求哈勃望眼镜的工作原理及原理图.

求哈勃望眼镜的工作原理及原理图.
求哈勃望眼镜的工作原理及原理图.

求哈勃望眼镜的工作原理及原理图[学术科学]收藏转发至天涯微博悬赏点数10 3个回答

我是宝贝老婆2008-11-20 14:14:24

求哈勃望眼镜的工作原理及原理图

人们总是对不了解的事物充满了好奇,比如遥远天体的真面目究竟是什么样子的。于是,人们幻想有一种千里眼,能看清遥远的东西,1608年,千里眼终于被发明出来,这就是望远镜。

这一年,在荷兰的一个眼镜作坊里,一名学徒在玩耍,当他用一前一后两块镜片观察物体时,发现远处的物体离自己很近,受此启发他发明了望远镜。他的老板不失时机地将这一发明转化成商品,并把这一发明献给政府。有了这些望远镜的帮助,弱小的荷兰海军打败了强大的西班牙舰队,使荷兰人获得了独立。

荷兰人对这个发明采取了严密的封锁,但是有关望远镜的消息还是让伽利略知道了,他立刻意识到这种东西的价值和作用。经过细心研究,伽利略也独立发明出自己的望远镜。当这架天文望远镜缓缓扫过天空时,现代科学的帷幕缓缓拉开,有关天文学最基本的事实一个个被发现出来。人们说;“哥伦布发现新大陆,伽利略发现新宇宙。”

伽利略的望远镜十分简单,它有两个镜片组成,前面的叫物镜,是一个边缘薄中间厚的透镜。具有放大功能。后面的叫目镜,镜片的中间薄周边厚,具有缩小功能。这样两个镜片配合一个圆筒组合在一起,就是一架最简单的望远镜。伽利略用它发现了木星的周围总是有四颗小星陪伴在左右,这就是木星的四颗卫星,又叫做伽利略卫星;他还发现土星好像长着一对大耳朵,那是土星的光环;他还仔细观察了月球的环形山。由于有了望远镜,人们终于知道,天上的银河原来是由无数的星星组成。这些新发现,成为哥白尼日心说的有力证据。

开普勒的望远镜

使望远镜进一步有所发展的是开普勒,它把望远镜的目镜由凹透镜改换成了凸透镜,这样前后两个镜片都具有放大作用,提高了望远镜的放大倍率。它所呈的像是倒立的,但用在天文观测上基本没有什么影响,这种望远镜叫做开普勒望远镜。

如果凸透镜对着太阳,那么它在地上就会出现一个非常亮的焦点,这个焦点距透镜中心的距离就叫做透镜的焦距,对于开普勒望远镜来说,用物镜的焦距除以目镜的焦距,就得到了它的放大倍率。开普勒望远镜的镜筒一般都很长,这也使它的放大倍率提高了不少。

使开普勒望远镜获得大发展的是威廉·赫歇尔,也就是发现天王星的那一位,他一生磨制了许多大型望远镜的镜片,他的望远镜看起来就像一门巨炮指向天空。这使他的观测手段一直

优于别人,也给他带来了许多学术成果。在他的带领下,他的妹妹和儿子也都成为天文学家。牛顿的望远镜

伽利略和开普勒的望远镜都属于折射望远镜,它们都由两个镜片组成,工作原理并不复杂,但它们的缺点却是明显的,伽利略望远镜的放大倍率太小,而开普勒望远镜的镜筒太长。有没有办法使一种望远镜既有较大的倍率镜筒又不长呢?反射望远镜就有这个优点。

反射望远镜细分起来,又有许多种类,最常见的就是牛顿式反射望远镜。它是由英国物理学家牛顿在1671年发明的。它的物镜是一片凹面镜,而不是凸透镜,它装在望远镜筒的后边,而不是前边。它的表面镀银,可以把光线汇聚到前边,在焦点处固定有一面镜子,这个镜子把物镜的图像掉转90度,射在望远镜的筒壁上,在筒壁上,设置有一个目镜,严格说来,它是一个目镜组,是由好几个镜片组成的,相当于一个目镜,这样可以提高图像质量。用这种望远镜观测天体的时候,观测者不是在望远镜的后边,而是在望远镜的侧面。由于它的反射平面镜固定起来很复杂,所以它的镜筒也并不是标准的圆形,而是中部有段鼓起,就像葫芦一样,所以又叫宝葫芦望远镜。

望远镜的发展

以上是较简单的三种望远镜的基本概况,对于较专业的天文观测来说,它们实在太简单了。远远满足不了观测需要。后来又有人发明了卡塞格林型,施密特性和马克苏托夫型望远镜,它们都以发明者的名字命名,光路原理也比较复杂。

人们往往追求望远镜的望远倍率,这一点是不可能无限扩大的。倍率太高,会影响它的成像质量。对于天文望远镜来说,倍率是一个次要的方面,人们追求的是物镜直径的大小,直径越大,它所收集的光子也越多,分辨能力也就越强。

美国曾经在1948年制造出了直径达5米的天文望远镜,它坐落在帕落马山天文台,它大大开拓了天文学家的视野,帮助他们拍摄了许多宇宙深空的照片,使美国天文学家的研究水平一下子提高了许多。不甘落后的苏联人坐不住了,于是他们造出了直径达6米的望远镜,但是这台当时世界上口径最大的望远镜成像质量很差。

现在人们已经认识到,望远镜的口径不能造得太大,过大的口径会使它的自重太大,这样就会造成镜片变形,而且它的自重也会把承载它运行的电动设备压的不能正常运作。继续提高望远镜分辨能力的新思路是制造许多小镜片,然后组合成一个大镜片。

在地球上,空气中的灰尘,不停地抖动着的大气,都成为影响望远镜观测质量的重要因素。

现在的天文望远镜都建在晴朗少雨的高山上。但这还是不够理想,于是,人们又提出把望远镜放到太空去。哈勃望远镜就是目前工作最出色的一架太空望远镜,它像卫星那样围绕着地球运行,为我们提供了许多高精度的天体照片,被誉为天文学的“发现机器”。

