i)229 {230 p = p->next;231 ++j;232 }233if (!(p->next) || j > i)234 {235return ERROR;236 }237 q = p->next;238 p->next = q->next;239 e = q->data;240 free(q);241return OK;242 }243244 Status ListEmpty_L(LinkList L)245 {246return(L->length == 0);247 }248249 Status GetElem(LinkList L, int i, ElemType &e) 250 {251int j;252 LinkList p;253 p = L->next;254 j = 1;255while (p&&j<i)256 {257 p = p->next;258 ++j;259 }260if (!p || j > i)261 {262return ERROR;263 }264 e = p->data;265return OK;266 }267268 Status LocateElem(LinkList L, int e)269 {270 LinkList p = L;271int n=0;272//p->length = 0;273while (p != NULL)274 {275if(p->data != e)276 {277 p = p->next;278 n++;279 }280else281 {282break;283 }284 }285if(p != NULL)286 {287return n;288 }289else290 {291return ERROR;292 }293 }294295void main()296 {297 LinkList h;298 ElemType e;299 InitList_L(h);300 ListInsert_L(h, 1, 'a');301 ListInsert_L(h, 2, 'b');302 ListInsert_L(h, 3, 'c');303 ListInsert_L(h, 4, 'd');304 ListInsert_L(h, 5, 'e');305 DispList_L(h);306 printf("%d\n", ListLength_L(h)); 307if (ListEmpty_L(h))308 {309 printf("Empty\n\n");310 }311else312 {313 printf("Not empty\n\n");314 }315 GetElem(h, 4, e);316 printf("%c\n", e);317 printf("%d\n", LocateElem(h, 'c')); 318 ListInsert_L(h, 3, 'f');319 DispList_L(h);320 ListDelete(h, 2, e);321 DispList_L(h);322 DestoryList(h);323 }。

数据结构--线性表的基本运算及多项式的算术运算

数据结构--线性表的基本运算及多项式的算术运算

数据结构:线性表的基本运算及多项式的算术运算一、实验目的和要求实现顺序表和单链表的基本运算,多项式的加法和乘法算术运算。

要求:能够正确演示线性表的查找、插入、删除运算。

实现多项式的加法和乘法运算操作。

二、实验环境(实验设备)X64架构计算机一台,Windows 7操作系统,IDE: Dev C++ 5.11编译器: gcc 4.9.2 64bit二、实验原理及内容程序一:实现顺序表和单链表的实现本程序包含了四个文件,分别是LinearListMain.cpp,linearlist.h,seqlist.h,singlelist.h。

分别是主程序,线性表抽象类,顺序储存线性表的实现,链表储存顺序表的实现。

文件之间的关系图:本程序一共包含了三个类:分别是LinearList(线性表抽象类),SeqList(顺序储存的线性表),SingleList(链表储存的线性表)。

类与类之间的关系图如下:其实,抽象类LinearList规定了公共接口。

分别派生了SeqList类和SingleList。

SingleList类与SingleList类分别实现了LinearList类中的所有接口。

程序代码以及分析:Linearlist类:#include <iostream>using namespace std;template <class T>class LinearList{protected:int n; //线性表的长度public:virtual bool IsEmpty() const=0; //判读是否是空线性表virtual int Length() const=0; //返回长度virtual bool Find(int i,T& x) const=0; //将下标为i的元素储存在x中,成功返回true,否则返回falsevirtual int Search(T x) const=0; //寻找值是x的元素,找到返回true,否则返回falsevirtual bool Insert(int i,T x)=0; //在下标为i的元素后面插入xvirtual bool Delete(int i)=0; //删除下标为i的元素virtual bool Update(int i,T x)=0;//将下标为i的元素更新为x virtual void Output(ostream& out)const=0; //将线性表送至输出流};包含了一个保护数据成员n,和8种运算,具体说明见注释。