望远镜的附件

星星在天上是一点一点地至东往西运行的,当你把望远镜对准了它以后,很快就会发现它移动了,这样就需要有一种自动跟踪设施。现在即使是天文爱好者使用的望远镜,也有自动跟踪装置。除此之外,还有导星镜,有了它的帮助,可以很容易找到目标。如果你想把看到的景象拍成照片,那么还有摄影接口,你想观测明亮的太阳,那么还有滤光镜,因为用望远镜观测太阳,会灼伤眼睛,伽利略晚年患有眼疾,就是他用望远镜观测太阳造成的。

现在望远镜的目镜通常由几组透镜组成,这样可以有不同的望远倍率,配上不同倍率的目镜组可以得到不同的观测结果,如果想要看宽广的视场,那么就用低倍率目镜组,如果想要看精细的结构,那么就用高倍率目镜组。

早期的望远镜,由于镜片制造工艺简单,常常出现像差和色差这两种毛病,它们使看到的东西或者变形,或者颜色失真。为了解决这个问题,人们就尽量延长望远镜的焦距。1722年,不拉德雷测定金星直径的望远镜,其物镜焦距长达65米,比百米短跑跑道的一半还长。后来,消色差望远镜诞生,它的目镜是由两个镜片组成,一凸一凹贴合在一起,这样就可以消除色差和球差等多种毛病。

从望远镜诞生到现在,已经历了好几代的演变,因此也就产生出许多故事。可以肯定的是,只要人们探索宇宙奥秘的好奇心存在,那么有关望远镜的故事也就永远没有结束。(国家航天局网特约撰稿/北辰)

背景知识:

色差:由白色物点向光学系统发出一束白光,经该光学系列折射后,组成该束白光的红、橙、黄、绿、青、蓝、紫等各色光,不能会聚于同一点,即白色物点不能结成白色像点,而结成一彩色像斑的成像误差,称为色差。

球差:由主轴上某一物点向光学系统发出的单色圆锥形光束,经该光学系列折射后,若原光束不同孔径角的各光线,不能交于主轴上的同一位置,以至在主轴上的理想像平面处,形成一弥散光斑(俗称模糊圈),则此光学系统的成像误差称为球差

参考资料:从其他地方引用,

原子力显微镜的原理及使用

原子力显微镜的原理及使用 通过近代物理实验课的学习,了解了许多仪器的工作原理以及使用方法,对今后的科研学习有很大的 帮助。其中原子力显微镜就是其中之一,对于做材料方面的专业来说,原子力显微镜在表征物质的表面结 构及性质起着重要的作用。前段时间我们利用AFM对用RF磁控溅射制备的PZT薄膜进行了表征,通过对AFM的使用并查找相关文献,使我对原子力显微镜有了更加深刻的认识。 原子力显微镜,英文:Atomic Force Microscope ,简写: AFM。是一种利用原子,分子间的相互作用力来观察物体表面微观 形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操 控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样 品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描 样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品 表面的形貌或原子成分。 它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运 动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控 制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电 流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针 尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分 辨率也在纳米级水平。AFM测量对样品无特殊要求,可测量固体表面、吸附体系等。 一、仪器结构: 在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置 检测部分、反馈系统。 1、力检测部分 在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是 使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品 的特性,以及操作模式的不同,而选择不同类型的探针。 2、位置检测部分 在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂cantilever摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量 的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作 信号处理。 3、反馈系统 在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作 反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针 尖保持一定的作用力。 AFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇特的材料, 当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。而伸长或缩短的尺寸与 所加的电压的大小成线性关系。也就是说,可以通过改变电压来控制压电陶瓷的微小伸缩。通常把三个分 别代表X,Y,Z方向的压电陶瓷块组成三角架的形状,通过控制X,Y方向伸缩达到驱动探针在样品表面 扫描的目的;通过控制Z方向压电陶瓷的伸缩达到控制探针与样品之间距离的目的。 原子力显微镜(AFM)便是结合以上三个部分来将样品的表面特性呈现出来的:在原子力显微镜(AFM)的系统中,使用微小悬臂(cantilever)来感测针尖与样品之间的相互作用,这作用力会使微悬臂摆动, 再利用激光将光照射在悬臂的末端,当摆动形成时,会使反射光的位置改变而造成偏移量,此时激光检测 器会记录此偏移量,也会把此时的信号给反馈系统,以利于系统做适当的调整,最后再将样品的表面特性 以影像的方式给呈现出来。 二、工作原理: 将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于 针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬 臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法

原子力显微镜的应用

1.引言 随着人类科研的不断发展, 纳米尺度上物质的结构、相互作用以及一些特殊的现象等越来越受到关注, 所以各种研究方法和仪器手段也应运而生。原子力显微镜(Atomic Force Microscope,简称AFM)利用其微悬臂上尖细探针与样品的原子之间的作用力,从而达到检测的目的。其具有原子级的分辨率[1]。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不能观察非导体的不足。 图1 原子力显微镜 原子力显微镜的原理及其在材料科学上的应用 摘要 本文介绍了原子力显微镜的发展过程、探测原理等方面,从原子力显微镜对于材料表面形貌分析,粉体材料分析,纳米材料分析等方面,综述了原子力显微镜技术在材料科学学方面的应用,并展望原子力显微镜在未来的发展 关键词 原子力显微镜工作模式特点表面形貌 Abstract Thisarticle provide information of AFM(Atomic Force Microscope),about the development,the principle,from AFM on analyzing surface of material ,dusty material and nanometer size material. And look into the future of AFM Key word AFM working model characteristic surface

2.仪器工作原理 AFM通常由氮化硼作为一个灵敏的弹性微悬臂,在其尖端有一个用来在样品表面上扫描的很尖细的探针。假设有两个原子,一个是在微悬臂的探针尖端,另一个是在样品的表面,它们之间的作用力会随着距离的变化而变化。当原子和原子很接近时,彼此的电子云排斥力作用会大于原子核与电子云之间的吸引作用,其合力表现为排斥作用。反之,若两原子分开到一定距离时,其电子云的排斥作用小于彼此原子核与电子云之间的吸引力作用,故其合力表现为吸引作用。原子力显微镜就是利用微小探针与待测原子之间的这种交互作用力的微妙变化,来显现表面原子的形貌。[2] 在原子力显微镜中,根据利用原子间的排斥力或吸引力方式的不同,发展出了两种工作模式: (1)利用原子之间的排斥力的变化而产生样品表面轮廓,从而发展了接触式原子力显微镜(Contact AFM),其探针与样品表面的距离约为零点几个纳米。 ( 2 )利用原子之间的吸引力的变化而产生 样品表面轮廓,从而发展了非接触式原子 力显微镜(Non-Contact AFM)其探针与样 品表面的距离约为几到几十纳米。 图2 原子与原子之间的交互作用 在原子力显微镜系统中,使用一个灵活的 微悬臂来感应针尖与样品之间的交互作用 力,该作用力随样品表面形态而变化,它 会使微悬臂随之摆动。将一束激光照射在 微悬臂的末端,当微悬臂摆动时,会使反 射激光的位置改变而造成偏移量,用激光 检测器记录此偏移量,同时将此信号传递 给反馈系统,以利于系统做适当的调整, 从而将样品表面特征以影像的方式显现出 来[3]。(如图 3) 。 图3 原子力显微镜的探测原理示意图 3.原子力显微镜的结构 3.1力检测系统 原子力显微镜使用微小悬臂来检测原 子之间力的变化量。微悬臂通常由一个 100到500μm长和大约500nm到5μm厚 的硅片或氮化硅片制成。微悬臂顶端有一 个尖锐针尖,用来检测样品-针尖间的相 互作用力。 图4 原子力显微镜微悬臂 3.2位置检测系统

多联机系统介绍及工作原理

多联机系统介绍及工作原理 标签: 中央空凋系统多联机数码涡旋蒸发式换热器 多联机俗称"一拖多",指的是一台室外机通过配管连接两台或两台以上室内机,室外侧采用风冷换热形式、室内侧采用直接蒸发换热形式,多联机是一种一次制冷剂空调系统,它以制冷剂为输送介质,室外主机由室外侧换热器、压缩机和其他制冷附件组成,末端装置是由直接蒸发式换热器和风机组成的室内机。一台室外机通过管路能够向若干个室内机输送制冷剂液体。通过控制压缩机的制冷剂循环量和进入室内各换热器的制冷剂流量,可以适时地满足室内冷、热负荷要求,多联机系统具有节能、舒适、运转平稳等诸多优点,而且各房间可独立调节,能满足不同房间不同空调负荷的需求。但该系统控制复杂,对管材材质、制造工艺、现场焊接等方面要求非常高,且其初投资比较高。目前多联机系统在中小型建筑和部分公共建筑中得到日益广泛的应用。 1多联机系统的特点 多联机与传统的中央空凋系统相比,具有以下特点: 优点: ①节约能源、运行费用低、噪音低;②建筑空间小、使用方便、可靠性高、不需机房、无水系统等;③控制先进,运行可靠,维修方便;④机组适应性好,制冷制热温度范围宽;⑤具有设计安装方便、布置灵活多变,不受开关机时段限制,每个房间使用时间灵活;⑥免费维护,使用寿命长,机组故障率极低,基本上是自我调节和诊断,不需专门的维护,而且室外机的使用寿命长达30年,从而大大的节省了维护费。 缺点: ①新风问题需特殊处理; ②室内机匹配有要求限制; ③制冷剂接头多,易渗漏; 2多联机技术 多联机为了达到节能的目的,通过对制冷工质流量的有效控制实现压缩机和系统的变容量运行。目前,比较成熟的技术有三种:一类是变频多联机技术;第二类则是数码涡旋多联机技术;还有一种是智能多联机技术。 (1)变频多联机技术 变频多联机技术概况 变频多联机技术是指单管路一拖多空间热泵系统的室外主机调节输出能力方式:①室外主机

射频系统组成和工作原理

系统组成和工作原理 最基本的RFID系统由三部分组成: 1. 标签(Tag,即射频卡):由耦合元件及芯片组成,标签含有内置天线,用于和射频天线间进行通信。 2. 阅读器:读取(在读写卡中还可以写入)标签信息的设备。 3. 天线:在标签和读取器间传递射频信号。 有些系统还通过阅读器的RS232或RS485接口与外部计算机(上位机主系统)连接,进行数据交换。 系统的基本工作流程是:阅读器通过发射天线发送一定频率的射频信号,当射频卡进入发射天线工作区域时产生感应电流,射频卡获得能量被激活;射频卡将自身编码等信息通过卡内置发送天线发送出去;系统接收天线接收到从射频卡发送来的载波信号,经天线调节器传送到阅读器,阅读器对接收的信号进行解调和解码然后送到后台主系统进行相关处理;主系统根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行机构动作。 在耦合方式(电感-电磁)、通信流程(FDX、HDX、SEQ)、从射频卡到阅读器的数据传输方法(负载调制、反向散射、高次谐波)以及频率范围等方面,不同的非接触传输方法有根本的区别,但所有的阅读器在功能原理上,以及由此决定的设计构造上都很相似,所有阅读器均可简化为高频接口和控制单元两个基本模块。高频接口包含发送器和接收器,其功能包括:产生高频发射功率以启动射频卡并提供能量;对发射信号进行调制,用于将数据传送给射频卡;接收并解调来自射频卡的高频信号。不同射频识别系统的高频接口设计具有一些差异,电感耦合系统的高频接口原理图如图1所示。

阅读器的控制单元的功能包括:与应用系统软件进行通信,并执行应用系统软件发来的命令;控制与射频卡的通信过程(主-从原则);信号的编解码。对一些特殊的系统还有执行反碰撞算法,对射频卡与阅读器间要传送的数据进行加密和解密,以及进行射频卡和阅读器间的身份验证等附加功能。 射频识别系统的读写距离是一个很关键的参数。目前,长距离射频识别系统的价格还很贵,因此寻找提高其读写距离的方法很重要。影响射频卡读写距离的因素包括天线工作频率、阅读器的RF输出功率、阅读器的接收灵敏度、射频卡的功耗、天线及谐振电路的Q值、天线方向、阅读器和射频卡的耦合度,以及射频卡本身获得的能量及发送信息的能量等。大多数系统的读取距离和写入距离是不同的,写入距离大约是读取距离的40%~80%。

哈勃望远镜最新照片

高清图:哈勃最新太空照片发布 据新华社电美国国家航空航天局发布哈勃太空望远镜拍摄的一张新照片,庆祝哈勃在4月24日迎来的20岁生日。这张新照片拍自“船底星座”星云。照片上,氢和尘埃的混合物在星云间腾起,形成3座达光年高度的雾气状“巨塔”。有报道称,这张照片令人想起托尔金在《指环王》里所描绘的中土世界。(图片来自NASA)