数据结构实验一顺序表实验报告

数据结构实验一顺序表实验报告

数据结构实验一顺序表实验报告数据结构实验一顺序表实验报告一、实验目的顺序表是一种基本的数据结构,本次实验的目的是通过实现顺序表的基本操作,加深对顺序表的理解,并掌握顺序表的插入、删除、查找等操作的实现方法。

二、实验内容1. 实现顺序表的创建和初始化操作。

2. 实现顺序表的插入操作。

3. 实现顺序表的删除操作。

4. 实现顺序表的查找操作。

5. 实现顺序表的输出操作。

三、实验步骤1. 创建顺序表的数据结构,包括数据存储数组和记录当前元素个数的变量。

2. 初始化顺序表,将当前元素个数置为0。

3. 实现顺序表的插入操作:- 判断顺序表是否已满,若已满则输出错误信息。

- 将插入位置之后的元素依次后移一位。

- 将要插入的元素放入插入位置。

- 当前元素个数加一。

4. 实现顺序表的删除操作:- 判断顺序表是否为空,若为空则输出错误信息。

- 判断要删除的位置是否合法,若不合法则输出错误信息。

- 将删除位置之后的元素依次前移一位。

- 当前元素个数减一。

5. 实现顺序表的查找操作:- 遍历顺序表,逐个比较元素值与目标值是否相等。

- 若找到目标值,则返回该元素的位置。

- 若遍历完整个顺序表仍未找到目标值,则返回错误信息。

6. 实现顺序表的输出操作:- 遍历顺序表,逐个输出元素值。

四、实验结果经过实验,顺序表的各项操作均能正确实现。

在插入操作中,可以正确将元素插入到指定位置,并将插入位置之后的元素依次后移。

在删除操作中,可以正确删除指定位置的元素,并将删除位置之后的元素依次前移。

在查找操作中,可以正确返回目标值的位置。

在输出操作中,可以正确输出顺序表中的所有元素。

五、实验总结通过本次实验,我深入了解了顺序表的原理和基本操作,并通过实际编程实现了顺序表的各项功能。

在实验过程中,我遇到了一些问题,如如何判断顺序表是否已满或为空,如何处理插入和删除位置的合法性等。

通过查阅资料和与同学讨论,我解决了这些问题,并对顺序表的操作有了更深入的理解。

数据结构实验报告顺序表

数据结构实验报告顺序表

数据结构实验报告顺序表数据结构实验报告:顺序表摘要:顺序表是一种基本的数据结构,它通过一组连续的存储单元来存储线性表中的数据元素。

在本次实验中,我们将通过实验来探索顺序表的基本操作和特性,包括插入、删除、查找等操作,以及顺序表的优缺点和应用场景。

一、实验目的1. 理解顺序表的概念和特点;2. 掌握顺序表的基本操作;3. 了解顺序表的优缺点及应用场景。

二、实验内容1. 实现顺序表的初始化操作;2. 实现顺序表的插入操作;3. 实现顺序表的删除操作;4. 实现顺序表的查找操作;5. 对比顺序表和链表的优缺点;6. 分析顺序表的应用场景。

三、实验步骤与结果1. 顺序表的初始化操作在实验中,我们首先定义了顺序表的结构体,并实现了初始化操作,即分配一定大小的存储空间,并将表的长度设为0,表示表中暂时没有元素。

2. 顺序表的插入操作接下来,我们实现了顺序表的插入操作。

通过将插入位置后的元素依次向后移动一位,然后将新元素插入到指定位置,来实现插入操作。

我们测试了在表中插入新元素的情况,并验证了插入操作的正确性。

3. 顺序表的删除操作然后,我们实现了顺序表的删除操作。

通过将删除位置后的元素依次向前移动一位,来实现删除操作。

我们测试了在表中删除元素的情况,并验证了删除操作的正确性。

4. 顺序表的查找操作最后,我们实现了顺序表的查找操作。

通过遍历表中的元素,来查找指定元素的位置。

我们测试了在表中查找元素的情况,并验证了查找操作的正确性。

四、实验总结通过本次实验,我们对顺序表的基本操作有了更深入的了解。

顺序表的插入、删除、查找等操作都是基于数组的操作,因此在插入和删除元素时,需要移动大量的元素,效率较低。

但是顺序表的优点是可以随机访问,查找效率较高。

在实际应用中,顺序表适合于元素数量不变或变化不大的情况,且需要频繁查找元素的场景。

综上所述,顺序表是一种基本的数据结构,我们通过本次实验对其有了更深入的了解,掌握了顺序表的基本操作,并了解了其优缺点及应用场景。

数据结构实验报告 顺序表基本操作

数据结构实验报告 顺序表基本操作

四、实验步骤
一 1. 编 写 头 文 件 。 定 义 数 据 类 型 。 分 别 写 各 个 函 数 如 ListInsern_Sq , ListDelete_Sq,LocateElem 等函数。 2.编写主函数。 在主函数里构造空的线性表, 然后利用 ListInsert 函数使用户 初始化线性表。然后调用函数操作,操作结果用 PrintList_Sq 打印出线性表的内 容 3.运行程序,完整代码见下:
-4-
else { printf("输入位置有错! \n"); printf("-------------------------------------\n"); }/**/ printf("请输入你要删除的元素的位置:\n");//删除元素 scanf("%d",&i); if(ListDelete_Sq(La,i,e)) { printf("你删除的元素为: %d,删除元素后线性表为:\n",e); PrintList_Sq(La); printf("-------------------------------------\n"); } else { printf("输入位置有错! \n"); printf("-------------------------------------\n"); } printf("请输入你要查找的元素:\n");//查找元素 scanf("%d",&e); if(i=LocateElem_Sq(La,e,cmp)) { printf("你要查找的元素在第 %d 个位置。\n",i); printf("-------------------------------------\n"); } else { printf("找不到这个元素: \n"); printf("-------------------------------------\n"); } if(ClearList_Sq(La))//清空线性表 { printf("线性表已清空。 \n"); printf("--------------------------------------\n"); } else { printf("线性表清空出错。 \n"); printf("--------------------------------------\n"); } if(Destroy_Sq(La))//撤销线性表

数据结构顺序表实验报告

数据结构顺序表实验报告

《数据结构》课程实验报告实验名称顺序表实验序号 1 实验日期姓名院系班级学号专业指导教师成绩教师评语一、实验目的和要求(1)理解线形表的逻辑结构特征(2)理解并掌握顺序表(3)了解顺序表的各种基本运算二、实验项目摘要编写一个程序algo2-1.cpp,实现顺序表的各种基本运算,并在此基础上设计一个主程序并完成如下功能:(1)初始化顺序表L;(2)依次采用尾插法插入a,b,c,d,e元素;(3)输出顺序表L;(4)输出顺序表L长度;(5)判断顺序表L是否为空;(6)输出顺序表L的第3个元素;(7)输出元素’a’的位置;(8)在第4个元素位置上插入’f’元素;(9)输出顺序表L;(10)删除L的第3个元素;(11)输出顺序表L;(12)释放顺序表L。