“船底星座”星云 图中所示的柱体,是由气体和尘埃构成的,位于一个汹涌的恒星育儿室:船底座星云。这张照片显示的是3光年长的柱体的顶端,沐浴在炽热的大恒星的光芒下。这些大恒星位于这张图片上部以外的区域。来自这些大恒星炽热的辐射和高速风(带电粒子流)正在雕刻这一柱 体,并导致柱体内部形成新恒星。可以看到这一结构的上部发射出气体和尘埃流。 “船底星座”星云 图中所示的柱体,是由气体和尘埃构成的,位于一个汹涌的恒星育儿室:船底座星云。这张 照片显示的是3光年长的柱体的顶端,沐浴在炽热的大恒星的光芒下。这些大恒星位于这张

图片上部以外的区域。来自这些大恒星炽热的辐射和高速风(带电粒子流)正在雕刻这一柱体,并导致柱体内部形成新恒星。可以看到这一结构的上部发射出气体和尘埃流。 “船底星座”星云 图中所示的柱体,是由气体和尘埃构成的,位于一个汹涌的恒星育儿室:船底座星云。这张照片显示的是3光年长的柱体的顶端,沐浴在炽热的大恒星的光芒下。这些大恒星位于这张图片上部以外的区域。来自这些大恒星炽热的辐射和高速风(带电粒子流)正在雕刻这一柱体,并导致柱体内部形成新恒星。可以看到这一结构的上部发射出气体和尘埃流。

“船底星座”星云细节图。 “船底星座”星云的暗云

原子力显微镜的工作原理及基本操作

2015年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:原子力显微镜的工作原理及基本操作学生所在院(系): 学生所在学科: 学生姓名: 学号: 学生类别:应用型 考核结果阅卷人

原子力显微镜的工作原理及基本操作 一、实验目的 1.了解原子力显微镜的工作原理 2.掌握用原子力显微镜进行表面观测的方法 二、原子力显微镜结构及工作原理 2.1 AFM的工作原理 AFM是用一个一端装有探针而另一端固定的弹性微悬臂来检测样品表面信息的,当探针扫描样品时,与样品和探针距离有关的相互作用力作用在针尖上,使微悬臂发生形变。AFM系统就是通过检测这个形变量,从而获得样品表面形貌及其他表面相关信息 1.原子力作用机制 当两个物体的距离小到一定程度的时候,它们之间将会有原子力作用.这个力主要与针尖和样品之间的距离有关.从对微悬臂形变的作用效果来分,可简单将其分为吸引力和排斥力,它们分别在不同的工作模式下、不同的作用距离起主导作用.探针与样品的距离不同,作用力的大小也不相同,针尖/样品距离曲线如图1所示. 图1 针尖/样品距离曲线 2.原子力显微镜的成像原理 AFM的微悬臂绵薄而修长,当对样品表面进行扫描时,针尖与样品之间力的作用会使微悬臂发生弹性形变,针尖碰到样品表面时,很容易弹起和起伏,它非常的灵敏,极小的力的作用也能反应出来.也就是说如果检测出这种形变,就可以知道针尖-样品间的相互作用力,从而得知样品的形貌。

图2 光束偏转法的原理图 微悬臂形变的检测方法一般有电容、隧道电流、外差、自差、激光二极管反馈、偏振、偏转方法。偏转方法是采用最多的方法,也是原子力显微镜批量生产所采用的方法.图2就是光束偏转法的原理图。 3.原子力显微镜的工作模式 AFM主要有三种工作模式:接触模式(ContactMode)、非接触模式(Non-contact Mode)和轻敲模式( Tapping Mode),如图3. 图3 三种工作模式 接触模式中,针尖一直和样品接触并在其表面上简单地移动.针尖与样品间的相互作用力是两者相接触原子间的排斥力,其大小约为10-8~10-11N。 非接触模式是控制探针一直不与样品表面接触,让探针始终在样品上方5~20nm 距离内扫描.因为探针与样品始终不接触,故而避免了接触模式中遇到的破坏样品和污染针尖的问题,灵敏度也比接触式高,但分辨率相对接触式较低,且非接触模式不适合在液体中成像。 轻敲模式是介于接触模式和非接触模式之间新发展起来的成像技术,类似与非接触模式,但微悬臂的共振频率的振幅相对非接触模式较大,一般在0.01~1nm.分辨率几乎和接触模式一样好,同时对样品的破坏也几乎完全消失,克服了以往常规模式的局限。 4.原子力显微镜的构成 SPA-300HV型显微镜主要包括以下四个系统: 减震系统、头部系统、电子学控制系统、计算机软件系统(图4为结构图)。

气压传动系统的工作原理及组成

气压传动系统的工作原理及组成 一、气压传动系统的工作原理 气压系统的工作原理是利用空气压缩机将电动机或其它原动 机输出的机械能转变为空气的压力能,然后在控制元件的控制和辅助元件的配合下,通过执行元件把空气的压力能转变为机械能,从而完成直线或回转运动并对外作功。 二、气压传动系统的组成 典型的气压传动系统,如图10.1.1所示。一般由以下四部分组成: 1.发生装置它将原动机输出的机械能转变为空气的压力能。 其主要设备是空气压缩机。

2.控制元件是用来控制压缩空气的压力、流量和流动发向,以保证执行元件具有一定的输出力和速度并按设计的程序正常工作。如压力阀、流量阀、方向阀和逻辑阀等。 3.控制元件是将空气的压力能转变成为机械能的能量转换装置。如气缸和气马达。 4.辅助元件是用于辅助保证空气系统正常工作的一些装置。如过滤器、干燥器、空气过滤器、消声器和油雾器等。 10.2 气压传动的特点 一、气压传动的优点 1. 以空气为工作介质,来源方便,用后排气处理简单,不污染环境。 2. 由于空气流动损失小,压缩空气可集中供气,远距离输送。 3. 与液压传动相比,启动动作迅速、反应快、维修简单、管路不易堵塞,且不存在介质变质、补充和更换等问题。 4. 工作环境适应性好,可安全可靠地应用于易燃易爆场所。 5. 气动装置结构简单、轻便、安装维护简单。压力等级低,固使用安全。 6. 空气具有可压缩性,气动系统能够实现过载自动保护。