三、实验预习内容顺序表基本运算,包括:建立顺序表、顺序表基本运算算法(初始化线形表、销毁线形表、判断线形表是否为空表、求线形表的长度、输出线形表、球现行表中某个数据元素值、按元素值查找、插入元素数据、删除数据元素)三、实验结果与分析#include <stdio.h>#include <malloc.h>#define MaxSize 50typedef int ElemType;typedef struct{ ElemType elem[MaxSize];int length;} SqList;void InitList(SqList *&L){ L=(SqList *)malloc(sizeof(SqList));L->length=0;}void DestroyList(SqList *L){free(L);}int ListEmpty(SqList *L){return(L->length==0);}int ListLength(SqList *L){return(L->length);}void DispList(SqList *L){ int i;if (ListEmpty(L)) return;for (i=0;i<L->length;i++)printf("%c",L->elem[i]);printf("\n");}int GetElem(SqList *L,int i,ElemType &e) { if (i<1 || i>L->length)return 0;e=L->elem[i-1];return 1;}int LocateElem(SqList *L, ElemType e) {int i=0;while (i<L->length && L->elem[i]!=e) i++; if (i>=L->length)return 0;elsereturn i+1;}int ListInsert(SqList *&L,int i,ElemType e) { int j;if (i<1 || i>L->length+1)return 0;i--;for (j=L->length;j>i;j--)L->elem[j]=L->elem[j-1];L->elem[i]=e;L->length++;}int ListDelete(SqList *&L,int i,ElemType &e){ int j;if (i<1 || i>L->length)return 0;i--;e=L->elem[i];for (j=i;j<L->length-1;j++)L->elem[j]=L->elem[j+1];L->length--;return 1;}void main(){SqList *L;ElemType e;printf("初始化顺序表L\n");InitList(L);printf("依次采用尾插法插入a,b,c,d,e元素\n"); ListInsert(L,1,'a');ListInsert(L,2,'b');ListInsert(L,3,'c');ListInsert(L,4,'d');ListInsert(L,5,'e');printf("输出顺序表L:");DispList(L);printf("顺序表L长度=%d\n",ListLength(L));printf("顺序表L为%s\n",(ListEmpty(L)?"空":"非空")); GetElem(L,3,e);printf("顺序表L的第3个元素=%c\n",e);printf("元素a的位置=%d\n",LocateElem(L,'a'));printf("在第4个元素位置上插入f元素\n"); ListInsert(L,4,'f');printf("输出顺序表L:");DispList(L);printf("删除L的第3个元素\n");ListDelete(L,3,e);printf("输出顺序表L:");DispList(L);printf("释放顺序表L\n");}注:空间不够,可以增加页码。

实现顺序表的各种基本运算的算法

实现顺序表的各种基本运算的算法

实现顺序表的各种基本运算的算法顺序表是一种线性表,可以用数组来实现。

在顺序表中,数据元素在数组中的存储位置是按照逻辑顺序依次排列的。

顺序表中的基本运算包括插入、删除、查找、遍历等。

1. 插入操作顺序表的插入操作是指在顺序表中的指定位置插入一个元素。

插入操作分为两种情况:(1) 在顺序表的末尾插入元素;(2) 在顺序表的中间插入元素。

插入操作算法如下:(1) 在顺序表的末尾插入元素:a. 判断顺序表是否已满,如果已满则输出错误信息;b. 否则将元素插入到顺序表的末尾。

(2) 在顺序表的中间插入元素:a. 判断顺序表是否已满,如果已满则输出错误信息;b. 否则将指定位置之后的元素向后移动一个位置;c. 将新元素插入到指定位置。

2. 删除操作顺序表的删除操作是指删除顺序表中指定位置的元素。

删除操作分为两种情况:(1) 删除顺序表的末尾元素;(2) 删除顺序表的中间元素。

删除操作算法如下:(1) 删除顺序表的末尾元素:a. 判断顺序表是否为空,如果为空则输出错误信息;b. 否则删除顺序表的最后一个元素。

(2) 删除顺序表的中间元素:a. 判断顺序表是否为空,如果为空则输出错误信息;b. 否则将指定位置之后的元素向前移动一个位置;c. 删除指定位置的元素。

3. 查找操作顺序表的查找操作是指在顺序表中查找指定元素的位置。

查找操作分为两种情况:(1) 查找顺序表中第一个符合条件的元素;(2) 查找顺序表中所有符合条件的元素。

查找操作算法如下:(1) 查找顺序表中第一个符合条件的元素:a. 从表头开始遍历顺序表;b. 如果找到符合条件的元素,则返回该元素的位置;c. 如果遍历完整个顺序表都没有找到符合条件的元素,则返回错误信息。

(2) 查找顺序表中所有符合条件的元素:a. 从表头开始遍历顺序表;b. 如果找到符合条件的元素,则输出该元素的位置;c. 如果遍历完整个顺序表都没有找到符合条件的元素,则输出错误信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实现顺序表的各种基本运算
一、实验目的
了解顺序表的结构特点及有关概念,掌握顺序表的各种基本操作算法思想及其实现。