二、气压传动的特点 1. 由于空气有可压缩性,所以气缸的动作速度易受负载影响。 2. 工作压力较低(一般为0.4Mpa-0.8Mpa),因而气动系统 输出力较小。 3. 气动系统有较大的排气噪声。 4. 工作介质空气本身没有润滑性,需另加装置进行给油润滑。

原子力显微镜及其应用

原子力显微镜及其应用 原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。与常规显微镜比较,原子力显微镜的优点是在大气条件下,以高倍率观察样品表面,可用于几乎所有样品(对表面光洁度有一定要求),而不需要进行其他制样处理,就可以得到样品表面的三维形貌图象。并可对扫描所得的三维形貌图象进行粗糙度计算、厚度、步宽、方框图或颗粒度分析。 原子力显微镜可以检测很多样品,提供表面研究和生产控制或流程发展的数据,这些都是常规扫描型表面粗糙度仪及电子显微镜所不能提供的。 一、基本原理 原子力显微镜是利用检测样品表面与细微的探针尖端之间的相互作用力(原子力)测出表面的形貌。 探针尖端在小的轫性的悬臂上,当探针接触到样品表面时,产生的相互作用,以悬臂偏转形式检测。样品表面与探针之间的距离小于3-4nm,以及在它们之间检测到的作用力,小于10-8N。激光二极管的光线聚焦在悬臂的背面上。当悬臂在力的作用下弯曲时,反射光产生偏转,使用位敏光电检测器偏转角。然后通过计算机对采集到的数据进行处理,从而得到样品表面的三维图象。 完整的悬臂探针,置放于在受压电扫描器控制的样品表面,在三个方向上以精度水平0.1nm或更小的步宽进行扫描。一般,当在样品表面详细扫绘(XY轴)时,悬臂的位移反馈控制的Z轴作用下保存固定不变。以对扫描反应是反馈的Z轴值被输入计算机处理,得出样品表面的观察图象(3D图象)。 二、原子力显微镜的特点 1.高分辨力能力远远超过扫描电子显微镜(SEM),以及光学粗糙度仪。样品表面的三维数据满足了研究、生产、质量检验越来越微观化的要求。 2.非破坏性,探针与样品表面相互作用力为10-8N以下,远比以往触针式粗糙度仪压力小,因此不会损伤样品,也不存在扫描电子显微镜的电子束损伤问题。另外扫描电子显微镜要求对不导电的样品进行镀膜处理,而原子力显微镜则不需要。 3.应用范围广,可用于表面观察、尺寸测定、表面粗糙测定、颗粒度解析、突起与凹坑的统计处理、成膜条件评价、保护层的尺寸台阶测定、层间绝缘膜的平整度评价、VCD涂层评价、定向薄膜的摩擦处理过程的评价、缺陷分析等。 4.软件处理功能强,其三维图象显示其大小、视角、显示色、光泽可以自由设定。并可选用网络、等高线、线条显示。图象处理的宏管理,断面的形状与粗糙度解析,形貌解析等多种功能。 三、应用实例 1.应用于纸张质量检验。2.应用于陶瓷膜表面形貌分析。3.评定材料纳米尺度表面形貌特征 1

消防系统工作原理及组成

消防系统工作原理及组成

消防系统工作原理 一、火灾自动报警系统 1、系统组成 (1)探测器:感烟探测器、感温探测器、火焰探测器 (2)手动报警装置:手动报警按钮 (3)报警控制器:区域报警、集中报警、控制中心报警 2、系统完成的主要功能 火灾发生时,探测器将火灾信号传输到报警控制器,通过声光信号表现出来,并在控制面板上显示火灾发生部位,从而达到预报火警的目的。同时,也可以通过手动报警按钮来完成手动报警的功能。 3、系统容易出现的问题、产生的原因、处理方法 (1)探测器误报警,探测器故障报警 原因:探测器灵敏度选择不合理,环境湿度过大,风速过大,粉尘过大,机械震动,探测器使用时间过长,器件参数下降等。 处理方法:根据安装环境选择适当灵敏度的探测器,安装时应避开风口及风速较大的通道,定期检查,根据情况清洗和更换探测器。 (2)手动报警按钮报警,手动报警按钮故障报警 原因:按钮使用时间过长,参数下降或按钮人为损坏。 处理方法:定期检查,损坏的及时更换,以免影响系统运行。 (3)报警控制器故障 原因:机械本身器件本身损坏报故障或外接探测器、手动按按钮问题引起报警控制器报故障、报火警。

处理方法:用表或自身诊断程序检查机器本身,排除故障,或按(1)(2)处理方法,检查故障是否由外界引起。 (4)线路故障: 原因:绝缘层损坏,接头松动,环境湿度过大,造成绝缘下降。 处理方法:用表检查绝缘程度,检查接头情况,接线时采用焊接、塑封等工艺。 二、消火栓系统 1、系统组成 消防泵、稳压泵(稳压罐)、消火栓箱、消火栓阀门、接口水枪、水带、消火栓报警按钮、消火栓系统控制柜。 2、系统完成的主要功能 消火栓系统管道中充满有压力的水,如系统有微量泄露,可以靠稳压泵或稳压罐来保持系统的水和压力。当火灾时,首先打开消火栓箱,按要求接好接口、水带,将水枪对准火源,打开消火栓阀门,水枪立即有水喷出,按下消火栓按钮时,通过消火栓启动消防泵向管道中供水。 3、系统容易出现的问题、产生的原因、处理方法 (1)打开消火栓阀门无水 原因:可能管道中有泄露点,使管道无水,且压力表损坏,稳压系统不起作用。 处理方法:检查泄露点,压力表,修复或安上稳压装置,使管道有水。(2)按下手动按钮,不能联动启动消防泵