二、实验内容
编写一个程序,实现顺序表的各种基本运算:
1、初始化顺序表;
2、顺序表的插入;
3、顺序表的输出;
4、求顺序表的长度
5、判断顺序表是否为空;
6、输出顺序表的第i位置的个元素;
7、在顺序表中查找一个给定元素在表中的位置;
8、顺序表的删除;
9、释放顺序表
三、算法思想与算法描述简图
四、实验步骤与算法实现
#include<stdio.h>
#include<malloc.h>
#define MaxSize 50
typedef char ElemType;
typedef struct
{ElemType data[MaxSize];
int length;
}SqList;//顺序表类型的定义
void InitList(SqList*&L)//初始化顺序表L
{L=(SqList*)malloc(sizeof(SqList));
L->length=0;
}
void DestroyList(SqList*&L)//释放顺序表L
{free(L);
}
int ListEmpty(SqList*L)//判断顺序表L是否为空集{return(L->length==0);
}
int Listlength(SqList*L)//返回顺序表L的元素个数{return(L->length);
}
void DispList(SqList*L)//输出顺序表L
{int i;
if(ListEmpty(L))return;
for(i=0;i<L->length;i++)
printf("%c",L->data[i]);
printf("\n");
}
int GetElem(SqList*L,int i,ElemType e)/*获取顺序表L中的第i个元素*/
{if(i<1||i>L->length)//查找是否有这个i,若没有返回0
return 0;
e=L->data[i-1];
return 1;
}
int LocateEmpty(SqList*L,ElemType e)/*在顺序表L中查找元素e*/
{int i=0;
while (i<L->length&&L->data[i]!=e)
i++;
if(i>=L->length)
return 0;
else
return i+1;
}
int ListInsert(SqList*&L,int i,ElemType e)/*在顺序表中第i个位置上插入元素e*/ {int j;
if(i<1||i>L->length+1)
return 0;
i--;//将顺序表位序转化为data下标
for(j=L->length;j>i;j--)//将data[i]及后面元素后移一个位置
L->data[j]=L->data[j-1];
L->data[i]=e;
L->length++;//顺序表度增1
return 1;
}
int ListDelete(SqList*&L,int i,ElemType e)/*在顺序表L中删除第i个元素*/
{int j;
if(i<1||i>L->length)
return 0;
i--;//将顺序表位序转化为data下标
e=L->data[i];
for(j=i;j<L->length-1;j++)
L->data[j]=L->data[j+1];
L->length--;
return 1;
}
void main()
{SqList*L;
ElemType e;
printf("(1)初始化顺序表L\n");
InitList(L);//初始化
printf("(2)依次采用尾插法插入7,9,12,13,14,15,18\n"); ListInsert(L,1,'7');
ListInsert(L,2,'9');
ListInsert(L,3,'12');
ListInsert(L,4,'13');
ListInsert(L,5,'14');
ListInsert(L,6,'15');
ListInsert(L,7,'18');
printf("(3)输出顺序表L:");
DispList(L);
printf("(4)顺序表L长度=%d\n",Listlength(L));
printf("(5)顺序表L为%s\n",(Listlength(L)?"空":"非空")); GetElem(L,3,12);
printf("(6)顺序表第3个元素=%d\n",12);
printf("(7)元素a的位置=%d\n",LocateEmpty(L,'a'));
printf("(8)在第4个数位置上插入8元素\n");
ListInsert(L,4,'8');
printf("(9)输出顺序表L:");
DispList(L);
printf("(10)删除L的第3个元素\n");
ListDelete(L,3,e);
printf("(11)输出顺序表L:");
DispList(L);
printf("(12)释放顺序表L\n");
DestroyList(L);
}
五、实验测试及结果
六、思考题
按由表头至表尾与表尾至表头的次序输入数据元素,则顺序表建立的程序设计有何区别?
解答:若是按表头至表尾次序输入,则存放的元素与顺序表中位置一一对应,而表尾至表头输入则相反。

输出时,也相反!。

相关文档
最新文档