哈勃望远镜

哈勃空间望远镜 科技名词定义 中文名称:哈勃空间望远镜 英文名称:Hubble space telescope;HST 定义:1990年4月24日发射的,设置在地球轨道上的,通光口径2.4m的反射式天文望远镜。用于从紫外到近红外(115—1 010nm) 探测宇宙目标。配备有光谱仪及高速光度计等多种附属设备。由高增益天线通过中继卫星与地面联系。计划工作15年。为纪念E.P.Hubble而得名。 所属学科:天文学(一级学科);天文仪器(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片 哈勃空间望远镜(Hubble Space Telescope,缩写为HST),是以天文学家爱德温·哈勃(Edwin Powell Hubble)为名,在轨道上环绕着地球的望远镜。它的位置在地球的大气层之上,因此获得了地基望远镜所没有的好处-影像不会受到大气湍流的扰动,视相度绝佳又没有大气散射造成的背景光,还能观测会被臭氧层吸收的紫外线。于1990年发射之后,已经成为天文史上最重要的仪器。它已经填补了地面观测的缺口,帮助天文学家解决了许多根本上的问题,对天文物理有更多的认识。哈勃的哈勃超深空视场是天文学家曾获得的最深入(最敏锐的)的光学影像。 目录 简述 发展历史 广域和行星照相机 维护与改进 数据接收与处理 哈勃成就 后继者 哈勃部分作品欣赏 展开 编辑本段简述

大气层中的大气湍流与散射,以及会吸收紫外线的臭氧层,这些因素都限定了地面上望远镜做进一步的 观测。太空望远镜的出现使天文学家成功地摆脱地面条件的限制,并获得更加清晰与更广泛波段的观测图像。空间望远镜的概念最早出现上个世纪40年代,但一直到上个世纪90年代,哈勃空间望远镜才正式发射升空,并观测迄今。哈勃空间望远镜属于美国航空航天局(NASA)与欧洲航天局(ESA)的合作项目,其主要目标是建立一个能长期在太空中进行观测的轨道天文台。它的名字来源于美国著名天文学家埃德温·哈勃。1990年4月25日,由美国航天飞机送上太空轨道的“哈勃”望远镜长13.3米,直径4.3米,重11.6吨,造价近30亿美元。它以2.8万公里的时速沿太空轨道运行,清晰度是地面天文望远镜的10倍以上。同时,由于没有大气湍流的干扰,它所获得的图像和光谱具有极高的稳定性和可重复性。哈勃望远镜帮助科学家对宇宙的研究有了更深的了解。然而,由于美国航空航天局将哈勃SM4确定为最后一次维修任务,因此,哈勃的退役在即,而它新的继任者詹姆斯·韦伯太空望远镜(JWST)将发射升空,并逐步接替哈勃太空望远镜的工作。 编辑本段发展历史 规划设计和准备工作 空间望远镜之父莱曼·斯必泽。哈勃空间望远镜的历史可以追溯至1946年天文学家莱曼·斯必泽(Lyman Spitzer, Jr.)所提出的论文:《在地球之外的天文观测优势》。在文中,他指出在太空中的天文台有两项优于地面天文台的性能。首先,角分辨率(物体能被清楚分辨的最小分离角度)的极限将只受限于衍射,而不是由造成星光闪烁、动荡不安的大气所造成的视象度。在当时,以地面为基地的望远镜解析力只有0.5-1.0弧秒,相较下,只要口径2.5米的望远镜就能达到理论上衍射的极限值0.1弧秒。其次,在太空中的望远镜可以观测被大气层吸收殆尽的红外线和紫外线。斯必泽以空间望远镜为事业,致力于空间望远镜的推展。在1962年,美国国家科学院在一份报告中推荐空间望远镜做为发展太空计划的一部分,在1965年,斯必泽被任命为一个科学委员会的主任委员,该委员会的目的就是建造一架空间望远镜。在第二次世界大战时,科学家利用发展火箭技术的同时,曾经小规模的尝试过以太空为基地的天文学。在1946年,首度观察到了太阳的紫外线光谱。英国在1962年发射了太阳望远镜放置在轨道上,做为亚利安太空计划的一部分。1966年NASA进行了第一个轨道天文台(OAO)任务,但第一个OAO的电池在三天后就失效,中止了这项任务了。第二个OAO在1968至1972年对恒星和星系进行了紫外线的观测,比原先的计划多工作了一

AFM原子力显微镜技术及应用实验报告

原子力显微技术观测薄膜形貌 姓名:吴涵颖学号:5404312065 班级:工业工程122 一、实验目的: Ⅰ、学习和了解AFM的结构和原理。 Ⅱ、掌握AFM的操作和调试过程,并以之来观察薄膜表面的形貌。 Ⅲ、学习用计算机软件来处理原始数据图像。 二、实验原理简析: 1. AFM基本原理 原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。 在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。如图一显示。 (1)力检测部分在原子力显微镜系统中,所要检测的力是原子与原子之间的范德华力。使用微悬臂来检测原子之间力的变化量。如图2所示,微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。 (2)位置检测部分在原子力显微镜系统中,当针尖与样品之间有了作用之后,会使得悬臂摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。聚焦到微悬臂上面的激光反射到激光位置检测器,通过对落在检测器四个象限的光强

进行计算,可以得到由于表面形貌引起的微悬臂形变量大小,从而得到样品表面的不同信息。 (3)反馈系统在原子力显微镜系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。 2.AFM 有三种不同的工作模式: 接触模式( contact mode) 、非接触模式(noncontact mode) 和共振模式或轻敲模式(Tapping Mode) 。 (1)接触模式: 从概念上来理解,接触模式是AFM最直接的成像模式。AFM 在整个扫描成像过程之中,探针针尖始终与样品表面保持亲密的接触,而相互作用力是排斥力。扫描时,悬臂施加在针尖上的力有可能破坏试样的表面结构,因此力的大小范围在10 - 10~10 - 6 N。若样品表面柔嫩而不能承受这样的力,便不宜选用接触模式对样品表面进行成像。 (2)非接触模式 非接触模式探测试样表面时悬臂在距离试样表面上方5~10 nm 的距离处振荡。这时,样品与针尖之间的相互作用由范德华力控制,通常为10 - 12 N ,样品不会被破坏,而且针尖也不会被污染,特别适合于研究柔嫩物体的表面。这种操作模式的不利之处在于要在室温大气环境下实现这种模式十分困难。因为样品表面不可避免地会积聚薄薄的一层水,它会在样品与针尖之间搭起一小小的毛细桥,将针尖与表面吸在一起,从而增加尖端对表面的压力。 (3)敲击模式 在敲击模式中,一种恒定的驱使力使探针悬臂以一定的频率振动。当针尖刚接触样品时,悬臂振幅会减少到某一数值。在扫描过程中,反馈回路维持悬臂振幅在这一数值恒定,亦即作用在样品上的力恒定,通过记录压电陶瓷管的移动得到样品表面形貌图。对于接触模式,由于探针和样品间的相互作用力会引起微悬臂发生形变,也就是说微悬臂的形变作为样品和针尖相互作用力的直接度量。同上述轻敲式,反馈系统保持针尖—样品作用力恒定从而得到表面形貌图。 原子力显微镜是用微小探针“摸索”样品表面来获得信息,所以测得的图像是样品最表面的形貌,而没有深度信息。扫描过程中,探针在选定区域沿着样品表面逐行扫描。 实验扫描的是光栅,纳米铜微粒以及纳米微粒,选用的是轻敲式。 敲击模式优点:敲击模式在一定程度上减小样品对针尖的粘滞现象,因为针尖与样品表面接触时,利用其振幅来克服针尖"样品间的粘附力。并且由于敲击模式作用力是垂直的,表面材料受横向摩擦力和剪切力的影响都比较小,减小扫描过程中针尖对样品的损坏。所以对于较软以及粘性较大的样品,应选用敲击模式。 三、实验步骤: 一、实验前准备: ①样品制备 1)薄膜样品制备 把之前实验制备得的铜微粒纳米材料分散到溶剂中,比较稀的状态下,然后涂于解离后的云母片上,自然晾干。 2)纳米微粒制备 把纳米微粒材料分散到溶剂中,比较稀的状态下,然后涂于解离后的云母片

系统组成和工作原理

系统组成和工作原理 本文简单介绍了RFID系统的组成和工作原理。 最基本的RFID系统由三部分组成: 1. 标签(Tag,即射频卡):由耦合元件及芯片组成,标签含有内置天线,用于和射频天线间进行通信。 2. 阅读器:读取(在读写卡中还可以写入)标签信息的设备。 3. 天线:在标签和读取器间传递射频信号。 有些系统还通过阅读器的RS232或RS485接口与外部计算机(上位机主系统)连接,进行数据交换。 系统的基本工作流程是:阅读器通过发射天线发送一定频率的射频信号,当射频卡进入发射天线工作区域时产生感应电流,射频卡获得能量被激活;射频卡将自身编码等信息通过卡内置发送天线发送出去;系统接收天线接收到从射频卡发送来的载波信号,经天线调节器传送到阅读器,阅读器对接收的信号进行解调和解码然后送到后台主系统进行相关处理;主系统根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行机构动作。 在耦合方式(电感-电磁)、通信流程(FDX、HDX、SEQ)、从射频卡到阅读器的数据传输方法(负载调制、反向散射、高次谐波)以及频率范围等方面,不同的非接触传输方法有根本的区别,但所有的阅读器在功能原理上,以及由此决定的设计构造上都很相似,所有阅读器均可简化为高频接口和控制单元两个基本模块。高频接口包含发送器和接收器,其功能包括:产生高频发射功率以启动射频卡并提供能量;对发射信号进行调制,用于将数据传送给射频卡;接收并解调来自射频卡的高频信号。不同射频识别系统的高频接口设计具有一些差异,电感耦合系统的高频接口原理图如图1所示。 阅读器的控制单元的功能包括:与应用系统软件进行通信,并执行应用系统软件发来

《哈勃望远镜》观后感

《哈勃望远镜》观后感 (论坛版) 巨幕电影还是擅长展示这种主题的,不管是宇宙,还是地球,是草原,还是天空,都可以用IMAX的方式表现得很好,比起《阿凡达》来,我更倾向于选择前者。每次看这种电影都会忍不住流眼泪,不是因为情节,它没有什么情节,就是爱看火箭升空,就是爱看科学家的欢呼,就是爱看湛蓝透明的地球,就是爱看寂静的水和空气,就是爱看这些无所不能的人类深深地在宇宙面前垂下......... 如果宇宙也可以做地质切片的话,星空照片就是它最直观的标本,广袤深远的宇宙是一部时光平摊在空间上的年代记,哈勃太空望远镜就是这星空时光年代记的忠实记录者。关于宇宙当我们仰望星空,那是宇宙遥远的历史展现于我们眼前的瞬间。现在的我们感慨宇宙曾经的模样,却对远方的现在一无所知。或许对于个体来说,获知关于遥远宇宙的智能对现世生活本身并无助益,但对于......... 在IMAX厅看3D的宇宙场景真是太爽了就像跟着一艘太空船,进行了一次太空旅行我们跟着哈勃的镜头,深入猎户座星云,看到行星的诞生近距离观察蝴蝶星云,马头星云,鹰状星云我们穿过本星系群,来到宇宙的尽头,看到了宇宙的婴儿状态,感动~ 效果超赞,大家有机会一定要看那~...... 第一次看IMAX,看这部电影还是很棒的,虽然只有四十分钟,但是却真实 地感受到了科学与技术的力量。往往总是讨厌摆弄金融理论和死板至上的理科生,但是这时候才显示出世界上那些天才理科生们的伟大。倘若没有宇宙飞创,没有哈勃,没有3D,没有IMAX,那么我将永远看不到这部作品。充满文艺幻想的青年再浪漫,也没法凭空给人杜撰一个宇宙出来。伽利略这些先行者,带人类知 哈勃望远镜,就是人类看清宇宙的眼睛。看完此片,觉得人类是多少的渺小,地球、甚至太阳系都是多么的沧海一粟。完全不用怀疑,浩瀚的宇宙中一定存

2计算机系统组成和工作原理

计算机系统组成和工作原理 1、计算机系统由(C)组成 A、主机和系统软件 B、硬件系统和应用软件 C、硬件系统和软件系统 D、微处理器和软件系统 2、在微型计算机中,微处理器的主要功能是进行(D) A 、算术运算B、逻辑运算C、算术逻辑运算D、算术逻辑运算及全机的 控制 3、微型计算机硬件系统中最核心的部件是(B) A、显示器 B、CPU C、内存储器 D、I/O 设备 4、微型计算机中,合称为中央处理单元的是指(A) A、运算器和控制器 B、累加器和算术逻辑运算部件 C、累加器和控制器 D、通用寄存器和控制器 5、运算器的主要功能是( A ) A、实现算术运算和逻辑运算 B、保存各种指令信息供系统其他部件使用 C、分析指令并进行译码 D、按主频指标规定发出时钟脉冲 6、微型计算机中,控制器的基本功能是(D) A、进行算术运算和逻辑运算 B、存储各种控制信息 C、保持各种控制状态 D、控制机器各个部件协调一致地工作 7、计算机系统的“主机”由(B)构成 A、CPU,内存储器及辅助存储器 B、CPU 和内存储器 C、存放在主机箱内部的全部器件 D、计算机的主板上的全部器件 8、为解决某一特定问题而设计的指令序列称为(C) A、文档 B、语言 C、程序 D、系统 9、计算机最主要的工作特点是( A ) A、程序存储于自动控制 B、高速度与高精度 C、可靠性与可用性 D、有记忆能力 10、冯.诺依曼计算机工作原理的设计思想是(B) A、程序设计 B、程序存储 C、程序编制D 、算法设计 11、世界上最先实现的程序存储的计算机是( B ) A、ENIAC B、EDSAC C、EDVAC D、NIV AC 12、通常,在微机中表明的P4 或奔腾 4 是指(D) A、产品型号 B、主频 C、微机名称 D、微处理器型号 13、以平均无故障时间,用于描述计算机的(A) A、可靠性 B、可维护性 C、性能价格比 D、以上答案都不对 14、以平均修复时间达到,用于描述计算机的(B) A、可靠性 B、可维护性 C、性能价格比 D、以上答案都不对 15、性能价格比也是一种用来衡量计算机产品优劣的概括性指标。 性能代表系统 的使用价值,它一般不包括(D)

原子力显微镜技术及其在细胞生物学中的应用

原子力显微镜技术及其在细胞生物学中的应用 摘要从原子力显微镜的发展、特点、操作模式以及联用技术等方面对原子力显微镜技术作了简要的介绍, 从细胞固定方法、细胞成像、力检测以及细胞操纵等方面综述了原子力显微镜技术在细胞生物学方面的应用, 并对原子力显微镜技术的发展进行了展望. 关键词原子力显微镜操作模式联用技术细胞生物学 最近几十年来, 纳米尺度上物质的结构、相互作用以及一些特殊的现象等越来越受到关注, 各种研究方法和仪器手段也应运而生, 原子力显微镜(AFM)就是其中的一种, 它是扫描探针显微镜(SPM)家族中的一个重要代表. 20世纪80年代初[1,2], 具有原子级分辨率的表面形貌测试仪—扫描隧道显微镜(STM)在IBM苏黎世实验室问世. 由于其可在多种环境下工作, 且制样简单, 因此很快就得到了广泛的应用. 然而, 随着STM在表面科学和生命科学领域的广泛应用, 它的一些不足之处如样品必须导电等逐渐暴露出来. 在1986年, 基于样品-针尖相互作用力的高分辨原子力显微镜(AFM)诞生[3], 它能获得纳米尺度上物质表面形貌并实现分子间相互作用力的检测, 因此很快在生命科学领域得到了广泛的应用, 无论是生物小分子还是核酸、蛋白质等生物大分子以及细胞方面都有研究报道. 本文拟对原子力显微术及其在细胞生物学方面的应用进行综述. 1 原子力显微镜简介 原子力显微镜通过控制并检测样品-针尖间的相互作用力来实现高分辨成像[1,4]. 首先控制微悬臂顶端的微小针尖, 使其与待测样品表面有某种形式的力接触, 然后通过压电陶瓷三维扫描器驱动针尖或样品作相对扫描, 作用在样品与针尖之间的各种作用力会使微悬臂发生形变, 这些形变可通过光学或电学的方法检测, 最后转化成图像输出(如图1). AFM具有以下特点: (1) 待测样品无需导电; (2) 可得到高分辨物体表面的三维形貌; (3) 可以在多种环境(如真空、大气、溶液、低温等)下工作, 特别是在溶液环境下生物样品可保持其自然状态, 从而避免制样过程中所造成的样品变形或变性; (4) 可以进行连续动态分析. 它能在接近生理状态的条件下观察样品, 因此许多研究者通过对生物样品的连续成像, 以了解某些生命活动的动态过程.

各种仪器分析及原理

化学专业学生必备:各种仪器分析的基本原理及谱图表示方法 紫外吸收光谱 UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法 FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法 IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法 Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法 NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法 ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法 MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 气相色谱法 GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关 反气相色谱法 IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力 谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线

计算机系统及其工作原理(教案)

四川省义务教育课程改革实验教科书 《信息技术》七年级上 第四课计算机系统及其工作原理 教案 一、教学目标: 1、知识目标:要求学生基本掌握计算机系统的基本组成,对计算机的工作原理和分类要有一个简单的认识 2、能力目标:能正确辨认常见硬件与常见软件,能给自己配置计算机,能理解计算机的工作原理,理解计算机的基本容量单位及换算关系。初步培养学生使用信息技术对其它课程进行学习和探讨的能力,培养学生的自学能力。 3、情感目标:体会通过自己的学习,列出计算机配置清单所带来的愉悦,从而达到培养学生对信息技术的兴趣意识和爱国主义精神。 二、教学重、难点: 1、重点:计算机系统的基本组成,各硬件的重要作用 2、难点:计算机的工作原理 三、教学方法:讲授法、观察法、讨论法、赏识教育法、实习实作 四、教学媒体:多媒体网络教室、相关教学课件、硬件系统的实物(CPU、内存条、硬盘及其他硬件实物) 五、教学课时2课时(1+1) (1节理论课+1节实习实作课) 六、教学过程(第一课时) 课题:第4课计算机系统及其工作原理 (一)组织教学 (二)新课导入:问题导入“对于大家经常使用的计算机,从外观上看,它是由哪些部分组成的呢?”学生回答(略)师(看得见、摸得着的设备在计算机中都称硬件)(有了硬件计算机就能工作了吗?)为了回答这个问题,今天我们就来学习第四课-计算机系统及工作原理 (三)知识讲解(系统讲解): 第一部分:计算机系统 A:硬件部分知识简介: 1、中央处理器(芯片)-CPU计算机的大脑(核心部件)组成、功能,观察实物,分类,生产发展及国内外的差异,激发学生的爱国热情和学习动力的目的。 2、存储器(存储大量的数据和信息):内存和外存实物展示、作用地位、容量单位及换算。概括:内存容量较小,运行速度快,价格高,外存容量更大,存取速度比内存较慢,价格较便宜。 3、其他硬件简介:主板、输入设备、输出设备等等

相关文档
最新文档